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We raise the issue of estimating the division rate for a growing and dividing population modelled by a piece-
wise deterministic Markov branching tree. Such models have broad applications, ranging from TCP/IP win-
dow size protocol to bacterial growth. Here, the individuals split into two offsprings at a division rate B(x)

that depends on their size x, whereas their size grow exponentially in time, at a rate that exhibits variability.
The mean empirical measure of the model satisfies a growth-fragmentation type equation, and we bridge
the deterministic and probabilistic viewpoints. We then construct a nonparametric estimator of the division
rate B(x) based on the observation of the population over different sampling schemes of size n on the
genealogical tree. Our estimator nearly achieves the rate n−s/(2s+1) in squared-loss error asymptotically,
generalizing and improving on the rate n−s/(2s+3) obtained in (SIAM J. Numer. Anal. 50 (2012) 925–950,
Inverse Problems 25 (2009) 1–22) through indirect observation schemes. Our method is consistently tested
numerically and implemented on Escherichia coli data, which demonstrates its major interest for practical
applications.

Keywords: cell division equation; growth-fragmentation; Markov chain on a tree; nonparametric estimation

1. Introduction

1.1. Size-structured models and their inference

Growth-fragmentation models and structured population equations describe the temporal evolu-
tion of a population characterised by state variables such as age, size, growth, maturity, protein
content and so on – see [26,32] and the references therein. This field continues to grow in interest
as its applications appear to be wider and wider, ranging from the internet TCP/IP window size
protocol [1] to neuronal activity [31], protein polymerization [17], cell division cycle [3], phase
transitions [30], parasite proliferation [4] etc.
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In order to quantitatively fit experimental observations and thus validate the relevance of the
models, developing new and well-adapted statistical methods appears to be one of the major chal-
lenge for the coming years. A paradigmatic example, which can serve both as a toy model and a
proof of concept for the methodology we develop here, is given by the growth-fragmentation or
size-structured cell division equation [33]. When applied to the evolution of a bacterial popula-
tion, it reads {

∂tn(t, x) + τ ∂x

(
xn(t, x)

)+ B(x)n(t, x) = 4B(2x)n(t,2x),

n(0, x) = n(0)(x), x ≥ 0,
(1)

and it quantifies the concentration n(t, x) of individuals (cells) having size x (the state variable)
at time t . A common stochastic mechanism for every single cell is attached to equation (1):

1. The size x = x(t) of a cell at time t evolves exponentially according to the deterministic
evolution dx(t) = τx(t)dt , where τ > 0 is the growth rate of each cell, that quantifies their
ability to ingest a common nutrient.

2. Each cell splits into two offsprings according to a division rate B(x) that depends on its
current size x.

3. At division, a cell of size x gives birth to two offsprings of size x/2 each, what is called
binary fission.

Model (1) is thus entirely determined by the parameters (τ,B(x), x ∈ [0,∞)). Typically, the
growth rate τ is assumed to be known or guessed [13], and thus inference about (1) mainly
concerns the estimation of the division rate B(x) that has to be taken from a nonparametric
perspective.

By use of the general relative entropy principle, Michel, Mischler and Perthame showed
that the approximation n(t, x)e−λ0t ≈ N(x) is valid [29], with λ0 > 0, and where (λ0,N) is
the dominant eigenpair related to the corresponding eigenvalue problem, see [2,8,16,25,28,32].
The “stationary” density N(x) of typical cells after some time has elapsed enables to recover
(B(x), x ∈D) for a compact D ⊂ (0,∞) by means of the regularisation of an inverse problem of
ill-posedness degree 1. From a deterministic perspective, this is carried out in [14,15,34]. From a
statistical inference perspective, if an n-sample of the distribution N(x) is observed and if B(x)

has smoothness s > 0 in a Sobolev sense, it is proved in [12] that B(x) can be recovered in
squared-error loss over compact sets with a rate of convergence n−s/(2s+3). Both deterministic
and stochastic methodology of [14] and [12] are motivated by experimental designs and data
such as in [13,24]. However, they do not take into account the following two important aspects:

• Bacterial growth exhibits variations in the individual growth rate τ as demonstrated for
instance in [36]. One would like to incorporate variability in the growth rate within the
system at the level of a single cell. This requires to modify model (1).

• Recent evolution of experimental technology enables to track the whole genealogy of cell
populations (along prescribed lines of descendants for instance), affording the observation
of other state variables such as size at division, lifetime of a single individual and so on
[38]. Making the best possible use of such measures is of great potential impact, and needs
a complementary approach.
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The availability of observation schemes at the level of cell individuals suggests an enhancement
of the statistical inference of (B(x), x ∈ D), enabling to improve on the rates of convergence
obtained by indirect measurements such as in [12,14]. This is the purpose of the present paper.
We focus on bacterial growth, for which we apply our method on experimental observations.
This serves as a proof of concept for the relevance of our modelling and statistical methodology,
which could adapt to other application fields and growth-fragmentation types.

1.2. Results of the paper

Statistical setting

Let

U =
∞⋃

k=0

{0,1}k

denote the binary genealogical tree (with {0,1}0 := {∅}). We identify each node u ∈ U with
a cell that has a size at birth ξu and a lifetime ζu. In the paper, we consider the problem of
estimating (B(x), x ∈ [0,∞)) over compact sets of (0,∞). Our inference procedure is based on
the observation of (

(ξu, ζu), u ∈ Un

)
, (2)

where Un ⊂ U denotes a connected subset of size n containing the root u = ∅. Asymptotics are
taken as n → ∞. Two important observation schemes are considered: the sparse tree case, when
we follow the system along a given branch with n individuals, and the full tree case, where we
follow the evolution of the whole binary tree up to the Nnth generation, with Nn ≈ log2 n. In
this setting, we are able to generalise model (1) and allow the growth rate τ to vary with each
cell u ∈ U . We assume that a given cell u has a random growth rate τu = v ∈ E ⊂ (0,∞) (later
constrained to live on a compact set). Moreover, this value v is inherited from the growth rate v′
of its parent according to a distribution ρ(v′,dv). Since a cell splits into two offsprings of the
same size, letting u− denote the parent of u, we have the fundamental relationship

2ξu = ξu− exp(τu−ζu−) (3)

that enables to recover the growth rate τu of each individual in Un since Un is connected by
assumption, possibly leaving out the last generation of observed individuals, but this has asymp-
totically no effect on a large sample size approach.

Variability in growth rate

In the case where the growth rate can vary for each cell, the density n(t, x) of cells of size x

at time t does not follow equation (1) anymore and an extended framework needs to be consid-
ered. To that end, we structure the system with an additional variable τu = v, which represents
the growth rate and depends on each individual cell u. We construct in Section 2 a branching
Markov chain ((ξu, τu), u ∈ U) that incorporates variability for the growth rate in the mechanism
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described in Section 1.1. Equivalently to the genealogical tree, the system may be described in
continuous time by a piecewise deterministic Markov process(

X(t),V (t)
)= ((

X1(t),V1(t)
)
,
(
X2(t),V2(t)

)
, . . .

)
,

which models the process of sizes and growth rates of the living particles in the system at
time t , with value in

⋃∞
k=0 Sk , where S = [0,∞) × E is the state space of size times growth

rate. Stochastic systems of this kind that correspond to branching Markov chains are fairly well
known, both from a theoretical angle and in applications; a selected list of contributions is [5,10,
27] and the references therein.

By fragmentation techniques inspired by Bertoin [7], see also Haas [21], we relate the process
(X,V ) to a growth-fragmentation equation as follows. Define

〈
n(t, ·), ϕ〉= E

[ ∞∑
i=1

ϕ
(
Xi(t),Vi(t)

)]

as the expectation of the empirical measure of the process (X,V ) over smooth test functions
defined on S . We prove in Theorem 1 that, under appropriate regularity conditions, the measure
n(t, ·) that we identify with the temporal evolution of the density n(t, x, v) of cells having size x

and growth rate v at time t is governed (in a weak sense1) by⎧⎪⎪⎨⎪⎪⎩
∂tn(t, x, v) + v ∂x

(
xn(t, x, v)

)+ B(x)n(t, x, v)

= 4B(2x)

∫
E

ρ
(
v′, v

)
n
(
t,2x,dv′),

n(0, x, v) = n(0)(x, v), x ≥ 0.

(4)

If we assume a constant growth rate τ > 0, we then take ρ(v′,dv) = δτ (dv) (where δ denotes
the Dirac mass) and we retrieve the standard growth-fragmentation equation (1). The proof of
Theorem 1 is obtained via a so-called many-to-one formula, established in Proposition 3 in Sec-
tion 5.1. Indeed, thanks to the branching property of the system, it is possible to relate the be-
haviour of additive functionals like the mean empirical measure to the behaviour of a so-called
tagged cell (like a tagged fragment in fragmentation process), that consists in following the be-
haviour of a single line of descendants along a branch where each node is picked at random, ac-
cording to a uniform distribution. This approach, inspired by fragmentation techniques, is quite
specific to our model and enables to obtain a relatively direct proof of Theorem 4.

1For every t ≥ 0, we actually have a Radon measure n(t,dx,dv) on S = [0,∞) × E : If ϕ(x, v) is a function defined on
S , we define 〈n(t, ·), ϕ〉 = ∫

S ϕ(x, v)n(t,dx,dv) whenever the integral is meaningful. Thus (4) has the following sense:
for every sufficiently smooth test function ϕ with compact support in E , we have∫

S
∂t n(t,dx,dv)ϕ(x, v) − vxn(t,dx,dv) ∂xϕ(x, v) + B(x)n(t,dx,dv)ϕ(x, v)

= 4
∫
S

(
B(2x)

∫
E

ρ
(
v′,dv

)
n
(
t,2dx,dv′)ϕ(x, v)

)
.
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Nonparametric estimation of the growth rate

In Section 3, we take over the problem of estimating (B(x), x ∈ D) for some compact D ⊂
(0,∞). We assume we have data of the form (2), and that the mean evolution of the system is
governed by (4). The growth rate kernel ρ is unknown and treated as a nuisance parameter. A
fundamental object is the transition kernel

PB

(
x,dx′)= P

(
(ξu, τu) ∈ dx′|(ξu− , τu−) = x

)
of the size and growth rate distribution (ξu, τu) at the birth of a descendant u ∈ U , given the
size of birth and growth rate of its parent (ξu− , τu−). We define in Section 3.3 a class of division
rates and growth rate kernels such that if (B,ρ) belongs to this class, then the transition PB

is geometrically ergodic and has a unique invariant measure νB(dx) = νB(x,dv)dx. From the
invariant measure equation

νBPB = νB

we obtain in Proposition 2 the explicit representation

B(x) = x

2

νB(x/2)

EνB
[(1/τu−)1{ξu−≤x,ξu≥x/2}] , (5)

where νB(x) = ∫
E νB(x,dv) denotes the first marginal of the invariant distribution νB . A strategy

for constructing and estimator B consists in replacing the right-hand size of (5) by its empirical
counterpart, the numerator being estimated via a kernel estimator of the first maginal of νB(dx).
Under local Hölder smoothness assumption on B of order s > 0, we prove in Theorem 2 that for a
suitable choice of bandwidth in the estimation of the invariant density, our estimator achieves the
rate n−s/(2s+1) in squared-error loss over appropriate compact sets D ⊂ (0,∞), up to an inessen-
tial logarithmic term when the full tree observation scheme is considered. We see in particular
that we improve on the rate obtained in [12]. Our result quantifies the improvement obtained
when estimating B(x) from data ((ξu, ζu), u ∈ Un), as opposed to overall measurements of the
system after some time has elapsed as in [12]. We provide a quantitative argument based on the
analysis of a PDE that explains the reduction of ill-posedness achieved by our method over [12]
in Section 4.2.

