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We generalize the SiZer of Chaudhuri and Marron (J. Amer. Statist. Assoc. 94 (1999) 807–823; Ann. Statist.
28 (2000) 408–428) for the detection of shape parameters of densities on the real line to the case of circular
data. It turns out that only the wrapped Gaussian kernel gives a symmetric, strongly Lipschitz semi-group
satisfying “circular” causality, that is, not introducing possibly artificial modes with increasing levels of
smoothing. Some notable differences between Euclidean and circular scale space theory are highlighted.
Based on this, we provide an asymptotic theory to make inference about the persistence of shape features.
The resulting circular mode persistence diagram is applied to the analysis of early mechanically-induced
differentiation in adult human stem cells from their actin-myosin filament structure. As a consequence, the
circular SiZer based on the wrapped Gaussian kernel (WiZer) allows the verification at a controlled error
level of the observation reported by Zemel et al. (Nat. Phys. 6 (2010) 468–473): Within early stem cell
differentiation, polarizations of stem cells exhibit preferred directions in three different micro-environments.

Keywords: circular data; circular scale spaces; mode hunting; multiscale process; persistence inference;
stem cell differentiation; variation diminishing; wrapped Gaussian kernel estimator

1. Introduction

Mode (maxima and minima) and bump (maxima of the derivative) hunting of a density has a
long history in statistical research and has been tackled from various perspectives. Good and
Gaskins [24] argued that actually this would be a problem of significance testing rather than es-
timation, and, to some extent, we agree. We stress, however, that for practical purposes, it seems
attractive to accompany any testing decision on the number of modes, say, with an estimator
and corresponding visualization tools which are in agreement as much as possible with such a
test decision. Indeed, many tests which have been developed (mainly in the context of detecting
modes of a density) implicitly or explicitly offer this additional information or parts of it. Most
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of them are based on smoothing techniques with variable bandwidth which provides a recon-
struction of modes and other shape features at a range of scales. Prominent methods include the
critical bandwidth test of Silverman [48] (see also Ahmed and Walther [1] for a generalization
to multivariate data), the dip test by Hartigan and Hartigan [26], the excess mass approach by
Müller and Sawitzki [36], see also Polonik [42], the test of Cheng and Hall [11], the SiZer (SIg-
nificant ZERo crossings of the derivatives) by Chaudhuri and Marron [9,10], or the mode tree of
Minnotte and Scott [35]; see also Minnotte [34], Ooi [39] and Klemelä [29] for extensions and re-
lated ideas. More recently, more sophisticated multiscale methods which do not rely on variable
bandwidth kernel estimators have been developed for this purpose as well, for example, Dümb-
gen and Spokoiny [15], Davies and Kovac [14], Dümbgen and Walther [16], Schmidt-Hieber et
al. [45].

In this paper, we are concerned with circular data for which rigorous inferential methods on
the number and location of modes have not been established yet to the best of our knowledge.
Recently, Oliveira et al. [38] suggested a circular version of the SiZer, and argued that this is
of particular use for their problem at hand, the analysis of Atlantic wind speeds and directions,
however, without providing a circular scale space theory or methods assessing the statistical
significance of empirically found modes. Also in the application of the present paper, there are
both biological and practical reasons that let us also favor the relatively simple circular SiZer’s
methodology although we are aware of some potential drawbacks, for example, a loss in power
and asymptotic accuracy for small scales. In the below study of early differentiation of human
mesenchymal stem cells, the structure characteristic for a specific cell type appears to be of the
relative size captured by the first few largest modes while modes on much smaller scales most
likely feature individual cell effects, not of immediate interest. The circular SiZer will allow to
investigate the coarser mode structure and relative importance of modes in terms of bandwidth,
which renders it a relatively simple tool for visualization of dynamics of modes through circular
scales.

Causality. For data on the real line, it has been shown by Chaudhuri and Marron [10] that the
SiZer controls the estimated modes at a large range of scales (represented by a bandwidth h)
as long as these are above a smallest scale h0 > 0, say. Crucial for a valid interpretation of
these modes is “causality” which prevents the estimator from creating artifacts with increased
smoothing. More specifically, causality of a family of kernels {Lh : h > 0} is the requirement
that for any integrable function f ,

h �→ # Modes(Lh ∗ f ) is decreasing. (1)

Note that on the circle, the number of modes of a differentiable function is simply half the number
of sign changes of its derivatives or less (cf. Definition 2.5).

On the real line, it is well known that the Gaussian kernel yields the only causal family un-
der suitable assumptions (Lindeberg [30]). Nevertheless, violation of causality will usually only
matter for relatively small “critical” scales (Hall et al. [25]), and other (compactly supported)
kernels may be used without too much concern as long as the true number of modes is small.
However, for the SiZer it appears to be difficult to decide for given data whether and when such
a critical scale is achieved, and hence causality violation may be a concern.

The above quoted circular SiZer method of Oliveira et al. [38] is a numerical extension
of the SiZer methodology from the line to the circle based on the von-Mises kernel g(eit ) ∼
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Figure 1. The von Mises kernel is not causal (mode reducing) on the circle; displaying on the right the
tri-modal circular density (its nonuniform part in log-scale) of a convolution with a von Mises kernel (κ = 6)
of the bi-modal circular distribution displayed on the left (its density is the combination of two spikes and
a cleft with a uniform distribution).

exp(κ cos(t −μ)) with variable concentration parameter κ playing the role of the (inverse) band-
width. The von Mises density is often considered as the natural counterpart of the Gaussian on the
circle, for example, maximizing entropy with given mean (Mardia and Jupp [33], Section 3.5.4).
For circular nonparametric smoothing, this kernel has also been used, for example, in Fisher and
Marron [22], Taylor [49]. However, Lemma 1 of Munk [37] states that the von Mises kernel is
not variation diminishing (i.e., the number of sign changes is not nonincreasing under smoothing,
cf. Definition 2.1) for κ > 1/2 (the precise statement is that “order 2 variation diminishing” –
which implies variation diminishing – holds if and only if 0 ≤ κ ≤ 1/2). From our Theorem 2.6,
it follows now that a convolution with a von Mises distribution with concentration parameter
κ > 1/2 violates circular causality (1). Figure 1 shows such an example where the convolution
with a von Mises kernel increases the number of modes (maxima) from two to three. As a conse-
quence, the von Mises kernel seems questionable in the context of the SiZer since a lower bound
for the number of modes of the smoothed density does not imply a lower bound for those of the
true underlying density. Therefore, the question remains whether a circular causal kernel exists
admitting a circular scale space approach.

Circular scale spaces – The uniqueness of the wrapped Gaussian. In this paper, we give an
affirmative answer to this question. Let

Kh

(
eit

) = 1√
h

∑
k∈Z

φ

(
t + 2πk√

h

)
(2)

be the wrapped Gaussian kernel (on the circle) with bandwidth h > 0 where φ denotes the stan-
dard normal density. We will show that the wrapped Gaussian is the only circular causal kernel.
Therefore, from this perspective it can be viewed as the most natural analog to the normal density
on the real line. This result requires some preparation. We will:

(1) propose circular scale space axiomatics and discuss its relationships to circular variation
and mode reducing properties,

(2) show that under reasonable assumptions the wrapped Gaussian kernel gives the one and
only semigroup guaranteeing causality.
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This will then allow us to:

(3) assess asymptotically the statistical significance of shape features obtained from the
WiZer,

(4) and to infer persistence over smoothing scales of shape features.

