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We consider a multivariate version of the so-called Lancaster problem of characterizing canonical correla-
tion coefficients of symmetric bivariate distributions with identical marginals and orthogonal polynomial
expansions. The marginal distributions examined in this paper are the Dirichlet and the Dirichlet multino-
mial distribution, respectively, on the continuous and the N -discrete d-dimensional simplex. Their infinite-
dimensional limit distributions, respectively, the Poisson–Dirichlet distribution and Ewens’s sampling for-
mula, are considered as well. We study, in particular, the possibility of mapping canonical correlations on
the d-dimensional continuous simplex (i) to canonical correlation sequences on the d + 1-dimensional sim-
plex and/or (ii) to canonical correlations on the discrete simplex, and vice versa. Driven by this motivation,
the first half of the paper is devoted to providing a full characterization and probabilistic interpretation
of n-orthogonal polynomial kernels (i.e., sums of products of orthogonal polynomials of the same degree
n) with respect to the mentioned marginal distributions. We establish several identities and some integral
representations which are multivariate extensions of important results known for the case d = 2 since the
1970s. These results, along with a common interpretation of the mentioned kernels in terms of dependent
Pólya urns, are shown to be key features leading to several non-trivial solutions to Lancaster’s problem,
many of which can be extended naturally to the limit as d → ∞.

Keywords: canonical correlations; Dirichlet distribution; Dirichlet-multinomial distribution; Ewens’s
sampling formula; Hahn; Jacobi; Lancaster’s problem; multivariate orthogonal polynomials; orthogonal
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1. Introduction

Let π be a probability measure on some Borel space (E, E ) with E ⊆ R. Consider an exchange-
able pair (X,Y ) of random variables with given marginal law π. Modeling tractable joint distri-
butions for (X,Y ), with π as given marginals, is a classical problem in mathematical statistics.
One possible approach, introduced by Henry Oliver Lancaster [22] is in terms of so-called canon-
ical correlations. Let {Pn}∞n=0 be a family of orthogonal polynomials with weight measure π , that
is, such that

Eπ (Pn(X)Pm(X)) = 1

cm

δnm, n,m ∈ Z+

for a sequence of positive constants {cm}. Here δmn = 1 if n = m and 0 otherwise, and Eπ denotes
the expectation taken with respect to π.
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A sequence ρ = {ρn} is the sequence of canonical correlation coefficients for the pair (X,Y ),
if it is possible to write the joint law of (X,Y ) as

gρ(dx,dy) = π(dx)π(dy)

{ ∞∑
n=0

ρncnPn(x)Pn(y)

}
, (1.1)

where ρ0 = 1. Suppose that the system {Pn} is complete with respect to L2(π); that is, every
function f with finite π -variance admits a representation

f (x) =
∞∑

n=0

f̂ (n)cnPn(x), (1.2)

where

f̂ (n) = Eπ [f (X)Pn(X)], n = 0,1,2, . . . . (1.3)

Define the conditional expectation operator by

Tρf (x) := E
(
f (Y )|X = x

)
.

If (X,Y ) have canonical correlations {ρn}, then, for every f with finite variance,

Tρf (x) =
∞∑

n=0

ρnf̂ (n)cnPn(x).

In particular,

TρPn = ρnPn, n = 0,1, . . . ;
that is, the polynomials {Pn} are the eigenfunctions, and ρ is the sequence of eigenvalues of Tρ.

Lancaster’s problem is therefore a spectral problem, whereby conditional expectation operators
with given eigenfunctions are uniquely characterized by their eigenvalues. Because Tρ maps pos-
itive functions to positive functions, the problem of identifying canonical correlation sequences ρ

is strictly related to the problem of characterizing so-called positive-definite sequences.
In this paper we consider a multivariate version of Lancaster’s problem, when π is taken to

be either the Dirichlet or the Dirichlet multinomial distribution (notation: Dα and DMα,N , with
α ∈ R

d+ and N ∈ Z+) on the (d − 1)-dimensional continuous and N -discrete simplex, respec-
tively. The eigenfunctions will be the multivariate Jacobi or Hahn polynomials, respectively.
One difficulty arising when d > 2 is that the orthogonal polynomials Pn = Pn1n2···nd

are multi-
indexed. The degree of every polynomial Pn is |n| := n1 + · · · + nd (throughout the paper, for
every vector x = (x1, . . . , xd) ∈ R

d , we will denote its length by |x|). There are(
n + d − 1

d − 1

)
polynomials with degree n, so, when d > 2, there is no unique way to introduce a total order
in the space of all polynomials. Orthogonal polynomial kernels are instead uniquely defined and
totally ordered.
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By orthogonal polynomial kernels of degree n, with respect to π , we mean functions of the
form

Pn(x,y) =
∑

m∈Z
d+:|m|=n

cmPm(x)Pm(y), n = 0,1,2, . . . , (1.4)

where {Pn: n ∈ Z
d+} is a system of orthogonal polynomials with weight measure π.

It is easy to check that

Eπ [Pn(x,Y)Pm(z,Y)] = Pn(x, z)δmn.

A representation equivalent to (1.2) in term of polynomial kernels is

f (x) =
∞∑

n=0

Eπ (f (Y)Pn(x,Y)). (1.5)

If f is a polynomial of order m, the series terminates at m. Consequently, for general d ≥ 2, the
individual orthogonal polynomials Pn(x) are uniquely determined by their leading coefficients
of degree n and Pn(x,y). If a leading term is

∑
{k:|k|=n}

bnk

d∏
1

x
ki

i ,

then

Pn(x) =
∑

{k:|k|=n}
bnkE

[
d∏
1

Y
ki

i Pn(x,Y)

]
, (1.6)

where Y has distribution π .
Pn(x,y) also has an expansion in terms of any complete sets of biorthogonal polynomials of

degree n. That is, if {P �
n (x)} and {P ◦

n (x)} are polynomials orthogonal to polynomials of degree
less that n and

E[P �
n (X)P ◦

n′(X)] = δnn′ ,

then

Pn(x,y) =
∑

{n:|n|=n}
P �

n (x)P ◦
n (y). (1.7)

Similar expressions to (1.6) hold for P �
n (x) and P ◦

n (x), using their respective leading coeffi-
cients. This can be shown by using their expansions in an orthonormal polynomial set and ap-
plying (1.6).

The polynomial kernels with respect to Dα and DMα,N will be denoted by Qα
n(x,y) and

Hα
n (r, s), and called Jacobi and Hahn kernels, respectively.
This paper is divided in two parts. The goal of the first part is to describe Jacobi and Hahn

kernels under a unified view: we will first provide a probabilistic description of their structure
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and mutual relationship, then we will investigate their symmetrized and infinite-dimensional
versions.

We will show that all the kernels under study can be constructed via systems of bivariate
Pólya urns with random samples in common. This remarkable property assimilates the Dirichlet
“world” to other distributions, within the so-called Meixner class, whose orthogonal polynomial
kernels admit a representation in terms of bivariate sums with random elements in common,
a fact known since the 1960s (see [6,7]. See also [4] for a modern Bayesian approach).

In the second part of the paper we will turn our attention to the problem of identifying
canonical correlation sequences with respect to Dα and DMα,N . We will restrict our focus
on sequences ρ such that, for every n ∈ Z

d+, ρn depends on n only through its total length
|n| = ∑d

i=1 ni :

ρn = ρn ∀n ∈ Z
d+: |n| = n.

For these sequences, Jacobi or Hahn polynomial kernels will be used to find out conditions for a
sequence {ρn} to satisfy the inequality

∞∑
n=0

ρnPn(u,v) ≥ 0. (1.8)

Since Tρ is required to map constant functions to constant functions, a straightforward necessary
condition is always that

ρ0 = 1.

For every d = 2,3, . . . and every α ∈ R
d+, we will call any solution to (1.8) an α-Jacobi positive-

definite sequence (α-JPDS), if π = Dα , and an (α,N)-Hahn positive-definite sequence ((α,N)-
HPDS), if π = DMα,N .

We are interested, in particular, in studying if and when one or both the following statements
are true.

(P1) For every d and α ∈ R
d+, ρ is α-JPDS ⇔ ρ is α̃-JPDS for every α̃ ∈ R

d+1+ : |̃α| = |α|;
(P2) For every d and α ∈ R

d+ ρ is α-JPDS ⇔ ρ is (α,N)-HPDS for some N .

Regarding (P1), it will be clear in Section 7 that the sufficiency part (⇐) always holds. To find
conditions for the necessity part (⇒) of (P1), we will use two alternative approaches. The first one
is based on a multivariate extension of a powerful product formula for the Jacobi polynomials,
due to Koornwinder and finalized by Gasper in the early 1970s: for α,β in a “certain region”
(see Theorem 5.1 further on), the integral representation

P
α,β
n (x)

P
α,β
n (1)

P
α,β
n (y)

P
α,β
n (1)

=
∫ 1

0

P
α,β
n (z)

P
α,β
n (1)

mx,y(dz), x, y ∈ (0,1), n ∈ N,

holds for a probability measure mx,y on [0, 1]. Our extension for multivariate polynomial kernels,
of non-easy derivation, is found in Proposition 5.4 to be

Qα
n(x,y) = E

[
Qαd,|α|−αd

n (Zd,1)|x,y
]
, |n| = 0,1, . . . (1.9)
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for every d ∈ N, every α in a “certain region” of R
d+, and for a particular [0,1]-valued random

variable Zd . Here, for every j = 1, . . . , d, ej = (0,0, . . . ,1,0, . . . ,0) ∈ R
d is the vector with

all zero components, except for the j th coordinate which is equal to 1. Integral representations
such as (1.9) are useful in that they map immediately univariate positive functions to the type of
bivariate distribution we are looking for,

f (x) ≥ 0 �⇒
∑
n

f̂ (n)Qn(x,y) = E[f (Zd)|x,y] ≥ 0.

In fact, whenever (1.9) holds true, we will be able to conclude that (P1) is true.
Identity (1.9), however, holds only with particular choices of the parameter α. At best, one

needs one of the αj s to be greater than 2. This makes it hard to use (P1) to build, in the limit
as d → ∞, canonical correlations with respect to Poisson–Dirichlet marginals on the infinite
simplex. The latter would be a desirable aspect for modeling dependent measures on the infinite
symmetric group or for applications, for example, in nonparametric Bayesian statistics.

On the other hand, there are several examples in the literature of positive-definite sequences
satisfying (P1) for every choice of α, even in the limit case of |α| = 0. Two notable and well-
known instances are

(i)

ρn(t) = e−(1/2)n(n+|α|−1)t , n = 0,1, . . . , (1.10)

arising as the eigenvalues of the transition semigroup of the so-called d-type, neutral
Wright–Fisher diffusion process in population genetics; see, for example, [11,14,27]. The
generator of the diffusion process {X(t), t ≥ 0} describing the relative frequencies of genes
with type space {1, . . . , d} is

L = 1

2

d∑
i=1

d∑
j=1

xi(δij − xj )
∂2

∂xi ∂xj

+ 1

2

d∑
i=1

(αi − |α|xi)
∂

∂xi

.

In this model, mutation is parent-independent from type i to j at rate αj/2, j ∈ {1, . . . , d}.
Assuming that α > 0, the stationary distribution of the process is Dα , and the transition
density has an expansion

f (x,y; t) = Dα(y)

{
1 +

∞∑
n=1

ρn(t)Q
α
n(x,y)

}
.

The limit model as d → ∞ with α = |α|/d is the infinitely-many-alleles-model, where
mutation is always to a novel type. The stationary distribution is Poisson–Dirichlet(α).

The same sequence (1.10) is also a HPDS playing a role in population genetics [17]:
it is the eigenvalue sequence of the so-called Moran model with type space {1, . . . , d}.
In a population of N individuals, {Z(t), t ≥ 0} denotes the number of individuals of each
type at t , |Z(t)| = N . In reproduction events, an individual is chosen at random to repro-
duce with one child, and another is chosen at random to die. The offspring of a parent of
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type i does not mutate with probability 1 − μ, or mutates in a parent independent way to
type j with probability μpj , j ∈ {1, . . . , d}, where |p| = 1. The generator of the process
is described by

Lf (z) =
d∑

i=1

d∑
j=1

zi

(
λ

N
zj + μpj

)
[f (z − ei + ej ) − f (z)].

Setting α = Mμp/λ, λ = N/2, the stationary distribution of the process is DMα,N , the
eigenvalues are (1.10), and the transition density is

P
(
Z(t) = s|Z(0) = r

) = DMα,N (s)

{
1 +

N∑
n=1

ρn(t)Hn(r, s)

}
.