In order to obtain the upper bound of Theorem 2, a major technical difficulty is that we need
to establish uniform rates of convergence of the empirical counterparts to their limits in the
numerator and denominator of (5) when the data are spread along a binary tree. This can be done
via covariance inequalities that exploit the fact that the transition PB is geometrically ergodic
(Proposition 4) using standard Markov techniques, see [6,27]. The associated chain is however
not reversible, and this yields an extraneous difficulty: the decay of the correlations between
ϕ(ξu, τu) and ϕ(ξv, τv) for two nodes u,v ∈ Un are expressed in terms of the sup-norm of ϕ,
whenever |ϕ(x)| ≤ V(x) is dominated by a certain Lyapunov function V for the transition PB .
However, the typical functions ϕ we use are kernels that depend on n and that are not uniformly
bounded in sup-norm as n → ∞. This partly explains the relative length of the technical Sections
5.5 and 5.6.
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1.3. Organisation of the paper

In Section 2, we construct the model ((ξu, τu), u ∈ U) of sizes and growth rates of the cells
as a Markov chain along the genealogical tree. The discrete model can be embedded into a
continuous time piecewise deterministic Markov process (X,V ) of sizes and growth rates of the
cells present at any time within the system. In Theorem 1, we explicit the relation between the
mean empirical measure of (X,V ) and the growth-fragmentation type equation 4. In Section 3,
we explicitly construct an estimator B̂n of B by means of the representation given by (5) in
Section 3.2. Two observation schemes are considered and discussed in Section 3.1, whether we
consider data along a single branch (the sparse tree case) or along the whole genealogy (the
full tree case). The specific assumptions and the class of admissible division rates B and growth
rate kernels ρ are discussed in Section 3.3, and an upper bound for B̂n in squared-error loss
is given in our main Theorem 2. Section 4 shows and discusses the numerical implementation
of our method on simulated data. In particular, ignoring the variability in the reconstruction
dramatically deterioriates the accuracy of estimation of B . We also explain from a deterministic
point perspective the rate improvement of our method compared with [12] by means of a PDE
analysis argument in Section 4.2. The parameters are inspired from real data experiments on
Escherichia coli cell cultures. Section 5 is devoted to the proofs.

2. A Markov model on a tree

2.1. The genealogical construction

Recall that U :=⋃∞
n=0{0,1}n (with {0,1}0 := {∅}) denotes the infinite binary genealogical tree.

Each node u ∈ U is identified with a cell of the population and has a mark

(ξu, bu, ζu, τu),

where ξu is the size at birth, τu the growth rate, bu the birthtime and ζu the lifetime of u. The
evolution (ξu

t , t ∈ [bu, bu + ζu)) of the size of u during its lifetime is governed by

ξu
t = ξu exp

(
τu(t − bu)

)
for t ∈ [bu, bu + ζu). (6)

Each cell splits into two offsprings of the same size according to a division rate B(x) for x ∈
(0,∞). Equivalently

P
(
ζu ∈ [t, t + dt]|ζu ≥ t, ξu = x, τu = v

)= B
(
x exp(vt)

)
dt. (7)

At division, a cell splits into two offsprings of the same size. If u− denotes the parent of u, we
thus have

2ξu = ξu− exp(τu−ζu−). (8)

Finally, the growth rate τu of u is inherited from its parent τu− according to a Markov kernel

ρ
(
v,dv′)= P

(
τu ∈ dv′|τu− = v

)
, (9)
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where v > 0 and ρ(v,dv′) is a probability measure on (0,∞) for each v > 0. Equations (6), (7),
(8) and (9) completely determine the dynamics of the model ((ξu, τu), u ∈ U), as a Markov chain
on a tree, given an additional initial condition (ξ∅, τ∅) on the root. The chain is embedded into
a piecewise deterministic continuous Markov process thanks to (6) by setting(

ξu
t , τu

t

)= (
ξu exp

(
τu(t − bu)

)
, τu

)
for t ∈ [bu, bu + ζu)

and (0,0) otherwise. Define(
X(t),V (t)

)= ((
X1(t),V1(t)

)
,
(
X2(t),V2(t)

)
, . . .

)
as the process of sizes and growth rates of the living particles in the system at time t . We have an
identity between point measures

∞∑
i=1

1{Xi(t)>0}δ(Xi(t),Vi (t)) =
∑
u∈U

1{bu≤t<bu+ζu}δ(ξu
t ,τu

t ), (10)

where δ denotes the Dirac mass. In the sequel, the following basic assumption is in force.

Assumption 1 (Basic assumption on B and ρ). The division rate x � B(x) is continuous. We
have B(0) = 0 and

∫∞
x−1B(x)dx = ∞. The Markov kernel ρ(v,dv′) is defined on a compact

set E ⊂ (0,∞).

Proposition 1. Work under Assumption 1. The law of((
X(t),V (t)

)
, t ≥ 0

)
or

(
(ξu, τu), u ∈ U

)
or

((
ξu
t , ζ u

t

)
, t ≥ 0, u ∈ U

)
is well-defined on an appropriate probability space with almost-surely no accumulation of jumps.

If μ is a probability measure on the state space S = [0,∞) × E , we shall denote indifferently
by Pμ the law of any of the three processes above where the root (ξ∅, τ∅) has distribution μ.
The construction is classical (see for instance [7] and the references therein) and is outlined in
Appendix A.1.

2.2. Behaviour of the mean empirical measure

Denote by C1
0(S) the set of real-valued test functions with compact support in the interior of S .

Theorem 1 (Behaviour of the mean empirical measure). Work under Assumption 1. Let μ be
a probability distribution on S . Define the distribution n(t,dx,dv) by

〈
n(t, ·), ϕ〉= Eμ

[ ∞∑
i=1

ϕ
(
Xi(t),Vi(t)

)]
for every ϕ ∈ C1

0(S).
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Then n(t, ·) solves (in a weak sense)⎧⎪⎪⎨⎪⎪⎩
∂tn(t, x, v) + v ∂x

(
xn(t, x, v)

)+ B(x)n(t, x, v)

= 4B(2x)

∫
E

ρ
(
v′, v

)
n
(
t,2x,dv′),

n(0, x, v) = n(0)(x, v), x ≥ 0,

with initial condition n(0)(dx,dv) = μ(dx,dv).

Theorem 1 somehow legitimates our methodology: by enabling each cell to have its own
growth rate and by building-up new statistical estimators in this context, we still have a trans-
lation in terms of the approach in [14]. In particular, we will be able to compare our estimation
results with [12]. Our proof is based on fragmentation techniques, inspired by Bertoin [7] and
Haas [21]. Alternative approaches to the same kind of questions include the probabilistic studies
of Chauvin et al. [9], Bansaye et al. [5] or Harris and Roberts [22] and references therein.

3. Statistical estimation of the division rate

3.1. Two observation schemes

Let Un ⊂ U denote a subset of size n of connected nodes: if u belongs to Un, so does its parent
u−. We look for a nonparametric estimator of the division rate

y � B̂n(y) = B̂n

(
y, (ξu, τu), u ∈ Un

)
for y ∈ (0,∞).

Statistical inference is based on the observation scheme(
(ξu, τu), u ∈ Un

)
and asymptotic study is undertaken as the population size of the sample n → ∞. We are inter-
ested in two specific observation schemes.

The full tree case. We observe every pair (ξu, τu) over the first Nn generations of the tree:

Un = {
u ∈ U , |u| ≤ Nn

}
with the notation |u| = n if u = (u0, u1, . . . , un) ∈ U , and Nn is chosen such that 2Nn has order n.

The sparse tree case. We follow the first n offsprings of a single cell, along a fixed line of
descendants. This means that for some u ∈ U with |u| = n, we observe every size ξu and growth
rate τu of each node (u0), (u0, u1), (u0, u1, u2) and so on up to a final node u = (u0, u1, . . . , un).

Remark 1. For every n ≥ 1, we tacitly assume that there exists a (random) time Tn < ∞ almost
surely, such that for t ≥ Tn, the observation scheme Un is well-defined. This is a consequence of
the behaviour of B near infinity that we impose later on in (17) below.
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3.2. Estimation of the division rate

Identification of the division rate

We denote by x = (x, v) an element of the state space S = [0,∞) × E . Introduce the transition
kernel

PB

(
x,dx′)= P

(
(ξu, τu) ∈ dx′|(ξu− , τu−) = x

)
of the size and growth rate distribution (ξu, τu) at the birth of a descendant u ∈ U , given the
size at birth and growth rate of its parent (ξu− , τu−). From (7), we infer that P(ζu− ∈ dt |ξu− =
x, τu− = v) is equal to

B
(
x exp(vt)

)
exp

(
−
∫ t

0
B
(
x exp(vs)

)
ds

)
dt.

Using formula (8), by a simple change of variables

P
(
ξu ∈ dx′|ξu− = x, τu− = v

)= B(2x′)
vx′ 1{x′≥x/2} exp

(
−
∫ x′

x/2

B(2s)

vs
ds

)
dx′.

Incorporating (9), we obtain an explicit formula for

PB

(
x,dx′)=PB

(
(x, v), x′,dv′)dx′,

with

PB

(
(x, v), x′,dv′)= B(2x′)

vx′ 1{x′≥x/2} exp

(
−
∫ x′

x/2

B(2s)

vs
ds

)
ρ
(
v,dv′). (11)

Assume further that PB admits an invariant probability measure νB(dx), that is, a solution to

νBPB = νB, (12)

where

μPB(dy) =
∫
S

μ(dx)PB(x,dy)

denotes the left action of positive measures μ(dx) on S for the transition PB .