The analogs of (1) and (2) are well investigated in the linear case (cf. Lindeberg [30], Weickert
et al. [52]). This result also complements numerous linear scale-space axiomatics for images
that have attempted to establish uniqueness of the Gaussian kernel; see, for example, Weickert et
al. [52] for an overview. However, it should be noted that a justification of Gaussian smoothing
via a variation diminishing axiom is only possible for 1-D signals (cf. Babaud et al. [3]). It is well
known that for 2-D images, Gaussian convolution can create new extrema (see Lindeberg [30]).
To avoid this, one has to consider scale-spaces based on nonlinear partial differential equations
such as mean curvature motion or the affine morphological scale-space. For more details, we
refer to Alvarez et al. [2]. In contrast to the Euclidean case, circular scale spaces have hardly
been considered so far. Notable exceptions are a periodic scale-space filtering by Wada et al. [50]
and a feature extraction study by Briggs et al. [5]. However, there is no axiomatic foundation of
circular scale-spaces in terms of a variation diminishing property. We will show in the following
that on the circle the situation is indeed peculiar and, for example, causality is fully equivalent to
the circular diminishing property. In summary, as a byproduct of this paper, the circular case fills
a gap of classical scale space axiomatics.

Statistical guarantees. Concerning (3) above, we find for the SiZer based on wrapped Gaus-
sians that the probability of overestimating the true number of modes on any scale can be bounded
by some small number α, say, while the probability of underestimating the true number goes to
zero for any fixed bandwidth as the sample size goes to infinity. Causality as in (1) ensures that, if
we find significant evidence for, say, k circular modes in the smoothed density, we automatically
have significant evidence that there are also at least k modes in the true density.

Inferred mode persistence diagrams. Of particular importance are those scales where the lower
bounds on the number of inferred modes change and the intervals of scales in which these bounds
are constant. More general, under causality, the latter give a notion of significant scale space per-
sistences of shape features over smoothing scales. In fact, these expand the general scheme of
topological persistence introduced by Edelsbrunner et al. [17], cf. also Ghrist [23], Carlsson [8]
among many others. This originally deterministic scheme is currently gaining high momentum
in statistics and medical imaging (e.g., Chung et al. [12], Heo et al. [27]). Illustrated by the
application at hand, we propose inferred persistence diagrams simultaneously depicting signifi-
cant bandwiths for births and splits of modes. In addition to statistically estimating (as done for
persistent homologies by Bubenik and Kim [7]), we also provide for confidence statements for
the estimate being a lower bound. This is related to recent work by Balakrishnan et al. [4] who
provide for inference on persistence diagrams and by Schwartzman et al. [46,47] for inferential
mode detection of linear densities within specific classes. Complementing this, however, we are
firstly “truly” circular. Secondly, we do not infer on the support of the data but on the shape of
its very density, and thirdly, for this density we require no assumptions.

A measure for early stem cell differentiation. Utilizing inferred persistence, we give a proof
of concept to use persistence diagrams of shape parameters – namely modes – to elucidate pre-
cisely how the elasticity of the micro-environment directs early human mesenchymal stem cell
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(hMSC) differentiation; hMSCs from bone marrow are considered highly promising for regen-
erative medicine and tissue engineering. However, for successful therapeutic applications under-
standing and controlling of differentiation mechanisms is of paramount importance. The seminal
study of Engler et al. [20] demonstrated that the mechanical properties (Young’s modulus E) of
the micro-environment can direct stem cell differentiation. In Section 4, we re-analyze the fluo-
rescence microscopy images of nonmuscle myosin IIa in stem cells from Zemel et al. [53]. Here,
hMSCs have been cultured for 24 hours on substrates of varying Young’s modulus E mimick-
ing the physiological mechanical properties of different tissue in vivo: 1 kPa corresponding to
neural cells and brain tissue, 11 kPa corresponding to muscle fibres and 34 kPa corresponding to
pre-mineralized collagen densifications in bone, cf. Rehfeldt et al. [43]. From these images, we
extract filament-process valued data1 using the filament sensor of Eltzner et al. [18], in particular
total fibre length over angular directions, which live on the circle. We do not only reproduce the
observed nonmonotonicity over matrix rigidity, now for mode persistences, but also, more subtly,
the respective mode-persistence diagrams indeed reflect different matrix rigidities elucidating the
impact of micro-environment rigidities on early stem cell differentiation.

Plan of the paper. In the following Section 2, we begin by establishing circular scale space
axiomatics, while the details on circular sign changes have been deferred to Appendix A. All of
the proofs of the theorems subsequently developed in this and in Section 3 have been deferred to
Appendix B. For the application to human stem cell differentiation in Section 4, in Appendix C
we give a numerical foundation for the choice of the number of wrappings required to compute
the p-values underlying the tests performed by the WiZer with a desired accuracy. For the band-
widths considered in our application, an error less than 10−4 can be achieved with six wrappings.

2. Circular scale space theory

2.1. Notation

Let S = {z ∈ C : |z| = 1} be the unit circle in the complex plane C equipped with the measure
dμ(z) = dt

2π
for z = eit , with t ∈ [0,2π) of the uniform distribution on S. This is the normalized

Haar measure on the compact Abelian group S with the ordinary multiplication of complex
numbers. Then

f̂k :=
∫
S

f (z)z−k dμ(z)

is the kth Fourier coefficient, k ∈ Z, of a function f ∈ L1(S). Moreover, for f,g ∈ L1(S) we
have the convolution

(g ∗ f )(w) =
∫
S

g
(
wz−1)f (z) dμ(z) = 1

2π

∫ 2π

0
g
(
ei(s−t)

)
f

(
eit

)
dt, w = eis ∈ S,

which is well defined for w ∈ S μ-a.e. and in L1(S).

1Which are provided for along with the WiZer R-package including inferred persistences on the website of the second
author, http://rayerk.weebly.com/files.html.

http://rayerk.weebly.com/files.html
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In particular, every function g ∈ L1(S) with
∫
S
g(z) dμ(z) = 1 is a circular kernel as it conveys

a bounded operator g : L1(S) → L1(S), f �→ g ∗ f . A family of circular kernels {Lh : h > 0}
generates from every f ∈ L1(S) a scale space tube{

Lh ∗ f (z) : z ∈ S, h > 0
}
.

We write L̂h,k for the kth Fourier coefficients of Lh, k ∈ Z.
Finally, we say that a function f : S → R is differentiable if the counter-clockwise derivatives

(Df )(z) = d

dt

∣∣∣
t=0

(
t �→ f

(
eit z

))
exist for all z ∈ S, it is m-times differentiable if the mth counter-clockwise derivatives exist which
are defined iteratively as Dmf = D(Dm−1f ).

2.2. Regular scale space tube axiomatics

In the following, Sc(f ) denotes the number of cyclic sign changes of a function f : S → R as
introduced by Mairhuber et al. [32] and detailed in the Appendix.

Definition 2.1. A family of circular kernels {Lh : h > 0} is

(SG) a semigroup if Lh ∗ Lh′ = Lh+h′ for all h,h′ > 0,
(VD) variation diminishing if

Sc(Lh ∗ f ) ≤ Sc(f )

for every f ∈ L1(S) and h > 0,
(SM) symmetric if Lh(z) = Lh(z

−1) for all z ∈ S and h > 0,
(SL) strongly Lipschitz if there exists r > 0 such that the limit

lim
h→0

(
L̂h,k − 1

h|k|r
)

k∈Z

exists in the space �∞(Z) of bounded sequences on Z.