Thus (1.10) is an example of positive-definite sequence satisfying both (P1) and (P2).
(ii)

ρn(z) = zn, n = 0,1, . . . ;
that is, the eigenvalues of the so-called Poisson kernel, whose positivity is a well-known
result in special functions theory (see, e.g., [5,16]).

An interpretation of Poisson kernels as Markov transition semigroups is in [14], where it is shown
that (ii) can be obtained via an appropriate subordination of the genetic model (i).

It is therefore natural to ask when (P1) holds with no constraints on the parameter α.

Our second approach to Lancaster’s problem will answer, in part, this question. This approach
is heavily based on the probabilistic interpretation (Pólya urns with random draws in common)
of the Jacobi and Hahn polynomial kernels shown in the first part of the paper. We will prove in
Proposition 8.1 that, if {dm: m = 0,1,2, . . .} is a probability mass function (p.m.f.) on Z+, then
every positive-definite sequence {ρn}∞n=0 of the form

ρn =
∞∑

m=n

m!	(|α| + m)

(m − n)!	(|α| + m + n)
dm, m = 0,1, . . . , (1.11)

satisfies (P1) for every choice of α; therefore (P1) can be used to model canonical correlations
with respect to the Poisson–Dirichlet distribution.

In Section 9 we investigate the possibility of a converse result, that is, will find a set of condi-
tions on a JPD sequence ρ to be of the form (1.11) for a p.m.f. {dm}.

As for Hahn positive-definite sequences and (P2), our results will be mostly a consequence of
Proposition 3.1, where we establish the following representation of Hahn kernels as mixtures of
Jacobi kernels:

Hα
n (r, s) = (N − n)!	(|α| + N + n)

N !	(|α| + N)
E[Qα

n(X,Y)|r, s], n = 0,1, . . .

for every N ∈ Z+ and r, s ∈ N
(d−1), where the expectation on the right-hand side is taken with
respect to Dα+r ⊗ Dα+s, that is, a product of posterior Dirichlet probability measures. A similar
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result was proven by [15] to hold for individual Hahn polynomials as well. The interpretation is
again in terms of dependent Pólya sequences with random elements in common.

We will also show (Proposition 6.1) that a discrete version of (1.9) (but with the appearance
of an extra coefficient) holds for Hahn polynomial kernels.

Based on these findings, we will be able to prove in Section 10 some results “close to” (P2):
that JPDSs can indeed be viewed as a map from HPDSs, and vice versa, but such mappings, in
general, are not the inverse of each other.

On the other hand, we will show (Proposition 10.4) that every JPDS is in fact the limit of a
sequence of (P2)-positive-definite sequences.

Our final result on HPDSs is in Proposition 10.8, where we prove that if, for fixed N , d(N) =
{d(N)

m }m∈Z+ is a probability distribution such that d
(N)
l = 0 for l > N , then (P2) holds properly for

the JPDS ρ of the form (1.11). Such sequences also satisfy (P1) and admit infinite-dimensional
Poisson–Dirichlet (and Ewens’s sampling distribution) limits.

The key for the proof of Proposition 10.8 is provided by Proposition 3.5, where we show the
connection between our representation of Hahn kernels and a kernel generalization of a product
formula for Hahn polynomials, proved by Gasper [9] in 1973. Proposition 3.5 is, in our opinion,
of some interest, even independently of its application.

1.1. Outline of the paper

The paper is organized as follows. Section 1.2 will conclude this Introduction by recalling some
basic properties and definitions of the probability distribution we are going to deal with. In Sec-
tion 2 an explicit description of Qα

n is given in terms of mixtures of products of multinomial
probability distributions arising from dependent Pólya urns with random elements in common.
We will next obtain (Section 3) an explicit representation for Hα

n as posterior mixtures of Qα
n . In

the same section we will generalize Gasper’s product formula to an alternative representation of
Hα

n and will describe the connection coefficients in the two representations. In Sections 4–4.2,
we will then show that similar structure and probabilistic descriptions also hold for kernels with
respect to the ranked versions of Dα and DMα,N , and to their infinite-dimensional limits, known
as the Poisson–Dirichlet and Ewens’s sampling distribution, respectively. This will conclude the
first part.

Sections 5–6 will be the bridge between the first and the second part of the paper. We will
prove identity (1.9) for the Jacobi product formula and its Hahn equivalent. We will point out the
connection between (1.9) and another multivariate Jacobi product formula due to Koornwinder
and Schwartz [21].

In Section 7 we will focus more closely on positive-definite sequences (canonical correlations).
We will use results of Section 5 (first approach) to characterize sequences obeying to (P1), with
constraints on α.

In Section 8 we will use a second probabilistic approach to find sufficient conditions for (P1) to
hold with no constraints on the parameters, when a JPDS can be expressed as a linear functional
of a probability distribution on Z+. Every such sequence will be determined by a probability
mass function on the integers. We will discuss the possibility of a converse mapping from JPDSs
to probability mass functions in Section 9.
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In the remaining sections we will investigate the existence of sequences satisfying (P2). In par-
ticular, in Section 10.1 we will make a similar use of probability mass functions to find sufficient
conditions for a proper version of (P2).

1.2. Elements from distribution theory

We briefly list the main definitions and properties of the probability distributions that will be used
in the paper. We also refer to [15] for further properties and related distributions. For α,x ∈ R

d

and n ∈ Z
d+, denote

xα = x
α1
1 · · ·xαd

d , 	(α) =
d∏

i=1

	(αi)

and (
n

n

)
= n!∏d

i=1 ni !
.

Also, we will use

(a)(x) = 	(a + x)

	(a)
,

(a)[x] = 	(a + 1)

	(a + 1 − x)
,

whenever the ratios are well defined. Here 1 := (1,1, . . . ,1).

If x ∈ Z+, then (a)(x) = a(a + 1) · · · (a + x − 1) and (a)[x] = a(a − 1) · · · (a − x + 1). Eμ will
denote the expectation under the probability distribution μ. The subscript will be omitted when
there is no risk of confusion.

Definition 1.1.

(i) The Dirichlet(α) distribution, α ∈ R
d+, on the d-dimensional simplex


(d−1) := {x ∈ [0,1]d : |x| = 1}

is given by

Dα(dx) := 	(|α|)xα−1

	(α)
I
(
x ∈ 
(d−1)

)
dx.

(ii) The Dirichlet multinomial (α,N) distribution, α ∈ R
d+,N ∈ Z+ on the (d − 1)-

dimensional discrete simplex

N
(d−1) := {m ∈ Z
d+: |m| = N}
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is given by the probability mass function

DMα,N (r) =
(

N

r

)
(α)(r)

(|α|)(N)

, r ∈ N
(d−1). (1.12)

1.2.1. Pólya sampling distribution

DMα,N can be thought as the moment formula (sampling distribution) of Dα ,

EDα

[(
N

r

)
Xr

]
,

so DMα,N can be interpreted as the probability distribution of a sample of N random variables in
{1, . . . , d}, which are conditionally independent and identically distributed with common law X,
the latter being a random distribution with distribution Dα. The probability distribution of X,
conditional on a sample of N such individuals, is, by Bayes’s theorem, again Dirichlet with
different parameters

Dα+r(dx) =
(
N
r

)
xr

DMα,N (r)
Dα(dx). (1.13)

As N → ∞, the measure DMα,N tends to Dα. The Dirichlet multinomial distribution can also be
thought as the distribution of color frequencies arising in a sample of size N from a d-color Pólya
urn. This sampling scheme can be described as follows: in an urn there are |α| balls of which
αi are of color i, i = 1, . . . , d (for this interpretation one may assume, without loss of generality,
that α ∈ Z

d+). Pick a ball uniformly at random, note its color, then return the ball in the urn and
add another ball of the same color. The probability of the first sample to be of color i is αi/|α|.
After simple combinatorics one sees that the distribution of the color frequencies after M draws
is DMα,M . Conditional on having observed r as frequencies in the first M draws, the probability
distribution of observing s in the next N − M draws is

DMα+r,N−M(s) = Dα,N−M(s)
Dα+s,M(r)
Dα,M(r)

. (1.14)

1.2.2. Ranked frequencies and limit distributions

Define the ranking function ψ : Rd → R
d as the function reordering the elements of any vector

y ∈ R
d in decreasing order. Denote its image by

ψ(y) = y↓ = (y
↓
1 , . . . , y

↓
d ).

The ranked continuous and discrete simplex will be denoted by 

↓
d−1 = ψ(
d−1) and N


↓
d−1 =

ψ(N
d−1), respectively.
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Definition 1.2. The Ranked Dirichlet distribution with parameter α ∈ R
d+, is one with density,

with respect to the d-dimensional Lebesgue measure

D↓
α (x) := Dα ◦ ψ−1(x↓) = 1

d!
∑
σ∈Sd

Dα(σx↓), x ∈ 

↓
d−1,

where Sd is the group of all permutations on {1, . . . , d} and σx = (xσ(1), . . . , xσ(d)).

Similarly,

DM↓
α,N := DMα,N ◦ψ−1

defines the ranked Dirichlet multinomial distribution.

With a slight abuse of notation, we will use D↓ to indicate both the ranked Dirichlet measure
and its density. Ranked symmetric Dirichlet and Dirichlet multinomial measures can be inter-
preted as distributions on random partitions. For every r ∈ N
(d−1) let βj = βj (r) be the num-
ber of elements in r equal to j and k(r) = ∑

βj (r) the number of strictly positive components
of r. Thus

∑r
i=1 iβi(r) = N.

For each x ∈ 
(d−1) denote the monomial symmetric polynomials by

[x, r]d :=
∑

i1 �=···�=ik∈{1,...,d}k

k∏
j=1

x
rj
ij

,

where the sum is over all d[k] subsequences of k distinct integers, and let [x, r] be its extension to
x ∈ 
∞. Take a collection (ξ1, . . . , ξN ) of independent, identically distributed random variables,
with values in a space of d “colors” (d ≤ ∞), and assume that xj is the common probability of
any ξi of being of color j . The function [x, r]d can be interpreted as the probability distribution
of any such sample realization giving rise to k(r) distinct values whose unordered frequencies
count β1(r) singletons, β2(r) doubletons and so on.

There is a bijection between r↓ = ψ(r) and β(r) = (β1(r), . . . , βN(r)), both maximal invari-
ant functions with respect to permutations of coordinates, both representing partitions of N in
k(r) parts. Note that [x, r]d is invariant too, for every d ≤ ∞. It is well known that, for every
x ∈ 


↓
d , ∑

r↓∈N

↓
(d−1)

(
N

r↓
)

1∏
i≥1 βi(r↓)! [x, r↓]d = 1, (1.15)

that is, for every x, (
N

r↓
)

1∏
i≥1 βi(r↓)! [x, r↓]d

represents a probability distribution on the space of random partitions of N.
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For |α| > 0, let D|α|,d ,DM|α|,N,d denote the Dirichlet and Dirichlet multinomial distributions
with symmetric parameter (|α|/d, . . . , |α|/d). Then

DM↓
|α|,N,d(r↓)

= E
D

↓
|α|,d

{(
N

r↓
)

1∏
i≥1 βi(r↓)! [x

↓, r↓]d
}

(1.16)

= d[k]
r!∏N

1 j !βj βj !
·
∏r

1(|α|/d)
βj

(j)

(|α|)(N)

−→
d→∞

r!∏r
1 jβj βj ! · |α|k

(|α|)(r) := ESF|α|(r). (1.17)

Definition 1.3. The limit distribution ESF|α|(r) in (1.17) is called the Ewens sampling formula
with parameter |α|.

Poisson–Dirichlet point process [19]. Let Y∞ = (Y1, Y2, . . .) be the sequence of points of a
non-homogeneous point process with intensity measure

N|α|(y) = |α|y−1e−y.

The probability generating functional is

F|α|(ξ) = E|α|
(

exp

{∫
log ξ(y)N|α|(dy)

})
(1.18)

= exp

{
|α|

∫ ∞

0

(
ξ(y) − 1

)
y−1e−y dy

}
for suitable functions ξ : R → [0,1]. Then |Y∞| is a Gamma(|α|) random variable and is inde-
pendent of the sequence of ranked, normalized points

X↓∞ = ψ(Y∞)

|Y∞| .

Definition 1.4. The distribution of X↓∞, is called the Poisson–Dirichlet distribution with pa-
rameter |α|.

Proposition 1.5.

