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In this paper, we extend Stein’s method to the distribution of the product of n independent mean zero
normal random variables. A Stein equation is obtained for this class of distributions, which reduces to the
classical normal Stein equation in the case n = 1. This Stein equation motivates a generalisation of the zero
bias transformation. We establish properties of this new transformation, and illustrate how they may be
used together with the Stein equation to assess distributional distances for statistics that are asymptotically
distributed as the product of independent central normal random variables. We end by proving some product
normal approximation theorems.
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1. Introduction

In 1972, Stein [39] introduced a powerful method for deriving bounds for normal approximation.
Since then, Stein’s method has been extended to many other distributions, such as the Poisson
[5], beta [8,25], gamma [21,29,31], exponential [4,34], Laplace [9,36] and variance-gamma [13,
20]; for an overview see Reinert [37].

Stein’s method for normal approximation rests on the following characterization of the normal
distribution, which can be found in Stein [40], namely Z ~ N (0, 02) if and only if

Elo?f'(2) - Zf(2)] =0 ¢))

for all real-valued absolutely continuous functions f such that E| f'(Z)| exists. This gives rise to
the following inhomogeneous differential equation, known as the Stein equation:

o2 f'(x) — xf (x) = h(x) — Eh(Z), )

where Z ~ N (0, %), and the test function A is real-valued. For any real-valued bounded measur-
able test function %, a solution f to (2) exists. Now, evaluating both sides at any random variable
W and taking expectations gives

E[o?f (W) — Wf(W)] =Eh(W) — Eh(Z). 3)

Thus, the problem of bounding the quantity EiA(W) — Eh(Z) reduces to the bounding the left-
hand side of (3).
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1.1. The product normal distribution

In this paper, we extend Stein’s method to products of independent central normal random vari-
ables. The probability density function of the products of independent mean zero normal vari-
ables was shown by Springer and Thompson [38] to be a Meijer G-function (defined in Ap-
pendix B.1.1). The probability density function of the product Z = X1 X» - - - X,, of independent

normal random variables N (0, aiz), i=1,2,...,n,is given by
1 n,0 )C2
P = GG (2%_2 (o, ..0),  xeR, &)

where o = 0107 - - - 0y,. If (4) holds, then we say that Z has a product normal distribution, and
write Z ~ PN(n, '2). For the case of two products, (4) simplifies to

1 |x]
Ko s x eR,
01072 01072
where Ko(x) is a modified Bessel function of the second kind (defined in Appendix B.2.1).
The density p, satisfies the asymptotic formulas

1 T
Dn(x) ~ m[—10g<;)] , asx — 0,

2n/271 x| 1/n—1 n (x| 2/n
Pn(x) ~ (—) exr)(——(—) ) as x| - oo (5)
o /rn\ o 2\ o

(see Theorem 6 of Springer and Thompson [38], and Luke [30], Section 5.7, Theorem 5). It is
interesting to compare these asymptotic formulas with the exact formula for the density of the
random variable | X|" sgn(X), where X ~ N (0, 02), as given by

= () o5 () ) e
x) = = xp| —=| — , x eR,
P no2m \ o A2\ %

which is seen to have a greater singularity at the origin and slower decay at the tails than the
PN(n, o2) distribution.

p2(x) =
T

and

1.2. A Stein equation for the product normal distribution

One of the main results of this paper is a Stein equation for the PN(n, o) distribution:

o2

_<xi)nf(x)_xf(x)=h(x)—PNgzh, (6)
X dx
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where PNZ2 h denotes the quantity EA(X) for X ~ PN(n, 0'2). For ease of reading, we define the
operators Tf(x) = xf'(x) and A, f(x) = x~1T" f(x). With this notation, the PN(n, 0'2) Stein
equation (6) can be written as

o2 Anf(x) — xf(x) =h(x) — PN h. )

For all n > 1, the operator 7" satisfies the fundamgntal identity (Luke [30], page 24) T" f(x) =
Sioi ik F® (), where {1} = & ZIJ‘»:O(—I)"_J (';)J” are Stirling numbers of the second kind
(Olver et al. [33], Chapter 26). Consequently, (7) is a nth order linear differential equation with
simple coefficients:

2n”k71<k) _ _ _ pno?
o k;{k}x FO @) —xf(x) =h(x) —PNJ h. 8)

As an nth order differential equation, this Stein equation is almost unique in the literature. The
exceptions being the nth order Stein equations of Goldstein and Reinert [24] that involve orthog-
onal polynomials, and the very recent nth order Stein equations for products of n independent
beta and gamma random variables (see Gaunt [17]) and linear combinations of n independent
gamma random variables (see Arras et al. [1]).

The PN(n, 02) Stein equation is a natural generalisation of the normal Stein equation (2) to
one for products of independent central normal random variables and has a number of attractive
properties; a further discussion is given in Remark 2.1. For the case n = 2, (8) reduces to

o2xf"(x) + o2 f(x) — xf (x) = h(x) — PNJ  h, 9)

and in Lemma 2.3 we obtain the unique bounded solution of (9), as well as bounds on its first
four derivatives (see Theorem 2.1), which hold provided that /& and its first three derivatives are
bounded. Note that (9) is a second order linear differential equation involving f, f" and f”. Such
Stein equations are uncommon in the literature, although Pekoz et al. [35] have recently obtained
a similar Stein equation for the family of densities

() = (), = Npfs-1 L2 05> )
) = —exp| —=— L=, = >U,s==,
sl s ST P 2s s 2 2s x s 2

where U (a, b, x) denotes the confluent hypergeometric function of the second kind (see Olver
et al. [33], Chapter 13). Pike and Ren [36] have also obtained a second order Stein operator for
the Laplace distribution. It should also be noted that the PN(2, 02) distribution is a member of
the class of variance-gamma distributions, and that (9) is indeed a special case of the variance-
gamma Stein equation, recently introduced by Gaunt [16]. Very recently, Gaunt [19] obtained a
second order Stein operator for the generalized hyperbolic distribution. A limiting case of this
Stein operator is the variance-gamma Stein operator.

In Section 2.3, we solve the product normal Stein equation. For the case of two products,
we obtain uniform bounds for the solution and its first four derivatives in terms of supremum
norms of derivatives of the test function 4. However, for n > 3, the solution takes on a rather
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complicated form, involving integrals of Meijer G-functions, and we have been unable to obtain
estimates for the solution and its derivatives. This is left as an interesting open problem and is
discussed further in Section 2.3.2.

1.3. A generalised zero bias transformation

Returning to normal approximation, the quantity E[o? f/(W) — W f(W)] is typically bounded
through the use of a coupling and Taylor expansions. A coupling technique that is commonly used
in the case mean zero random variables is the zero bias transformation, which was introduced by
Goldstein and Reinert [22]. If W is a mean zero random variable with finite, non-zero variance
o2, we say that W* has the W-zero biased distribution if for all differentiable f for which
EWf (W) exists,

EWf(W)=o’Ef'(W").

The above definition shows why we might like to use a zero-biasing method for normal approx-
imation: it gives a way of splitting apart an expectation, and reduces normal approximation to
bounding the quantity o2 E[ f'(W) — f'(W*)]. We therefore have

E[a?f (W) — Wf(W)] = oE[f' (W) — f'(W¥)], (10)

and the right-hand side may be bounded by Taylor expanding about W. Goldstein and Reinert
[22] presented a number of interesting properties and obtained some useful constructions, such
as:

Lemma 1.1. Let X1, ..., X, be independent mean zero random variables with I['EXI.2 = al.2. Set
W=>",X;and EW?2 =02, Let I be a random index independent of the X; such that P(I =
2

i)=725. Let

Wi=W-X;=) X;.
JF#i
Then Wy + X7 has the W -zero biased distribution, where X7 has the X j-zero biased distribution.

Such constructions combined with a Taylor expansion of the right-hand side of (10) often
allow simple proofs of limit theorems for normal approximation.

Motivated by the zero bias transformation and the multivariate normal Stein equation, Gold-
stein and Reinert [23] extended the concept of the zero bias transformation to any finite di-
mension. In this paper, we introduce another generalisation of the zero bias transformation. The
product normal Stein equation and zero bias transformation motivate the following definition.

Definition 1.1. Let W be a mean zero random variable with finite, non-zero variance o*. We say
that W*™ has the W-zero biased distribution of order n if for all n times differentiable f for
which EW f (W) exists,

EWf(W)=0’EA, f(W*™), (1D
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where A, f(x) =x"'T" f(x) and T f (x) = xf'(x).