A scale space tube generated by a strongly Lipschitz, symmetric and variation diminishing semi-
group will be called a regular scale space tube.

Straightforward computation gives for the wrapped Gaussian kernel that K̂h,k = e−k2h/2, and
hence the following.

Remark 2.2. The family of wrapped Gaussian kernels is a symmetric semigroup that is strongly
Lipschitz with r = 2.
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Of special interest are those families {Lh : h > 0} of kernels that are differentiable in the sense
that

∂h(Lh ∗ f ) = lim
t→0

Lh+t ∗ f − Lh ∗ f

t

exists for all h > 0 and f ∈ C∞(S). The following is a straightforward consequence of the
definition.

Remark 2.3. A semigroup of circular, strongly Lipschitz kernels is differentiable. To see this,
consider the Fourier coefficients

ˆ(
(Lh+t ∗ f − Lh ∗ f )/t

)
k
= L̂h,k(L̂t,kf̂k − f̂k)/t = L̂h,k|k|r f̂k(L̂t,k − 1)/

(
t |k|r).

The latter has a limit in �2(Z) for t → 0 since smoothness of f guarantees that (L̂h,k|k|r f̂k)k is
in �2(Z) and limh→0(L̂t,k − 1)/(t |k|r ) exists in �∞(Z).

At this point let us relate the heat equation

1
2�u = ∂hu (3)

on a Riemannian manifold M with Laplace–Beltrami operator � for functions u : M ×[0,∞) →
R with some initial condition u(·,0) = f (e.g., Sakai [44], Section IV.3) to scale space axiomat-
ics. Using the Fourier transform, the heat equation can be solved in the spectral domain such that
the unique solution of (3) is given by the convolution of the initial condition with the usual Gaus-
sian x �→ φ(x/

√
h)/

√
h (in case of M = R) and the wrapped Gaussian z �→ Kh(z) (in case of

M = S), if the convolution exists; where in the circular case � = D2. Requiring that equality (3)
holds only for the signs of both sides at proper local maxima or minima, that is, that maxima and
minima are not enhanced under smoothing, is another axiom frequently found in the scale space
literature. This axiom has been used by Babaud et al. [3], for deriving the Gaussian as the unique
scale space kernel in 1D. Later on, Lindeberg [31] emphasised that nonenhancement of local ex-
trema distinguishes the Gaussian from other scale space kernels such as the ones corresponding
to the so-called α scale spaces. However, if one goes beyond scale space representations that
can be expressed in terms of convolutions with kernels, this property can also be fulfilled. For
instance, nonenhancement of local extrema has been established in Weickert [51], Section 2.4.2,
for a family of nonlinear diffusion evolutions. Similar reasonings can be used in the circular
setting as well.

Definition 2.4. A family of differentiable circular kernels {Lh : h > 0} is

(NE) not enhancing local extrema if for every smooth f : S → R and h > 0

sign
(
D2(Lh ∗ f )

)
sign

(
∂h(Lh ∗ f )

) ≥ 0

at every nondegenerate critical point (i.e., points at which D(Lh ∗ f ) = 0 = D2(Lh ∗ f )) of
Lh ∗ f on S.
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Finally, we formalize (1). From this, we obtain one more axiom.

Definition 2.5. Let k ∈ N0. A differentiable function f ∈ L1(S) is k-modal (i.e., it has k modes
or less) if

Sc(Df ) ≤ 2k.

A circular kernel Lh, h > 0, is

(MR) mode reducing (i.e., reducing the number of modes) if for any function f that is differ-
entiable except for finitely many points and that satisfies limt↓0 Df (eit z) = limt↑0 Df (eit z) for
all z ∈ S, we have

Sc(Lh ∗ Df ) ≤ Sc(Df ),

where Df is continued to all of S via its left and right limits.

Theorem 2.6. A family of circular kernels is variation diminishing if and only if it is mode
reducing. Moreover, a differentiable semigroup of variation diminishing circular kernels is not
enhancing local extrema.

Here is the complete picture.

(MR) ⇔ (VD)

and
(SL), (SG) ⇒ differentiable (SG)

⎫⎬⎭ ⇒ (NE).

On the line, an analog definition of mode reducing is more simple, as no periodicity of the anti-
derivative is required. For functions f,g ∈ L1(R), denote by (f ∗Rg)(y) = ∫ ∞

−∞ f (x)g(y−x)dx

the usual convolution on the line, if existent and by S−(f ) the number of sign changes of f . (cf.
Karlin [28], Brown et al. [6] and Appendix A.) Then call a kernel K on the line mode reducing
if for any differentiable function f :R→ R we have S−((K ∗R f )′) ≤ S−(f ′).

Remark 2.7. Inspection of the proofs of Lemmata B.1 and B.2 in the Appendix shows that on
the line R, with the analog axioms, Theorem 2.6 also holds true.

2.3. The uniqueness of the wrapped Gaussian kernel

The analogs of the following two characterizations of the wrapped Gaussian kernel as generating
regular scale space surfaces and being up to scaling the only variation diminishing, symmetric
and strongly Lipschitz semigroup are well known on the line and, under suitable adaptations on
Euclidean spaces. For an overview over various scale space axiomatics for Euclidean spaces, see
Weickert et al. [52]. Suitably adapted arguments, sometimes even simpler lead to the following
two circular versions, which, to the knowledge of the authors, have not been established before.

Theorem 2.8. The family of wrapped Gaussian kernels {Kh : h > 0} generates a regular scale
space tube.
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Theorem 2.9. Let {Lh : h > 0} be a semigroup generating a regular scale space tube. Then there
is a constant α > 0 such that for all h > 0 the function Lαh is the wrapped Gaussian kernel Kh

with bandwidth h.

Remark 2.10. Often in scale space literature, the axiom of strong continuity

(SC) ‖(Lh − I)f ‖L2 → 0 as h ↓ 0 for all f ∈ L2(S),

is introduced which is weaker than the strong Lipschitz property (SL). Here, I denotes the iden-
tity. It seems that this property is not sufficient to ensure the critical fact (detailed in the Ap-
pendix) that the smooth functions are in the domain of definition of the infinitesimal operator

A= lim
h↓0

Lh − I

h
,

which is required if A is to turn out to be a multiple of the Laplacian.
More precisely, we first show that A is a local operator, that is, if a smooth function vanishes

in an neighborhood of a point, then its image under A also vanishes at this point. This implies
that A is a differential operator. In a second step, we argue that, due to causality, A must be a
multiple of the Laplacian.

This strain of arguments has been employed by Lindeberg [31], page 41, for the Euclidean
case, who has suggested to require a property different from the strong Lipschitz property (SL)
which we require for the circle.

3. Inference on shape parameters

In the previous Section 2, we showed that the wrapped Gaussian generates a regular scale space
tube and that it is only the wrapped Gaussian that has this property. For this reason, in the follow-
ing, we only consider the wrapped Gaussian kernel Kh defined in (2) although empirical scale
space tubes (Definition 3.2) can of course be defined for arbitrary families, Remark 3.5 holds for
any semigroup and the proofs of Theorem 3.6 and Corollary 3.7 require only that second mo-
ments be finite. In the literature, the properties variation diminishing, nonenhancement of modes,
etc. are often referred to as preserving causality. Thus, the wrapped Gaussians are the one and
only (under reasonable assumptions) kernels preserving circular causality.