(i) The Poisson–Dirichlet(|α|) distribution on 
∞ is the limit

PD|α| = lim
d→∞D

↓
|α|,d .
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(ii) The relationship between Dα and DMα,N is replicated by ESF, which arises as the (sym-
metric) moment formula for the PD distribution,

ESF|α|,N (r) = EPD|α|

{(
r

r↓
)

1∏
i≥1 βi(r↓)! [x, r↓]

}
, r ∈ N
↓. (1.19)

Proof. If Y = (Y1, . . . , Yd) is a collection of d independent random variables with identical
distribution Gamma(|α|/d,1), then their sum |Y| is a Gamma(|α|) random variable independent
of Y/|Y|, which has distribution Dα|,d . The probability generating functional of Y is ([10])

F|α|,d (ξ) =
(

1 +
∫ ∞

0

(
ξ(y) − 1

) |α|
d

y|α|/d−1e−y

	(|α|/d + 1)
dy

)d

(1.20)
→

d→∞ F|α|(ξ),

which, by continuity of the ordering function ψ , implies that if X↓d has distribution D
↓
|θ |,d , then

X↓d D→X↓∞.

This proves (i). For the proof of (ii) we refer to [10]. �

2. Polynomial kernels in the Dirichlet distribution

The aim of this section is to show that, for every fixed d ∈ N and α ∈ R
d , the orthogonal poly-

nomial kernels with respect to Dα can be constructed from systems of two dependent Pólya urns
sharing a fixed number of random elements in common.

Consider two Pólya urns U1 and U2 with identical initial composition α, and impose on them
the constraint that the first m draws from U1 are identical to the first m draws from U2. For
M ≤ N sample M + m balls from U1 and N + m balls from U2. At the end of the experiment,
the probability of having observed frequencies r and s, respectively, in the M unconstrained balls
sampled from U1 and in the N ones from U2, is, by (1.14),∑

|l|=m

DMα,m(l)DMα+l,M(r)DMα+l,N (s)

(2.1)
= DMα,M(r)DMα,N (s)ξH,α

m (r, s),

where

ξH,α
m (r, s) =

∑
|l|=m

DMα+s,m(l)DMα+r,m(l)
DMα,m(l)

. (2.2)

As N,M → ∞, if we assume N−1s → x,M−1r → y, we find that this probability distribution
tends to

Dα(dx)Dα(dy)ξα
m(x,y),
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where

ξα
m(x,y) =

∑
|l|=m

(
m

l

) |α|(m)∏d
1 αi(li )

d∏
1

(xiyi)
li (2.3)

=
∑
|l|=m

(
m
l

)
xl

(
m
l

)
yl

DMα,|m|(l)
. (2.4)

Notice that, because Pólya sequences are exchangeable (i.e., their law is invariant under permu-
tations of the sample coordinates), the same formula (2.4) would hold even if we only assumed
that the sequences sampled from U1 and U2 have in common any m (and not necessarily the
first m) coordinates.

2.1. Polynomial kernels for d ≥ 2

We shall now prove the following:

Proposition 2.1. For every α ∈ R
d+ and every integer n, the nth orthogonal polynomial kernel,

with respect to Dα , is given by

Qα
n(x,y) =

n∑
m=0

a|α|
nmξα

m(x,y), (2.5)

where

a|α|
nm = (|α| + 2n − 1)(−1)n−m (|α| + m)(n−1)

m!(n − m)! (2.6)

form a lower-triangular, invertible system. An inverse relationship is

ξα
m(x,y) = 1 +

m∑
n=1

(m)[n]
(|α| + |m|)(n)

Qα
n(x,y). (2.7)

Remark 2.2. A first construction of the Kernel polynomials was given by [11]. We provide here
a revised proof. Operators with a role analogous to the function ξm have, later on, appeared in
different contexts, but with little emphasis on Pólya urns or on the probabilistic aspects ([25,26]
are some examples). A closer, recent result is offered in [24] where a multiple integral repre-
sentation for square-integrable functions with respect to Ferguson–Dirichlet random measures is
derived in terms of Pólya urns.

Proof of Proposition 2.1. Let {Q◦
n} be a system of orthonormal polynomials with respect to

Dα (i.e., such E(Q◦
n

2) = 1). We need to show that, for independent Dirichlet distributed vectors
X,Y , if n, k ≤ m, then

E(ξα
m(X,Y)Q◦

n(X)Q◦
k(Y)) = δnk

(m)[n]
(|α| + m)(n)

. (2.8)
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If this is true, an expansion is therefore

ξα
m(x,y) = 1 +

m∑
n=1

(m)[n]
(|α| + m)(n)

∑
{n:|n|=n}

Q◦
n(x)Q◦

n(y)

(2.9)

= 1 +
m∑

n=1

(m)[n]
(|α| + m)(n)

Qα
n(x,y).

Inverting the triangular matrix with (m,n)th element

(m)[n]
(|α| + m)(n)

gives (2.5) from (2.7). The inverse matrix is triangular with (m,n)th element

(|α| + 2n − 1)(−1)n−m (|α| + m)(n−1)

m!(n − m)! , n ≥ m,

and the proof will be complete.
Proof of (2.8). Write

E

(
d−1∏

1

Xi
ni ξα

m(X,Y)

∣∣∣Y)
=

∑
{l:|l|=m}

(
m

l

) d∏
1

Y
li
i

∏d−1
1 (li + αi)(ni )

(|α| + m)(n)

. (2.10)

Expressing the last product in (2.10) as

d−1∏
1

(li + αi)(ni ) =
d−1∏

1

li [ni ] +
∑

{k:|k|<|n|}
bnk

d−1∏
1

li [ki ]

for constants bnk, shows that

E

(
d−1∏

1

Xi
ni ξα

m(X,Y)

∣∣∣Y)
= (m)[n]

(|α| + m)(n)

d−1∏
1

Y
ni

i + R0(Y). (2.11)

Thus if n ≤ k ≤ m,

E(ξα
m(X,Y)Q◦

n(X)|Y) = (m)[n]
(|α| + m)(n)

∑
{k:|k|=n}

ank

d−1∏
1

Y
ki

i + R1(Y)

= (m)[n]
(|α| + m)(n)

Q◦
n(Y) + R2(Y), (2.12)
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where ∑
{k:|k|=n}

ank

d−1∏
1

X
ki

i

are terms of leading degree n in Q◦
n(X) and Rj (Y), j = 0,1,2, are polynomials of degree less

than n in Y. Thus if n ≤ k ≤ m,

E(ξα
m(X,Y)Q◦

n(X)Q◦
k(Y)) = E

(
Q◦

k(Y)

{
(m)[n]

(|α| + m)(n)

Q◦
n(Y) + R2(Y)

})
(2.13)

= (m)[n]
(|α| + m)(n)

δnk.

By symmetry, (2.13) holds for all n,k such that n, k ≤ m. �

2.2. Some properties of the kernel polynomials

Particular cases

Qα
0 = 1,

Qα
1 = (|α| + 1)(ξ1 − 1)

= (|α| + 1)

(
|α|

d∑
1

xiyi/αi − 1

)
,

Qα
2 = 1

2 (|α| + 3)
(
(|α| + 2)ξ2 − 2(|α| + 1)ξ1 + |α|),

where

ξ2 = |α|(|α| + 1)

( d∑
1

(xiyi)
2/αi(αi + 1) + 2

∑
i<j

xixj yiyj

/
αiαj

)
.

The j th coordinate kernel

A well-known property of Dirichlet measures is that, if Y is a Dirichlet(α) vector in 
(d−1),
then its j th coordinate Yj has distribution Dαj ,|α|−αj

. Such a property is reflected in the Jacobi
polynomial kernels. For every d , let ej be the vector in R

d with every ith coordinate equal δij ,
i, j = 1, . . . , d . Then

ξα
m(y, ej ) = (|α|)(m)

(αj )(m)

ym
j , m ∈ Z+,y ∈ 
(d−1). (2.14)

In particular,

ξα
m(ej , ek) = (|α|)(m)

(αj )(m)

δjk. (2.15)
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Therefore, for every d and α ∈ R
d+, (2.14) implies

Qα
n(y, ej ) =

n∑
m=0

a|α|
nmξα

m(ej ,y) = Q
αj ,|α|−αj
n (yj ,1)

(2.16)
= ζ

αj ,|α|−αj
n R

αj ,|α|−αj
n (yj ), j = 1, . . . , d,y ∈ 
(d−1),

where

Rα,β
n (x) = Q

α,β
n (x,1)

Q
α,β
n (1,1)

(2.17)

= 2F1

(−n,n + θ − 1

β

∣∣∣∣1 − x

)
, n = 0,1,2, . . . , θ = α + β,

are univariate Jacobi polynomials (α > 0, β > 0) normalized by their value at 1 and

1

ζ
α,β
n

:= E[Rα,β
n (X)]2.

In (2.18), pFq,p, q ∈ N, denotes the Hypergeometric function (see [1] for basic properties).

Remark 2.3. For α,β ∈ R+, let θ = α + β. It is known (e.g., [15], (3.25)) that

1

ζ
α,β
n

= n! 1

(θ + 2n − 1)(θ)(n−1)

(α)(n)

(β)(n)

. (2.18)

On the other hand, for every α = (α1, . . . , αd),

ζ
αj ,|α|−αj
n = Qα

n(ej , ej ) =
n∑

m=0

a|α|
nm

(|α|)(m)

(αj )(m)

. (2.19)

Addition of variables in x

Let A be a d ′ × d (d ′ < d) 0–1 matrix whose rows are orthogonal. A known property of the
Dirichlet distribution is that, if X has distribution Dα, then AX has a DAα distribution. Similarly,
with some easy computation

E
(
ξα
m(X,y)|AX = ax

) = ξAα
m (AX,Ay).

One has therefore the following:

Proposition 2.4. A representation for Polynomial kernels in DAα is

QAα
n (Ax,Ay) = E[Qα

n(X,y)|AX = Ax]. (2.20)
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Example 2.5. For any α ∈ R
d and k ≤ d , suppose AX = (X1 +· · ·+Xk,Xk+1 +· · ·+Xd) = X′.

Then, denoting α′ = α1 + · · · + αk and β ′ = αk+1 + · · · + αd, one has

QAα
n (x′, y′) = ζ α′,β ′

n Rα′,β ′
n (x′)Rα′,β ′

n (y′) = E[Qα
n(X,y)|X′ = x′].

3. Kernel polynomials on the Dirichlet multinomial distribution

For the Dirichlet multinomial distribution, it is possible to derive an explicit formula for the
kernel polynomials by considering that Hahn polynomials can be expressed as posterior mixtures
of Jacobi polynomials; cf. [15], Proposition 5.2. Let {Q◦

n(x)} be a orthonormal polynomial set
on the Dirichlet, considered as functions of (x1, . . . , xd−1). Define, for r ∈ N
(d−1),

h◦
n(r;N) =

∫
Q◦

n(x)Dα+r(dx), (3.1)

then {h◦
n} is a system of multivariate orthogonal polynomials with respect to DMα,N with con-

stant of orthogonality

Eα,N [h◦
n(R;N)]2 = (N)[n]

(|α| + N)(n)

. (3.2)

Note also that if N → ∞ with ri/N → xi , i = 1, . . . , d , then

lim
N→∞h◦

n(r;N) = Q◦
n(x).

Proposition 3.1. The Hahn kernel polynomials with respect to DMα,N are

Hα
n (r, s) = (|α| + N)(n)

N[n]

∫ ∫
Qα

n(x,y)Dα+r(dx)Dα+s(dy) (3.3)

for r = (r1, . . . , rd), s = (s1, . . . , sd), |r| = |s| = N fixed, and n = 0,1, . . . ,N .
An explicit expression is

Hα
n (r, s) = (|α| + N)(n)

r[n]
·

n∑
m=0

a|α|
nmξH,α

m (r, s), (3.4)

where (a
|α|
nm) is as in (2.6) and ξ

H,α
m (r, s) is given by (2.2).

Proof. The kernel sum is, by definition,

Hα
n (r, s) = (|α| + N)(n)

N[n]

∑
{n:|n|=n}

h◦
n(r;N)h◦

n(s;N), (3.5)

and from (3.3), (3.4) follows. The form of ξ
H,α
m is obtained by taking the expectation of ξα

m(X,Y),

appearing in the representation (2.5) of Qα
n, with respect to the product measure Dα+rDα+s. �
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The first polynomial kernel is

Hα
1 (r, s) = (|α| + 1)(|α| + r)

|α|

(
|α|

(|α| + N)2

d∑
1

(αi + ri)(αi + si)

αi

− 1

)
.

Projections on one coordinate

As in the Jacobi case, the connection with Hahn polynomials on {0, . . . ,N} is given by marginal-
ization on one coordinate.