Proposition 2. Work under Assumption 1. If PB admits an invariant probability measure νB of
the form νB(dx) = νB(x,dv)dx, then we have

νB(y) = B(2y)

y
EνB

[
1

τu−
1{ξu−≤2y,ξu≥y}

]
(13)

where EνB
[·] denotes expectation when the initial condition (ξ∅, τ∅) has distribution νB and

where we have set νB(y) = ∫
E νB(y,dv′) in (13) for the marginal density of the invariant proba-

bility measure νB with respect to y.
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We exhibit below a class of division rates B and growth rate kernels ρ that guarantees the
existence of such an invariant probability measure.

Construction of a nonparametric estimator

Inverting (13) and applying an appropriate change of variables, we obtain

B(y) = y

2

νB(y/2)

EνB
[(1/τu−)1{ξu−≤y,ξu≥y/2}] , (14)

provided the denominator is positive. This formula has no easy interpretation: it is obtained by
some clever manipulation of the equation νB = PBνB . A tentative interpretation in the simplest
case with no variability (so that τu = τ for some fixed τ > 0 and for every u ∈ U is proposed in
Section 4.2). Representation (14) also suggests an estimation procedure, replacing the marginal
density νB(y/2) and the expectation in the denominator by their empirical counterparts. To that
end, pick a kernel function

K : [0,∞) → R,

∫
[0,∞)

K(y)dy = 1,

and set Kh(y) = h−1K(h−1y) for y ∈ [0,∞) and h > 0. Our estimator is defined as

B̂n(y) = y

2

n−1 ∑
u∈Un

Kh(ξu − y/2)

n−1
∑

u∈Un
(1/τu−)1{ξu−≤y,ξu≥y/2} ∨ �

, (15)

where � > 0 is a threshold that ensures that the estimator is well defined in all cases and x ∨y =
max{x, y}. Thus (B̂n(y), y ∈ D) is specified by the choice of the kernel K , the bandwidth h > 0
and the threshold � > 0.

Assumption 2. The function K is bounded with compact support, and for some integer n0 ≥ 1,
we have

∫
[0,∞)

xkK(x)dx = 1{k=0} for 0 ≤ k ≤ n0.

3.3. Error estimates

We assess the quality of B̂n in squared-loss error over compact intervals D. We need to spec-
ify local smoothness properties of B over D, together with general properties that ensure that
the empirical measurements in (15) converge with an appropriate speed of convergence. This
amounts to impose an appropriate behaviour of B near the origin and infinity.

Model constraints

For λ > 0 such that 2λ > supE/ infE > 0 and a vector of positive constants c = (r,m, �,L),
introduce the class Fλ(c) of continuous functions B : [0,∞) → [0,∞) such that∫ r/2

0
x−1B(2x)dx ≤ L,

∫ r

r/2
x−1B(2x)dx ≥ � (16)
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and

B(x) ≥ mxλ for x ≥ r. (17)

Remark 2. Similar conditions on the behaviour of B can also be found in [16], in a deterministic
setting.

Remark 3. Assumption 1 is satisfied as soon as B ∈ Fλ(c) (and ρ is defined on a compact
E ⊂ (0,∞) of course).

Let ρmin, ρmax be two positive finite measures on E such that ρmax −ρmin is a positive measure
and ρmin(E) > 0. We define M(ρmin, ρmax) as the class of Markov transitions ρ(v,dv′) on E such
that

ρmin(A) ≤ ρ(v,A) ≤ ρmax(A), A ⊂ E, v ∈ E . (18)

Remark 4. Control (18) ensures the geometric ergodicity of the process of variability in the
growth rate.

Let us be given in the sequel a vector of positive constants c = (r,m, �,L) and 0 < emin ≤ emax
such that E ⊂ [emin, emax]. We introduce the Lyapunov function

V(x, v) =V(x) = exp

(
m

eminλ
xλ

)
for (x, v) ∈ S. (19)

The function V controls the rate of the geometric ergodicity of the chain with transition PB and
will appear in the proof of Proposition 4 below. Define

δ = δ(c) := 1

1 − 2−λ
exp

(
−(

1 − 2−λ
) m

emaxλ
rλ

)
ρmax(E).

Assumption 3 (The sparse tree case). Let λ > 0. We have δ(c) < 1.

In the case of the full tree observation scheme, we will need more stringent (and technical)
conditions on c. Let γB,V denote the spectral radius of the operator PB − 1 ⊗ νB acting on the
Banach space of functions g :S → R such that

sup
{∣∣g(x)

∣∣/V(x),x ∈ S
}

< ∞,

where V is defined in (19) above.

Assumption 4 (The full tree case). We have δ(c) < 1
2 and moreover

sup
B∈Fλ(c)

γB,V <
1

2
. (20)
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Remark 5. It is possible to obtain bounds on c so that (20) holds, by using explicit (yet intricate)
bounds on γB,V following Fort et al. [18] or Douc et al. [11], see also Baxendale [6].

Rate of convergence

We are ready to state our main result. For s > 0, with s = �s� + {s}, 0 < {s} ≤ 1 and �s� an
integer, introduce the Hölder space Hs(D) of functions f :D → R possessing a derivative of
order �s� that satisfies ∣∣f �s�(y) − f �s�(x)

∣∣≤ c(f )|x − y|{s}. (21)

The minimal constant c(f ) such that (21) holds defines a semi-norm |f |Hs (D). We equip the
space Hs(D) with the norm

‖f ‖Hs (D) = ‖f ‖L∞(D) + |f |Hs (D)

and the Hölder balls

Hs(D,M) = {
B,‖B‖Hs (D) ≤ M

}
, M > 0.

Theorem 2. Work under Assumption 3 in the sparse tree case and Assumption 4 in the full tree
case. Specify B̂n with a kernel K satisfying Assumption 2 for some n0 > 0 and

hn = c0n
−1/(2s+1), �n → 0.

For every M > 0, there exist c0 = c0(c,M) and d(c) ≥ 0 such that for every 0 < s < n0 and every
compact interval D ⊂ (d(c),∞) such that infD ≥ r/2, we have

sup
ρ,B

Eμ

[‖B̂n − B‖2
L2(D)

]1/2 � �−1
n (logn)1/2n−s/(2s+1),

where the supremum is taken over

ρ ∈ M(ρmin, ρmax) and B ∈Fλ(c) ∩Hs(D,M),

and Eμ[·] denotes expectation with respect to any initial distribution μ(dx) for (ξ∅, τ∅) on S
such that

∫
S V(x)2μ(dx) < ∞.

Several remarks are in order: (1) Since �n is arbitrary, we obtain the classical rate n−s/(2s+1)

(up to a log term) which is optimal in a minimax sense for density estimation. It is presumably
optimal in our context, using for instance classical techniques for nonparametric estimation lower
bounds on functions of transition densities of Markov chains, see, for instance, [19]. (2) The
extra logarithmic term is due to technical reasons: we need it in order to control the decay of
correlations of the observations over the full tree structure. (3) The knowledge of the smoothness
s that is needed for the construction of B̂n is not realistic in practice. An adaptive estimator
could be obtained by using a data-driven bandwidth in the estimation of the invariant density
νB(y/2) in (15). The Goldenschluger–Lepski bandwidth selection method [20], see also [12]
would presumably yield adaptation, but checking the assumptions still requires a proof in our
setting. We implement data-driven bandwidth in the numerical Section 4 below.
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4. Numerical implementation

4.1. Protocol and results

Generating simulated data

Given a division rate B(x), a growth rate kernel ρ, an initial distribution μ(dx) for the node
(ξ∅, τ∅) (as in Theorem 2) and a dataset size n = 2Nn , we simulate the full tree and the sparse
tree schemes recursively:

1. Given (ξu− , τu−), we select at random its lifetime ζu− (by a rejection sampling algorithm)
with probability density

t � B
(
ξu− exp(τu− t)

)
exp

(
−
∫ t

0
B
(
ξu− exp(τu−s)

)
ds

)
,

following the computations of Section 3.2.
2. We derive the size at birth ξu for the two offsprings (with u = (u−,0) and (u−,1) with

obvious notation) by formula (8).
3. We simulate at random the growth rates τu (by the rejection sampling algorithm) according

to the distribution ρ(τu−,dv).
4. For the sparse tree case, we select only one offspring (either (u−,0) of (u−,1)), whereas

we keep both for the full tree case.

In order to stay in line with previous simulations of [12] we pick B(x) = x2. We fix μ(dx) as
the uniform distribution over [1/3,3] × E , with E = [0.2,3]. As for the growth rate kernel, we
implement

ρ
(
v,dv′)= g

(
v′ − v

)
dv′,

where g is a uniform distribution over [1 − α,1 + α] for some α > 0, and dilated by a scaling
factor so that (

∫
(v′ − v)2ρ(v,dv′))1/2 = 1/2. We also condition the values of τu to stay in E (by

rejection sampling).

Implementing B̂n

We implement B̂n using formula (15). We pick a standard Gaussian kernel K(x) = (2π)−1/2 ×
exp(−x2/2), for which n0 = 1 in Assumption 2; henceforth we expect a rate of convergence of
order n−1/3 at best. We evaluate B̂n on a regular grid x1 = �x, . . . xm = m�x with �x = n−1/2

and xm = 5. Thus xm is large enough so that νB(x/2) becomes negligible for x ≥ xm and �x is
smaller than n−1/3 to avoid numerical discrepancies. For tractability purposes, we wish to avoid
the use of any relationship between the nodes u ∈ Un. Indeed, whereas it is quite easy to label u−
and u in the sparse tree case, it is a bit more difficult to track the parent of each individual in the
full tree case if we do not want to double the memory. As a consequence, we simply reformulate
(15) into

B̂n(y) = y

2

n−1 ∑
u∈Un

Kh(ξu − y/2)

n−1
∑

u∈Un
(1/τu)1{ξu≤y≤ξueτuζu } ∨ �

. (22)
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We take hn = n−1/3 for the bandwidth according to Theorem 2 to serve as a proof of concept.
Data-driven choices could of course be made, such as the Goldenschluger and Lepski’s method
[12,20], and improve the already fairly good results shown in Figure 2. Finally, we also test
whether taking into account variability in the growth rate improves significantly or not the es-
timate of B , replacing τu by its mean value n−1 ∑

u∈Un
τu everywhere in formula (22), thus

ignoring growth variability in that case.

Numerical results

We display our numerical results as specified above in Figures 1, 2 and 3. Figure 1 displays the
reconstruction of B on the full tree scheme for a simulated sample of size n = 217. At a visual
level, we see that the estimation deteriorates dramatically when the variability is ignored in the
region where νB is small, while our estimator (22) still shows good performances.