The existence of the zero biased distribution of order n for any W with zero mean and non-
zero, finite variance is established by Lemma 2.2. The zero bias transformation of order » is a
natural generalisation of the zero bias transformation to the study of products of independent
normal distributions in the same way that the multivariate zero bias transformation, introduced
by Goldstein and Reinert [23], is a natural extension to random vectors in R4,

The zero bias transformation of order n» has a number of interesting properties that generalise
those of the zero bias transformation. These properties are collected in Propositions 3.2 and 3.3.
The application of the zero bias transformation of order n to assess distributional distances for
statistics that have a limiting product normal distribution is analogous to that of the zero bias
transformation for normal approximation. We illustrate how such approximation results can be
obtained with Theorem 4.1, provided that we have bounds on the relevant derivatives of the
solution to the Stein equation (7).

In obtaining these bounds, we use the fact (Proposition 3.3, part (iv)) that the zero bias trans-
formation of order n of the random variable W = ]_[Z: | Wi, where the W are independent, is
given by W*® = [Te=1 W;. One can then construct the zero bias transformations for each of
the Wy by using one of the constructions given by Goldstein and Reinert [22]. For example,
if Wy, = ﬁ Z?: | Xik, where the X;; are independent random variables with mean zero and

non-zero, finite variance, then we can construct W,f using Lemma 1.1.

It is worth comparing this construction with an analogous result, due to Luk [29], involving
size bias couplings (for an application of this coupling to normal approximation see Baldi, Rinott
and Stein [3]). If W > 0 has mean u > 0, we say W* has the W-size biased distribution if for all
f such that EW f (W) exists,

EWf (W) = uEf(W*).

Now, if W = ]_[Z=1 Wi, where the Wy are positive, independent random variables and
Wi, ..., W, are independent random variables with W} having the Wj-size biased distribution,
then WS = HZ:I W,‘: has the W-size biased distribution. The constructions are similar, although
the product of n zero bias distributions has the W-zero bias distribution of order n, rather than
the W-zero bias distribution.

In Section 4, we illustrate how the product normal Stein equation may be used together with
the zero bias transformation of order n to assess distributional distances for statistics that are
asymptotically distributed as products of independent normal random variables, and we obtain
explicit bounds on the convergence rate in the n = 2 case. We are restricted to the case n =2
because we are unable to obtain bounds for the solution of PN(x, 02) Stein equation for n > 3.
In Section 5, we get around this difficulty by using a recent results, due to Gaunt [20], that allow
one to obtain bounds on distributional distances when the limit distribution that be represented
as a function of a multivariate normal random variable, of which the product normal distribution
is an obvious example. We end Section 5 by comparing the bounds obtained by this approach
that bypasses the Stein equation and those derived in Section 4 using the Stein equation.

The approach taken in this paper is somewhat classical, although it should be noted that prod-
uct normal limit theorems have recently been established in the context of Malliavin calculus.
Indeed, the Malliavin—Stein method (see Nourdin and Peccati [32] for an introduction), that was
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originally developed for Gaussian approximation, is applicable to a wide class of laws; see, for
example, Eden and Viens [11] and Eden and Viquez [12]. Eichelsbacher and Thile [13] used the
Malliavin—Stein approach to obtain bounds for variance-gamma approximation of functionals of
isonormal Guassian processes. In particular, they showed that a sequence of random variables in
the second Wiener chaos converges to a variance-gamma limit if and only if their second to sixth
moments converge to those a variance-gamma random variable. A special case of this general
six moment theorem is a six moment theorem for the distribution of the product of two (possi-
bly correlated) standard normal variables (see [13], Theorem 5.8 and Remark 5.9), with explicit
bounds on the rate of convergence.

The results of [13] are complemented by those of Azmooden et al. [2]. They established neces-
sary and sufficient conditions under which a sequence of random variables living inside a Wiener
chaos of arbitrary order converge to limiting random variables, whose distribution is of the form
Zle o (Zi2 — 1), where k is a finite integer, the «;, i = 1, ..., k, are piecewise distinct and the
Z; are independent N (0, 1) variables. The case k =2, a1 = % = —ap corresponds to a limit with
the same distribution as a PN(2, 1) random variable, and other parameter values can yield results
for limiting distributions that fall outside the variance-gamma class.

1.4. Outline of the paper

We begin Section 2 by obtaining some useful properties for the operator A,,. We use some of
these properties to prove the existence and uniqueness of the zero bias distribution of order n.
We then present a characterising equation for the product normal distribution which motivates
the Stein equation (7). Also, for the case n = 2 we obtain the unique bounded solution, as well
as bounds on its first four derivatives. The general case n > 3 is more difficult, but we are still
able to solve the equation. We also discuss how one may extend the approach used in the n =2
case to this more challenging case. In this section, we also consider an application of our prod-
uct normal characterisation to the problem of obtaining a formula for the characteristic function
of a product normal distributed random variable. In Section 3, we present some of the proper-
ties of the zero bias distribution of order n. In Section 4, we illustrate how the product normal
Stein equation may be used together with the zero bias transformation to derive product normal
approximation results. In Section 5, we bypass the product normal Stein equation to prove two
product normal approximations for general n. The proof of Theorem 2.1 is given in Appendix A.
Appendix B provides a list of some elementary properties of the Meijer G-function and modified
Bessel functions that are used in this paper. Appendix C provides a list of inequalities for expres-
sions involving derivatives and integrals of modified Bessel functions that are used to bound the
derivatives of the solution of the PN(2, o'2) Stein equation.

Notation. Throughout this paper, T will denote the operator Tf (x) = xf’(x) and A, will de-
note the operator A, f (x) =x"'T" f(x) = %(T"_lf(x)). We shall write C” (R?) for the space
of k times differentiable functions on R?. We let c, (R?) denote the space of bounded func-
tions on R with bounded kth order derivatives for k < n. We shall also write || f]| = || f lloc =

sup,eg [ f ()]
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2. A Stein equation for products of independent central normal
variables

2.1. The product normal Stein equation

In this section, we obtain a characterising equation for the product normal distribution which
motivates the PN(n, o-2) Stein equation (7). Before presenting that result, we present some useful
properties of the operator A, f(x) = x~!T” f(x) and establish the existence of the zero bias
distribution of order n for any W with zero mean and finite, non-zero variance.

We begin by obtaining an inverse of the operator A,. This inverse operator will be used
throughout this paper in establishing properties of the zero bias distribution of order 7.

Lemma 2.1. Let V), be the product of n independent U (0, 1) random variables, and define the
operator G, by G, f(x) = xE f(xV,). Then, G, is the right-inverse of the operator A, in the
sense that

AnGn f(x) = f(x).
Suppose now that f € C"(R). Then, for any n > 1,

GnAnf(x) =G1A1f(x) = f(x) = f(0). 12)

Therefore, Gy, is the inverse of A,, when the domain of A,, is the space of all n times differentiable
Sunctions f on R with f(0)=0.

Proof. We begin by obtaining a useful formula for G, f (x) = xE f (xV,,). We have that

an(x>=x/ Pt unyduy - - duty,

0,1)"

and by a change of variables we can write

G1f(X)=/0 f@dn, 13)

and forn > 2,

X pty t
an<x>=/f ---/2%f<n)dndrz~-drn. (14)
0o Jo 0 hitz---Iy

We now show that G, is the right-inverse of the operator A,. It is immediate from (13) that
A1G f(x) = f(x). For n > 2, we differentiate the right-hand side of (14) to obtain

d
TG f(x) =xa(an(X)) =Gn-1f(x),
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and hence TG, f (x) = Gp—i f (x). Using this recursive formula yields

—1pn d n—1
ApGnf(x)=x""T"G, f(x) = dx(T Gnf(x) = (Glf(X)) J(x).

Finally, we verify relation (12). For n > 2, we have
GnAnf(x) = / / / (7" f (1)) dty dta -+ dt,
oty dt
= L e e R A drs
](; /0 /0 t2t3~--tn[ f(1)],1=0 2 dt3 n
X 173 3
_ /O fo /0 -

=Gy 141 f(x),

where we used that A, f(x) =x~!T" f(x) = %(T”_lf(x)). Iterating gives

T f () ddts - - diy,
n

GnAnf(X)=GlA1f(X)=/O flaydn = f(x) - £(0),
as required. |

We are now in a position to prove the existence and uniqueness of the zero bias distribution of
order n for any W with zero mean and finite, non-zero variance. The proof is a generalisation of
the proof of existence of the zero bias distribution that was given in Goldstein and Reinert [22].

Lemma 2.2. Let W be a mean zero random variable with finite, non-zero variance o2, Then
there exists a unique random variable W*™ such that for all f € C"(R) for which the relevant
expectations exist we have

EWf (W) = o’EA, f(W*™).