3.1. Circular causality

Assumption 3.1. From now on assume that X is a random variable (with or without a density

with respect to the Haar measure μ) taking values on the circle S and we observe X1, . . . ,Xn
i.i.d.∼

X.

Definition 3.2. We call the two-parameter stochastic process indexed in S×R
+{

f
(n)
h (z) := 1

n

n∑
j=1

Kh

(
zX−1

j

) : z ∈ S, h > 0

}
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the empirical circular scale space tube and{
fh(z) := Ef

(n)
h (z) : z ∈ S, h > 0

}
the population circular scale space tube.

Remark 3.3. Note that if X has density f with respect to the Haar measure μ on S then under
Assumption 3.1

E
(
f

(n)
h (z)

) = E
(
Kh

(
zX−1)) =

∫
S

Kh

(
zw−1)f (w)μ(dw) = (Kh ∗ f )(z).

Now we can state the causality theorem.

Theorem 3.4 (The circular causality theorem). Let Kh be the wrapped Gaussian. Under As-
sumption 3.1, for any m = 0,1, . . . the following holds:

(i) The mappings h �→ Sc(D
mfh) and h �→ Sc(D

mf
(n)
h ) are decreasing and right continuous

functions on (0,∞).
(ii) If X has a density f with respect to μ which is m-times differentiable and we set f0 = f

then h �→ Sc(D
mfh) is decreasing and right continuous on [0,∞).

3.2. Weak convergence of the scale space tube

Remark 3.5. All information of the empirical and the population scale space tube for any band-
width is already contained in that of every smaller bandwidth. More precisely, for h0 > 0,
{f (n)

h (z) : z ∈ S, h ≥ h0} and {fh(z) : z ∈ S, h ≥ h0} can be reconstructed from {f (n)
h0

(z) : z ∈ S}
or {fh0(z) : z ∈ S}, respectively.

The reason for this is of course the identity fh0+h = Kh ∗ fh0 for any h > 0 (and similarly for
the empirical counterpart), which also holds for h = 0 if we set K0 ∗ f := f .

Moreover, (z, h) �→ Kh(z) is a solution to the heat equation (3), and hence f
(n)
h (z) and fh(z)

are solutions as well. By the well known maximum principle for solutions of the heat equation,
maxima are attained at the boundary, that is, we have

sup
z∈S,h≥h0

∣∣f (n)
h (z) − fh(z)

∣∣ = sup
z∈S

∣∣f (n)
h0

(z) − fh0(z)
∣∣ for all h0 > 0. (4)

Theorem 3.6. Under Assumption 3.1, let m ≥ 0 be an integer and define

c(z1, z2;h) = cov
(
DmKh

(
z1X

−1),DmKh

(
z2X

−1)) (5)

for z1, z2 ∈ S and h > 0. Then, for any fixed h > 0,

n1/2(Dmf
(n)
h (z) − Dmfh(z)

) → Gh, (6)
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weakly in C(S), where Gh is a Gaussian process on S with mean zero and covariance structure
defined by c(z1, z2;h).

Moreover, Gh has continuous sample paths with probability one. In particular,
P(supz∈S |Gh(z)| < ∞) = 1.

This gives at once the following.

Corollary 3.7. Under Assumption 3.1 with h0 > 0,

sup
z∈S,h≥h0

n1/2
∣∣Dmf

(n)
h (z) − Dmfh(z)

∣∣
converges weakly to supz∈S |Gh0(z)| as n → ∞, where Gh0 is a Gaussian process with zero mean
and covariance structure c(z1, z2, h0) given by (5).

In the following denote by q(1−α) the (1 −α) quantile of the random variable supz∈S |Gh0(z)|,
for 0 ≤ α ≤ 1.

The convergence results can be used to test whether the derivative Dmfh(z) at some point
z ∈ S and for some bandwidth h ≥ h0 > 0 is different from zero. We perform the tests for the
hypotheses

H
(h,z)
0 : Dmfh(z) = 0, z ∈ S, h ≥ h0

as follows:

If

⎧⎪⎪⎨⎪⎪⎩
Dmf

(n)
h (z) > n−1/2q(1−α), reject H

(h,z)
0 and conclude Dmf

(n)
h (z) > 0,∣∣Dmf

(n)
h (z)

∣∣ ≤ n−1/2q(1−α), accept H
(h,z)
0 ,

Dmf
(n)
h (z) < −n−1/2q(1−α), reject H

(h,z)
0 and conclude Dmf

(n)
h (z) < 0.

(7)

The following theorem states two key properties of this test:
Firstly, by using the quantile q(1−α) of the supremum supz∈S |Gh0 | we control the family-wise

error rate (FWER) of the tests. More precisely, we can assert that the asymptotic probability that
one or more of the hypotheses {H(h,z)

0 : z ∈ S, h ≥ h0} is falsely rejected is at most α.
Secondly, we see that for a given bandwidth h all sign changes of Dmfh are detected by this

test asymptotically with probability one. Note that this does not require the test to detect all
points of positive/negative derivative. Indeed, without prior information on the smallest scales
this is not possible for any test since the absolute value of the derivative can be arbitrarily small.

Theorem 3.8. If under Assumption 3.1 with h0 > 0, 0 ≤ α ≤ 1, the test (7) is performed for
each of the hypotheses {H(h,z)

0 : z ∈ S, h ≥ h0} then the probability that one or more of them are
falsely rejected is asymptotically at most α.

Moreover, if for any fixed bandwidth h ≥ h0 the function Dmfh(x) has 2k ≥ 1 sign changes
then this test will detect them with asymptotic probability one.
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3.3. Inferred persistence

A scale space satisfying causality gives a notion of persistence of features of a (density-) function
f which are given by zero-crossings of derivatives. The number of such features is a decreasing
integer valued function in the bandwidth and, therefore, is constant except for finitely many
jumps. We can consider the bandwidths associated with these jumps as the amount of smoothing
that is necessary to remove the features, one by one. Indeed, with the wrapped Gaussian Kh as
kernel, we can define a sequence decreasing in k,

ssp(m)
k := ssp(m)

k (f ) = inf
h>0

{
h : Sc

(
Kh ∗ Dmf

)
< 2k

}
,

and call ssp(m)
k the scale space persistence of Dm−1f .

We will now use the family of tests introduced in (7) to define an empirical counterpart of
ssp(m), which can be obtained from the data X1, . . . ,Xn. To this end, let

W
(m)
h (z) =

⎧⎪⎪⎨⎪⎪⎩
+1, if Dmf

(n)
h (z) > n−1/2q(1−α),

0, if
∣∣Dmf

(n)
h (z)

∣∣ ≤ n−1/2q(1−α),

−1, if Dmf
(n)
h (z) < n−1/2q(1−α)

(8)
for h ≥ h0 and Wh = Wh0 for h < h0,

which we call the WiZer signature function, and define

ŝsp(m)
k := ŝsp(m)

k (f ) = inf
h>0

{
h : Sc

(
W

(m)
h

)
< 2k

}
(9)

as the significant empirical scale space persistence of Dmfh or just inferred persistence. Note
that we are not simply defining the empirical scale space persistence as the persistence of the
kernel density estimator infh>0{h : Sc(D

mf
(n)
h ) < 2k}. The reason is, that we want to eliminate

statistically insignificant features.
The following is an immediate consequence of Theorem 3.8.