Proposition 3.2. For N ∈ N and d ∈ N, denote rj,1 = Nej ∈ N
d, where ej = (0, . . . ,0,1,0,

. . . ,0) with 1 only at the j th coordinate.
For every α ∈ N

d,

Hα
n (s,Nej ) = 1

c
|α|
N,n

h
◦(αj ,|α|−αj )
n (sj ;N)h

◦(αj ,|α|−αj )
n (N;N), |s| = N, (3.6)

where

c
|α|
N,n := (N)[n]

(|α| + N)(n)

= E
[
h◦(α,β)

n (R;N)2],
and {h◦(αj ,|α|−αj )

n } are orthogonal polynomials with respect to DM(αj ,|α|−αj ),N .

Proof. Because for every d and α ∈ R
d+

Hα
n (s, r) = 1

c
|α|
N,n

n∑
m=0

a|α|
nmξH,α

m (r, s)

for d = 2 and α,β > 0 with α + β = |α|,

h◦(α,β)
n (k;N)h◦(α,β)

n (j ;N) =
n∑

m=0

a|α|
nmξH,α,β

m (k, j), k, j = 0, . . . ,N.

Now, for r, s ∈ N
(d−1), rewrite ξ
H,α
m as

ξH,α
m (s, r) =

∑
|l|=m

DMα+s,m(l)DMα+r,m(l)
DMα,m(l)

(3.7)

=
∑
|l|=m

DMα+s,m(l)
DMα+l,N (r)
DMα,N (r)

.

Consider, without loss of generality, the case j = 1. Since, for every α,

DMα,m(l) = DM(α1,|α|−α1),m(l1)DM(α2,...,αd ),m−l1(l2, . . . , ld),



566 R.C. Griffiths and D. Spanò

then

ξH,α
m (s,Ne1) =

m∑
l1=0

DM(α1+s1,|α|−α1+m−s1),m(l1)
DM(α1+l1,|α|−α1+m−l1),N (N)

DM(α1,|α|−α1),N (N)

×
∑

|u|=m−l1

DMα′+s′,m−l1(u)
DMα+l,0(0)

DMα,0(0)

=
m∑

l1=0

DMα+s,m(l1)
DMα1+l1,N (N)

DMα,N (N)

∑
|u|=m−l1

DMα′+s′,m−l1(u)

=
m∑

l1=0

DMα+s,m(l1)
DMα1+l1,N (N)

DMα,N (N)
(3.8)

= ξH,α1,|α|−α1
m (s1,N). (3.9)

Then (3.6) follows immediately. �

3.1. Generalization of Gasper’s product formula for Hahn polynomials

For d = 2 and α,β > 0 the Hahn polynomials

hα,β
n (r;N) = 3F2

(−n,n + θ − 1,−r

α,−N

∣∣∣∣1)
, n = 0,1, . . . ,N, (3.10)

with θ = α + β, have constant of orthogonality

1

u
α,β
N,n

:= Eα,β [hα,β
n (R;N)]2 = 1(

N
n

) (θ + N)(n)

(θ)(n−1)

1

θ + 2n − 1

(β)(n)

(α)(n)

. (3.11)

The following product formula was found by Gasper [8]:

hα,β
n (r;N)hα,β

n (s;N)
(3.12)

= (−1)n(β)(n)

(α)(n)

n∑
l=0

n−l∑
k=0

(−1)l+kn[l+k](θ + n − 1)(l+k)r[l]s[l](N − r)[k](N − s)[k]
l!k!N[l+k]N[l+k](α)(l)(β)(k)

.

Thus

u
α,β
N,nh

α,β
n (r;N)hα,β

n (s;N)

= N[n]
(θ + N)(n)

n∑
m=0

(−1)n−m(θ)(n−1)(θ + n − 1)(m)(θ + 2n − 1)

m!(n − m)!(θ)(m)

χH,α,β
m (r, s) (3.13)

= N[n]
(θ + N)(n)

n∑
m=0

aθ
nmχH,α,β

m (r, s),
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where

χH,α,β
m (r, s) :=

m∑
j=0

1

DM(α,β),m(j)

[(
m
j

)
r[j ](N − r)[m−j ]

N[m]

][(
m
j

)
s[j ](N − s)[m−j ]

N[m]

]
. (3.14)

By uniqueness of polynomial kernels, we can identify the connection coefficients between the
functions ξ and χ :

Proposition 3.3. For every m,n ∈ Z+, and every r, s ∈ {0, . . . ,N},

ξH,α,β
m (r, s) =

m∑
l=0

bmlχ
H,α,β
l (r, s), (3.15)

where

bml =
m∑

n=l

(
N[n]

(θ + N)(n)

)2
m[n]

(θ + m)(n)

aθ
nl . (3.16)

Proof. From (3.4),

u
α,β
N,nh

α,β
n (r;N)hα,β

n (s;N) = Hα,β
n (r, s) = (θ + N)(n)

N[n]

n∑
m=0

aθ
nmξH,α,β

m (r, s). (3.17)

Since the array A = (aθ
nm) has inverse C = A−1 with entries

cθ
mn =

(
m[n]

(θ + m)(n)

)
, (3.18)

then equating (3.17) and (3.13) leads to

ξH,α,β
m =

m∑
n=0

cθ
mn

N[n]
(θ + N)(n)

Hα,β
n

=
m∑

n=0

cθ
mn

(
N[n]

(θ + N)(n)

)2 n∑
l=0

aθ
nlχ

H,α,β
l

=
m∑

l=0

bmlχ
H,α,β
l .

�

The following corollary is then straightforward.

Corollary 3.4.

E[ξH,α,β
m χ

H,α,β
l ] = E[ξH,α,β

l χH,α,β
m ] =

m∧l∑
n=0

m[l]l[n]
(θ + m)(n)(θ + l)(n)

.
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For every r ∈ N
(d−1) and m ∈ Z
d+, define

pm(r) =
d∏

i=1

(ri)[mi ].

Gasper’s product formula (3.12), or, rather, the representation (3.13), has a multivariate extension
in the following.

Proposition 3.5. For every d , α ∈ R
d+ and N ∈ Z+, the Hahn polynomial kernels admit the

following representation:

Hα
n (r, s) = N[n]

(|α| + N)(n)

n∑
m=0

a|α|
nmχH,α

m (r, s), r, s ∈ N
(d−1), n = 0,1, . . . , (3.19)

where

χH,α
m (r, s) :=

∑
l:|l|=m

1

DMα,m(l)

((
m
l

)
pl(r)

N[m]

)((
m
l

)
pl(s)

N[m]

)
. (3.20)

Proof. If we prove that, for every m and n,

χH,α
m (r, s) =

m∑
n=0

c
|α|
mn

c
|α|
Nn

Hα
n (r, s),

where c
|α|
ij are given by (3.18) (independent of d!), then the proof follows by inversion.

Consider the orthonormal multivariate Jacobi polynomials Q◦
n(x). The functions

h◦
n(r;N) :=

∫

(d−1)

Q◦
n(x)Dα+r(dx)

satisfy the identity

E

[
h◦

n(R;N)

(
m

l

)
pl(R)

]
= N[m]h◦

n(l;m)DMα,m(l), l ∈ m
(d−1),n ∈ Z
d+ (3.21)

([14], (5.71)).
Then for every fixed s,

E[χH,α
m (R, s)h◦

n(R;N)] =
∑
l=m

(
m

l

)
pl(s)
N[m]

h◦
n(l;m), (3.22)

so, iterating the argument, we can write

E[χH,α
m (R,S)h◦

n(R;N)h◦
n(S;N)] = cmn. (3.23)
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Now, by uniqueness of the polynomial kernel,

Hα
n (r, s) =

∞∑
n=0

1

c
|α|
N,n

h◦
n(r;N)h◦

n(s;N),

therefore

χH,α
m (r, s) =

m∑
n=0

c
|α|
mn

c
|α|
Nn

Hα
n (r, s),

and the proof is complete. �

The connection coefficients between ξ
H,α
m and ξα

m are, for every d , the same as for the two-
dimensional case:

Corollary 3.6. For every d and α ∈ R
d+,

(i)

ξH,α,β
m (r, s) =

m∑
l=0

bmlχ
H,α,β
l (r, s), (3.24)

where (bml) are given by (3.16).
(ii)

E[ξH,α
m χ

H,α
l ] = E[ξH,α

l χH,α
m ] =

m∧l∑
n=0

m[l]l[n]
(|α| + m)(n)(|α| + l)(n)

, m, l = 0,1,2, . . . .

3.2. Polynomial kernels on the hypergeometric distribution

Note that there is a direct alternative proof of orthogonality of Hα
n (r, s) similar to that for

Qα
n(x,y). In the Hahn analogous proof, orthogonality does not depend on the fact that |α| > 0.

In particular, we obtain kernels on the hypergeometric distribution,(
c1
r1

) · · · (cd

rd

)(|c|
r

) (3.25)

by replacing α by −c in (3.4) and (2.2). Again a direct proof similar to that for Qα
n(x,y) would

be possible.

4. Symmetric kernels on ranked Dirichlet and Poisson–Dirichlet
measures

From Dirichlet–Jacobi polynomial kernels we can also derive polynomial kernels orthogonal
with respect to symmetrized Dirichlet measures. Let D|α|,d be the Dirichlet distribution on d
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points with symmetric parameters (|α|/d, . . . , |α|/d), and D
↓
|α|,d its ranked version. Denote with

Q
(|α|,d)
n and Q

(|α|,d)↓
n the corresponding n-kernels.

Proposition 4.1.

Q(|α|,d)↓
n = (d!)−1

∑
σ

Q(|α|,d)
n (σ (x),y),

where summation is over all permutations σ of 1, . . . , d . The kernel polynomials have a similar
form to Q

(|α|,d)
n , but with ξ

(|α|,d)
m replaced by

ξ (|α|,d)↓
m =

∑
l∈m


↓
(d−1)

m!|θ |(m)(d − k)!(∏m
1 βi(l)!)[x; l][y; l]

d!∏m
1 [j !(|θ |/d)(j)]βj (l) (4.1)

=
∑

l∈m

↓
(d−1)

�(l)[x; l]�(l)[y; l]
DM↓

|α|,m,d(l)
, (4.2)

where

�(l) :=
(

l

l

)
1∏

i≥1 βi(l)! .

Proof. Note that

Q(|α|,d)↓
n (x,y) = 1

d!
∑
σ∈Gd

Q(|α|,d)
n (σx,y)

= 1

d!
∑
σ∈Gd

∑
m≤n

a|α|
nmξ(|α|,d)

m (σx,y)

= d!
∑
m≤n

a|α|
nm

1

(d!)2

∑
σ∈Gd

∑
|l|=m

(
m
l

)2
(σx)lyl

DM|α|,m,d(l)

=
∑
m≤n

a|α|
nm

1

(d!)2

∑
σ,τ∈Gd

∑
|l|=m

(
m
l

)2
(στx)l(y)l

DM|α|,m(l)

=
∑
m≤n

a|α|
nm

1

(d!)2

∑
σ,τ∈Gd

∑
|l|=m

(
m
l

)2
(σx)l(τy)l

DM|α|,m,d (l)
(4.3)

= 1

(d!)2

∑
σ,τ∈Gd

Q(|α|,d)
n (σx, τy). (4.4)
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Now,

E
D

↓
(|α|,d)

[
Q(|α|,d)↓

n (x,Y)Q(|α|,d)↓
m (z,Y)

] = 1

d!
∑
σ∈Gd

Q(|α|,d)
n (σx, z)δnm

(4.5)
= Q(|α|,d)↓

n (x, z)δnm,

and hence Q
(|α|,d)↓
n is the n polynomial kernel with respect to D

↓
(|α|,d). The second part of the

theorem, involving identity (4.2), is just another way of rewriting (4.3). �

Remark 4.2. The first polynomial is Q
(|α|,d)↓
1 ≡ 0.

4.1. Infinite-dimensional limit

As d → ∞, ξ
(|α|,d)↓
m → ξ

(|α|,∞)↓
m , with

ξ (|α|,∞)↓
m = |α|(m)

∑ m!(∏m
1 bi !)[x; l][y; l]

|α|k[0!1!]b1 · · · [(k − 1)!k!]bk
(4.6)

=
∑ �(l)[x; l](m

l

)
�(l)[y; l]

ESF|α|(l)
. (4.7)

Proposition 4.3. The n-polynomial kernel with respect to the Poisson–Dirichlet point process is
given by

Q(|α|,∞)↓
n =

n∑
m=0

a|α|
nmξ(|α|,∞)↓

m . (4.8)

The first polynomial is zero, and the second polynomial is

Q∞
2 = (F1 − μ)(F2 − μ)/σ 2,

where

F1 =
∞∑
1

x2
(i), F2 =

∞∑
1

y2
(i),

and

μ = 1

1 + |α| , σ 2 = 2|α|
(|α| + 3)(|α| + 2)(|α| + 1)2

.
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4.2. Kernel polynomials on the Ewens sampling distribution

The Ewens sampling distribution can be obtained as a limit distribution from the unordered
Dirichlet multinomial distribution DM↓

|α|,N,d as d → ∞. The proof of the following proposition
can be obtained by the same arguments used to prove Proposition 4.1.