Proof. For f € C,, the collection of continuous functions with compact support, define a linear
operator R by

Rf =0 2EWG, f(W),

where G, is defined as in Lemma 2.1. Then Rf exists, since EW? < co. To see, moreover,
that R is positive, take f > 0. Then G, f(x) is increasing, and therefore W and G, f (W) are
positively correlated. Hence EWG,, f(W) > EWE fG,, (W) = 0, and R is positive. Using the
Riesz representation theorem (see, for example, Folland [14]) we have Rf = f f dv, for some
unique Radon measure v, which is a probability measure as R1 = 1.

We now take f(x) = A,g(x), where g € C"*(R), with derivatives up to nth order being con-
tinuous with compact support. Then, from (12), we have

EWG,A,g(W)=EW (g(W) — g(0)) =EWg(W),
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which completes the proof. (]
The following proposition motivates the product normal Stein equation (7).

Proposition 2.1. Suppose Z ~ PN(n,0?). Let f € C"(R) be such that E|Zf(Z)| < oo and
E|Zk1 f®(Z)| <00, k=1,...,n. Then

E[o?A,f(Z) - Zf(Z)] = 0. (15)

Proof. Define W,, = ]_[l'-'=1 X; where X; ~ N (0O, afi) and the X; are independent. We also let
Op = Oy, 0y, - - - 0y, and observe that (T" f)(ax) =T" f,(x) where f,(x) = f(ax).

We prove the result by induction on n. For n = 1, the result follows immediately from
the characterisation (1) for the normal distribution. By induction assume that EW, g(W,) =
JnZIEA,,g(Wn) = azEWn_IT”g(Wn) for all g € C"(R) for some n > 1. Then

n

EWpt1 f Wog1) = E[Xp 1 E[Wa fx,0s (W) | Xnt1]]
= E[Xur1E[o W, (T" £, ) (W) X1 ]
= 0 E[Xu 1 W, (T f) (Wa X))
=0 2E[W, "E[Xps1 - (T" fw,) X)W ]]
= 0 E[W, B[ (T fw, ) (X)) [ Wa

= o B[W, L T f (W),

as required. (]

Remark 2.1. We could have obtained a first order Stein operator for the PN(n, ¢2) distributions
using the density approach of Stein et al. [41] (see also Ley et al. [28] for an extension of the
scope of the density method). However, this approach would lead to complicated operators in-
volving Meijer G-functions, which, in contrast to our Stein equation, may not be amenable to
the use of couplings.

2.2. Applications of Proposition 2.1

The main application of Proposition 2.1 that is considered in this paper involves the use of the
resulting PN(2, 02) Stein equation in the proofs of the limit theorems of Section 4. It is, however,
possible to obtain other interesting results using Proposition 2.1. As an example, we demonstrate
how the characterising equation (15) of the product normal distributions can be used to derive a
formula for the characteristic function of the PN(n, o2) distribution.

Let W, ~ PN(n, 0%). We begin by noting that the moment generating function of W, is only
defined for n <2 (see (5)). We therefore consider the characteristic function of W,. On taking
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f(x) = ¢e/™ in the characterising equation (15) and setting ¢, (t) = E[e/'""], we deduce that
¢, () satisfies the differential equation

n—1
azt(t%+1> bn(t) + ¢, (1) =0. (16)

Solving this differential equation subject to the conditions that ¢, (¢) is the characteristic function
of W, would yield a formula for the characteristic function of W,. For simplicity, we consider

the cases n = 2, 3 (the case n = 1 gives the well-known formula ¢ (1) = e_%"zlz).
For n =2, the differential equation (16) reduces to

(1+026%) g4 (1) + %t (t) = 0.

Solving this equation subject to the condition ¢, (0) =1 gives

1
»0= e

This formula was also obtained in Example 11.22 of Stuart and Ord [42].
For n = 3, the characteristic function ¢3(t) satisfies

2P (1) + (30217 + 1) ¢4 (1) + o 13 (t) = 0.

It is straightforward to verify the general solution of this differential equation is given by

1 1 1 1
— Al -1
@3(t) = Alt| exp(402t2)lo<402t2) + BJt| exp<402t2>K0(4azt2>,

where Ip(x) and Ko(x) are modified Bessel functions (see Appendix B.2.1 for definitions), which
satisfy the modified Bessel differential equation (54). From the asymptotic formula Io(x) ~ —2

V2mx

as x — oo (see (47)), it follows that the solution is unbounded as t — 0 unless A = 0. Since the
characteristic function ¢3(¢) must be bounded for all € R, we take A = 0. We also require that

¢3(0) = 1, and so on applying the asymptotic formula Kq(x) ~ /Z”—Xe_" as x — oo (see (46)),
we take B = (64/27)~ L. Hence,

$3(1) =

1 1 1
Kol ——= ).
V2mo?t? exp<402t2> 0(402t2>

In principle, this approach could be used to obtain a formula for ¢, (¢) for any n > 1. Although,
for n > 4, the general solution is given in terms of Meijer G-functions and it would become
increasing difficult to use the condition that ¢, (¢) is the characteristic function of the PN(n, o?)
distribution to determine the values of the constants. We can, however, obtain a formula for
¢, (t) by using an integral formula involving the Meijer G-function, given by formula (18) of
Section 5.6 of Luke [30] (see (41)). As far as the author is aware, the formula in the following
proposition is new.
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Proposition 2.2. The characteristic function of the PN(n, o'2) distribution is given by
1 n—1.1 1
Pn(t) = n(n—l)/2G1Jl*1 25242

1 )
1 1)
P EREEEN)
In the cases n =2, 3, this formula simplifies to

1 1 1 1
1) = ——— d t) = K .
@2 (1) o2 an ¢3(1) meXp<40212> 0<402t2>

Proof. Let W, ~ PN(n, 2). Since the PN(n, 62) distribution is symmetric about the origin, it
follows that the characteristic function ¢, (¢) of W, is given by

2

_ W, _ o 1 n,0 X

0,...,0>dx.

Evaluating the integral using (41) and then simplifying using (39) and (38) gives

1
1 10
0,...,0

_ n,1
(bn(t) - 2”/27177,’(”71)/20'|l‘| 2,n<2n—20—2t2

_ 1 1 1
T op=1/2 2,n n—25242

1 n—1,1 1
= o072 %=1\ 202,22

as required. (]

2.3. Bounds for the solution

Here we solve the product normal Stein equation. For the case n = 2, the solution can represented
in terms of integrals of modified Bessel functions and takes a relatively simple form. As a result,
we are able to obtain uniform bounds for the solution and its lower order derivatives. These
bounds are used in the approximation theorems of Section 4. However, for n > 3, the solution
takes a less tractable form and we have been unable to bound the solution or any of its derivatives.

231. n=2

The PN(2, 02) Stein equation (9) is a second order linear differential equation and the homo-
geneous equation has Ip(x/o) and Ko(x/o) as a pair of linearly independent solutions (see
(54)). Therefore, one can obtain a solution to the PN(2, o2) Stein equation through a straightfor-
ward application of the method of variation of parameters (see Collins [7] for an account of the
method). This was done by Gaunt [16], Lemma 3.3 for the more general variance-gamma Stein
equation (recall that the PN(2, o2) Stein equation is a special case of the variance-gamma Stein
equation), and the following lemma is a special case of that result. We present the solution for
the case o = 1; we can recover results for the general case by using a simple change of variables.
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Lemma 2.3. Suppose h : R — R is bounded. Then the unique bounded solution f : R — R fo
the PN(2, 1) Stein equation (9) is given by

X o
f0) = —Ko(lx]) /0 Io()[h(y) = PNy h]dy — Io(x) / Ko(1y)[2(y) — PNy A]dy, (17)
X
where Iy(x) and Ko(x) are modified Bessel functions; see Appendix B.2.1 for definitions.

Remark 2.2. The equality

fx Ko(Iy[)[/:(y) — PNL k] dy ——/xmKo(|y|)[h<y) PN} /1] dy

—0o0

is very useful when it comes to obtaining bounds for the derivatives of the solution to the Stein
equation. The equality ensures that we can restrict out attention to bounding the derivatives in
the region x > 0.

By direct calculations it is possible to obtain bounds for the derivatives of the solution of the
PN(2, 1) Stein equation. Bounds for the case of general o then follow by a simple change of
variables. In Theorem 2.1 (see Appendix A for the proof), we present uniform bounds for the
solution of the PN(2, %) Stein equation and its first four derivatives in terms of the supremum
norms of the derivatives of the test function /. It is worth noting that bounds for the solution
of the variance-gamma Stein equation and its first four derivatives were derived by Gaunt [16],
yielding as a special case estimates for the solution of the PN(2, %) Stein equation. Also, through
a new iterative technique, Dobler et al. [10] extended this work to obtain bounds on derivatives
of arbitrary order of the solution of variance-gamma Stein equation. However, the constants in
Theorem 2.1 improve on these for n < 4, and the estimates for ||xf (x)||, lxf'(x)|| and ||xf" (x)||
are new.