In Figure 2, we plot on a log–log scale the empirical mean error of our estimation procedure for
both full tree and sparse tree schemes. The numerical results agree with the theory. The empirical
error is computed as follows: we compute

ei = ‖B̂ − B‖�x,m

‖B‖�x,m,�

, i = 1, . . . ,M, (23)

where ‖ · ‖�x,m,� denotes the discrete norm over the numerical sampling described above, con-
ditioned on the fact that the denominator in (22) is larger than �/ log(n). We end up with a mean-
empirical error e = M−1 ∑M

i=1 ei . The number of Monte-Carlo samples is chosen as M = 100.
In Figure 3, we explore further the degradation of the estimation process on the region where νB

Figure 1. Reconstruction for n = 217. When the variability in the growth rate is ignored, the estimate
reveals unsatisfactory. The parameter values are the reference ones.
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Figure 2. Error vs. n for the full tree and the sparse tree case on a log–log scale. The error actually proves
better than the upper rate of convergence announced in Theorem 2, and � may be taken smaller than log(n).
Estimates are comparable for both schemes. The parameter values are the reference ones.

is small, plotting 95% confidence intervals of the empirical distribution of the estimates, based on
M = 100 Monte-Carlo samples. Finally, Table 1 displays the relative error for the reconstruction
of B according to (23). The standard deviation is computed as (M−1 ∑M

i=1(ei − e)2)1/2. We also
carried out control experiments for other choices of variability kernel ρ(v,dv′) for the growth
rate. These include ρ(v,dv′) = g(v′)dv′, so that the variability of an individual is not inherited

Figure 3. Reconstruction for n = 210, error band for 95%, full tree case, over M = 100 simulations, with
� = 1/n in order to emphasise that the larger x, the smaller νB and the larger the error estimate.
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Table 1. Relative error e for B and its standard deviation, with respect to n (on a log scale). The error is
computed using (23) with � = 1/ log(n)

log2(n) 5 6 7 8 9 10

e 0.2927 0.1904 0.1460 0.1024 0.0835 0.0614

std. dev. 0.1775 0.0893 0.0627 0.0417 0.0364 0.0241

from its parent, a Gaussian density for g with the same prescription for the mean and the vari-
ance as in the uniform case, conditioned to live on [emin, emax]. We also tested the absence of
variability, with ρ(v,dv′) = δτ (dv′), with τ = 1. None of these control experiments show any
significant difference from the case displayed in Figures 1, 2 and 3.

Analysis on E. coli data

Finally, we analyse a dataset obtained through microscopic time-lapse imaging of single bacte-
rial cells growing in rich medium, by Wang et al. [38] and by Stewart et al. [35]. Thanks to a
microfluidic set-up, the experimental conditions are well controlled and stable, so that the cells
are in a steady state of growth (so-called balanced growth). The observation scheme corresponds
to the sparse tree case for the data from Wang et al. [38]: at each generation, only one offspring
is followed. On the contrary, data corresponds to the full tree case for the data by Stewart et al.,
where the cells grow in a culture. The growth and division of the cells is followed by microscopy,
and image analysis allows to determine the time evolution of the size of each cell, from birth to
division. We picked up the quantities of interest for our implementation: for each cell, its size
at birth, growth rate and lifetime. We consider that cells divide equally into two daughter cells,
neglecting the small differences of size at birth between daughter cells. Each cell grows expo-
nentially fast, but growth rates exhibit variability.

Our data is formed by the concatenation of several lineages, each of them composed with a
line of offsprings coming from a first single cell picked at random in a culture. Some of the first
and last generations were not considered in order to avoid any experimental disturbance linked
either to non stationary conditions or to aging of the cells.

We proceed as in the above protocol. Figure 4 shows the reconstructed B and νB for a sample
of n = 2335 cells for the sparse tree data, n = 748 for the full tree data. Though much more
precise and reliable, thanks both to the experimental device and the reconstruction method, our
results are qualitatively in accordance with previous indirect reconstructions carried out in [13]
on old datasets published in [24] back in 1969.

The reconstruction of the division rate is prominent here since it appears to be the last com-
ponent needed for a full calibration of the model. Thus, our method provides biologists with a
complete understanding of the size dependence of the biological system. Phenotypic variability
between genetically identical cells has recently received growing attention with the recognition
that it can be genetically controlled and subject to selection pressures [23]. Our mathematical
framework allows the incorporation of this variability at the level of individual growth rates. It
should allow the study of the impact of variability on the population fitness and should be of
particular importance to describe the growth of populations of cells exhibiting high variability
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Figure 4. Estimation of B (dotted line and dashed line resp.) and νB (solid line and dash-dotted line resp.)
on experimental data of E. coli dividing cells, for resp. a sparse tree and a full tree experiment. n = 2335
for the sparse tree, n = 748 for the full tree. The experimental conditions being different (temperature and
nutrient), these results are not supposed to be identical, yet a generic pattern appears for B , that could serve
as a basis for future biological studies.

of growth rates. Several examples of high variability have been described, both in genetically
engineered or natural bacterial populations [36,37].

4.2. Link with the deterministic viewpoint

Considering the reconstruction formula (15), let us give here some insight from a deterministic
analysis perspective. For the sake of clarity, let us focus on the simpler case when there is no
variability, so that for all u ∈ Un we have τu = τ > 0 a fixed constant. Formula (15) comes from
(14), which in the case τu = τ simplifies further into

B(y) = τy

2

νB(y/2)

EνB
[1{ξu−≤y,ξu≥y/2}] = τy

2

νB(y/2)∫ y

y/2 νB(z)dz
. (24)

We also notice that, in this particular case, we do not need to measure the lifetime of each cell
in order to implement (24). Define N(y) = 1

2
νB(y/2)

B(y)
, or equivalently νB(x) = 2B(2x)N(2x).

Differentiating (24), we obtain

∂x(τxN) = 2B(2x)N(2x) − B(x)N(x)

which corresponds to the stationary state linked to the equation{
∂tn(t, x) + τ ∂x

(
xn(t, x)

)= 2B(2x)n(t,2x) − B(x)n(t, x),

n(0, x) = n(0)(x), x ≥ 0.
(25)
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Equation (25) exactly corresponds to the behaviour of the tagged cell of Section 5.1 below, in a
(weak) sense:

n(t,dx) = P
(
χ(t) ∈ dx

)
,

where χ(t) denotes the size at time t along a branch picked at random, see Section 5.1. Existence
and uniqueness of an invariant measure νB has an analogy to the existence of a steady state
solution for the PDE (25), and the convergence of the empirical measure to the invariant rejoins
the stability of the steady state [31]. The equality νB(x) = 2B(2x)N(2x) may be interpreted as
follows: N(x) is the steady solution of equation (25), and represents the probability density of
a cell population dividing at a rate B and growing at a rate xτ , but when only one offspring
remains alive at each division so that the total quantity of cells remains constant. The fraction of
dividing cells is represented by the term B(x)N(x) in the equation, with distribution given by
1
2νB(x/2), whereas the fraction of newborn cells is 2B(2x)N(2x). Equation (24) can be written
in terms of BN as

B(y) = τyBN(y)∫ 2y

y
B(z)N(z)dz

. (26)

This also highlights why we obtain a rate of convergence of order n−s/(2s+1) rather than the
rate n−s/(2s+3) obtained with indirect measurements as in [12]. In that latter case, we observe a
n-sample with distribution N . As shown in [12], one differentiation is necessary to estimate B

therefore we have a degree of ill-posedness of order 1. In the setting of the present paper, we
rather observe a sample with distribution BN , and B can be recovered directly from (26) and we
have here a degree of ill-posedness of order 0.

5. Proofs

We first prove Theorem 1 in Sections 5.1 and 5.2. The strategy consists in obtaining a so-called
many-to-one formula (Proposition 3) that enables to relate additive functionals of the whole
Markov tree to a special one-dimensional process that consists of following at random a branch
on the tree. It suffices to check in Section 5.2 that this randomly tagged branch integrated against
appropriate test functions satisfies the desired transport-fragmentation equation. Section 5.3 stud-
ies at length the Markov transition PB . We first prove the key representation formula for B ob-
tained in Proposition 2. We then quantify the geometric ergodicity of the model by a standard
Lyapunov technique (Proposition 4). In Section 5.5, we subsequently apply the geometric ergod-
icity of the transition PB by establishing covariance inequalities on a tree in Propositions 5 and
6; these are the crucial tools to later control the convergence rate of the estimator. We need in par-
ticular to study the covariance of delta-like functions with supremum norm increasing to infinity
with our asymptotic, and this explains the relative technical length of our estimates. This enables
to further control in Section 5.6 a rate of convergence for the empirical measure in Propositions
7 and 8. The fact that we work on a tree with an non-reversible Markov transition and delta-like
test functions is an extra technical difficulty. Finally, we can prove Theorem 2 in Section 5.7
for the rate of convergence of our estimator with a classical trade-off technique between a bias
and a variance term, thanks to the tools developed in the preceding sections and in particular in
Section 5.4 where some useful estimates for the invariant measure are established.
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The notation � means inequality up to a constant that does not depend on n. We set an ∼ bn

when an � bn and bn � an simultaneously. A mapping f :E → R or g : [0,∞) → R is implicitly
identified as a function on S via f (x, v) = f (x) and g(x, v) = g(v).

5.1. A many-to-one formula via a tagged cell

For u ∈ U , we set miu for the ith parent along the genealogy of u. Define

τu
t =

|u|∑
i=1

τmiuζmiu + τu
t (t − bu) for t ∈ [bu, bu + ζu)

and 0 otherwise for the cumulated growth rate along its ancestors up to time t . In the same spirit
as tagged fragments in fragmentation processes (see the book by Bertoin [7] for instance) we
pick a branch at random along the genealogical tree at random: for every k ≥ 1, if ϑk denotes the
node of the tagged cell at the kth generation, we have

P(ϑk = u) = 2−k for every u ∈ U such that |u| = k,

and 0 otherwise. For t ≥ 0, the relationship

bϑCt
≤ t < bϑCt

+ ζϑCt

uniquely defines a counting process (Ct , t ≥ 0) with C0 = 0. The process Ct enables in turn to
define a tagged process of size, growth rate and cumulated growth rate via(

χ(t),V(t),V(t)
)= (

ξ
ϑCt
t , τ

ϑCt
t , τ

ϑCt
t

)
for t ∈ [bϑCt

, bϑCt
+ ζϑCt

)

and 0 otherwise. We have the representation

χ(t) = xeV(t)

2Ct
(27)

and since V(t) ∈ [emin, emax], we note that

emint ≤ V(t) ≤ emaxt. (28)

The behaviour of (χ(t),V(t),V(t)) can be related to certain functionals of the whole particle
system via a so-called many-to-one formula. This is the key tool to obtain Theorem 1.