Corollary 3.9. Under the assumptions of Theorem 3.8, the following holds for the scale space
persistence of Dm−1f

lim inf
n→∞ P

(
ŝsp(m)

k ≤ ssp(m)
k for all k ∈ Z

) ≥ 1 − α.

Remark 3.10. Note that by definition the sequence ssp(m)
1 , ssp(m)

2 , ssp(m)
3 , . . . is decreasing. For

k ≥ 1, ssp(m)
k can be considered as the birth bandwidth of the kth mode of Dm−1fh and for k ≥ 2

it is also the split bandwidth where k − 1 modes of Dm−1fh split into k modes. As birth and
splits (or births) occur with decreasing bandwidths, our scenario is twofold opposite to that of
usual persistence diagrams (e.g., Edelsbrunner et al. [17], Cohen-Steiner et al. [13], Chung et al.
[12]) where births and mergers (or deaths) occur with increasing bandwidth.
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The application in the following Section 4 illustrates the case m = 1 of scale space persistence
of modes of fh.

4. Application to early stem cell differentiation

Datasets – acto-myosin cytoskeleton. We re-analyze a data set from Zemel et al. [53] hMSCs
(human mesenchymal stem cells) cultured for 24 hrs. on elastic substrates of different Young’s
moduli E (1, 11 and 34 kPa), subsequently chemically fixed and immuno-stained for NMM
IIa, the motor proteins making up small filaments that are actually responsible for cytoskeletal
tension. Fluorescence images were recorded for 30 cells on each of the three conditions:

1. E = 1 kPa which form the data set Black,
2. E = 11 kPa which form the data set Red and
3. E = 34 kPa which form the data set Blue.

From these micrographs, the filament structure is reconstructed using the filament sensor of
Eltzner et al. [18]. Figure 2 shows typical cell images with their traced skeleton from each of the
three datasets.

The statistical model. Each traced image gives a realization (zj ,wj )
J
j=1 of a bounded filament

process where J ∈ N denotes the number of filaments, zj ∈ C the j th filament’s center in com-
plex notation, wj = λje

iφj encodes its length λj > 0 and orientation angle φj ∈ [−π/2,π/2)

with the positive real axis (j = 1, . . . , J ). For a given binning number N ∈ N we have the empir-
ical histogram ( ∑

j :φj ∈[−π/2+πk/N,−π/2+π(k+1)/N)

λj

/ J∑
j=1

λj

)N−1

k=0

. (10)

We assume that there is a true underlying filament process such that

P{z ∈ A,λ ∈ B,φ ∈ C} =
∫

A×B×C

g(z,λ,φ)dz dλdφ

for Borel sets A ⊂C,B ⊂ (0,∞) and C ⊂ [−π/2,π/2) with a density g w.r.t. the corresponding
Lebesgue measures. Then the histogram (10) is an estimator for the true conditional density

f (φ) = E[λ|φ]
E[λ] , φ ∈ [−π/2,π/2). (11)

This statistical model relates to the previous theoretical analysis as follows. For every ob-
servation of the filament process, there are n pixels carrying orientations and we denote by
Xl ∈ [−π/2,π/2) the orientation of the lth pixel, 1 ≤ l ≤ n, where a pixel is multiple counted,
each with the orientation of the corresponding filament, if two or more filaments intersect at this
pixel. The binned histogram of X1, . . . ,Xn is given by (10). Similarly, the filament process is a
point process carrying weighted (by relative filament length) orientation marks, where the dis-
tribution of weighted orientations X ∈ [−π/2,π/2) has the density φ �→ f (φ) given by (11).
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Figure 2. Fluorescence microscopy images of human mesenchymal stem cells, showing immuno-labeled
myosin structures, cultured for 24 hrs. on matrices of varying young moduli Em = 1 kPa (top row),
Em = 11 kPa (middle row) and Em = 34 kPa (bottom row). Left column: raw fluorescence images, right
column: superimposed traced filament structure. (Colors are visible in the online version of the article.)
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Taking into account pixel and machine discretization, X1, . . . ,Xn can be viewed as a discretized
sample of the weighted orientation mark X. If we double the orientations, we are in the situation
of Assumption 3.1.

Empirical histograms and WiZer functions. From the empirical histograms with total number
n of observed pixels (filament crossings result in pixels occurring in more than one filament; such
pixels are accordingly multiply counted), as well as from the true density f we obtain densities
f

(n)
h and fh, respectively, smoothed with the wrapped Gaussian kernel (2) of bandwidth h > 0.

For the former, the WiZer signature functions Wh are computed as in (8). For the hMSCs from
Figures 2, 3 depicts empirical histograms, corresponding f

(n)
h for some values of h and the WiZer

signature functions.
Note that not all of the modes of the smoothed empirical densities may be statistically signifi-

cant at the specified level, cf. Figure 4.
Inferred mode-persistence diagrams. In the next step, the inferred kth persistence bandwidths

ŝsp(1)
k for modes of f

(n)
h have been computed from the WiZer signature functions. Recall that

ŝsp(1)
k gives the inferred bandwidth of birth of the kth mode which is for k > 1 the split bandwidth

of the (k − 1)st mode. For the three hMSCs of the previous Figures 3 and 4, Table 1 depicts the
first few inferred mode birth bandwidths in degrees.

Finally, we depict inferred mode persistence bandwidths graphically. Typically, in logarithmic
scale, inferred persistences of several modes can be included in a single diagram such that the
verticals measure inferred persistence of odd order modes while the horizontals measure inferred
persistence of even order modes, cf. Figure 5. With confidence level 1 − α = 0.95, the black cell
has least persistent first modes and most persistent second and higher modes. This is reversed
for the red cell: most persistent first mode and least persistent second and third mode. The blue
cell’s mode persistences are intermediate. For all cells, the fourth mode comes to lie on the first
diagonal which accounts for the fact that fourth modes have not been detected for any cell at
the given resolution level (200 steps between the bandwidth reported in the WiZer signature
function), cf. Figure 1.

Data analysis. We have now applied the above analysis to the data set of a total of 179 cells: 60,
58 and 61 on each elasticity (1 kPa, black, 11 kPa, red, 34 kPa, blue). Each of the three datasets
comes in two files reflecting two experimental batches. For each of these six files, common
parameters (reflecting average intensity, blur and noise of the specific experimental setup) for the
filament sensor (cf. Eltzner et al. [18]) have been determined by an expert. Figure 6 depicts the
boxplots for the first 9 inferred mode persistences and Figure 7 the persistence diagram for the
means of the first seven, all in logarithms of radians. Recalling that in the persistence diagram,
odd order modes are more persistent if they have a higher vertical component, even order are so
if their horizontal component is higher, the trend observed in Figure 5 is consolidated. In mean
and median,

1. cells on 1 kPa (black) have least persistent first modes and most persistent next higher
modes,

2. cells on 11 kPa (red) have most persistent first modes and least persistent next higher modes,
3. cells on 34 kPa (blue) range close to red cells with a clear tendency (except for the first

mode) toward black cells.
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Figure 3. Processed traced filament structures from Figure 2 (rows correspond). Left column: histograms
of total filament length × width (vertical) per angle orientation (horizontal) with smoothed densities via
wrapped Gaussian kernels of bandwidths 3 (solid red), 6 (dashed blue) and 20 (dotted black). Right col-
umn: the respective WiZer signature functions to the significance level α = 0.05 (horizontal: angle orien-

tation, vertical: bandwidth). Here, blue depicts significant increase (W
(1)
h

(z) = 1), red significant decrease
(W

(1)
h

(z) = −1), grey regions where neither increase nor decrease is significant (W
(1)
h

(z) = 0) and white
areas with too few data (effective sample size

∑n
i=1 Kh(x − xi)/Kh(0) ≤ 5, Chaudhuri and Marron [9],

page 812). The three bandwidths from the left column are horizontal lines in the right. (Colors are visible
in the online version of the article.)
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Figure 4. Detail of the first row of Figure 3. Careful investigation shows that only one of the two first modes
of the kernel smoothed empirical density with bandwidth 3 (red, solid) is statistically significant. Similarly,
the first mode of the kernel smoothed empirical density with bandwidth 6 (blue, dashed) is statistically
insignificant. (Colors are visible in the online version of the article.)