Proposition 4.4.

(i) The polynomial kernels with respect to DM↓
|α|,N,d are of the same form as (3.4), but with

ξ
H,(|α|,d)
m replaced by

ξH,(|α|,d)↓
m := (d!)−1

∑
π

ξH,(|α|,d)
m (π(r), s). (4.9)

(ii) The kernel polynomials with respect to ESF|α| are derived by considering the limit form

ξ
H,|α|↓
m of ξ

H,(|α|,d)↓
m . This has the same form as ξ

|α|↓
m (4.7) with [x;b][y;b] replaced by

[r;b]′[s;b]′, where

[r;b]′ = (|α| + |r|)−1
(m)

∑
ri1 (l1)

· · · rik (lk)
,

and summation is over
∑m

1 jbj = m,
∑m

1 bj = k, k = 1, . . . ,m. The kernel polynomials

have the same form as (3.4) with ξ
H,(|α|,d)
m replaced by ξ

H,|α|↓
m . The first polynomial is

identically zero under this symmetrization.

5. Integral representation for Jacobi polynomial kernels

This section and Section 6 are a bridge between the first and the second part of the paper. We
provide an integral representation for Jacobi and Hahn polynomial kernels, extending to d ≥ 2
the well-known Jacobi and Hahn product formulae found by Koornwinder and Gasper for d = 2
([8,20] and [9]). It will be a key tool to identify, under certain conditions on the parameters,
positive-definite sequences on the discrete and continuous multi-dimensional simplex. The rela-
tionship between our integral representation and a d-dimensional Jacobi product formula due to
Koornwinder and Schwartz [21] is also explained (Section 5.3).

5.1. Product formula for Jacobi polynomials when d = 2

For d = 2, consider the shifted Jacobi polynomials normalized by their value at 1,

Rα,β
n (x) = Q

α.β
n (x,1)

Q
α,β
n (1,1)

. (5.1)

They can also be obtained from the ordinary Jacobi polynomials P
a,b
n (a, b > −1) with Beta

weight measure

wa,b = (1 − x)a(1 + x)b dx, x ∈ [−1,1]
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via the transformation

Rα,β
n (x) = P

β−1,α−1
n (2x − 1)

P
β−1,α−1
n (1)

. (5.2)

The constant of orthogonality ζ
(α,β)
n is given by (2.18).

A crucial property of Jacobi polynomials is that, under certain conditions on the parameters,
products of Jacobi polynomials have an integral representation with respect to a positive (proba-
bility) measure. The following theorem is part of a more general result of Gasper [8].

Theorem 5.1 (Gasper [8]). A necessary and sufficient condition for the equality

P
a,b
n (x)

P
a,b
n (1)

P
a,b
n (y)

P
a,b
n (1)

=
∫ 1

−1

P
a,b
n (z)

P
a,b
n (1)

m̃x,y;a,b(dz), (5.3)

to hold for a positive measure dm̃x,y, is that a ≥ b > −1, and either b ≥ 1/2 or a + b ≥ 0. If
a + b > −1 or if a > −1/2 and a + b = −1 with x �= −y, then m̃x,y;a,b is absolutely continuous
with respect to wa,b , with density of the form

dm̃x,y;a,b

dwa,b

(z) =
∞∑

n=0

φn

P
a,b
n (x)

P
a,b
n (1)

P
a,b
n (y)

P
a,b
n (1)

P
a,b
n (z)

P
a,b
n (1)

, (5.4)

with φn = P
a,b
n (1)2/E[P a,b

n (X)].
An explicit formula for the density (5.4) is possible when a ≥ b > −1/2.

P
a,b
n (x)

P
a,b
n (1)

P
a,b
n (y)

P
a,b
n (1)

=
∫ 1

0

∫ π

0

P
a,b
n (ψ)

P
a,b
n (1)

m̃a,b(du,dω), (5.5)

where

ψ(x, y;u,ω) = {(1 + x)(1 + y) + (1 − x)(1 − y)}/2 + u cosω

√
(1 − x2)(1 − y2) − 1

and

m̃a,b(du,dω) = 2	(a + 1)√
π	(a − b)	(b + 1/2)

(1 − u2)a−b−1u2b+1(sinω)2b dudω. (5.6)

See [20] for an analytic proof of this formula. Note that φ(1,1;u,ω) = 1, so dm̃a,b(u,ω) is a
probability measure.

Gasper’s theorem can be rewritten in an obvious way, in terms of the shifted Jacobi polynomi-
als R

α,β
n (x) on [0,1]:

Corollary 5.2. For α,β > 0 the product formula

Rα,β
n (x)Rα,β

n (y) =
∫ 1

0
Rα,β

n (z)mx,y;α,β(dz) (5.7)
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holds for a positive measure mx,y;α,β , if and only if β ≥ α, and either α ≥ 1/2 or α + β ≥ 2. In

this case m
(α,β)
x,y = m̃2x−1,2y−1;β−1,α−1 where dm̃ is defined by (5.4). The measure is absolutely

continuous if α + β ≥ 2 or if β > 1/2 and α + β > 1 with x �= y. In this case

m(α,β)
x,y (dz) = K(x,y, z)Dα,β(dz),

where

K(x,y, z) =
∞∑

n=0

ζ α,β
n Rα,β

n (x)Rα,β
n (y)Rα,β

n (z) ≥ 0. (5.8)

Remark 5.3. When α,β satisfy the constraints of Corollary 5.2, we will say that α,β satisfy
Gasper’s conditions.

When α ≥ 1/2, an explicit integral identity follows from (5.5)–(5.6). Let mαβ(du,dω) =
m̃β−1,α−1(du,dω). Then

Rα,β
n (x)Rα,β

n (y) =
∫ 1

0

∫ π

0
Rα,β

n (ϕ)mαβ(du,dω), (5.9)

where for x, y ∈ [0,1]
ϕ(x, y;u,ω) = xy + (1 − x)(1 − y) + 2u cosω

√
x(1 − x)y(1 − y). (5.10)

In φ set x ← 2x − 1, y ← 2y − 1 to obtain (5.10).

5.2. Integral representation for d > 2

An extension of the product formula (5.7) is possible for the kernel Qα
n for the bivariate Dirichlet

of any dimension d.

Proposition 5.4. Let α ∈ R
d+ such that, for every j = 1, . . . , d , αj ≤ ∑j−1

i=1 αi and 1/2 ≤ αj , or∑j

i=1 αi ≥ 2. Then, for every x,y ∈ 
(d−1) and every integer n,

Qα
n(x,y) = E

[
Qαd,|α|−αd

n (Zd,1)|x,y
]
, (5.11)

where, for every x,y ∈ 
(d−1), Zd is the [0,1] random variable defined by the recursion

Z1 ≡ 1; Zj = �jDjZj−1, j = 2, . . . , d, (5.12)

with

Dj := (1 − xj )(1 − yj )

(1 − X∗
j )(1 − Y ∗

j )
; X∗

j := xj

1 − xj (1 − √
Zj−1)

;
(5.13)

Y ∗
j := yj

1 − yj (1 − √
Zj−1)

,
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where �j is a random variable in [0,1], with distribution

dm
x∗
j ,y∗

j ;αj ,
∑j−1

i=1 αi
,

where dmx,y;α,β is defined as in Corollary 5.2.

The proposition makes it natural to order the parameters of the Dirichlet in a decreasing way,
so that it is sufficient to assume that α(1) + α(2) ≥ 2 to obtain the representation (5.11).

Since the matrix A = {anm} is invertible, the proof of Proposition 5.4 only depends on the
properties of the function ξ . The following lemma is in fact all we need.

Lemma 5.5. For every m ∈ N, d = 2,3, . . . and α ∈ R
d satisfying the assumptions of Proposi-

tion 5.4,

ξα
m(x,y) = |α|(m)

(αd)(m)

E[Zm
d |x,y], (5.14)

where Zd is defined as in Proposition 5.4.

Let θ = α + β . Assume the lemma is true. From (5.9) and (5.16) we know that, for every
n = 0,1, . . . and every s ∈ [0,1],

Qα,β
n (s,1) =

∑
m≤n

aθ
nm

(θ)(m)

α(m)

sm.

Thus from (5.14)

Qα
n(x,y) = E

[∑
m≤n

a|α|
nm

(|α|)(m)

αd (m)

Zm
d

∣∣x,y
]

= E
[
Qαd,|α|−αd

n (Zd,1)|x,y
]
,

which is what is claimed in Proposition 5.4.
Now we proceed with the proof of the lemma.

Proof of Lemma 5.5. The proof is by induction.
If d = 2, x, y ∈ [0,1],

ξ (α,β)
m (x, y) =

m∑
j=0

(
m

j

)
(α + β)(m)

(α)(j)(β)(m−j)

(xy)j [(1 − x)(1 − y)]m−j . (5.15)

Setting y = 1, the only positive addend in (5.15) is the one with j = m, so

ξ (α,β)
m (x,1) = (α + β)(m)

(α)(m)

zm. (5.16)
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Therefore, if θ = α + β , from (5.9) and (5.16), we conclude

ξα,β
m (x, y) =

m∑
j=0

(
m

j

)
(θ)(m)

(α)(j)(β)(m−j)

(xy)j [(1 − x)(1 − y)]m−j

(5.17)

= (θ)(m)

(α)(m)

∫
[0,1]

zmmx,y;α,β(dz).

Thus the proposition is true for d = 2.
To prove the result for any general d > 2, consider

ξα
m(x,y) =

m∑
md=0

(
m

md

)
(xdyd)md [(1 − xd)(1 − yd)]m−md

(|α|)m
(αd)(md)(|α| − αd)(m−md)

(5.18)

×
∑

m̃∈Nd−1:|m̃|=m−md

(
m − md

m̃

)
(|α| − αd)(m−md)∏d−1

i=1 (αi)(m̃i )

d−1∏
i=1

(x̃i ỹi )
m̃i ,

where x̃i = xi

1−xd
, ỹi = yi

1−yd
(i = 1, . . . , d − 1).

Now assume the proposition is true for d −1. Then the inner sum of (5.18) has a representation
like (5.14), and we can write

ξα
m(x,y) =

m∑
md=0

(
m

md

)
(xdyd)md [(1 − xd)(1 − yd)]m−md

× (|α|)m
(αd)(md)(|α| − αd)(m−md)

(5.19)

× (|α| − αd)(m−md)

(αd−1)(m−md)

E[Zm−md

d−1 |̃x, ỹ],

where the distribution of Zd−1, given x̃, ỹ, depends only on α̃ = (α1, . . . , αd−1). Now, set

X∗
d

1 − X∗
d

= xd

(1 − xd)
√

Zd−1
;

Y ∗
d

1 − Y ∗
d

= yd

(1 − yd)
√

Zd−1
,

and define the random variable

Dd := (1 − xd)(1 − yd)

(1 − X∗
d)(1 − Y ∗

d )
. (5.20)
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Then simple algebra leads to rewriting equation (5.19) as

ξα
m(x,y) = E

[
|α|(m)(DdZd−1)

m

(αd−1 + αd)(m)

(
m∑

md=0

(
m

md

)
(αd−1 + αd)(m)

(αd)(md)(αd−1)(m−md)

(5.21)

× (X∗
dX∗

d)md [(1 − X∗
d)(1 − Y ∗

d )]m−md

)∣∣∣x,y

]
.

Now the sum in (5.21) is of the form (5.15), with α = αd−1, β = αd , with m replaced by m−md

and the pair (x, y) replaced by (x∗
d , y∗

d ). Therefore we can use equality (5.17) to obtain

ξα
m(x,y) = E

[
(|α|)(m)

(αd)(m)

(DdZd−1)
m

E(�m
d |X∗

d, Y ∗
d )

∣∣x,y
]

(5.22)

= (|α|)(m)

(αd)(m)

E[Zm
d |x,y]

(the inner conditional expectation being a function of Zd−1) so the proof is complete. �

5.3. Connection with a multivariate product formula by Koornwinder and
Schwartz

For the individual, multivariate Jacobi polynomials orthogonal with respect to Dα: α ∈ R
d,

a product formula is proved in [21]. For every x ∈ 
(d−1), α ∈ R
d+ and n = (n1, . . . , nd−1): |n| =

n, these polynomials can be written as

Rα
n (x) =

d−1∏
j=1

[
R

αj ,Ej +2Nj
nj

(
xj

1 − ∑j−1
i=1 xi

)](
1 − xj

1 − ∑j−1
i=1 xi

)Nj

, (5.23)

where Ej = |α| − ∑j

i=1 αi and Nj = n − ∑j

i=1 ni . The normalization is such that Rα
n (ed) = 1,

where ed := (0,0, . . . ,1) ∈ R
d . For an account of such polynomials see also [15].