Proposition 3 (A many-to-one formula). Work under Assumption 1. For x ∈ (0,∞), let Px be
defined as in Lemma 1. For every t ≥ 0, we have

Ex

[
φ
(
χ(t),V(t),V(t)

)]= Ex

[∑
u∈U

ξu
t

e−τu
t

x
φ
(
ξu
t , τu

t , τ u
t

)]
for every φ :S × [0,∞) → [0,∞).
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Proof. For v ∈ U , set Iv = [bv, bv + ζv). By representation (27), we have

Ex

[
φ
(
χ(t),V(t),V(t)

)] = Ex

[
φ

(
xeV(t)

2Ct
,V(t),V(t)

)]

= Ex

[∑
v∈U

φ

(
xeτv

t

2|v| , τ v
t , τ v

t

)
1{t∈Iv,v=ϑCt }

]
.

Introduce the discrete filtration Hn generated by (ξu, ζu, τu) for every u such that |u| ≤ n. Con-
ditioning with respect to H|v| and noting that on {t ∈ Iv}, we have

P(ϑCt = v|H|v|) = 1

2|v| = ξve−τv
bv

x
,

we derive

Ex

[∑
v∈U

φ

(
xeτv

t

2|v| , τ v
t , τ v

t

)
1{t∈Iv,v=ϑCt }

]
= Ex

[∑
v∈U

ξv

e−τv
bv

x
φ

(
xeτv

t

2|v| , τ v
t , τ v

t

)
1{t∈Iv}

]

= Ex

[∑
u∈U

ξu
t

e−τu
t

x
φ
(
ξu
t , τu

t , τ u
t

)]
.

�

5.2. Proof of Theorem 1

We fix x ∈ (0,∞) and prove the result for an initial measure μx as in Proposition 3. Let ϕ ∈
C1

0(S) be nonnegative. By (10), we have

〈
n(t, ·), ϕ〉= Ex

[ ∞∑
i=1

ϕ
(
Xi(t),Zi(t)

)]= Ex

[∑
u∈U

ϕ
(
ξu
t , τu

t

)]
and applying Proposition 3, we derive

〈
n(t, ·), ϕ〉= xEx

[
ϕ
(
χ(t),V(t)

)eV(t)

χ(t)

]
. (29)

For h > 0, introduce the difference operator

�hf (t) = h−1(f (t + h) − f (t)
)
.

We plan to study the convergence of �h〈n(t, ·), ϕ〉 as h → 0 using representation (29) in restric-
tion to the events {Ct+h − Ct = i}, for i = 0,1 and {Ct+h − Ct ≥ 2}. Denote by Ft the filtration
generated by the tagged cell (χ(s),V(s), s ≤ t). The following standard estimate proved in Ap-
pendix A.2 will be later useful.
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Lemma 1. Assume that B is continuous. Let x ∈ (0,∞) and let μx be a probability measure on
S such that μx({x} × E) = 1. Abbreviate Pμx by Px . For small h > 0, we have

Px(Ct+h − Ct = 1|Ft ) = B
(
χ(t)

)
h + hε(h),

with the property |ε(h)| ≤ ε(h) → 0 as h → 0, for some deterministic ε(h), and

Px(Ct+h − Ct ≥ 2) � h2.

Since ϕ ∈ C1
0(S), there exists c(ϕ) > 0 such that ϕ(y, v) = 0 if y ≥ c(ϕ). By (28), we infer

∣∣∣∣ϕ(χ(t),V(t)
)eV(t)

χ(t)

∣∣∣∣≤ sup
y,v

ϕ(y, v)
exp(emaxt)

c(ϕ)
. (30)

By Lemma 1 and (30), we derive

Ex

[
�h

(
ϕ
(
χ(t),V(t)

)eV(t)

χ(t)

)
1{Ct+h−Ct≥2}

]
� h. (31)

On the event {Ct+h −Ct = 0}, the process V(s) is constant for s ∈ [t, t +h) and so is eV(s)

χ(s)
thanks

to (27). It follows that

�h

(
ϕ
(
χ(t),V(t)

)eV(t)

χ(t)

)
= �hϕ

(
χ(t),V(s)

)∣∣
s=t

eV(t)

χ(t)

on {Ct+h − Ct = 0} and also∣∣∣∣�hϕ
(
χ(t),V(s)

)∣∣
s=t

eV(t)

χ(t)

∣∣∣∣≤ sup
y,v

∣∣ ∂yϕ(y, v)
∣∣xemax

exp(2emaxt)

c(ϕ)

on {Ct+h − Ct = 0} likewise. Since Px(Ct+h − Ct = 0) → 1 as h → 0, by dominated conver-
gence

xEx

[
�h

(
ϕ
(
χ(t),V(t)

)eV(t)

χ(t)

)
1{Ct+h−Ct=0}

]
(32)

→ xEx

[
∂1ϕ

(
χ(t),V(t)

)
V(t)eV(t)

]
as h → 0.

By Proposition 3 again, this last quantity is equal to 〈n(t,dx,dv), xv ∂xϕ〉. On {Ct+h − Ct = 1},
we successively have

χ(t + h) = 1
2χ(t) + ε1(h),

ϕ
(
χ(t + h),V(t + h)

) = ϕ
(
χ(t)/2,V(t + h)

)+ ε2(h)
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and

exp
(
V(t + h)

)= exp
(
V(t)

)+ ε3(h)

with the property |εi(h)| ≤ ε1(h) → 0 as h → 0, where ε1(h) is deterministic, thanks to (27) and
(28). Moreover,

V(t + h) = τϑCt +1 on {Ct+h − Ct = 1}.
It follows that

Ex

[
ϕ
(
χ(t + h),V(t + h)

) eV(t+h)

χ(t + h)
1{Ct+h−Ct=1}

]

= Ex

[
ϕ
(
χ(t)/2, τϑCt +1

)2eV(t)

χ(t)
1{Ct+h−Ct=1}

]
+ ε2(h)

= Ex

[
ϕ
(
χ(t)/2, τϑCt +1

)2eV(t)

χ(t)
1{Ct+h−Ct≥1}

]
+ ε3(h),

where ε2(h), ε3(h) → 0 as h → 0, and where we used the second part of Lemma 1 in order
to obtain the last equality. Conditioning with respect to Ft ∨ τϑCt +1 and using that {Ct+h −
Ct ≥ 1} and τϑCt +1 are independent, applying the first part of Lemma 1, this last term is equal
to

Ex

[
ϕ
(
χ(t)/2, τϑCt +1

)2eV(t)

χ(t)
B
(
χ(t)

)
h

]
+ ε4(h)

= Ex

[∫
E

ϕ
(
χ(t)/2, v′)ρ(V(t),dv′)2eV(t)

χ(t)
B
(
χ(t)

)
h

]
+ ε4(h),

where ε4(h) → 0 as h → 0. Finally, using Lemma 1 again, we derive

Ex

[
�h

(
ϕ
(
χ(t),V(t)

)eV(t)

χ(t)

)
1{Ct+h−Ct=1}

]
(33)

→ Ex

[(∫
E

2ϕ
(
χ(t)/2, v′)ρ(V(t),dv′)− ϕ

(
χ(t),V(t)

))eV(t)

χ(t)
B
(
χ(t)

)]
as h → 0. By Proposition 3, this last quantity is equal to〈

n(t,dx,dv),

(∫
E

2ϕ
(
x/2, v′)ρ(v,dv′)− ϕ(x, v)

)
B(x)

〉
which, in turn, is equal to〈

n(t,2dx,dv),

∫
E

4ϕ
(
x, v′)ρ(v,dv′)B(2x)

〉
− 〈

n(t,dx,dv),ϕ(x, v)B(x)
〉
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by a simple change of variables. Putting together the estimates (31), (32) and (33), we con-
clude

∂t

〈
n(t,dx,dv),ϕ

〉− 〈
n(t,dx,dv), xv ∂xϕ

〉+ 〈
n(t,dx,dv)B(x),ϕ

〉
=
〈
n(t,2dx,dv),

∫
E

4ϕ
(
x, v′)ρ(v,dv′)B(2x)

〉
,

which is the dual formulation of (4). The proof is complete.

5.3. Geometric ergodicity of the discrete model

We keep up with the notations of Sections 2 and 3. We first prove Proposition 2.

Proof of Proposition 2. The fact that νB(dx) = νB(x,dv)dx readily follows from the represen-
tation PB(x,dx′) = PB((x, v), x′,dv′)dx′ together with the invariant measure equation (12). It
follows that for every y ∈ (0,∞),

νB

(
y,dv′) =

∫
S

νB(x,dv)dxPB

(
(x, v), y,dv′)

= B(2y)

y

∫
E

∫ 2y

0
νB(x,dv) exp

(
−
∫ y

x/2

B(2s)

vs
ds

)
ρ(v,dv′)

v
dx.

By Assumption 1, we have
∫∞
x/2

B(2s)
s

ds = ∞ hence

exp

(
−
∫ y

x/2

B(2s)

vs
ds

)
=
∫ ∞

y

B(2s)

vs
exp

(
−
∫ s

x/2

B(2s′)
vs′ ds′

)
ds,

therefore νB(y,dv′) is equal to

B(2y)

y

∫
E

∫ 2y

0
νB(x,dv)dx

∫ ∞

y

B(2s)

vs
exp

(
−
∫ s

x/2

B(2s′)
vs′ ds′

)
ds

ρ(v,dv′)
v

= B(2y)

y

∫
S

∫
[0,∞)

1{x≤2y,s≥y}v−1νB(x,dv)dxPB

(
(x, v), s,dv′)ds.

Integrating with respect to dv′, we obtain the result. �

Geometric ergodicity

We extend PB as an operator acting on functions f :S → [0,∞) via

PBf (x) =
∫
S

f (y)PB(x,dy).

If k ≥ 1 is an integer, define Pk
B =Pk−1

B ◦PB .
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Proposition 4. Let c satisfy Assumption 3. Then, for every B ∈ Fλ(c) and ρ ∈ M(ρmin), there
exists a unique invariant probability measure of the form νB(dx) = νB(x,dv)dx on S . Moreover,
there exist 0 < γ < 1, a function V :S → [1,∞) and a constant R such that

sup
B∈Fλ(c),ρ∈M(ρmin)

sup
|g|≤V

∣∣∣∣Pk
Bg(x) −

∫
S

g(z)νB(dz)

∣∣∣∣≤ RV(x)γ k (34)

for every x ∈ S , k ≥ 0, and where the supremum is taken over all functions g :S → R satisfying
|g(x)| ≤ V(x) for all x ∈ S . Moreover, under Assumption 4, we can take γ < 1

2 . Finally, the
function V is νB -integrable for every B ∈ Fλ(c) and (34) is well defined.

We will show in the proof that the function V defined in (19) satisfies the properties announced
in Proposition 4.

Proof of Proposition 4. We follow the classical line of establishing successively a condition
of minorisation, strong aperiodicity and drift for the transition operator PB (see, for instance,
[6,18,27]. We keep in with the notation of Baxendale [6]). Recall that 0 < emin ≤ emax is such
that E ⊂ [emin, emax].