By exploiting properties of the zero bias transformation of order n, we only require bounds for
derivatives up to second order for the limit theorems of Section 4; in fact for Corollary 4.1 we
only need estimates for the solution and its first derivative. However, for other coupling choices,
such as local couplings, we would require bounds on the third derivative to achieve a O (m~'/?)
bound (here m is the ‘sample size’); and for O(m~1) bounds we may require bounds for the
fourth derivative (see, for example, Goldstein and Reinert [22], Corollary 3.1).

Theorem 2.1. Suppose that h € Cg (R). Then the solution f of the PN(2, 5'2) Stein equation (9)
and its first four derivatives are bounded as follows

3
Ifl==|h—PNg’
o

|h —PNg’

171 = o

. 2||h ||
1771 =

%Hh—PN‘Z’Zh :
o
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4A7  SIIA| 4.89

2
|rO ==+~ 5+ |h=PN3 |,
8IIA |  9n”|  6.81|K|  15.75 >
|79 = =0+ g+ " s =Nl

and we also have

)

2
Jef ] = 2 —eNg’n
o

3

3
| < 551 —PNS |

9
Jf "] = s~ PN |

We now prove a lemma, which gives a bound on the quantities ||(A, f YO that appear in the
bounds of Theorem 4.1. In the lemma, we suppose that certain derivatives of the solution of the
PN(n, 02) Stein equation (7) exist and are bounded. However, this might not be the case when
n > 3, as we have not been able to obtain an analogue of Theorem 2.1 for n > 3; this is discussed
further in Section 2.3.2.

Lemma 2.4. Let f be the solution of the PN(n, ) Stein equation (7). Suppose that f and the
test function h are k times differentiable. Then

AP = [P + [ O + k[ 4 (18)

provided that the supremum norms on the right-hand side of (18) are bounded. In particular,

3

3 3
ataay] = W+ (24 525 ) In—PNg

3 9
o Jaaf)'| < W+ (5 + 5o )= NS

Proof. The solution f satisfies the equation 024, f(x) = h(x) — xf(x). By a simple induction,
o2(An P (x) = KO (x) + xf O (x) + k%D (). Applying the triangle inequality now yields
(18). To obtain the inequalities for ||(A2 f) || and ||(A2f)”|l, we use the bounds for f and its
derivatives that were given in Theorem 2.1 to bound the supremum norms on the right-hand side
of (18) for the casen =2 and k =1, 2. ([l

232. n>3

We now consider the more challenging n > 3 case. Again, for simplicity, we shall take o = 1;
results for the general case easily follow from a change of variables. As in the case n = 2, we
can obtain a fundamental system for the homogeneous equation, and can thus use variation of
parameters to write down a solution to the Stein equation.
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Lemma 2.5. Suppose h : R — R is bounded, and set h(x) = h(x) — PN,llh. Let yr(x) =
Gy o((—=1)¥x?/2"(0, ..., 0). Then the function

1w == [ fvl(f;é’((;) dr + Z( D"y (o) Ox fV’i(f—‘);((f)) (19
solves the PN(n, 1) Stein equation, where W is the determinant of the matrix
noom
M yl y.z " Yn 20)
yl(n 1) yén:—l) )’r(zn:_l)

and Wy is the determinant of the submatrix of M obtained by deleting the last row and kth
column.
Moreover, there is at most one bounded solution to the PN(n, 1) Stein equation.

The representation of the solution (19), which is given in terms of integrals involving expres-
sions of Meijer G-functions, does not lend itself easily to the bounding of the solution and its
derivatives. This is in contrast to the relatively simple solution (17) that corresponds to the n = 2
case. For this reason, we have not been able to obtain an extension of Theorem 2.1 to n > 3, and
this is left as an interesting open problem.

There are various ways one could approach this problem. One would be to use a different
method to solve the Stein equation, which may lead to a different (and hopefully simpler) rep-
resentation of the solution. Alternatively, a first step would be to obtain a simplification of the
current representation (19), perhaps by simplifying the determinants Wy, ..., W, and W. For
n =2, we have y; () = Gy'5(—x%/4]0,0) = Ip(x) and y>(x) = G5 (x?/4]0,0) = 2K (|x|) (see
(43) and (44)). Therefore, for x > 0,

W(x) = W(y1(x), y2(0)) = 31 ()3 (x) = ¥} (1)y2(x)
2
= —2(lo0)K1 () + h® Ko@) === (by (36))

with a similar formula for x < 0, and one could attempt to obtain a similar simplification
for n > 3. From here, to bound the solution and its derivatives, one could proceed, through
rather technical calculations, to bound appropriate expressions involving integrals of Meijer G-
functions. These calculations would be similar, but more technical, than those used to prove
Theorem 2.1 (see Appendix A, and Gaunt [20] for the calculations used to obtain the bounds of
Appendix C).

If instead of seeking explicit bounds, as was the case in Theorem 2.1, one was content to just
prove that the solution and its lower order derivatives were bounded, for sufficiently differen-
tiable test functions /, then one would only need to investigate the behaviour of the solution (19)
in the limits x — 0 and |x| — o0, as the solution and its derivatives are bounded for all other
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x € R. Asymptotic formulas for the G-function are available (see, for example, Luke [30], Sec-
tion 5.10); however, such an analysis may be rather involved, due to occurrence of the Wronskian
determinants in the solution (19). Although, the complexity of this analysis would be greatly re-
duced if a simplification was found for the determinants. Finally, due to Lemma 2.4, if one was
using the zero bias transformation of order n to obtain product normal approximation results,
then it would suffice to bound just || f|| and ||xf'(x)].

Proof of Lemma 2.5. We begin by stating a general result that is given in Kreyszig [27],
page 140. Consider the inhomogeneous differential equation

g™ (x) + an—1()g" V() 4 -+ a1 (x)g' (x) + ap(x)g (x) = g(x),

where the ai(x) are (n — 1)-times differentiable. Suppose that g1 (x), ..., g,(x) form a funda-
mental solution to the homogeneous equation. Then the general solution is given by

* Wi()g (@) dr

q(x) =Y (=" Fgu(x) W

k=1 Ak

, 21

where the gy are arbitrary constants, and W and Wy, are determinants of a matrix of the form (20).
We now apply this result to the PN(#n, 1) Stein equation. The homogeneous equation is

x7ITT ) —xf(x) =0 (22)
and letting f(x) = g((—l)kx2 /2"") leads to the differential equation
T"g(x) — (=1)*xg(x) =0. (23)

This is a special case of the Meijer G-function differential equation (42), and the functions
ngg(x|0, ...,0), k=1,...,n, form a fundamental set of solutions to (23). Consequently, the
functions yi(x) = GS:S((— l)kx2/2” [0,...,0),k=1,...,n, form a fundamental set of solutions
to (22). The differential equation (22) is a nth order linear differential equation with x"1 ag
coefficient of f @) and so from (21) we have that (19) solves the PN(xz, 1) Stein equation.

The values of the arbitrary constants were chosen to allow the solution to be bounded.
In fact, in order to have a bounded solution to the PN(n, 1) Stein equation, one must take

az,...,a, =0 and either a; = oo or a; = —o0. This is because, due to asymptotic properties
of Meijer G-functions (see Luke [30], Section 5.10), we have that y; (x) — oo as |x| — oo and,
fork=2,...,n, yx(x) > oo as x — 0 (asymptotic formulas are only given for |x| — oo in [30],

although asymptotic results for the limit x — O can be obtained via identity (40)).

Finally, we prove that there is at most one bounded solution to the Stein equation. Suppose u
and v are bounded solutions to the Stein equation. Define w = u — v. Then w is also bounded
and is a solution to (22), which has general solution w(x) = Zzzl Aryk(x), where the Ay are
arbitrary constants. Recall that y;(x) — oo as |x| — oo and, for k =2,...,n, yr(x) = 00 as
x — 0. Therefore, for w to be bounded, we must take A{ =--- = A, =0, and thus w = 0 and so
there can be at most one bounded solution. a
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3. The zero bias transformation of order n

The zero bias transformation of order n, given in Definition 1.1, has many useful properties,
which we collect in Propositions 3.2 and 3.3, below. We begin by presenting a relationship be-
tween the W-zero bias distribution of order n and the W-square bias distribution (see Chen et al.
[6], pages 34-35, for properties of this distributional transformation). For any random variable
W with finite second moment, we say that WU has the W-square bias distribution if for all f
such that ]EW2f(W) exists,

EW?2f (W) =EW2Ef(WD).