5. Discussion

In this research, we have proposed a nonparametric methodology that can be applied to circular
data to detect differences in shape features of underlying unknown circular densities. This method
builds on a wrapped SiZer (WiZer) because we found that the wrapped Gaussian kernel is the
one and only kernel (under reasonable assumptions) that preserves circular causality. In a natural
way, with the W/SiZer’s methodology comes a notion of shape feature persistences. We have
used this to propose a measure assessing early differentiation of human mesenchymal stem cells
(hMSCs). Our results warrant larger studies involving larger sample sizes. In such studies, we
expect that inferred mode persistence diagrams (IMPDs) and combinations of IMPDs with other
cell parameters will give a useful tool to measure early differentiation of hMSCs also over time.

The key benefit of the W/SiZer methodology, providing for IMPDs, is also a key limitation:
statistical inference is possible only above a specific minimal bandwidth h0, which is of course
free to choose, although it may affect the asymptotic approximation, cf. Theorem 3.6 and Corol-

Table 1. Inferred bandwidths ŝsp(1)
k

for k = 1, . . . ,6 and k = 16 in degrees of births of modes with confi-
dence 1 − α = 0.95 for the three cells from Figure 2. The first four are depicted in log-scale in Figure 5

Mode no. 1 2 3 4 5 6 · · · 16 · · ·
Cells on 1 kPa (black) 58.420 26.245 8.425 4.960 4.960 4.465 0.573
Cells on 11 kPa (red) 99.010 5.455 3.970 2.485 2.485 2.485 1.495
Cells on 34 kPa (blue) 95.050 15.355 4.960 3.970 3.970 3.475 1.990
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Figure 5. Inferred mode-persistence diagram for the first four modes (cf. Table 1) of the three cells of
Figure 2 in log-scale. Colors indicate cell number (cell 1: black, cell 2: red, cell 3: blue) and coordinates
of numbers indicate (birth, split) for even number of modes (1 and 3) and (split, birth) for odd number of
modes (2 and 4). Odd order modes are more persistent if they have a higher vertical component, even order
are so if their horizontal component is higher. (Colors are visible in the online version of the article.)

lary 3.7. This is due to the fact that the corresponding asymptotic distributions are not tight as
h0 → 0 and a suitable calibration as h0 → 0 and n → ∞ would have to be found that allows
to compensate for nontightness (cf. Chaudhuri and Marron [10], page 420). For the line, this
problem has been recently solved by Schmidt-Hieber et al. [45], now allowing for inference on
shape parameters simultaneously over all scales (see also the discussion in Panaretos et al. [40]
for a similar reasoning in the context of flow estimation). We expect that these arguments can be
extended to our setup.

Appendix A: Sign changes

Let S− denote the usual sign change functional as defined in, for example, Brown et al. [6],
Definition 2.1, Karlin [28], that is, for real numbers x1, . . . , xn, the expression

S−(x1, . . . , xn)

simply counts the number of changes from positive to negative values in the sequence x1, . . . , xn,
or vice versa, ignoring zeros. We now follow Mairhuber et al. [32].
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Figure 6. Boxplots of inferred mode-persistences in log-scale radians for the first nine modes for a sample
of 179 cells in total exposed for 24 hours to matrix rigidities of 1 kPa (black, 60 cells), 11 kPa (red, 58 cells)
and 34 kPa (blue, 61 cells). (Colors are visible in the online version of the article.)

Definition A.1. The number of cyclic sign changes for a vector x = (x1, . . . , xn) is defined as
follows: If x = 0 set Sc(x) = 0. If there is a nonzero entry, say xj = 0, then set

Sc(x) = S−(xj , xj+1, . . . , xn, x1, . . . , xj−1, xj ).

Remark A.2. Obviously, this definition does not depend on the choice of the nonzero entry xj .
Moreover, as can be easily seen by induction, the number of cyclic sign changes is always even.
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Figure 7. Inferred mode-persistence diagram in log-scale radians for the means of the first seven modes
of the data set from Figure 6 with same coloring scheme. (Colors are visible in the online version of the
article.)

We say that a vector z = (z1, . . . , zn) ∈ S
n with distinct entries is in cyclic order if there exist

real numbers

t1 < t2 < · · · < tn < t1 + 2π

such that zl = eitl for l = 1, . . . , n.

Definition A.3. For a function f : S →R and points z = (z1, . . . , zn) ∈ S
n in cyclic order we set

f (z) = (
f (z1), . . . , f (zn)

)
.

Then we define the number of cyclic sign changes of f as

Sc(f ) = sup
n∈N,z∈Sn

in cyclic order

Sc

(
f (z)

)
.

Appendix B: Proofs

Proof of Theorem 2.6.

Lemma B.1. (VD) ⇔ (MR).
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Proof. The implication “⇒” is obvious. For “⇐”, we show the assertion first for a continu-
ous f ∈ L1(S). For this, set F(eit ) = ∫ t

0 f (eis) ds. Then limt↓0(F (eit ) − F(1))/t = f (1) =
limt↑0(F (ei(2π+t)) − F(1))/t and DF = f , which gives as desired,

Sc(L ∗ f ) = Sc(L ∗ DF) ≤ Sc(DF) = Sc(f ).

Next, assume that f ∈ L1(S) is arbitrary with Sc(f ) = k < ∞ (the assertion is trivial for k =
∞). Due to continuity of L, there is a sequence of continuous functions fn such that fn → f and
L∗fn → L∗f in L1(S) as n → ∞. In fact, because S decomposes into k disjoint intervals (some
of which may be points only) in which either signf ≥ 0 or ≤ 0, we may choose the functions fn

such that Sc(fn) → Sc(f ), that is, Sc(fn) = k for all n ≥ n0 for some n0 ∈N. Now let m ∈ N and
assume that Sc(L ∗ f ) ≥ m. As S is compact, L ∗ f is uniformly continuous. In consequence,
we have that Sc(L ∗ fn) ≥ m for n sufficiently large. Hence, as all fn are continuous, m ≤ k. In
particular, this shows that Sc(L ∗ f ) ≤ k, concluding the proof. �

To complete the proof of Theorem 2.6, we show the following.

Lemma B.2. Suppose that {Lh : h > 0} is a differentiable semigroup of circular variation di-
minishing kernels. Then it is not enhancing local extrema.

Proof. Assume that f is some smooth function and z0 is an isolated maximum of the function
z �→ Lh0 ∗ f (z) for some h0 > 0. Let C = Lh0 ∗ f (z0) and z = (z1, . . . , zk) be such that

Sc

(
Lh0 ∗ f (z) − C

) = Sc(Lh0 ∗ f − C).