Theorem 5.6 (Koornwinder and Schwartz). Let α ∈ R
d satisfy αd > 1/2 and, for every

j = 1, . . . , d , αj ≥ ∑d
i=j+1 αi . Then, for every x,y ∈ 
(d−1) there exists a positive probabil-

ity measure dm∗
x,y;α such that, for every n ∈ N

d+,

Rα
n (x)Rα

n (y) =
∫


(d−1)

Rα
n (z)m∗

x,y;α(dz). (5.24)

Note that Theorem 5.6 holds for conditions on α which are stronger than our Proposition 5.4.
This is the price to pay for the measure m∗

x,y;α of Koornwinder and Schwartz to have an explicit
description (we omit it here), extending (5.6). It is possible to establish a relation between the
measure m∗

x,y;α(z) of Theorem 5.6 and the distribution of Zd of Proposition 5.4.
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Proposition 5.7. Let α obey the conditions of Theorem 5.6. Denote with mx,y;α the probability
distribution of Zd of Proposition 5.4 and m∗

x,y;α the mixing measure in Theorem 5.6. Then

m∗
x,y;α = mx,y;α.

Proof. From Proposition 5.4,

Qα
n(x,y) = ζ αd ,|α|−αd

n E
(
Rαd,|α|−αd

n (Zd)μx,y;α(Zd)
)
.

Now, by uniqueness,

Qα
n(x,y) =

∑
|m|=n

Qα
m(x)Qα

m(y)

(5.25)
=

∑
|m|=n

ζ α
mRα

m(x)Rα
m(y),

where ζ α
n := E(Rα

n )−2.

So, by Theorem 5.6 and because Rn(ed) = 1,

Qα
n(x,y) =

∫ ( ∑
|m|=n

ζ α
mRα

m(z)
)

dm∗
x,y;α(z)

(5.26)

=
∫

Qα
n(z, ed)dm∗

x,y;α(z),

where Qα
n are orthonormal polynomials. But we know that

Qα
n(z, ed) = ζ αd ,|α|−αd

n Rαd,|α|−αd
n (zd),

so

Qα
n(x,y) = ζ αd ,|α|−αd

n E
(
Rαd,|α|−αd

n (Zd)μx,y;α(Zd)
)

(5.27)
= ζαd ,|α|−αd

n E
(
Rαd,|α|−αd

n (Zd)μ∗
x,y;α(Zd)

)
.

Thus both μx,y;α(z) and μ∗
x,y;α(z) have the same Riesz–Fourier expansion

∞∑
n=0

Qα
n(x,y)Rαd,|α|−αd

n (z),

and this completes the proof. �
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6. Integral representations for Hahn polynomial kernels

Intuitively it is easy now to guess that a discrete integral representation for Hahn polynomial
kernels, similar to that shown by Proposition 5.4 for Jacobi kernels, should hold for any d ≥ 2.
We can indeed use Proposition 5.4 to derive such a representation. We need to reconsider for-
mula (3.1) for Hahn polynomial in the following version:

h̃α
n(r;N) :=

∫
Rα

n (x)Dα+r(dx) = h0
n(r;N)√

ζ α
n

, r ∈ N
(d−1), (6.1)

with the new coefficient of orthogonality

1

ωα
n,N

:= E[̃hα
n(R;N)]2 = N[n]

(|α| + r)(n)

1

ζ α
n

. (6.2)

Formula (6.1) is equivalent to

Rα
n (x) = (|α| + N)(n)

N[n]

∑
|m|=N

h̃α
n(m;N)

(
N

m

)
xm, α ∈ R

d,x ∈ 
(d−1) (6.3)

(see [15], Section 5.2.1 for a proof).

Proposition 6.1. For α ∈ R
d satisfying the same conditions as in Proposition 5.4, a representa-

tion for the Hahn polynomial kernels is

Hα
n (r, s) = ω

αd,|α|−αd

n,N

(|α| + N)(n)

N[n]
Er,s

[̃
hαd,|α|−αd

n (K;N)
]
,

(6.4)
n ≤ |r| = |s| = N,α ∈ R

d,

where the expectation is taken with respect to the measure

ur,s;α(k) :=
∫


(d−1)

∫

(d−1)

E

[(
r

k

)
Zk

d(1 − Zd)r−k
∣∣x,y

]
Dα+r(dx)Dα+s(dy), (6.5)

where Zd, for every x,y, is the random variable defined recursively as in Proposition 5.4.

Proof. From (3.3),

Hα
n (r, s) = (|α| + N)(n)

N[n]

×
∫


(d−1)

∫

(d−1)

Qα
n(x,y)Dα+r(dx)Dα+s(dy).
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Then (5.11) implies

Hα
n (r, s) = ζ

αd ,|α|−αd
n (|α| + N)(n)

N[n]

×
∫


(d−1)

∫

(d−1)

∫ 1

0
Rαd,|α|−αd

n (zd)mx,y;α(dzd)Dα+r(dx)Dα+s(dy),

so, by (6.3),

Hα
n (r, s) = ζαd ,|α|−αd

n

(
(|α| + N)(n)

N[n]

)2

×
∑
k≤N

h̃αd ,|α|−αd
n (k;N)

∫

(d−1)

∫

(d−1)

∫ 1

0

(
N

k

)
zk
d(1 − zd)N−k

× mx,y;α(dzd)Dα+r(dx)Dα+s(dy),

and the proof is complete. �

7. Positive-definite sequences and polynomial kernels

We can now turn our attention to the problem of identifying and possibly characterizing positive-
definite sequences with respect to the Dirichlet or Dirichlet multinomial probability distribution.
We will agree with the following definition which restricts the attention to multivariate positive-
definite sequences {ρn: n ∈ Z

d+}, which depend on n only via |n|.

Definition 7.1. For every d ≥ 2 and α ∈ R
d+, call a sequence {ρn}∞n=0 an α-Jacobi positive-

definite sequence (α-JPDS) if ρ0 = 1 and, for every x,y ∈ 
(d−1),

p(x,y) =
∞∑

n=0

ρnQ
α
n(x,y) ≥ 0. (7.1)

For every d ≥ 2, α ∈ R
d+ and N ∈ Z+, call a sequence {ρn}∞n=0 an (α,N)-Hahn positive-definite

sequence ((α,N)-HPDS) if ρ0 = 1 and, for every r, s ∈ N
(d−1),

pH (r, s) =
∞∑

n=0

ρnHn(r, s) ≥ 0. (7.2)

7.1. Jacobi positivity from the integral representation

A consequence of the product formulae (5.7) and (5.9) is a characterization of positive-definite
sequences for the Beta distribution.
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The following is a [0,1]-version of a theorem proved by Gasper with respect to Beta measures
on [−1,1].

Theorem 7.2 (Bochner [3], Gasper [8]). Let Dα,β be the Beta distribution on [0,1] with α ≤ β .
If either 1/2 ≤ α or α + β ≥ 2, then a sequence ρn is positive-definite for Dα,β if and only if

ρn =
∫

Rα,β
n (z)να,β(z) (7.3)

for a positive measure ν with support on [0,1]. Moreover, if

u(x) =
∞∑

n=0

ζ α,β
n ρnRn(x) ≥ 0

with
∞∑

n=0

ζ α,β
n |ρn| < ∞,

then

ν(A) =
∫

A

u(x)Dα,β(dx) (7.4)

for every Borel set A ⊆ [0,1].

We refer to [3,8] for the technicalities of the proof. To emphasize the key role played by (5.7),
just observe that the positivity of ν and (7.3) entails the representation

p(x, y) :=
∞∑

n=0

ζnρnR
α,β
n (x)Rα,β

n (y) =
∫ 1

0
u(z)mx,y;α,β(dz) ≥ 0,

and u(z) = p(z,1), whenever u(1) is absolutely convergent.
To see the full extent of the characterization, we recall, in a lemma, an important property of

Jacobi polynomials, namely, that two different systems of Jacobi polynomials are connected by
an integral formula if their parameters share the same total sum.

Lemma 7.3. For μ > 0,∫ 1

0
Rα,β

n

(
1 − (1 − x)z

)
Dβ,μ(dz) = Rα−μ,β+μ

n (x) (7.5)

and ∫ 1

0
Rα,β

n (xz)Dα,μ(dz) = ζ
α+μ,β−μ
n

ζ
α,β
n

Ra+μ,b−μ
n (x). (7.6)
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Proof. We provide here a probabilistic proof in terms of polynomial kernels Q
α,β
n (x, y), even

though the two integrals can also be view as a reformulation, in terms of the shifted polynomials
R

α,β
n , of known integral representations for the Jacobi polynomials {P a,b

n } on [−1,1] (a, b >

−1) (see, e.g., [2] ff. formulae 7.392.3 and formulae 7.392.4).
Let us start with (7.6). The moments of a Beta(α,β) distribution on [0,1] are, for every integer

m ≤ n = 0,1, . . .

E[Xm(1 − X)n−m] = α(m)β(n−m)

(α + β)(n)

.

Now, for every n ∈ N,∫ 1

0
ζ α,β
n Rα,β

n (xz)Dα,μ(dz) =
∫ 1

0
Qα,β

n (xz,1)Dα,μ(dz)

=
∑
m≤n

anm

(α + β)(m)

(α)(m)

∫ 1

0
(xz)mDα,μ(dz)

(7.7)

=
∑
m≤n

anm

(α + β)(m)

(α)(m)

(α)(m)

(α + μ)(m)

xm

= ζ α+μ,β−μ
n Ra+μ,b−μ

n (x),

and this proves (7.6).
To prove (7.5), simply remember (see, e.g., [15], Section 3.1) that

Rα,β
n (0) = (−1)n

α(n)

β(n)

and that

Rα,β
n (x) = R

β,α
n (1 − x)

R
β,α
n (0)

.

So we can use (7.6) to see that∫ 1

0

R
β,α
n ((1 − x)z)

R
β,α
n (0)

Dβ,μ(dz) = (−1)n
α(n)

β(n)

ζ
β+μ,α−μ
n

ζ
β,α
n

Rβ+μ,α−μ
n (1 − x)

(7.8)
= ζ α−μ,β+μ

n (x),

and the proof is complete. �

Lemma 7.3 completes Theorem 7.2:

Corollary 7.4. Let α ≤ β with α + β ≥ 2. If a sequence ρn is positive-definite for Dα,β, then it
is positive-definite for Dα+μ,β−μ, for any 0 ≤ μ ≤ β .
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Proof. By Theorem 7.2 ρn is positive-definite for Dα,β if and only if∑
n

ζ α,β
n ρnR

α,β
n (x) ≥ 0.

So (7.6) implies also ∑
n

ζ α,β
n ρn

ζ
α+μ,β−μ
n

ζ
α,β
n

Rα+μ,β−μ
n (x) ≥ 0.

The case for Dα−μ,β+μ is proved similarly, but using (7.5) instead of (7.6). �

For d > 2, Proposition 5.4 leads to a similar characterization of all positive-definite sequences,
for the Dirichlet distribution, which are indexed only by their total degree, that is, all sequences
ρn = ρ|n|.

Proposition 7.5. Let α ∈ Rd satisfy the same conditions as in Proposition 5.4. A sequence {ρn =
ρn: n ∈ N} is positive-definite for the Dirichlet(α) distribution if and only if it is positive-definite
for Dc|α|,(1−c)|α|, for every c ∈ (0,1).

Proof. Sufficiency. First notice that, since

Qα,β
n (x, y) = Qβ,α

n (1 − x,1 − y), (7.9)

then a sequence is positive-definite for Dα,β if and only if it is positive definite for Dβ,α , so that
we can assume, without loss of generality, that c|α| ≤ (1 − c)|α|. Let α = (α1 ≥ α2 ≥ · · · ≥ αd)

satisfy the conditions of Proposition 5.4 (again, the decreasing order is assumed for simplicity)
and let

∞∑
n=0

ρnQ
c|α|,(1−c)|α|
n (u, v) ≥ 0, u, v ∈ [0,1].