When W is non-negative, wH is given by the size bias distribution of W¥, the size bias distribu-
tion of W (see Pekoz et al. [35]). Although, in this section, we will be considering W with mean
zero, and so this attractive result is not available to us.

Before presenting our relationship, we write down a construction of the W-square bias distri-
bution, for the case that W is decomposed into a product of independent random variables. This
construction will be used in the proof of part (iv) of Proposition 3.3.

Proposition 3.1. Suppose W = [;_, Wi, where the Wy, are independent random variables and
let WID, ey WHD be independent random variables with WE having the Wy-square biased dis-
tribution, then

n
wH =TT w/
k=1

has the W -square biased distribution.

Proof. We prove that the result holds for the case of two products; the extension to a general
number of products follows by a straightforward induction. Using independence to obtain the
final equality, we have

Ef(Wr'wy') =E[E[f (W W) Iw;]]
1

_ WE[Wf]E[f(Wl wi)iwr]]

1 O
= WEWff(Wlwz )

1
=——  EW> W2 f (W W>)
2 2 172
EWZEW;

=—— EW> W2 f (W W>)
272 172 ’
EW?2W3

as required. ]
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We now state our relationship, which is a natural generalisation of the relation between the
zero bias distribution and the square bias distribution that is given in Proposition 2.3 of Chen
et al. [6]. The proof of the relationship utilises the inverse operator G,, of A,, and differs from
the approach used in [6].

Proposition 3.2. Let W be a random variable with zero mean and finite, non-zero variance o2,

and let WB have the W -square bias distribution. Let U1, . .., U, be independent U (0, 1) random
variables, which are independent of wH. Define Vy, = [;_, Uk. Then, the random variable

D O
“r*(n) ‘rn w
has the W -zZero bias distribution oforder n.

Proof. Let f € C,, the collection of continuous functions with compact support. In Lemma 2.1,
we defined the operator G, g(x) = xEg(xV,) and showed that A, G, g(x) = g(x) for any g. We
therefore have

B f (W) =62EA, G, f(W*™) =EWG, f(W) =EW?f(V,W) =0 *Ef (V,WD).

Since the expectation of f (W*™) and f(Vy WD) are equal for all f € C, the random variables
W*® and V,, W5 must be equal in distribution. (]

In the following proposition, we present some properties of the zero bias transformation of
order n. These properties generalise some of the important properties of the zero bias transfor-
mation (see Goldstein and Reinert [22], Lemma 2.1 and Chen et al. [6], Proposition 2.1). As was
the case for the proof of Proposition 3.2, the proofs of parts (i) and (ii) of the proposition utilise
the inverse operator G, and so differ from the approach given in [6] and [22].

Proposition 3.3. Let W be a mean zero variable with finite, non-zero variance o*, and let W*™
have the W -zero biased distribution of order n in accordance with Definition 1.1.

(i) The distribution function of W*™ is given by

;E[Wzy (n log<K>>1(W < w)], w <0,

n—1)lo? w

1 W 24)

1— 7E|:W2y<n,log<—>>l(sz):|, w >0,
(n—1)lo? w

where y(a, x) denotes the lower incomplete gamma function y (a, x) = fOX 1 le~" dr.
(i) The distribution of W*™ is unimodal about zero with density

1 W\
S (w) = ' (25)

1 w n—1
mE[W(IOg<E>> I(sz)jl, w > 0.

Fw*(n) (w) =



3328 R.E. Gaunt

It follows that the support of W*™ is the closed convex hull of the support of W and that W*™
is bounded whenever W is bounded.
Suppose now that W is symmetric, then the density of W*™ is given by

1 W
= ! E|W|(1 W "711 W< 27
o (o) 0] 7

In particular, the zero bias transformation of order n preserves symmetry.
(iii) For p = 0 we have
E|W| p+2

» EWP+2
oX(p+ 1’

E(W*(n)) — 0-2(p T

and E|W*(")|p =

(iv) Suppose W = [1;_, Wk, where the Wy, are independent random variables with zero mean
and finite, non-zero variance and Wl*, ..., W} are independent random variables with W,j‘ hav-
ing the Wy-zero biased distribution. Then

n
D
wrm 2 1_[ Wl:k (28)
k=1
has the W -zero biased distribution of order n.
(V) Forc eR, cW*™ has the ¢W-zero biased distribution of order n.

Proof. (i) In the proof of Proposition 3.2, we showed that o ’Ef(W*™)y = EW?2 £ (V,, W) for all
bounded functions f, where V}, is the product of » many independent U (0, 1) random variables.
By taking f(x) =1(x < w), we have

1 1
Fyyen (w) = = E[W21(V, W <w)] =1 — S E[W1(V, W > w)],
o o
as EW?2 = ¢2. Formula (24) now follows on noting that —log(V,,) follows the Gamma(n, 1)
distribution.

(i1) We verify that (25) holds for w < 0; the proof for w > 0 is similar. Suppose a < 0, then
the function y (n, log(a/w)) is differentiable on (a, 0), with derivative

s ()] -2 (2))

Using (29) and dominated convergence, we have, for w < 0,

1 d w
1 AN S
= —4@ — 1)102E[W<10g<5>> 1W< w)].
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It follows from (25) that fyy«w) is increasing for w < 0 and decreasing for w > 0, and is thus
unimodal about zero.

We now consider the case that W is symmetric, and verify formulas (26) and (27) for
Sw=on (w). That (26) and (27) are equal follows since W is symmetric. Formulas (26) and (27)
are certainly true for w > 0 and w < 0, respectively. But (26) and (27) are equal and so both
formulas must hold for all w € R. Finally, from (26) and (27) we have fy«m (W) = fiy«m (—w),
hence W*™ is also symmetric.

(iii) Substitute w”*1/(p + 1) and wP+! sgn(w)/(p + 1) for f(w) in the characterising equa-
tion (11).

@iv) Let Uy, ..., U, and V, be defined as in Proposition 3.2. Then, from Propositions 3.1
and 3.2, we have

n n n
w2y wO By, TTwE =[Tuew? 2T wy
k=1 k=1 k=1

(v) Let g be a function such that EWg(W) exists, and define g(x) = cg(cx). Then g% (x) =
cKH1g® (cx). As W*™ has the W-zero bias distribution of order 7,

EcWg(cW) =EWg(W) =0’EA,g(W*™) = (co)*EA,g(cW*™).

Hence, cW*™ has the ¢W-zero bias distribution of order 7. O

4. Zero bias approach bounds for the product of two
independent normal distributions

We now illustrate how the product normal Stein equation and zero bias transformation may be
used together to assess distributional distances for statistics that are asymptotically distributed as
the product of two independent central normal random variables. Theorem 4.1, which is a natural
generalisation of Theorem 3.1 of Goldstein and Reinert [22], shows how the distance between
an arbitrary mean zero, finite variance random variable W and a product normal random variable
with the same variance can be bounded by the distance between W and a variate W*® with the
W -zero biased distribution of order n defined on a joint space. The bounds in Theorem 4.1 only
hold if (A, f)'(x) and (A, f)”(x) exist and are bounded. Of course, this might not be the case
when n > 3.

Theorem 4.1. Let W be a mean zero random variable with variance o*. Suppose that
(W, W*®) is given on a joint probability space so that W*™ has the W-zero biased distri-
bution of order n. Then

[BR(W) —PNS” h| < 2| (Au f) |E|W — W+, (30)

where f is the solution of the PN(n, o) Stein equation (7).
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Suppose now that W = [];_, Wk, where the Wy, are independent. Then

|ER(W) —PNS | <o (Anf)’H\/IE[IE(W — WOy, .., W)Y
(€29)
2
+ 2w (W — W),
The quantities || (A ) || and ||(Az )| are bounded in Lemma 2.4.

Proof. We prove the second bound; the first bound is obtained by a similar but simpler calcula-
tion. Using equation (7), we have

Eh(W) — PN h = 62[An f(W) — WF(W)] = 02E[A, £ (W) — Ay f(W*®)].
By Taylor expansion, we have
2
[ER(W) = PNG [ < ?[E[(W = W) (4, ) (W)]| + [ 40 ) |E(W = W)

For the first term, we condition on Wy, ..., W, and then apply the Cauchy—Schwarz inequality
to obtain

[E[(W = W*™) (A ) W)]| < E[(An f) (WE[W = WD Wy, ..., W,]]

< || \/IE[IE(W — WO Wy, .., W),
which yields the desired bound. |

We now use Theorem 4.1 to obtain two bounds for the error in approximating a statistic that
has an asymptotic PN(2, 1) distribution by its limiting distribution.