Minorisation condition. Let B ∈ Fλ(c). Define

ϕB(y) = B(2y)

emaxy
exp

(
−
∫ y

0

B(2s)

emins
ds

)
. (35)

Set C = (0, r) × E , where r is specified by c. For any measurable X × A ⊂ S and (x, v) ∈ C, we
have

PB

(
(x, v),X × A

) =
∫

A

ρ
(
v,dv′)∫

X∩[x/2,∞]
B(2y)

vy
exp

(
−
∫ y

x/2

B(2s)

vs
ds

)
dy

≥ ρmin(A)

∫
X∩[r/2,∞]

ϕB(y)dy.

Define

�B(dy,dv) = c−1
B 1[r/2,∞)(y)ϕB(y)dy

ρmin(dv)

ρmin(E)
,

where

cB = ρmin(E)

∫ ∞

r/2
ϕB(y)dy ≥ eminρmin(E)

emax
exp

(
− L

emin

)
=: β̃ > 0

by (16) since B ∈ Fλ(c). We have thus exhibited a small set C, a probability measure �B and a
constant β̃ > 0 so that the minorisation condition

PB

(
(x, v),X × A

)≥ β̃�B(X × A) (36)

holds for every (x, v) ∈ C and X × A ⊂ S , uniformly in B ∈Fλ(c).
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Strong aperiodicity condition. We have

β̃�B(C) = β̃c−1
B

∫
E

ρmin(dv)

∫ r

r/2

B(2y)

emaxy
exp

(
−
∫ y

x/2

B(2s)

emins
ds

)
dy

≥ β̃c−1
B

∫ r

r/2
ϕB(y)dy

(37)

≥ β̃

(
1 − exp

(
−
∫ r

r/2

B(2y)

eminy
dy

))
≥ β̃

(
1 − exp

(
− �

emin

))
=: β > 0,

where we applied (16) for the last inequality.
Drift condition. Let B ∈ Fλ(c). Let V :S → [1,∞) be continuously differentiable and such

that for every v ∈ E ,

lim
y→∞V(y, v) exp

(
−2λ m

vλ
yλ

)
= 0. (38)

For x ≥ r , by (17) and integrating by part with the boundary condition (38), we have, for every
v ∈ E ,

PBV(x, v) =
∫
E

ρ
(
v,dv′)∫ ∞

x/2
V
(
y, v′)B(2y)

vy
exp

(
−
∫ y

x/2

B(2s)

vs
ds

)
dy

≤
∫
E

ρ
(
v,dv′)∫ ∞

x/2
∂yV

(
y, v′) exp

(
−m2λ

v

∫ y

x/2
sλ−1 ds

)
dy

≤ exp

(
m

vλ
xλ

)∫
E

ρ
(
v,dv′)∫ ∞

(m2λ)/(vλ)(x/2)λ
V

((
y

vλ

m2λ

)1/λ

, v′
)

e−y dy.

Pick V(x, v) = V(x) = exp( m
eminλ

xλ) defined in (19) and note that (38) is satisfied for an appro-

priate choice of emin and emax since 2λ > supE/ infE . With this choice, we further infer

PBV(x, v) ≤ V(x, v)

∫
E

ρ
(
v,dv′)∫ ∞

(m2λ)/(vλ)(x/2)λ
exp

(−(
1 − 2−λ

)
y
)

dy

≤ V(x, v)
1

1 − 2−λ
exp

(
−(

1 − 2−λ
) m

vλ
rλ

)
ρmax(E)

since x ≥ r . Recall that

δ(c) = 1

1 − 2−λ
exp

(
−(

1 − 2−λ
) m

emaxλ
rλ

)
ρmax(E).

We obtain, for x ≥ r and v ∈ E

PBV(x, v) ≤ δ(c)V(x, v) (39)
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and we have δ(c) < 1 by Assumption 3. We next need to control PBV outside x ∈ [r,∞), that is
on the small set C. For every (x, v) ∈ C, we have

PBV(x, v) ≤
∫
E

ρ
(
v,dv′)(∫ r/2

x/2
V
(
y, v′)B(2y)

vy
dy

+
∫ ∞

r/2
V
(
y, v′)B(2y)

vy
exp

(
−
∫ y

r/2

B(2s)

vs
ds

)
dy

)
(40)

≤ ρmax(E)
(
e−1

min sup
y∈[0,r]

V(y)L + δ(c)V(r/2)
)

=: Q < ∞,

where we used (16) and the fact that B ∈ Fλ(c). Combining together (39) and (40), we conclude

PBV(x) ≤ δ(c)V(x)1{x/∈C} + Q1{x∈C}. (41)

Completion of proof of Proposition 4. The minorisation condition (36) together with the strong
aperiodicity condition (37) and the drift condition (41) imply inequality (34) by Theorem 1.1 in
Baxendale [6], with R and γ that explicitly depend on δ(c), β , β̃ , V and Q. By construction, this
bound is uniform in B ∈Fλ(c) and ρ ∈M(ρmin). More specifically, we have

γ < min
{
max

{
δ(c), γV,B

}
,1
}

therefore under Assumption 3 we have γ < 1 and under Assumption 4, we obtain the improve-
ment γ < 1

2 . �

5.4. Further estimates on the invariant probability

Lemma 2. For any c such that Assumption 3 is satisfied and any compact interval D ⊂ (0,∞),
we have

sup
B∈Fλ(c)∩Hs (D,M)

sup
x∈2−1D

νB(x) < ∞,

with νB(x) = ∫
E νB(x,dv).

Proof. Since B ∈ Fλ(c), νB is well-defined and satisfies

νB(x,dv) = B(2x)

x

∫
E

∫ 2x

0
νB

(
y,dv′)dy exp

(
−
∫ x

y/2

B(2s)

v′s
ds

)
ρ(v′,dv)

v′ .

Hence, νB(x,dv) ≤ B(2x)(eminx)−1ρmax(dv) and we also have νB(x) ≤ B(2x)(eminx)−1 ×
ρmax(E). Since B ∈ Hs(D,M) implies supx∈2−1D B(2x) = ‖B‖L∞(D) ≤ M , the conclusion fol-
lows. �



1786 Doumic, Hoffmann, Krell and Robert

Lemma 3. For any c such that Assumption 3 is satisfied, there exists a constant d(c) ≥ 0 such
that for any compact interval D ⊂ (d(c),∞), we have

inf
B∈Fλ(c)

inf
x∈D

ϕB(x)−1νB(x) > 0,

where ϕB(x) is defined in (35).

Proof. Let g : [0,∞) → [0,∞) satisfy g(x) ≤ V(x) = exp( m
eminλ

xλ) for every x ∈ [0,∞). By
Proposition 4, we have

sup
B∈Fν

λ (c)

∫
[0,∞)

g(x)νB(x)dx < ∞, (42)

as a consequence of (34) with n = 1 together with the property that supB∈Fν
λ (c) PBV(x) < ∞ for

every x ∈ S , as follows from (41) in the proof of Proposition 4. Next, for every x ∈ (0,∞), we
have ∫ ∞

2x

νB(y)dy ≤ exp

(
− m

eminλ
(2x)λ

)∫
[0,∞)

V(y)νB(y)dy

and this bound is uniform in B ∈ Fλ(c) by (42). Therefore, for every x ∈ (0,∞), we have

sup
B∈Fν

λ (c)

∫ ∞

2x

νB(y)dy ≤ c(c) exp

(
− m

eminλ
(2x)λ

)
(43)

for some c(c) > 0. Let

d(c) >

(
eminλ2−λ

m
log c(c)

)1/λ

1{c(c)≥1}. (44)

By definition of νB , for every x ∈ (0,∞), we now have

νB(x,dv) = B(2x)

x

∫
E

∫ 2x

0
νB

(
y,dv′) exp

(
−
∫ x

y/2

B(2s)

v′s
ds

)
dy

ρ(v′,dv)

v′

≥ B(2x)

emaxx
exp

(
−
∫ x

0

B(2s)

emins
ds

)∫ 2x

0
νB(y)dyρmin(dv)

≥ B(2x)

emaxx
exp

(
−
∫ x

0

B(2s)

emins
ds

)(
1 − c(c) exp

(
− m

eminλ
(2x)λ

))
ρmin(dv),

where we used (43) for the last inequality. By (44), for x ≥ d(c) we have(
1 − c(c) exp

(
− m

eminλ
(2x)λ

))
> 0

and the conclusion readily follows by integration. �
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5.5. Covariance inequalities

If u,w ∈ U , we define a(u,w) as the node of the most recent common ancestor between u and w.
Introduce the distance

D(u,w) = |u| + |w| − 2
∣∣a(u,w)

∣∣.
Proposition 5. Work under Assumption 3. Let μ be a probability distribution on S such that∫
S V(x)2μ(dx) < ∞. Let G :S → R and H : [0,∞) → R be two bounded functions. Define

Z(ξu− , τu− , ξu) = G(ξu− , τu−)H(ξu) −EνB

[
G(ξu− , τu−)H(ξu)

]
.

For any u,w ∈ U with |u|, |w| ≥ 1, we have∣∣Eμ

[
Z(ξu− , τu− , ξu)Z(ξw− , τw− , ξw)

]∣∣� γD(u,w) (45)

uniformly in B ∈Fλ(c), with γ and νB defined in (34) of Proposition 4.

Proof. In view of (45), with no loss of generality, we may (and will) assume that for every
(x, v) ∈ S ∣∣G(x,v)

∣∣≤ V(x) and
∣∣H(x)

∣∣≤ V(x). (46)

Applying repeatedly the Markov property along the branch that joins the nodes a−(u,w) :=
a(u−,w−) and w, we have

Eμ

[
G(ξu− , τu−)H(ξu)|ξa−(u,w), τa−(u,w)

]
=P |u−|−|a−(u,w)|

B (GPBH)(ξa−(u,w), τa−(u,w))

=P |u|−|a(u,w)|
B (GPBH)(ξa−(u,w), τa−(u,w))

with an analogous formula for G(ξw− , τw−)H(ξw). Conditioning with respect to ξa−(u,w),
τa−(u,w), it follows that

Eμ

[
Z(ξu− , τu− , ξu)Z(ξw− , τw− , ξw)

]
= Eμ

[(
P |u|−|a(u,w)|

B (GPBH)(ξa−(u,w), τa−(u,w)) −EνB

[
GPBH(ξ∅, τ∅)

])
× (

P |w|−|a(u,w)|
B (GPBH)(ξa−(u,w), τa−(u,w)) −EνB

[
GPBH(ξ∅, τ∅)

])]
.