If αd > c|α| then Corollary 7.4, applied with μ = αd − c|α| implies that

∞∑
n=0

ρnQ
αd,|α|−αd
n (u, v) ≥ 0

so by Proposition 5.4

0 ≤
∫ [ ∞∑

n=0

ρnQ
αd,|α|−αd
n (zd,1)

]
mx,y;α(dzd) =

∞∑
n=0

ρnQ
α
n(x,y), x, y ∈ 
(d−1). (7.10)

If αd < c|α|, then apply Corollary 7.4 with μ = |α|(1 − c) − αd to obtain

∞∑
n=0

ρnQ
|α|−αd ,αd
n (u, v) =

∞∑
n=0

ρnQ
αd,|α|−αd
n (1 − u,1 − v) ≥ 0,
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which implies again (7.10), thus {ρn} is positive-definite for Dα .
Necessity. For I ⊆ {1, . . . , d}, the random variables

XI =
∑
j∈I

Xj ; YI =
∑
j∈I

Yj

have a Beta(αI , |α| − αI ) distribution, where αI = ∑
j∈I αj . Since

E
(
Qα

n(X,Y)|YI = z
) = QαI

n (z),

then for arbitrary x, y ∈ 
(n−1),

∞∑
n=0

ρnQ
α
n(x,y) ≥ 0

implies

QαI ,|α|−αI
n (x, y) = Q|α|−αI ,αI

n (1 − x,1 − y) ≥ 0.

Now we can apply once again Corollary 7.4 with μ = ±(c|α| − αI ) (whichever is positive) to
obtain, with the possible help of (7.9),

∞∑
n=0

ρnQ
c|α|,(1−c)|α|
n (u, v) ≥ 0, u, v ∈ [0,1].

�

8. A probabilistic derivation of Jacobi positive-definite
sequences

In the previous sections we have found characterizations of Dirichlet positive-definite sequences
holding only if the parameters satisfied a particular set of constraints. Here we show some suffi-
cient conditions for a sequence to be α-JPDS, not requiring any constraints on α. Thus we will
identify a convex set of Jacobi positive-definite sequences satisfying the property (P1), as shown
in Proposition 8.1. This is done by exploiting the probabilistic interpretation of the orthogonal
polynomial kernels. Let us reconsider the function ξα

m. The bivariate measure

B Dα,m(dx,dy) := ξα
m(x,y)Dα(dx)Dα(dy), (8.1)

so ξα
m(x,y) has the interpretation as a (exchangeable) copula for the joint law of two vectors

(X,Y ), with identical Dirichlet marginal distribution, arising as the limit distribution of colors
in two Pólya urns with m random draws in common. Such a joint law can be simulated via the
following Gibbs sampling scheme:

(i) Generate a vector X of Dirichlet(α) random frequencies on d points.
(ii) Conditional on the observed X = x, sample m i.i.d. observations with common law x.



Dirichlet polynomial kernels 585

(iii) Given the vector l ∈ m
(d−1), which counts how many observations in the sample at
step (ii) are equal to 1, . . . , d , take Y as conditionally independent of X and with distribution
Dα+l(dy).

The bivariate measure B Dα,m and its infinite-dimensional extension has found several applica-
tions in Bayesian statistics (e.g., by [23]), but no connections were made with orthogonal kernel
and canonical correlation sequences. A recent important development of this direction is in [4].

Now, let us allow the number m of random draws in common to be a random number M , say,
assume that the probability that the two Pólya urns have M = m draws in common is dm, for
any probability distribution {dm: m = 0,1,2, . . .} on N. Then we obtain a new joint distribution,
with identical Dirichlet marginals and copula given by

B Dα,d(dx,dy) = E[B Dα,M(dx,dy)] =
∞∑

m=0

dmξα
m(x,y)Dα(dx)Dα(dy). (8.2)

The probabilistic construction has just led us to prove the following:

Proposition 8.1. Let {dm: m = 0,1, . . .} be a probability measure on {0,1,2, . . .}. For every
|θ | ≥ 0, the sequence

ρn =
∑
m≥n

m[n]
(|θ | + m)(n)

dm, n = 0,1,2, . . . , (8.3)

is α-JPDS for every d and every α ∈ R
d such that |α| = |θ |.

Proof. Note that

ρ0 =
∞∑

m=0

dm = 1

is always true for every probability measure {dm}.
Now reconsider the form (2.7) for the (positive) function ξα

m: we can rewrite (8.2) as

0 ≤
∞∑

m=0

dmξα
m(x,y)

=
∞∑

m=0

dm

∑
n≤m

m[n]
(|θ | + m)(n)

Qα
n(x,y)

(8.4)

=
∞∑

n=0

[∑
m≥n

m[n]
(|θ | + m)(n)

dm

]
Qα

m(x,y)

=
∞∑

n=0

ρnQ
α
m(x,y),
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and since (8.4) does not depend on the dimension of α, then the proposition is proved for Dα. �

Example 8.2. Take dm = δml , the probability assigning full mass to l. The corresponding
positive-definite sequence is

ρn(m) =
∑
m≥n

m[n]
(|θ | + m)(n)

δml = l[n]
(|θ | + l)(n)

I(l ≥ n). (8.5)

and by Proposition 2.1,

∞∑
n=0

ρn(m)Qα
n(x,y) =

l∑
n=0

l[n]
(|θ | + l)(n)

Qα
n(x,y) = ξα

l (x,y) ≥ 0. (8.6)

Thus ρn(m) forms the sequences of canonical correlations induced by the bivariate probability
distribution ξα

l (x,y)Dα(x)Dα(y).

Example 8.3. Consider, for every t ≥ 0, the probability distribution

dm(t) =
∑
n≥n

a|α|
mne−(1/2)n(n+|α|−1)t , m = 0,1,2 . . . , (8.7)

where (a
|α|
mn) is the invertible triangular system (2.6) defining the polynomial kernels Qα

n in
Proposition 2.1. Since the coefficients of the inverse system are exactly of the form

m[n]
(|θ | + m)(n)

, m,n = 0,1,2, . . . ,

then

ρn(t) = e−(1/2)n(n+|α|−1)t

is, for every t , a positive-definite sequence. In particular, it is the one characterizing the neutral
Wright–Fisher diffusion in population genetics, mentioned in Section 1.1, whose generator has
eigenvalues − 1

2n(n + |α| − 1) and orthogonal polynomial eigenfunctions.
The distribution (8.7) is the so-called coalescent lineage distribution (see [12,13]), that is, the

probability distribution of the number of lineages surviving up to time t back in the past, when
the total mutation rate is |α|, and the allele frequencies of d phenotypes in the whole population
are governed by A|α|,d . More details on the connection between coalescent lineage distributions
and Jacobi polynomials can be found in [14].

Example 8.4 (Perfect independence and dependence). Extreme cases of perfect dependence
or perfect independence can be obtained from Example 8.3, when we take the limit as t → 0
or t → ∞, respectively. In the former case, dm(0) = δm∞ so that ρn(0) = 1 for every n. The
corresponding bivariate distribution is such that

E0
(
Qn(Y)|X = x

) = Qn(x)
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so that, for every square-integrable function

f =
∑

n

cnQn,

we have

E0
(
f (Y)|X = x

) =
∑

n

cnQn(x) = f (x);

that is, B Dα,{0} is, in fact, the Dirac measure δ(y − x).

In the latter case, dm(∞) = δm0 so that ρn(∞) = 0 for every n > 1 and E0(Qn(Y)|X = x) =
E[Qn(Y)], implying that

E∞
(
f (Y)|X = x

) = E[f (Y)],
that is, X,Y are stochastically independent.

8.1. The infinite-dimensional case

Proposition 8.1 also extends to Poisson–Dirichlet measures. The argument and construction are
the same, once one replaces ξα

m with ξ
↓|θ |,∞
m . We only need to observe that because the functions(

m

l

)
�(l)[x, l],

forming the terms in ξ
↓|θ |,∞
m (see (4.2)), are probability measures on m


↓∞, then the kernel

ξ↓|θ |,∞
m (x,y)D

↓
|θ |,∞(dy)

defines, for every x, a proper transition probability function on 

↓∞, allowing for the Gibbs

sampling interpretation as in Section 8, but are modified as follows:

(i) Generate a point X in 

↓∞ with distribution PD(|θ |).

(ii) Conditional on the observed X = x, sample a partition of m with distribution function(
m
l

)
�(l)[x, l].

(iii) Conditionally on the vector l, counting the cardinalities of the blocks in the partition
obtained at step (ii), take Y as stochastically independent of X and with distribution(

m
l

)
�(l)[x, l]PDθ (dy)

ESF|θ |(l)
.

Thus the proof of the following statement is now obvious.

Proposition 8.5. Let {dm: m = 0,1, . . .} be a probability measure on {0,1,2, . . .}. For every
|θ | ≥ 0, the sequence

ρn =
∑
m≥n

m[n]
(|θ | + m)(n)

dm, n = 0,1,2, . . . , (8.8)
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is a positive-definite sequence for the Poisson–Dirichlet point process with parameter |θ |.

9. From positive-definite sequences to probability measures

In the previous section we have seen that it is possible to map probability distributions on Z+ to
Jacobi positive-definite sequences. It is natural to ask if, on the other way around, JPDSs {ρn}
can be mapped to probability distributions {dm} on Z+, for every m = 0,1, . . . , via the inversion

dm(ρ) =
∞∑

n=m

a|α|
nmρn. (9.1)

For this to happen we only need dm(ρ) to be non-negative for every m as it is easy to check
that

∑
m dm(ρ) = 1 always. In this section we give some sufficient conditions on ρ for dm(ρ) to

be non-negative for every m = 0,1, . . . , and an important counterexample showing that not all
JPDSs can be associated to probabilities. We restrict our attention to the Beta case (d = 2) as we
now know that, if associated to a probability on Z+, any JPDS for d = 2 is also JPDS for d > 2.

Suppose ρ = {ρn}∞n=0 satisfies

pρ(x, y) :=
∞∑

n=0

ρnQ
α,β
n (x, y) ≥ 0 (9.2)

and, in particular,

pρ(x) := pρ(x,1) ≥ 0. (9.3)

Proposition 9.1. If all the derivatives of pρ(x) exist, then dm(ρ) ≥ 0 for every m ∈ Z+ if and
only if all derivatives of pρ(x) are non-negative.

Proof. Rewrite dm(ρ) as

dm(ρ) =
∞∑

v=0

a
|θ |
v+m,mρv+m

(9.4)

= (|θ | + m)(m)

m!
∞∑

v=0

a
|θ |+2m
v0 ρv+m, m = 0,1, . . . .

This follows from the general identity

a
|θ |
v+j,u+j = a

|θ |+2j
v,u

u!
(u + j)! (|θ | + u + j)(j). (9.5)

Now consider the expansion of Jacobi polynomials. We know that

ζ α,β
n Rα,β

n (x)Rα,β
n (y) = Qα,β

n (x, y)
(9.6)

=
n∑

m=0

a|θ |
nmξα,β

m (x, y).
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Since R
α,β
n (1) = 1 and ξ

α,β
m (0,1) = δm0, then

ζ α,β
n Rα,β

n (0) = Qα,β
n (0,1) = a

|θ |
n0 . (9.7)

Therefore (9.4) becomes

dm(ρ) = (|θ | + m)(m)

m!
∞∑

v=0

ζ α+m,β+m
v Rα+m,β+m

v (0)ρv+m, m = 0,1, . . . . (9.8)

Now apply, for example, [16], (4.3.2), to deduce

dm

dym
[Dα+m,β+m(y)Rα+m,β+m

v (y)]
(9.9)

= (−1)m
θ(2m)

α(m)

R
α,β
v+m(y)Dα,β(y).

For m = 1,

ρv+1 =
∫ 1

0
pρ(x)R

α,β

v+1(x)Dα,β(x)dx

= − α

|θ |(2)

∫ 1

0
pρ(x)

[
d

dx
Rα+1,β+1

v (x)Dα+1,β+1(x)

]
dx

= α

|θ |(2)

∫ 1

0

(
d

dx
pρ(x)

)
Rα+1,β+1

v (x)Dα+1,β+1(x)dx.

The last equality is obtained after integrating by parts. Similarly, denote

p(m)
ρ (x) := dm

dxm
pρ(x), m = 0,1, . . . .

It is easy to prove that

ρv+m = m!α(m)

|θ |(2m)

∫ 1

0
p(m)

ρ (x)Rα+m,β+m
v (x)Dα+m,β+m(x)dx, (9.10)

so we can write

dm(ρ) = α(m)

|θ |(m)

p(m)
ρ (0).

Thus if p
(m)
ρ ≥ 0, then dm(ρ) is, for every m, non-negative and this proves the sufficiency.