Corollary 4.1. Suppose X, X1, ..., Xm, Y, Y1,..., Y, are independent random variables with

zero mean, unit variance and bounded absolute third moment, with X; 2 Xforalli=1,...,m
D .

and Y; =Y forall j=1,...,n. Let Wy =Y /" | X;, W2=Z'}=1 Y; and set W = rlnnW1W2.

Then, for h € Cé (R), we have

13/ 1 1 9
|[ER(W) —PNj h| < ?(ﬁ + ﬁ) [”h’” +5ln - PN;h”]E|X|3|Y|3.

Proof. We will apply bound (30) of Theorem 4.1, and so we just need to bound E|W — W*®@)|,

By part (iv) of Proposition 3.3 and Lemma 1.1, we have that W*? = ﬁ Wi W3 where W[ =

W, — X1+ X}‘ and Wy =W, —Y; + Y}*. By the independence of the collections X1, ..., X,
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and Yy, ..., Y,, we have
1
B[ W = W] = | (X0 = X)Wa k- (¥ = Y))Wi = (Xs = X7) (¥ = )|
1
< M{(E|X1| +E|X}|)EIW,| + (E|Yy| +E|Y]|)EIW|

+ (EIX;| +E|X7|)(ElY,| + E|Y]|)}.

By part (iii) of Proposition 3.3, we have that E| X;| < %E|X|3. Using this fact and that E|W;| <
/m and E|W>| < \/n gives
1 1 1
E|W - W*?| < —(1+EIXP) + —=(1+EIYP) + —— (1 +EIXP)(1 +E|Y?
| | = <= (1 EIXF)+ 2= (L +EIYF) + = (1 + BIXP)(1-+EIYP)
3EIXPP  3E|Y]P 9EIXPE|Y] 13/ 1 1
< X BIE ORXAEIE DL D eixpRivr,
2ym 2n 4. /mn 8 \vm J/n
where we used the inequalities ]E|X|3 > 1 and (mn)~V?% < %(m’l/2 +n Y2 10 simplify the
bound. Using Lemma 2.4 to bound ||(A; f)’|| completes the proof. O

When EX3 = EY?3 = 0 we can use the second bound of Theorem 4.1 to obtain a bound on the
rate of convergence of W to its limiting distribution that is of order m~! + n~! for smooth test
functions. This approach is similar to the one used by Goldstein and Reinert [22], who used a
zero bias coupling approach to obtain a bound of order n !, for smooth test functions, for normal
approximation under the assumption that EX> = 0.

Corollary 4.2. Let the X;, Y; and W be defined as in Corollary 4.1, but with the extra condition
that EX3 =EY3 =0, and EX*, EY?* < 00. Then, for h € Cg(R), we have

1 1\[7 12
|ER(W) — PN h| < (Z + ;> [§||h”|| + || + TSHh — PN;h||}EX41EY4. (32)

Proof. We make use of the second bound in Theorem 4.1, and so require bounds on the quantities
VE[E(W — W*@Q W}, W5)2] and E(W — W*®)2 We have

E[W — W*@ Wy, W, ]

1
=W]E[W1W2—W1*W§|W1,Wz]
1
= B[00 = X))Wark (Y0 = V) Wi~ (X0 = X7) (1 — ¥7) Wi, )
1
:W{W2E[XI|W1]+Wl]E[YJ|W2]_E[XI|W1]E[YJ|W2]}
1

I 1 1
= —+ - —— W1 W,
A/mn(m—i_n mn) .
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where we used that X7 and W) are independent and from part (iii) of Proposition 3.3 that EX} =
%EX 3 =0 to obtain the third equality, and that E(X;|W;) = %Wl to obtain the final equality.
As IEW12 =m and Esz =n, we have

\/E[E(W — W@ |wy, W2)2] = P + - < —4-.
We now bound the second term:

E(W — w®)? = ﬁE[{(X, = X)) Wa + (Y = Y))Wi = (X; = X;) (¥s = ¥)) )]

< %[E(X, — X3)EWZ +E(Y; — Vi) EW?

+E(X; - X3)°E(Y; — Y3)],
where we used that (@ 4+ b + ¢)? < 3(a® + b> + ¢?) to obtain the inequality. By part (iii) of

Proposition 3.3,

E(X; — X3)’ =EX?+E(X}) =1+ %EX“ < gIEX4,

and therefore

4EX* 4EY* 16EX‘EY*
< + +
m n 3mn

8 1 1 1 1
< <4+ —) (— + —)JEX4IEY4 < 7(— + —)EX“JE?Y“,
3J\m n m n

where we used the inequalities EX* > 1 and (mn)~!' < %(m’1 +n~1) to obtain the second
inequality. Applying Lemma 2.4 to bound || (A2 f)'|| and || (A2 f)”|l and then using the inequality
EX* > 1 to simplify the resulting bound yields (32). O

E(W — w*®)?

5. Bounds for a general n via the multivariate normal Stein
equation

In the previous section, we saw that the product normal Stein equation and the zero bias trans-
formation of order n can be applied together to derive bounds for product normal approximation,
provided we have bounds for the appropriate lower order derivatives of the solution of the Stein
equation. However, in this paper, we have only been able to achieve this for the case of n =2
products. A similar problem was in encountered by Arras et al. [1], in which an nth order Stein
equation was obtained for a general linear combination of n independent gamma random vari-
ables. They were also unable to bound the appropriate lower order derivatives of the solution, but
were still able to prove approximation theorems by bypassing the Stein equation (see Section 3
of [1]).
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In this section, we take the same philosophy as [1] and, by bypassing the product normal
Stein equation, we are able to prove product normal approximation theorems for general n. In
a recent paper, Gaunt [18] introduced a general method for proving approximation theorems in
which the limit distribution can be represented as a functions of multivariate normal random
variables (see also Gaunt et al. [21], in which the technique is applied for the case of a chi-square
limit).

Let X1.1,-.., Xn.1,---» X1.ds - .., Xn,q be independent random variables with mean zero and
unit variance. Define W; = ﬁ Z?:l Xij and let W = (W, ..., Wd)T, which, by the central
limit theorem, converges to the standard d-dimensional multivariate normal random variable Z.
In [18], general bounds were given for distributional distance between g(W) and g(Z), where
g : R? — R satisfies certain differentiability and growth rate conditions. The approach bypasses
the Stein equation for the limit distribution g(Z) by using the multivariate normal Stein equation
(see Goldstein and Rinott [26]) to approximate the random vector W and then links this approx-
imation to one for g(W) by a suitably chosen test function. This approach allows a large class of
limit distributions to be treated within one framework, including products of independent normal
random variables. We now state general bounds (Theorems 3.2 and 3.4 of Gaunt [18]), which we
shall then apply to obtain some PN(n, 1) approximation theorems that hold for general n > 1.

Theorem 5.1 ([18], Theorem 3.2). Let X1 1,...,Xn1,..-, X1.d, .-, Xn.a be independent ran-
dom variables with EXl/fj = ]EZkfor all1<i<n;,1<j<d,1<k<p,where Z~ N(0,1).
Suppose also that E|X;;|"TP+! < oo for all i, j and . Let P(w) = A + B Zld | lwi i, where

A, Bandri,...,rq are non-negative constants. Suppose g € CP(R%) is such that |d aiW) |P/k <

P(w) forall1 < j<d,1<k<p.Then,forheCJR),

J

|Eh(g(W)) —Eh(g(2))|
d

<P + 1 pl
——h ZZ M/z [AEIXUI

]111

Tk

d
2
rB) (ZrkEIXmP“MWij + S EIX P E|Z|’k+‘E|X,~j|”+l>}’
k=1 n;

where h, = Z,le {‘Z}Hh(k) || and the Stirling number of the second kind are given by {‘Z} =
D DN C (’;) jP (see Olver et al. [33]).

Theorem 5.2 ([18], Theorem 3.4). Let X 1,...,Xu1,..., X1,4, ..., Xn.a be independent ran-
dom variables with EXf»‘j =EZ* forall 1 <i < nj,1<j=<d,1=<k= p.Suppose also that

E|X;;|"tP*2 < 0o forall i, j and . Let P(w) = A + BZ _1 |lwi|"i, where A, Bandry,...,rq
are non-negative constants. Suppose g € CPT2(R?) is such that |%|(”+2)/ k< P(w) for all

1<j<d,1<k<p+2. Suppose further that g is an even functio/n (g(w) = g(—w) for all
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w e RY). Then, for h € C/(R),

[ER(g(W) - Eh(é’(Z))!

p+2
P+2 { " Z Z p/2+1 ( |IEXI;+] |> |:AE|Xij|p+2

]111

d Tk

Z ’k<2’kIE|X IPPEIW; | + S EIX P2+ EIZELXG |P+2>]

% /2
n]

d nj |EXP+] ng

i
i) Z (p+1)/2 >0 n e |:AE|XIJ|3

i=1 k=11=1"
d e
+BY 3% <2”‘IE|XU|3E|W,~|”‘ + B X +2E|Z|’k+1E|X,~j|3) .
k=1 j

A PN(d, 1) random variable can be represented as g(Z), where g(w) = ]_[ =1 W) is infinitely
often differentiable and has derivatives of polynomial growth as |w| — oco. Also, when d is even,
the function g is even. We can therefore apply Theorems 5.1 and 5.2 to obtain the following
bounds for product normal approximation.