We find w1,w2 ∈ S such that

z̃ = (z1, . . . ,w1, z0,w2, . . . , zk)

is in cyclic order and Lh0 ∗ f (wj ) − C < 0 for j = 1,2.
Assume now that ∂hL(z0, h0) > 0 were true then we would find h′ > 0 small enough such that

Lh0+h′ ∗ f (z0) − C > 0

and also, because h �→ Lh ∗ f (z) is continuous for fixed z,

sign
(
Lh0+h′ ∗ f (z) − C

) = sign
(
Lh0 ∗ f (z) − C

)
for z = w1,w2, z1, . . . , zn.

This would imply

Sc(Lh0+h′ ∗ f − C) ≥ Sc

(
Lh0+h′ ∗ f (z̃) − C

) = Sc

(
Lh0 ∗ f (z) − C

) + 2

= Sc(Lh0 ∗ f − C) + 2,

a contradiction, since Lh0+h′ ∗ f − C = Lh′ ∗ (Lh0 ∗ f − C). The analog argument works for
local minima. �
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Proof of Theorem 2.8. With Remark 2.2, we are left to show that the wrapped Gaussian is
variation diminishing. We proceed as follows. First, we note that the Gaussian kernels give an
exponential family on the line and that exponential families give rise to variation diminishing
kernels on the line (cf. Brown et al. [6], Example 3.1). Here, we use variation diminishing on
R as introduced by Karlin [28] and Brown et al. [6]. Secondly, note that kernels made from
exponential families on the line are mean continuous in the following sense.

A function K : R→ [0,∞) with
∫
R

K(t) dt = 1 is a mean continuous kernel if

2K(t) = lim
h↓0

(
K(t + h) + K(t − h)

)
for all t ∈R.

Then the assertion of Theorem 2.8 follows from the following.

Theorem B.3. Let K be a mean continuous kernel that is variation diminishing on the line. Then
its wrapped kernel

K̃
(
eit

) =
∑
k∈Z

K(t + 2π)

is variation diminishing on the circle.

Proof. This is a consequence of the following two theorems of Mairhuber et al. [32]. To this end
recall the Laguerre–Pólya class of entire functions 
 :C→ C of form


(s) = e−αs2+β0s

∞∏
k=1

(1 + βks)e
−βks,

where α ≥ 0 and βk are real such that

0 < α +
∑

k

β2
k < ∞.

The first theorem connects functions in the Laguerre–Pólya class to mean continuous variation
diminishing kernels on the line.

Theorem B.4 (Mairhuber et al. [32], Theorem B). If 
 belongs to the Laguerre–Pólya class
then there exists an ε > 0 such that 1



is holomorphic in the open strip

S = {
z ∈ C : −ε < �(z) < ε

}
. (12)

Further, there exists a mean continuous variation diminishing kernel  :R→ R such that

1


(z)
=

∫ ∞

−∞
e−zt(t) dt (13)

holds for all z ∈ S. Conversely, if  : R → R is a mean continuous variation diminishing kernel
then there exists a function 
 in the Laguerre–Pólya class such that equation (13) holds in an
open strip of the form (12).
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The second theorem completes the proof of Theorem B.3 as it links Laguerre–Pólya functions
to circular variation diminishing kernels via wrapping.

Theorem B.5 (Mairhuber et al. [32], Theorem 3). Every element 
 of the Laguerre–Pólya
class gives rise to a mean continuous cyclic variation diminishing kernel via

�
(
eit

) =
∑
k∈Z

1


(ik)
eikt .

If (t) is a function for which (13) holds then we have the identity

�
(
eit

) = 2π
∑
k∈Z

(t + 2πk).

�

Proof of Theorem 2.9. In this proof, we follow the argument of Lindeberg [31] starting with the
following lemma which is a special case of Engel and Nagel [19], Lemma 1.3. and Theorem 1.4.
To this end, recall the property of strong continuity (SC) introduced in Remark 2.10.

Lemma B.6. For a strongly continuous semigroup of kernels Lh : S → R, h > 0 there is a (not
necessarily bounded) closed linear operator A : L2(S) → L2(S) defined on a dense domain
D(A) ⊂ L2(S), such that for f ∈D(A) we have

Af = lim
h↓0

Lh ∗ f − f

h
,

as well as for all h > 0 that

∂h(Lh ∗ f ) =A(Lh ∗ f ). (14)

The operator A is called the infinitesimal generator of the semigroup {Lh : h > 0}. By an
argument analogous to that of Remark 2.3, we see C∞(S) ⊂D(A).

For w ∈ S let �w : C∞(S) → C∞(S) be the shift operator defined by �wf (z) = f (w−1z).
Then it is easy to see that A commutes with �w since

�w

(
Lh ∗ f − f

h

)
= Lh ∗ (�wf ) − �wf

h
.

Moreover, the identity R(Lh ∗ f − f ) = Lh ∗ (Rf ) − Rf (by symmetry of Lh) implies that A
also commutes with the reflection operator R, defined via Rf (z) = f (z−1).

In the next step, we show that A is a differential operator. To this end, we exploit Peetre [41],
Théorème, stating that A is a differential operator if and only if it has the following property (of
a local operator)

Af (z0) = 0 for any z0 ∈ S and smooth function f : S → R vanishing in a
neighborhood U of z0.
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Indeed, assuming that the smooth function f : S → R vanishes in a neighborhood U of z0, let
g : S → R be smooth, having a nondegenerate maximum at z0 with support in U . In conse-
quence, for every β ∈R the function r = βf +g has a nondegenerate maximum at z0, and hence
∂h|h=0(Lh ∗ r)(z0) ≤ 0 by Lemma B.2 which implies by Lemma B.6 that A(r)(z0) ≤ 0. By
linearity,

βA(f )(z0) +A(g)(z0) ≤ 0,

where the left-hand side can be given any sign (as β ∈R) unless A(f )(z0) = 0. In consequence,
we have shown

A=
∑

0≤k∈Z
akD

k (15)

with suitable ak ∈ R, (k = 0,1, . . .) at least in each chart. Using A�w = �wA we can conclude
that (15) holds globally.

In the penultimate step, we show that ak = 0 in (15) for k > 2. Let f be a smooth function on
S such that

f
(
exp(it)

) = t2 + βtn

for t in some neighborhood of zero and for some integer n > 2. Since f has an isolated local
minimum at 1 for all β we have by Lemmata B.2 and B.6 that ∂h|h=0(Lh ∗ f )(1) ≥ 0 (arguing
as above), and hence Af (1) ≥ 0. On the other hand, we have Af (1) = anβ and hence an = 0
would give a contradiction.

If we set n = 0 in the above argument, we conclude that a0 = 0.
Finally, the identity RA = AR yields a1 = 0 and, therefore, A = a2D

2. In consequence, for
f ∈ C∞(S), (14) is a multiple of the heat equation (3) with initial condition f , which proves the
theorem. �

Proof of Theorem 3.4. In order to see monotonicity, let gh(z) be either Dmfh(z) or Dmf
(n)
h (z)

for h > 0 corresponding to case (i) and for case (ii) set g0(z) = Dmf (z). Now let h2 > h1 > 0 in
case (i) or h2 > h1 ≥ 0 in case (ii). Then gh2 = Kh2−h1 ∗ gh1 and hence

Sc(gh2) ≤ Sc(gh1) (16)

since Kh is cyclic variation diminishing for all h > 0 by Theorem 2.9.
To see right continuity, suppose that Sc(gh) = 2k for integer k ≥ 0 and some h > 0 in case (i)

or h ≥ 0 in case (ii). If k > 0, there exists z = (z1, . . . , z2k) ∈ S
2k such that sgngh(zj ) = (−1)j .