For the necessity, assume, without loss of generality, that {dm(ρ): m ∈ Z+} is a probability
mass function on Z+. Then its probability generating function (p.g.f.) must have all derivatives
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non-negative. For every 0 < γ < |θ |, the p.g.f. has the representation

ϕ(s) =
∞∑

m=0

dm(ρ)sm

= Eγ,|θ |−γ

[ ∞∑
m=0

dm(ρ)ξ
γ,|θ |−γ
m (sZ,1)

]
(9.11)

= Eγ,|θ |−γ

[ ∞∑
m=0

ρnζ
γ,|θ |−γ
n R

γ,|θ |−γ
n (sZ)

]
= Eγ,|θ |−γ [pρ(sZ)],

where Z is a Beta(γ, |θ |−γ ) random variable. Here the second equality follows from the identity

|θ |(m)

α(m)

xm = ξα,β
m (x,1), α,β > 0, (9.12)

and the third equality comes from (9.6).
So, for every k = 0,1, . . . ,

0 ≤ dk

dsk
ϕ(s) = Eγ,|θ |−γ

[
Zkp(k)

ρ (sZ)
]

(9.13)

for every γ ∈ (0, |θ |). Now, if we take the limit as γ → |θ |, Z →d 1 so, by continuity,

Eγ,|θ |−γ

[
Zkp(k)

ρ (sZ)
] →

γ→|θ |p
(k)(s),

preserving the positivity, which completes the proof. �

9.1. A counterexample

In Gasper’s representation (Theorem 7.2), every positive-definite sequence is a mixture of Ja-
cobi polynomials, normalized with respect to their value at 1. It is natural to ask whether these
extreme points lend themselves to probability measures on Z+. A positive answer would imply
that all positive-definite sequences, under Gasper’s conditions, are coupled with probabilities on
the integers. Rather surprisingly, the answer is negative.

Proposition 9.2. Let α,β > 0 satisfy Gasper’s conditions. The function

dm =
∑

n≥|m|
a|θ |
nmRα,β

n (x), m = 0,1,2, . . . ,

is not a probability measure.
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Proof. Rewrite

φx(s) =
∞∑

n=0

Rα,β
n (x)

n∑
m=0

a|θ |
nmsm

(9.14)

= E

∞∑
n=0

ζ α,β
n Rα,β

n (x)Rα,β
n (Ws),

where W is a Beta(α,β) random variable. This also shows that, for every x,

dDα,β(y)

dy

∞∑
n=0

ζ α,β
n Rα,β

n (x)Rα,β
n (y) = δx(y),

that is, the Dirac measure putting all its unit mass on x (see also Example 8.4).
Now, if φx(s) is a probability generating function, then, for every positive L2 function g, any

mixture of the form

q(s) =
∫ 1

0
g(x)φx(s)

xα−1(1 − x)β−1

B(α,β)
dx

(9.15)

=
∫ 1

0
g(ws)

wα−1(1 − w)β−1

B(α,β)
dw

must be a probability generating function; that is, it must have all derivatives positive. However,
if we choose g(x) = e−λx, then we know that, g being completely monotone, the derivatives of
q will have alternating sign, which proves the claim. �

10. Positive-definite sequences in the Dirichlet multinomial
distribution

In this section we aim to investigate the relationship existing between JPDS and HPDS. In par-
ticular, we wish to understand when (P2) is true, that is, when a sequence is both HPDS and
JPDS for a given α. It turns out that, by using the results in Sections 3 and 6, it is possible to
define several (sometimes striking) mappings from JPDS and HPDS and vice versa, but we could
prove (P2) only for particular subclasses of positive-definite sequences. In Proposition 10.4 we
prove that every JPDS is a limit of (P2) sequences. Later, in Proposition 10.8, we will identify
another (P2) family of positive-definite sequences, as a proper subfamily of the JPDSs, derived
in Section 8 as the image, under a specific bijection, of a probability on Z+.

The first proposition holds with no constraints on α or d.

Proposition 10.1. For every d and α ∈ R
d+, let ρ = {ρn} be a α-JPDS. Then

ρn

N[n]
(|α| + N)(n)

, n = 0,1,2, . . . , (10.1)
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is a positive-definite sequence for DMα,N , for every N = 1,2, . . . .

Proof. From Proposition 3.1, if
∞∑

n=0

ρnQ
α
n(x,y) ≥ 0,

then for every r, s ∈ N
d : |r| = |s| = N ,

∞∑
n=0

ρn

∫ ∫
Qα

n(x,y)Dα+r(dx)Dα+s(dy) =
∞∑

n=0

ρn

N[n]
(|α| + N)(n)

Hα
n (r, s) ≥ 0.

�

Example 10.2. Consider the JPDS given in Example 8.3 from population genetics; ρn(t) =
e−(1/2)tn(n+|α|−1), t ≥ 0. The HPDS

ρn(t |N) = N[n]
(|α| + N)(n)

e−(1/2)tn(n+|α|−1) (10.2)

describes the survival function of the number of non-mutant surviving lineages at time t in the
past, in a coalescent process with neutral mutation, starting with N surviving lineages at time 0
(see [13] for more details and references).

Two important HPDSs are given in the following lemma.

Lemma 10.3. For every d, every m ≤ N and every α ∈ R
d+, both sequences{

m[n]
(|α| + m)(n)

(|α| + N)(n)

N[n]

}
n∈Z+

(10.3)

and {
m[n]

(|α| + m)(n)

}
n∈Z+

(10.4)

are α-HPDSs for DMα,N .

Proof. From Proposition 3.5, by inverting (3.19) we know that, for m = 0, . . . ,N

0 ≤ χH,α
m =

m∑
n=0

m[n]
(|α| + m)(n)

(|α| + N)(n)

N[n]
Hα

n ,

so {
m[n]

(|α| + m)(n)

(|α| + N)(n)

N[n]

}
is a HPDS.
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Now let ρ̃n be a JPDS. By Proposition 10.1, the sequence{
ρ̃n

N[n]
(|α| + N)(n)

}
is α-HPDS. By multiplication,{

ρ̃n

N[n]
(|α| + N)(n)

m[n]
(|α| + m)(n)

(|α| + N)(n)

N[n]

}
=

{
ρ̃n

m[n]
(|α| + m)(n)

}
is HPDS as well. This also implies that {

m[n]
(|α| + m)(n)

}
is HPDS (to convince oneself, take (ρ̃n) as in Example 8.3 or in Example 8.4, and take the limit
as t → 0 or z → 1, respectively). �

We are now ready for our first result on (P2)-sequences.

Proposition 10.4. For every d and α ∈ R
d+, let ρ = {ρn} be a α-JPDS. Then there exists a

sequence {ρN
n : n ∈ Z+}∞N=0, such that:

(i) for every n,

ρn = lim
N→∞ρN

n ;

(ii) for every N, the sequence {ρN
n } is both HPDS and JPDS.

Proof. We show the proof for d = 2. For d > 2 the proof is essentially the same, with all distri-
butions obviously replaced by their multivariate versions. Take I, J two independent DM(α,β),N

and DM(α,β),M random variables. As a result of de Finetti’s representation theorem, conditionally
on the event {limN→∞( I

N
J
M

) = (x, y)}, the (I, J ) are independent binomial r.v.s with parameter
(N,x) and (M,y), respectively.

Let f : [0,1]2 → R be a positive continuous function. The function

BN,Mf (x, y) := E

[
f

(
I

N
,

J

M

)∣∣x, y

]
, N,M = 0,1, . . . ,

is positive, as well, and, as N,M → ∞,

BN,Mf (x, y)−→f (x, y).

Now take

pρ(x, y) =
∑
n

ρnQ
α,β
n (x, y) ≥ 0
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for every x, y ∈ [0,1]. Then, for X,Y independent Dα,β,

ρn = E[Qα,β
n (X,Y )pρ(X,Y )]

= E

[
Qα,β

n (X,Y ) lim
N→∞BN,Npρ(X,Y )

]
= lim

N→∞ E[Qα,β
n (X,Y )BN,Npρ(X,Y )]

= lim
N→∞ρN

n ,

where

ρN
n := E[Qα,β

n (X,Y )BN,Npρ(X,Y )].
But BN,Npρ is positive, so (i) is proved.

Now rewrite

ρN
n =

∫ 1

0

∫ 1

0

N∑
i=1

N∑
j=1

pρ

(
i

N
,

j

N

)
Qα,β

n (x, y)

(
N

i

)
xi(1 − x)N−i

×
(

N

j

)
yj (1 − y)N−jDα(dx)Dα(dy)

(10.5)

=
N∑

i=1

N∑
j=1

DMα,N (i)DMα,N (j)pρ

(
i

N
,

j

N

)
E[Qα,β

n (X,Y )|i, j ]

= N[n]
(α + β + N)(n)

E

[
pρ

(
I

N
,

J

N

)
Hα,β

n (I, J )

]
for I, J are independent DM(α,β),N random variables. The last equality follows from (3.3).
Since pρ is positive, from (10.5), it follows that{

ρN
n

(α + β + N)(n)

N[n]

}
is, for every N, α-HPDS. But by Lemma 10.3, we can multiply every term of the sequence by
the HPDS (10.4), where we set m = N, to obtain (ii). �

The next proposition shows some mappings from Hahn to Jacobi PDSs. It is, in some sense,
a converse of Proposition 10.1 under the usual (extended) Gasper constraints on α.

Proposition 10.5. If α satisfies the conditions of Proposition 5.4, let {ρn} be α-HPDS for some
integer N . Then both {ρn} and (10.1) are positive definite for Dα .
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Proof. If
∞∑

n=0

ρnH
α
n (r, s) ≥ 0

for every r, s ∈ N
(d−1), then Proposition 3.2 implies that

∞∑
n=0

ρnH
α1,|α|−α1
n (r1,N) ≥ 0.

Now consider the Hahn polynomials re-normalized so that

h̃α1,|α|−α1
n (r;N) =

∫ 1

0

Q
α1,|α|−α1
n (x,1)

Q
α1,|α|−α1
n (1,1)

Dα+r (dx).

Then it is easy to prove that

h̃α1,|α|−α1
n (N;N) = 1

and

E
[̃
hα1,|α|−α1

n (R;N)
]2 = N[n]

(|α| + N)(n)

1

ζ
α1,|α|−α1
n

, n = 0,1, . . .

(see also [15], (5.65)). Hence

0 ≤
∞∑

n=0

ρnH
α1,|α|−α1
n (r1,N)

=
∞∑

n=0

ρn

(|α| + N)(n)

N[n]
ζ α1,|α|−α1
n h̃α1,|α|−α1

n (r1;N) =: fN(r).

So, for every n,

ρn = E
[
fN(R)̃hα1,|α|−α1

n (R;N)
]

(10.6)

=
∫ 1

0
φN(x)Rn(x)Dα(dx),

where

φN(x) =
N∑

r=0

(
N

r

)
xr(1 − x)N−rfN(r) ≥ 0,

and hence, by Gasper’s theorem (Theorem 7.2), ρn is (α1, |α| − α1)-JPDS. Therefore, by Propo-
sition 7.5, it is also α-JPDS. Finally, from the form of ξα

m, we know that

r[n]/(|α| + r)(n) = ξ̂ α
N (n)
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is α-JPDS; thus (10.1) is JPDS. �

Remark 10.6. Notice that
r[n]

(|α| + r)(n)

is itself a positive-definite sequence for Dα. This is easy to see directly from the representa-
tion (2.7) of ξα

m (we will consider more of it in Section 8).
Since products of positive-definite sequences are positive definite-sequences, then we have, as

a completion to all previous results,

Corollary 10.7. If {ρn} is positive-definite for Dα , then (10.1) is positive-definite for both Dα

and DMα .

10.1. From Jacobi to Hahn positive-definite sequences via discrete
distributions

We have seen in Proposition 10.5 that Jacobi positive-definite sequences {ρn} can always be
mapped to Hahn positive-definite sequences of the form {ρn

N[n]
(|α|+N)(n)

}. We now show that a
JPDS {ρn} is also HPDS when it is the image, via (8.3), of a particular class of discrete probability
measures.

Proposition 10.8. For every N and |θ | > 0, let ρ(N) = {ρ(N)
n : n ∈ Z+} be of the same form (8.3)

for a probability mass function d(N) = {dm: m ∈ Z+}, such that dl = 0 for every l > N. Then
ρ(N) is α̃-JPDS if and only if it is α̃-HPDS for every d and α ∈ R

d+, such that |α| = |θ |.

Proof. By Lemma 10.3, the sequence {
m[n]

(|α| + m)(n)

}
is HPDS (to convince oneself, take ρ̃ as in Example 8.3 or in Example 8.4, and take the limit as
t → 0 or z → 1, resp.).

Now replace m with a random M with distribution given by d(N). Then

0 ≤ E

[
m∑

n=0

M[n]
(|α| + M)(n)

Hα
n

]

=
N∑

n=0

(
N∑

m=n

d(N)
m

M[n]
(|α| + M)(n)

)
Hα

n ,

which proves the “Hahn” part of the claim. The “Jacobi” part is obviously proved by Proposi-
tion 8.3. �
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