Corollary 5.1. Fixd > 1. Let X, X11,..., Xn1,---» X1.ds---» Xn.a be i.i.d. random variables
with EXk EZkfor all 1 <k < p, and such thcztIEl|X|2er1 < 00. Define W = I—['J{=1 W;, where
W= f Z | Xij. Then, for h € le(R),

27( +1)
[ER(W) — PNy &| < =P Z 1)/2[2”E|X|”+1E|W1|”

2P (33)
LEZIPPEXPH + 2 Ex e,
ntl?
J
Proof. We apply Theorem 5.1 with g(w) = ]_[ j=1w;.Forany j = 1,...,d we have that U3 (VJV)

Hz;&,’ w; and dag—u%w) = 0. Therefore, we can take P(w) = 3 Z/:1 |w;|?. Applying the bound of
Theorem 5.1 with A =0, B = é andry =--- =rq = p yields (33). O

Corollary 5.2. Let d > 2 be even. Let X, X11,..., Xn1s---» X1.ds---» Xn,a be ii.d. random
variables with EX¥ = EZ¥ for all 1 <k < p, and such that IEE|X|2er4 < 00. Let W be defined as



Stein’s method for products of normal random variables 3335

in Corollary 5.1. Then, for h € CfH(R),

hpia [ 202 &1 2
‘Eh(W) _ PN;]’I| < p+2 { Z (p + + |EX[7+1 |> |:2p+2]E|X|p+2E|W1|p+2

pto|p+2 n;’/2 p+1

p+2

2
+2 +2
+E|Z|PPE|X|P T

E|X|2p+4i|
J

(34)

3p+3 +1 a 1 +2 3 +2
- p — o ) 2 p
+ ——[Ex”*] Y omhE [2 E|XE|W|
jk=1"; Ny

241
n‘;’/ +

2p+2
+2E|1Z|PPEIX P + ]E|X|”+5] .
Proof. Here d is even, so we apply Theorem 5.2. Arguing as in the proof of Corollary 5.1, we
take P(w) = 5 Z‘;:l [w; |P*2. On applying the bound of Theorem 5.1 with A =0, B = é and
rp=---=rq = p+ 2 we obtain (34). (I

Remark 5.1. From Corollary 5.1, we have a bound on the rate of convergence of W to the
PN(d, 1) of order n]_(p_l)/2 4+ 4 n;(p_l)/z for smooth test functions, provided that first p
moments of X and the standard normal distribution agree. From Corollary 5.2, we see that, for
even d, in which case g(w) = H?:l w; is an even function, this rate of convergence improves to

ordernl_p/2+-~~+n;p/2.

Remark 5.2. 1t is instructive to compare the bound of Corollary 4.2 that was obtained using the
zero bias coupling approach and the bounds of Corollaries 5.1 and 5.2 (in the case d = 2) that
were obtained by bypassing the product normal Stein equation. The bound of Corollary 4.2 is of
order nl_1 +ny ! and was derived under the assumption that the X; and Y; had third moments
equal to zero. Applying (33) with this setup gives a bound of the same order, although we must
impose stronger moment assumptions (bounded absolute seventh moment, rather than bounded
fourth moment) and stronger conditions on the test functions (we require & € Cg (R), instead
of h e le(R)). Whilst the bound of Corollary 4.2 performs better in this example, the proof
relies heavily on the assumption of third moments equal to zero. However, even when the third
moments are non-zero, we can obtain an 0(”1_1 +n, 1) bound from (34), under the assumption
of bounded eighth moments are tests functions from the class Cg (R).

Appendix A: Proof of Theorem 2.1

We begin by obtaining formulas for the first four derivatives of the solution (17).
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Lemma A.1. Suppose h € Cg (R) and let h(x) = h(x) — PN; h. Then the first four derivatives of
the solution (17) of the PN(2, 1) Stein equation (9), in the region x > 0, are given by

f(x) = —K{(x) fo To()h(y)dy — I(x) / Ko(y)h(y)dy,

i
') = ix) K(’{(X)/ Io(y)h(y)dy — {)/(X)/ Ko(»)h(y)dy,

14 2h * ~ © ~
FOw =" x(f)—K(?)(x) / i dy — 1 @) / Ko(i(y) dy,
h" 3h
fP = (x) xﬁx) +( )h( ) — K¢ () / Io(y)h(y)dy

— 10 / Ko()h(y)dy.

Proof. We will make repeated us of the Leibniz’s theorem for differentiation of an integral,
which states that provided the functions u(y, x) and g—’; (v, x) are continuous in both x and y in
the region a(x) <y < b(x), xo < x < x1, and the functions a(x) and b(x) are continuous and
have continuous derivatives for xo < x < x1, then for xg < x < x1,

d [Pw b db da
— u(y,x)dy:/ —u(y,x)dy+ub,x)— —ua,x)—. 35)
dx a(x) a(x) 8x d)C d)C
We will also make use of the identity
1
TIo(x)K1(x) + I1(x)Ko(x) = < (36)

(see Olver et al. [33]), as well as the formulas (48)—(53) for the first three derivatives of Ip(x)
and Ko(x).

It easy to compute the first and second derivatives by applying (35), the differentiation formu-
las (48) and (49) and identity (36). The calculation of the third derivative is still straightforward
but a little longer. We differentiate the formula for the second derivative using (35) to obtain

h h x -
FOw) = (’“) - % _ kP /0 To()i(y) dy

— 1P ) f KoWh(y)dy + h(x0)[=Io(x) K (x) + Ko() I (0)].

Using the differentiation formulas (50) and (51) and identity (36) allows us to calculate the term
in the brackets () from the above expression

1
() = —x"Ip(x) K5 (x) + x"Ko(x) Ig (x) = —;[IO(X)Kl ) + () Ko)] = —
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Substituting () into the expression for f 3 (x) gives the result.
Finally, we verify the formula for the fourth derivative. We differentiate the formula for the
third derivative using (35) to obtain

h"(x) B 3h'(x) n
X

4h x -
; “ kP / Io(»h(y)dy
X X 0

@) =

— 1P / Koh(y) dy +h)[~Io@) K (0) + Ko(0) 1) (0)].

Using the differentiation formulas (52) and (53) and identity (36) allows us to calculate the term
in the brackets () from the above expression

(x5) = —x I (D) K () + x" Ko() I (x)

’ 2 1
= (_2 + 1>[Io(x)K1(x) +hWKo)] =5+~
X x *

Substituting (sx) into the expression for £ (x) gives the result. U

In their current forms the derivatives of the solution are not suitable for bounding, as they
contain terms that are singular. In the next lemma, we use integration by parts to group the
singularities together and then apply the triangle inequality.

The following notation for the repeated integral of the function Ip(x) will be used in the next
lemma. It is consistent with the notation in Gaunt [20].

X
1(0,0,0)(x) = Ip(x), 1(0,0,n)(x) =/0 I0,0n-1)(y)dy, n=1,23.... 37

Lemma A.2. Suppose h € Cg (R) and let h(x) = h(x) — PNéh. Then the solution (17) of the
PN(2, 1) Stein equation (9) and its first four derivatives, in the region x > 0, may be bounded as
follows

| FCO| < AN I0,0,1) () Ko(x)| + lIA

k]

Io(x) / Ko(y)dy

|/ )] < IRl 10,0, () K§@) | + 1A

]

Ié(X)/ Ko(y)dy

’

-1
|f"@)] < IIhII'; — 10,0,H(*) Ky (x)

+ |4 [ [10.02 @) K ()| + 4]

1) / Ko(y)dy

~ |2
PO < 1l 5 + Lo @ Kg )| + ]

1 3)
. + 10,02 (x) Ky (x)

+ 1" | 10.03 K5 )] + IA]

)

1) / Ko(y)dy
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~ 16 1 3
[FP ] = ||h||‘x—3 + = = loon @K@+ [1']| 5 = Tooa 0k @)

+ |77 + [ 2] 0,04 ) K ()]

1 4
T 1(0,0,3)()6)1(6 )(x)

+ 12|

1P ) / Ko(y)dy‘-

Proof. The first two bounds are immediate from the formulas for f(x) and f’(x) that are given
in Lemma A.l. Integrating by parts and using the notation for the repeated integral of Ip(x),
which is defined above, gives

" ﬁ(x) " T . * / Y
£ = ——K0<x)[h<x> /0 Io(y) dy — fo h (y)( /0 10<u)du) dy}

X

— I (x) / Ko(»)h(y)dy
. 1 x
= h(x)()—c - 1(0,0,1)(X)K6/(x)) - K(/)/(X)/O R (»)10,0,1y(y)dy

1) [ Ko dy,

The bound now follows from the triangle inequality and (37). The bounds for the third and
fourth derivatives are obtained in a similar manner, in which we apply integration by parts to the
integrals 1(0,0,n) (X). O

The expressions involving modified Bessel functions that appear in Lemma A.2 are bounded
by Gaunt [20], and we list these bounds in Appendix C. We are now in a position to prove
Theorem 2.1. Applying the inequalities of Appendix C to the bounds of Lemma A.2 and a simple
change of variables leads to our bounds for the solution of the PN(2, ) Stein equation.