Applying Proposition 4 thanks to Assumption 3 and (46), we further infer

Eμ

[
Z(ξu− , τu− , ξu)Z(ξw− , τw− , ξw)

] ≤ R2 sup
x

H(x)2
Eμ

[
V(ξa−(u,w))

2]γD(u,w)

�
∫
S
P |a−(u,w)|

B

(
V

2)(x)μ(dx)γD(u,w).
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We leave to the reader the straightfoward task to check that the choice of V in (19) implies that
V

2 satisfies (41). It follows that Proposition 4 applies, replacing V by V
2 in (34). In particular,

sup
B∈Fλ(c)

P |a−(u,w)|
B

(
V

2)(x) � 1 +V(x)2. (47)

Since V
2 is μ-integrable by assumption, inequality (45) follows. �

Proposition 6. Work under Assumption 3. Let μ be a probability on S such that
∫
S V(x)2μ(dx) <

∞. Let x0 be in the interior of 1
2D. Let H :R→ R be bounded with compact support. Set

H̃

(
ξu − x0

h

)
= H

(
ξu − x0

h

)
−EνB

[
H

(
ξ∅ − x0

h

)]
.

For any u,w ∈ U with |u|, |w| ≥ 1, we have∣∣∣∣Eμ

[
H̃

(
ξu − x0

h

)
H̃

(
ξw − x0

h

)]∣∣∣∣� γD(u,w) ∧ hγD(u,a(u,w))∨D(w,a(u,w)) (48)

uniformly in B ∈Fλ(c) ∩Hs(D,M) for sufficiently small h > 0.

Proof. The first part of the estimate in the right-hand side of (48) is obtained by letting G = 1 in
(45). We turn to the second part. Repeating the same argument as for (45) and conditioning with
respect to ξa(u,w), we obtain

Eμ

[
H̃

(
ξu − x0

h

)
H̃

(
ξw − x0

h

)]
= Eμ

[(
P |u|−|a(u,w)|

B H

(
ξa(u,w) − x0

h

)
−EνB

[
H

(
ξ∅ − x0

h

)])
(49)

×
(
P |w|−|a(u,w)|

B H

(
ξa(u,w) − x0

h

)
−EνB

[
H

(
ξ∅ − x0

h

)])]
.

Assume with no loss of generality that |u| ≤ |w| (otherwise, the same subsequent arguments
apply exchanging the roles of u and w). On the one hand, applying (34) of Proposition 4, we
have∣∣∣∣P |w|−|a(u,w)|

B H

(
ξa(u,w) − x0

h

)
−EνB

[
H

(
ξ∅ − x0

h

)]∣∣∣∣≤ RV(ξa(u,w))γ
|w|−|a(u,w)|. (50)

On the other hand, identifying H as a function defined on S , for every (x, v) ∈ S , we have∣∣∣∣PBH

(
x − x0

h

)∣∣∣∣
=
∣∣∣∣∫ ∞

x/2
H
(
h−1(y − x0)

)B(2y)

vy
exp

(
−
∫ y

x/2

B(2s)

vs
ds

)
dy

∣∣∣∣ (51)
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≤
∫

[0,∞)

∣∣H (
h−1(y − x0)

)∣∣B(2y)

eminy
dy

≤ e−1
min sup

y∈{x0+h supp(H)}
B(2y)

y
h

∫
[0,∞)

∣∣H(x)
∣∣dx � h.

Indeed, since x0 is in the interior of 1
2D we have {x0 + h supp(H)} ⊂ 1

2D for small enough h

hence supy∈{x0+h supp(H)} B(2y) ≤ M . Now, since PB is a positive operator and PB1 = 1, we
derive ∣∣∣∣P |u|−|a(u,w)|

B H

(
ξa(u,w) − x0

h

)∣∣∣∣� h (52)

as soon as |u| − |a(u,w)| ≥ 1, uniformly in B ∈ Fλ(c) ∩ Hs(D,M). If |u| = |a(u,w)|, since∫
E νB(dx,dv) = νB(x)dx, we obtain in the same way∣∣∣∣EνB

[
H

(
ξa(u,w) − x0

h

)]∣∣∣∣≤ ∫
[0,∞)

∣∣∣∣H(
x − x0

h

)∣∣∣∣νB(x)dx � h (53)

using Lemma 2. We have |EνB
[H(

ξu−x0
h

)]| � h likewise. Putting together (52) and (53), we
derive ∣∣∣∣P |u|−|a(u,w)|

B H

(
ξa(u,w) − x0

h

)
−EνB

[
H

(
ξu − x0

h

)]∣∣∣∣� h

and this estimate is uniform in B ∈Fλ(c) ∩Hs(D,M). In view of (49) and (50), we obtain

Eμ

[
H̃

(
ξu − x0

h

)
H̃

(
ξw − x0

h

)]
� hγ |w|−|a(u,w)|

Eμ

[
V(ξa(u,w))

]
.

We conclude in the same way as in Proposition 5. �

5.6. Rate of convergence for the empirical measure

For every y ∈ (0,∞) and u ∈ U with |u| ≥ 1, define

D(y) = EνB

[
1

τu−
1{ξu−≤2y,ξu≥y}

]
, (54)

Dn(y) = n−1
∑
u∈Un

1

τu−
1{ξu−≤2y,ξu≥y} (55)

and

Dn(y)� = Dn(y) ∨ �.
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Proposition 7. Work under Assumption 3 in the sparse tree case and Assumption 4 in the full
tree case. Let μ be a probability on S such that

∫
S V(x)2μ(dx) < ∞. If 1 ≥ � = �n → 0 as

n → ∞, we have

sup
y∈D

Eμ

[(
Dn(y)�n − D(y)

)2]� n−1 (56)

uniformy in B ∈ Fλ(c) ∩Hs(2−1D,M) and ρ ∈ M(ρmin, ρmax).

We first need the following estimate.

Lemma 4. Work under Assumption 3. Let d(c) be defined as in Lemma 3. For every compact
interval D ⊂ (d(c),∞) such that infD ≤ r/2, we have

inf
B∈Fλ(c)∩Hs (2−1D,M)

inf
y∈D

D(y) > 0.

Proof. By (13) and the definition of ϕB in (35), we readily have

D(y) = 1

emax
ϕB(y)−1νB(y) exp

(
−
∫ y

0

B(2s)

emins
ds

)
.

Since B ∈ Fλ(c) ∩Hs(2−1D,M), by applying (16) and (17) successively, we obtain∫ supD

0

B(2s)

emins
ds ≤ e−1

minL +
∫ supD

r/2

B(2s)

emins
ds

≤ e−1
min

(
L + M log

supD
r/2

)
< ∞,

where we used that infD ≤ r/2. It follows that

inf
y∈D

exp

(
−
∫ y

0

B(2s)

emins
ds

)
≥ exp

(
−e−1

min

(
L + M log

supD
r/2

))
> 0

and Lemma 4 follows by applying Lemma 3. �

Proof of Proposition 7. Since Dn(y) is bounded, we have(
Dn(y)�n − D(y)

)2 �
(
Dn(y) − D(y)

)2 + 1{Dn(y)<�n}. (57)

Next, take n sufficiently large, so that

0 < �n ≤ q = 1

2
inf

B∈Fλ(c)∩Hs (2−1D,M)
inf
y∈D

D(y)

a choice which is possible thanks to Lemma 4. Since{
Dn(y) < �n

}⊂ {
Dn(y) − D(y) < −q

}
,
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integrating (57), we have that Eμ[(Dn(y)�n − D(y))2] is less than a constant times

Eμ

[(
Dn(y) − D(y)

)2]+ Pμ

(∣∣Dn(y) − D(y)
∣∣≥ q

)
,

which in turn is less than a constant times Eμ[(Dn(y) − D(y))2]. Set G(x,v) = 1
v

1{x≤2y} and
H(x) = 1{x≥y} and note that G and H are bounded on S (and also uniformly in y ∈D). It follows
that

Dn(y) − D(y) = n−1
∑
u∈Un

(
G(ξu− , τu−)H(ξu) −EνB

[
G(ξu− , τu−)H(ξu)

])
.

We then apply (45) of Proposition 5 to infer, with the same notation that

Eμ

[(
Dn(y) − D(y)

)2]
= n−2

∑
u,w∈Un

Eμ

[
Z(ξu− , τu− , ξu)Z(ξw− , τw− , ξw)

]
� n−2

∑
u,w∈Un

γD(u,w)

uniformly in y ∈D and B ∈Fλ(c). We further separate the sparse and full tree cases.
The sparse tree case. We have

∑
u,w∈Un

γD(u,w) = ∑
1≤|u|,|w|≤n γ ||u|−|w|| and by Proposi-

tion 4, this last quantity is of order n.
The full tree case. We have n ∼ 2Nn , where Nn is the number of generations used to expand

Un. We evaluate

Nk =
∑
|u|=k

∑
w∈Un

γD(u,w) for k = 0, . . . ,N. (58)

For k = 0, we have

N0 = 1 + 2γ + 4γ 2 + · · · + 2Nnγ Nn = 1 − (2γ )Nn+1

1 − 2γ
=: φγ (Nn).

Under Assumption 4, by Proposition 4, we have γ < 1
2 therefore φγ (Nn) is bounded as n → ∞.

For k = 1, if we start with the node u = (∅,0), then the contribution of its descendants in (58) is
given by φγ (Nn − 1), to which we must add γ for its ancestor corresponding to the node u = ∅

and also γφγ (Nn) for the contribution of the second lineage of the node u =∅. Finally, we must
repeat the argument for the node u = (∅,1). We obtain

N1 = 2
(
φγ (Nn − 1) + γ + γ 2φγ (Nn − 1)

)
.

More generally, proceeding in the same manner, we derive

Nk = 2k
(
φγ (Nn − k) + (

γ + γ 2φγ (Nn − k)
)+ · · ·

(59)
+ γ i + γ i+1φγ

(
Nn − k + (i − 1)

)+ · · · + (
γ k + γ k+1φγ (Nn − 1)

))
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for k = 1, . . . ,Nn, and this last quantity is of order 2k . It follows that

∑
u,w∈Un

γD(u,w) =
Nn∑
k=0

Nk �
Nn∑
k=1

2k � 2Nn � n

and the conclusion follows likewise.
Putting together the sparse and full tree case, we obtain the proposition. �

Let ν̂n(dy) = n−1 ∑
u∈Un

δξu(dy) denote the empirical measure of the observation (ξu, u ∈
Un).

Proposition 8. Work under Assumption 3 in the sparse tree case and Assumption 4 in the full
tree case. Let μ be a probability on S such that

∫
S V(x)2μ(dx) < ∞. We have

sup
y∈D

Eμ

[(
Khn � ν̂n(y) − Khn � νB(y)

)2]� | loghn|(nhn)
−1 (60)

uniformly in B ∈Fλ(c).

