Open Access
November 2013 Nonasymptotic bounds on the estimation error of MCMC algorithms
Krzysztof Łatuszyński, Błażej Miasojedow, Wojciech Niemiro
Bernoulli 19(5A): 2033-2066 (November 2013). DOI: 10.3150/12-BEJ442

Abstract

We address the problem of upper bounding the mean square error of MCMC estimators. Our analysis is nonasymptotic. We first establish a general result valid for essentially all ergodic Markov chains encountered in Bayesian computation and a possibly unbounded target function $f$. The bound is sharp in the sense that the leading term is exactly $\sigma_{\mathrm{as}}^{2}(P,f)/n$, where $\sigma_{\mathrm{as}}^{2}(P,f)$ is the CLT asymptotic variance. Next, we proceed to specific additional assumptions and give explicit computable bounds for geometrically and polynomially ergodic Markov chains under quantitative drift conditions. As a corollary, we provide results on confidence estimation.

Citation

Download Citation

Krzysztof Łatuszyński. Błażej Miasojedow. Wojciech Niemiro. "Nonasymptotic bounds on the estimation error of MCMC algorithms." Bernoulli 19 (5A) 2033 - 2066, November 2013. https://doi.org/10.3150/12-BEJ442

Information

Published: November 2013
First available in Project Euclid: 5 November 2013

zbMATH: 06254553
MathSciNet: MR3129043
Digital Object Identifier: 10.3150/12-BEJ442

Keywords: asymptotic variance , computable bounds , Confidence estimation , drift conditions , geometric ergodicity , Mean square error , polynomial ergodicity , regeneration

Rights: Copyright © 2013 Bernoulli Society for Mathematical Statistics and Probability

Vol.19 • No. 5A • November 2013
Back to Top