Proof of Theorem 2.1. Let v/, (x) denote the solution (17) of the PN(2, 1) Stein equation with
test function g. Recalling Remark 2.2, it suffices to bound v, and its first four derivatives in
the region x > 0. Hence, applying the bounds, that are given in Appendix C, for expressions
involving modified Bessel functions given in Lemma A.2 leads to the following bounds on the
derivatives of the solution of the PN(2, 1) Stein equation:

)

¥ ll < <1+%)||g—PN§g|| <3|g—PNig

El

13
o7l <2l'] + (2 + 27 )l — PNbel <20e'] + 5] ~ PNk

3
vl = 21s - PNLg

’

4
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[ve | =4lg"[ +58'] +489]s — PNl

[ve"l < 8ls !

|xe ()| < (0.615+ DA — PN3 | <2||h — PN}

3
[ewgol = 5 1n— PN

where in establishing the bound for ||1//é£4)|| we used that 14.61 + % + 4 < 15.75. From the
PN(2, 1) Stein equation, we have

” , 9
Jewg o < [h=PNaa| + v + [x v < 3 7 = PN; A

We now make a change of variables to obtain bounds for the derivatives of the solution of the
PN(2, o2) Stein equation. The function f;(x) = él//g(g—) solves the PN(2, o2) Stein equation

o2xf"(x) + 02 f(x) — xf (x) = h(x) — PNJ b,

where 7i(x) = g(£), since PN~ h = PN} g. We verify that PNS" h = PN) g with the following
calculation:

PNgzh_/ —K0<|U|)h(x)dx / Ko(lul)g(u)du =PN} g,

00 TO

where we made the change of variables u = --. We have that | f, (k)|| _k_l||1ﬂ§k)|| and
k —k— k

O = 05 g ol for k = 0, and flg — PN3gll = 15 — PNS” hll and [l =

ok ||h®)|| for k > 1. This completes the proof of Theorem 2.1. [l

Appendix B: Elementary properties of the Meijer G-function
and modified Bessel functions

Here we define the Meijer G-function and modified Bessel functions and state some of their
elementary properties. For further properties of these functions see, for example, Olver et al.
[33] and Luke [30]. The formulas for the Meijer G-function are given in Luke [30]. The modified
Bessel function formulas can be found in Olver et al. [33], except for the second and third order
derivative formulas which are given in Gaunt [15].
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B.1. The Meijer G-function

B.1.1. Definition

The Meijer G-function is defined, for z € C \ {0}, by the contour integral:

)

( a1,...,ap> 1 /C+i°° L ST +bpITjo T —aj =)

Z = — Z
bi,....b, 270 Jorioo j.':nﬂ 1“(s+a,»)1‘[j:mJrl T(1—bj—s)

where c is a real constant defining a Bromwich path separating the poles of I'(s + b ) from those
of I'(1 — a;j — s) and where we use the convention that the empty product is 1.

B.1.2. Basic properties

The Meijer G-function is symmetric in the parameters ay, ..., au; dpy1, ..., dp; b1, ..., by; and
buy1,...,by. Thus, ifone the a;’s, j =n+1,..., p,is equal to one of the by’s, k=1,...,m,
the Meijer G-function reduces to one of lower order. For example,

m.n al,...,a,,_l,bl _ m—ln ap,...,ap—1
GM(Z‘ bi,....by )‘Gp—l.q—l(z by, ....by ) mpazlo G9)

The Meijer G-function satisfies the identities

ai,...,dp m.n ay+ec,...,ap+c
ch,n =Gg" s eR 39
¢ M(Z bl,...,bq> M(Z b1+c,...,bq+c> ¢ )

and
al,...,a,, 1 l—bl,...,l—bq
G"" =G"" - , e R. 40
"’q<z bl,...,bq> M(Z 1—a.....1—a, ¢ (40)

B.1.3. Integration

Fora>0,y>0,aj<1forj=1,...,n,andbj>—%forj=1,...,m,wehave
o0 ai,...,a 1 4o lal...a 0
cos G 2 ’ s“p dx = V7 —le,n+ el 5 »Ap, ) 41
/0 (y2) ,,,q(ax b =y (T 1)

B.1.4. Differential equation

The Meijer G-function satisfies a differential equation of order max(p, q):

P/od 1/ d
[(—l)p""‘”zj]:[l(z& —aj+ 1) - H(z& - bj)]G(Z) =0. (42)

j=1
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B.2. Modified Bessel functions

B.2.1. Definitions
The modified Bessel function of the first kind of order v € R is defined, for all x € R, by

00 1 X v+2k
L= —(Z) .
2 ]gr‘(v+k+l)k!(2>

The modified Bessel function of the second kind of order v € R can be defined in terms of the
modified Bessel function of the first kind as follows

KU(X)ZW(I_U(X)—IV()C)), V#Z,XGR,
. . T
Ky(x) = I}I_I)nv K, (x)= l}]_r)nv m(l,u(x) —1,(x)), veZ,x eR.

B.2.2. Basic properties

For v € R, the modified Bessel function of the first kind 7, (x) and the modified Bessel function
of the second kind K, (x) are regular functions of x. For n € Z, I,,(x) is a real-valued function
for all x € R, with I, (—x) = I, (x). The modified Bessel function /5,41 (x) is a real-valued for
all x e R, with 15,41 (—x) = —Ir+1(x). For v > 0 and x > 0 we have /,,(x) > 0 and K, (x) > 0.
For all v € R, the modified Bessel function K, (x) is complex-valued in the region x < 0.

B.2.3. Representation in terms of the Meijer G-function

2
I(x) = Géﬁ(-% 0, 0), xeR, (43)
1 2.0 .X2
Ko(lx]) = 5602\ 7/0.0).  xeR. (44)
B.2.4. Asymptotic expansions
Ko(x) ~ —logx, x |0, 45)
T
K,(x) ~ [—e™, X — 00, (46)
2x
X
I,(x) ~ X — 00. 47)

«/27‘[)6’
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B.2.5. Differentiation

Io(x) = 11 (x),

Ko(x) = =K1 (x),

1§ () = Io(x) —

’

I1(x)
X

K1(x)

Ky (x) = Ko(x) + ,
X

B3, 2
Iy (x) = —Ip(x) + <l + F)h(x),

3) 2
Ky7(x) = —Ko(x) — (1 + X_Z)Kl(x)‘

B.2.6. Differential equation

The modified Bessel differential equation is

2 f) +xf (x) = (2 +0?) f(x) =0.

The general solution is f(x) = Al,(x) + BK, (x).

R.E. Gaunt

(48)
(49)

(50)

(1)

(52)

(53)

(54)

Appendix C: Bounds for expressions involving derivatives and

integrals of modified Bessel functions

The following bounds, which can be found in Gaunt [15,20], are used to bound the derivatives of
the solution to the PN(2, o2) Stein equation (9). For x > 0,

n=1,23,...,

o0
17 ) f Ko(y)dy| <
X

|1(0,o,n)(X)K(()”)(X)| <21

|x1(0,0,n) (X)K(()n) | <2m,

70,0,y () Ko()| < 1,
[x 10,01 () Ko()| < 1,

Ip(x) / Ko(y)dy 5%,

o
on(x)/ Ko(y)dy| < 0.615,
X

v
2

+

=

n=1,23,...,
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, n=0,1,2,...,

A

o0
12 (x) / Ko(y)dy
X

IA
= N

o0
xlé(x)/ Ko(y)dy
X
1 "
P L0,0,1)(x) Ky (x)| < 3,

! 3)
. + 10,02 Ky (x)| <5,

1 &)
P — 10,03 ()K" (x)| <9,

24 KL ()| <4.39
2 tloon 0 .39,

3
i Lo WK @)| < 6.81,

6 1
=+~ loon K ()| < 14.61.
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