Since h �→ gh(z) is continuous for all z ∈ S there is an ε > 0 such that sgngh′(zj ) = (−1)j for
all h′ ∈ [h,h + ε). Therefore,

Sc(gh′) ≥ Sc

(
gh′(z)

) = 2k.

Together with the monotonicity (16), this proves Sc(gh′) = 2k, and thus right continuity. If k = 0,
we have at once Sc(gh′) ≥ 0 = Sc(gh) for all h′ ≥ h again yielding right continuity. �

Proof of Theorem 3.6. We first show convergence of the finite dimensional distributions (I),
then weak convergence (II), and finally a.s. continuity of sample paths.
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I: Let z1, . . . , zk ∈ S and t1, . . . , tk ∈R and set

Yl =
k∑

i=1

ti
(
DmKh

(
ziX

−1
l

) − Dmfh(zi)
)
, l = 1, . . . , n.

Then EYl = 0 and

varYl = 1

n

k∑
i,j=1

ti tj c(zi, zj ;h).

In consequence, we have that

Zn := n1/2
k∑

i=1

ti
(
Dmf

(n)
h (zi) − Dmfh(zi)

) = n−1/2
n∑

l=1

Yl

is asymptotically normal with zero mean and covariance
∑k

i,j=1 ti tj c(zi, zj ;h). Since t1, . . . , tk ∈
R are arbitrary, by the Cramér–Wold device we conclude that

Un(z1, . . . , zk) := (
n1/2(Dmf

(n)
h (zi) − Dmfh(zi)

))k

i=1

is asymptotically normal with zero mean and covariance matrix (c(zi, zj ;h))ki,j=1.
II: To establish weak convergence, it now suffices to show that

n1/2(Dmf
(n)
h (z) − Dmfh(z)

)
z∈S

is tight. To this end, we give a bound for the second moments of the increments. Observe that for
z1, z2 ∈ S,

E
(
Un(z1) − Un(z2)

)2 = var
{
DmKh

(
z1X

−1) − Dm
(
Kh

(
z2X

−1))}
≤ E

{
DmKh

(
z1X

−1) − Dm
(
Kh

(
z2X

−1))}2 (17)

≤ ∥∥Dm+1Kh

∥∥2
∞ d(z1, z2)

2

using the mean value theorem for the last inequality where d denotes the intrinsic (geodesic)
distance in S. Now we argue with Theorem 8.6 (page 138) and Theorem 8.8 (page 139) of
Ethier and Kurtz [21]. First note that (17) yields condition (8.36) of Theorem 8.8. which asserts
condition (8.29) of Theorem 8.6 as well as condition (8.39). Taking the conditional expectation of
the latter gives condition (8.28) of Theorem 8.6. Directly from (17), we infer the third condition
(8.30) of (b) of Theorem 8.6. From the fact that in particular for every fixed z ∈ S, Un(z) is
asymptotically normal, we obtain condition (a) of Theorem 7.2 (Ethier and Kurtz [21], page 128).
Thus, we conclude with Theorem 8.6. that the sequence Un(z), n ∈ N of processes z ∈ S is
relatively compact, yielding the desired convergence result.

III: Since Gh is the weak limit of a sequence of a.s. continuous processes, there is a version of
Gh that also has continuous sample paths with probability one.
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Proof of Theorem 3.8. Let S0 ⊂ {(h, z) : h ≥ h0, z ∈ S} for which H
(h,z)
0 holds. Then by Corol-

lary 3.7, the probability that one or more of the null hypotheses are falsely rejected is

P
(∃(h, z) ∈ S0 s.t.

∣∣Dmf
(n)
h (z)

∣∣ ≥ n−1/2q(1−α)

)
≤ P

(
sup

h≥h0,z∈S
n1/2

∣∣Dmf
(n)
h (z) − Dmfh(z)

∣∣ ≥ q(1−α)

)
→ P

(
sup
z∈S

|Gh0 | ≥ q(1−α)

)
= α as n → ∞.

For the last assertion, note that if Dmfh(z) has 2k ≥ 2 sign changes then we can find a vec-
tor (z1, . . . , z2k) in cyclic order such that sgnDmfh(zj ) = (−1)j (j = 1, . . . ,2k). Because of
q(1−α)n

−1/2 → 0 and

max
1≤j≤2k

∣∣Dmf
(n)
h (zj ) − Dmfh(zj )

∣∣ ≤ sup
z∈S

∣∣Dmf
(n)
h (z) − Dmfh(z)

∣∣ =OP

(
n−1/2)

the above test procedure will correctly conclude the sign of Dmfh(zj ) for all j asymptotically
with probability one. �

Appendix C: Numerical considerations

Let K : R → R≥0 be a kernel on the real axis and K̃ : [−π,π] → R≥0 the correspond-
ing wrapped kernel defined by K̃(x) = ∑

j∈Z K(x + 2πj) and for C ∈ Z the cut off kernel

K̃(C)(x) = ∑
|j |≤C K(x + 2πj).

For points x, x1, . . . , xn ∈ [−π,π], we define

f (x) = 1

n

n∑
i=1

K̃(x − xi), f (C)(x) = 1

n

n∑
i=1

K̃(C)(x − xi).

We estimate∣∣f (x) − f (C)(x)
∣∣

=
∣∣∣∣∣1

n

n∑
i=1

∑
|j |>C

K(x − xi + 2πj)

∣∣∣∣∣ ≤ 1

n

n∑
i=1

∑
|j |>C

∣∣K(x − xi + 2πj)
∣∣

≤
∑
j>C

(
sup

x∈[2π(j−1),2π(j+1)]

∣∣K(x)
∣∣ + sup

x∈[−2π(j+1),−2π(j−1)]

∣∣K(x)
∣∣) =: δK(C).

Now we want to estimate δK(C) for the derivative of the Gaussian kernel

φh(x) = 1√
2πh

e−x2/(2h).
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Note that ∂xφh has two extremal points at ±√
h and is monotonically increasing on (−∞,−√

h)

and monotonically decreasing on (
√

h,∞). Hence, if 2π(C − 1) ≥ √
h we have

sup
x∈[−2π(j+1),−2π(j−1)]∪[2π(j−1),2π(j+1)]

∣∣∂xφh(x)
∣∣ ≤ − 1

2π

∫ 2π(j−1)

2π(j−2)

∂xφh(y) dy

for all j ≥ C + 1 and, therefore,

δ∂xφh
(C) ≤ − 1

π

∑
j≥C+1

∫ 2π(j−1)

2π(j−2)

∂xφh(y) dy = 1

π
φh

(
2π(C − 2)

)
.

Theorem C.1. For any empirical measure ν = 1
n

∑n
i=1 δxi

with points x1, . . . , xn ∈ [−π,π], we
have ∥∥∥∥∂(φ̃h ∗ ν)

∂x
− ∂(φ̃

(C)
h ∗ ν)

∂x

∥∥∥∥∞
≤ 1

π
φh

(
2π(C − 1)

)
provided that 2π(C − 1) ≥ √

h.

In consequence, for the bandwidths 0.01 ≤ h ≤ 3.5 considered in our applications in Sec-
tions 3.3 and 4, an error less than

e−10

π
√

2πh
≤ 10−4

can be achieved for 2π(C − 1) ≥ √
20h, for example, C = 3.
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