Proof. We have, with the notation of Proposition 6

Eμ

[(
Khn � ν̂n(y) − Khn � νB(y)

)2]
= (nhn)

−2
Eμ

[(∑
u∈Un

K

(
ξu − y

hn

)
−EνB

[
K

(
ξu − y

hn

)])2]
(61)

= (nhn)
−2

∑
u,w∈Un

Eμ

[
K̃

(
ξu − y

hn

)
K̃

(
ξw − y

hn

)]

� (nhn)
−2

∑
u,w∈Un

γD(u,w) ∧ hnγ
D(u,a(u,w))∨D(w,a(u,w))

by applying (48) of Proposition 6. It remains to estimate (61).
The sparse tree case. We have a(u,w) = u if |u| ≤ |w| and a(u,w) = w otherwise. It follows

that

Eμ

[(
Khn � ν̂n(y) − Khn � νB(y)

)2]� n−2h−1
n

∑
u,w∈Un

γD(u,w),

and since
∑

u,w∈Un
γD(u,w) = ∑

1≤|u|,|w|≤n γ ||u|−|w|| is of order n as soon as γ < 1, we obtain
the result.

The full tree case. The computations are a bit more involved. Let us evaluate∑
|u|=k

∑
w∈Un

γD(u,w) ∧ hnγ
D(u,a(u,w))∨D(w,a(u,w)).
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We may repeat the argument displayed in (59) in order to evaluate the contribution of the term
involving γD(u,a(u,w)). However, in the estimate Nk , each term γ i + γ i+1φγ (Nn − k + (i − 1))

in formula (59) may be replaced by hn(γ
i + γφγ (Nn − k + (i − 1))) up to constants. This

corresponds to the correction given by hnγ
D(u,a(u,w))∨D(w,a(u,w)). As a consequence, we ob-

tain ∑
|u|=k

∑
w∈Un

γD(u,w) ∧ hnγ
D(u,a(u,w))∨D(w,a(u,w))

� 2k
k∑

i=1

hn

(
γ i + γφγ (Nn − k + i − 1)

)∧ γ i
(
1 + γφγ (Nn − k + i − 1)

)

� 2k

k∑
i=1

hn ∧ γ i.

Define k�
n = �| loghn|

| logγ | �. We readily derive

2k
k∑

i=1

hn ∧ γ i = 2k

( k�
n∑

i=1

hn +
k∑

i=k�
n+1

γ i

)
� 2khn| loghn|,

ignoring the second term if k�
n + 1 ≥ k. Going back to (61), it follows that

(nhn)
−2

∑
u,w∈Un

γD(u,w) ∧ hnγ
D(u,a(u,w))∨D(w,a(u,w))

= (nhn)
−2

Nn∑
k=0

∑
|u|=k

∑
v∈Un

γD(u,w) ∧ hnγ
D(u,a(u,w))∨D(w,a(u,w))

� (nhn)
−2

Nn∑
k=0

2khn| loghn| � | loghn|(nhn)
−1

and the conclusion follows in the full case.
Putting together the sparse and full tree cases, we obtain the proposition. �

5.7. Proof of Theorem 2

From

B̂n(2y) = y
n−1 ∑

u∈Un
Khn(ξu − y)

n−1
∑

u∈Un
(1/τu−)1{ξu−≤2y,ξu≥y} ∨ �n
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and

B(2y) = y
νB(y)

EνB
[(1/τu−)1{ξu−≤2y,ξu≥y}] ,

we plan to use the following decomposition

B̂n(2y) − B(2y) = y(I + II + III),

with

I = Khn � νB(y) − νB(y)

D(y)
,

II = Khn � ν̂n(y) − Khn � νB(y)

Dn(y)�n

,

III = Khn � νB(y)

Dn(y)�nD(y)

(
D(y) − Dn(y)�n

)
,

where D(y) and Dn(y)� are defined in (54) and (55) respectively. It follows that

‖B̂n − B‖2
L2(D)

= 2
∫

(1/2)D

(
B̂n(2y) − B(2y)

)2 dy � IV + V + VI,

with

IV =
∫

(1/2)D

(
Khn � νB(y) − νB(y)

)2 y2

D(y)2
dy,

V =
∫

(1/2)D

(
Khn � ν̂n(y) − Khn � νB(y)

)2
Dn(y)−2

� y2 dy,

VI =
∫

(1/2)D

(
Dn(y)� − D(y)

)2(
Khn � νB(y)

)2(
Dn(y)� D(y)

)−2
y2 dy.

The term IV. We get rid of the term y2

D(y)2 by Lemma 4 and the fact that D is bounded. By
Assumption 2 and classical kernel approximation, we have for every 0 < s ≤ n0

IV � ‖Khn � νB − νB‖2
L2(2−1D)

� |νB |2Hs (2−1D)
h2s

n . (62)

Lemma 5. Let D ⊂ (0,∞) be a compact interval. Let B ∈Fλ(c) for some c satisfying Assump-
tion 3. We have

‖νB‖Hs (2−1D) ≤ ψ
(
emin, emax,D,‖B‖Hs (D)

)
for some continuous function ψ .
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Proof. Define

�B(x, y) =
∫
E

νB(y,dv′)
v′ exp

(
−
∫ x

y/2

B(2s)

v′s
ds

)
.

If B ∈Hs(D), then x � �B(x, y) ∈Hs(2−1D) for every y ∈ [0,∞), and we have∥∥�B(·, y)
∥∥
Hs (2−1D)

≤ ψ1
(
y,‖B‖Hs (D), emin, emax

)
for some continuous function ψ1. The result is then a consequence of the representation νB(x) =
B(2x)

x

∫ 2x

0 �B(x, y)dy. �

Going back to (62) we infer from Lemma 5 that |νB |Hs (2−1D) is bounded above by a constant
that depends on emin, emax, D and ‖B‖Hs (D) only. It follows that

IV � h2s
n (63)

uniformly in B ∈Hs(D,M).
The term V. We have

Eμ[V ] ≤ �−2
n |D| sup

y∈2−1D
y2
Eμ

[(
Khn � ν̂n(y) − Khn � νB(y)

)2]
.

By (60) of Proposition 8, we derive

Eμ[V ] � �−2
n | loghn|(nhn)

−1 (64)

uniformly in B ∈Fλ(c).
The term VI. First, by Lemma 4, the estimate

inf
B∈Fλ(c)

inf
y∈2−1D

Dn(y)� D(y) � �n

holds. Next,

sup
y∈2−1D

∣∣Khn � νB(y)
∣∣ = sup

y∈2−1D

∣∣∣∣∫[0,∞)

Khn(z − y)νB(z)dz

∣∣∣∣
(65)

≤ sup
y∈2−1Dhn

νB(y)‖K‖L1([0,∞)),

where 2−1Dhn = {y + z, y ∈ 2−1D, z ∈ supp(Khn)} ⊂ D̃, for some compact interval D̃ since
K has compact support by Assumption 2. By Lemma 2, we infer that (65) holds uniformly in
B ∈ Fλ(c). We derive

Eμ[VI] � �−2
n sup

y∈2−1D
Eμ

[(
Dn(y)�n − D(y)

)2]
.
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Applying (56) of Proposition 7, we conclude

Eμ[VI] � �−2
n n−1 (66)

uniformly in B ∈ Fλ(c).
Completion of proof of Theorem 2. We put together the three estimates (63), (64) and (66). We

obtain

Eμ

[‖B̂n − B‖2
L2(D)

]
� h2s

n + �−2
n | loghn|(nhn)

−1 + �−2
n n−1

uniformly in B ∈ Fλ(c) ∩ Hs(D,M). The choice hn ∼ n−1/(2s+1) and the fact that �−2
n grows

logarithmically in n yields the rate n−s/(2s+1) up to log terms and the inessential supplementary
multiplicative error factor �−1

n . The proof is complete.

Appendix

A.1. Construction of the discrete model

Fix an initial condition x = (x, v) ∈ S . On a rich enough probability space, we consider a Markov
chain on the binary tree (τu, u ∈ U) with transition ρ(v,dv′) and initial condition v: if u =
(u1, . . . , uk) ∈ U , we write ui = (u1, . . . , uk, i), i = 0,1 for the two offsprings of u; we set
τ∅ = v and

τu0 ∼ ρ
(
τu,dv′) and τu1 ∼ ρ

(
τu,dv′)

so that conditional on τu, the two random variables τu0 and τu1 are independent. We also pick
a sequence of independent standard exponential random variables (eu,u ∈ U), independent of
(τu, u ∈ U). The model ((ξu, τu), u ∈ U) is then constructed recursively. We set

ξ∅ = x, b∅ = 0, τ∅ = v and ζ∅ = F−1
x,v (e∅),

where Fx,v(t) = ∫ t

0 B(x exp(vs))ds. For u ∈ U and i = 0,1, we put

ξu0 = ξu1 = eτuζu
ξu

2
, bu0 = bu1 = bu + ζu, ζui = F−1

ξui ,τui
(eui).

To each node u ∈ U , we then associate the mark (ξi, bu, ζu, τu) of the size, date of birth, lifetime
and growth rate respectively of the individual labeled by u. One easily checks that Assumption 1
guarantees that the model is well defined. In particular, since B is locally bounded, we see that
there is no accumulation of jumps almost-surely.

A.2. Proof of Lemma 1

Note first that

{Ct+h − Ct ≥ 1} = {t < bϑCt
+ ζϑCt

≤ t + h}.
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Since moreover ξϑCt
= x exp(V(bϑCt

))2−Ct , it follows by (7) that

P(Ct+h − Ct ≥ 1|Ft )

=
∫ t+h−bϑCt

t−bϑCt

B

(
xeV(bϑCt

)+sV(s)

2Ct

)
exp

(
−
∫ s

0
B

(
xeV(bϑCt

)+s′V(s′)

2Ct

)
ds′

)
ds.

Introduce the quantity B(xeV(bϑCt
)+V(t)(t−bϑCt

)2−Ct ) within the integral. Noting that V(bϑCt
) +

V(t)(t − bϑCt
) = V(t) we obtain the first part of the lemma thanks to the representation (27) and

the uniform continuity of B over compact sets. For the second part, introduce the (Ft )-stopping
time

ϒt = inf{s > t,Cs − Ct ≥ 1}
and note that {Ct+h − Ct ≥ 1} = {ϒt ≤ t + h} ∈ Fϒt . Writing

{Ct+h − Ct ≥ 2} = {ϒt < t + h,ϒϒt ≤ t + h}
and conditioning with respect to Fϒt , we first have

P(Ct+h − Ct ≥ 2)

= E

[∫ t+h−ϒt

t

B

(
xeV(bϑCt

)+sV(s)

2Ct

)
e− ∫ s

0 B(xe
V(bϑCt

)+s′V(s′)
/2Ct )ds′

ds1{ϒt<t+h}
]

≤ h sup
y≤x exp(2emaxt)

B(y)P(ϒt < t + h).

In the same way, P(ϒt < t + h) � h and the conclusion follows.
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