Open Access
August 2013 Limit theorems for beta-Jacobi ensembles
Tiefeng Jiang
Bernoulli 19(3): 1028-1046 (August 2013). DOI: 10.3150/12-BEJ495

Abstract

For a $\beta$-Jacobi ensemble determined by parameters $a_{1}$, $a_{2}$ and $n$, under the restriction that the three parameters go to infinity with $n$ and $a_{1}$ being of small orders of $a_{2}$, we obtain some limit theorems about the eigenvalues. In particular, we derive the asymptotic distributions for the largest and the smallest eigenvalues, the central limit theorems of the eigenvalues, and the limiting distributions of the empirical distributions of the eigenvalues.

Citation

Download Citation

Tiefeng Jiang. "Limit theorems for beta-Jacobi ensembles." Bernoulli 19 (3) 1028 - 1046, August 2013. https://doi.org/10.3150/12-BEJ495

Information

Published: August 2013
First available in Project Euclid: 26 June 2013

zbMATH: 1278.60013
MathSciNet: MR3079305
Digital Object Identifier: 10.3150/12-BEJ495

Keywords: beta-ensemble , Empirical distribution , Jacobi ensemble , Laguerre ensemble , Largest eigenvalue , Limiting distribution , Random matrix , random operator , smallest eigenvalue

Rights: Copyright © 2013 Bernoulli Society for Mathematical Statistics and Probability

Vol.19 • No. 3 • August 2013
Back to Top