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We consider the problem of simultaneous variable selection and estimation in additive, partially linear mod-
els for longitudinal/clustered data. We propose an estimation procedure via polynomial splines to estimate
the nonparametric components and apply proper penalty functions to achieve sparsity in the linear part. Un-
der reasonable conditions, we obtain the asymptotic normality of the estimators for the linear components
and the consistency of the estimators for the nonparametric components. We further demonstrate that, with
proper choice of the regularization parameter, the penalized estimators of the non-zero coefficients achieve
the asymptotic oracle property. The finite sample behavior of the penalized estimators is evaluated with
simulation studies and illustrated by a longitudinal CD4 cell count data set.
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1. Introduction

In the past two decades, there has been a considerable amount of research to study additive,
partially linear models (APLM); see Opsomer and Ruppert [27], Härdle, Liang and Gao [12],
Li [15], Fan and Li [9], Liang et al. [18], Liu, Wang and Liang [21], Ma and Yang [24], among
others. APLMs meet three fundamental aspects (Stone [29]) of statistical models: flexibility,
dimensionality and interpretability. In this paper, we consider the APLMs for clustered and lon-
gitudinal data.

Let {(Yij ,Xij ,Zij ),1 ≤ i ≤ n,1 ≤ j ≤ mi} be the j th observation for the ith subject or cluster,
where Yij is the response variable, Xij = (1,Xij1, . . . ,Xij (d1−1))

T is a d1-vector of covariates,
and Zij = (Zij1, . . . ,Zijd2)

T is a d2-vector of covariates. An APLM for this kind of data is given
by

Yij = μij + εij = XT
ijβ +

d2∑
l=1

ηl(Zijl) + εij , j = 1, . . . ,mi, i = 1, . . . , n, (1)

where β is a d1-dimensional regression parameter, and ηl , l = 1, . . . , d2, are unknown but smooth
functions. We assume εi = (εi1, . . . , εimi

)T ∼ N(0,�i ). For identifiability, both the parametric
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and nonparametric components must be centered, that is, Eηl(Zijl) ≡ 0, l = 1, . . . , d2, EXijk =
0, k = 1, . . . , d1. When d2 = 1, model (1) is simplified to be the partially linear model (PLM) in
Lin and Carroll [20]. Model (1) retains the merits of additive models, while it is more flexible than
purely additive models by allowing a subset of the covariates to be discrete and/or unbounded.
When mis and �is are the same for all individuals, Carroll et al. [3] considered the efficient
estimation of β in model (1) using local linear smooth backfitting. In this paper we consider a
more general scenario that both mi and �i may vary across subjects or experimental units to
allow irregular measurements for individuals. Our goal is to simultaneously select significant
variables and efficiently estimate the unknown components for model (1). This is challenging
due to the issue of “curse of dimensionality” and the additional complexity of the correlation
structures (Wang [34]) introduced by repeated measurements.

To alleviate the effect of the “curse of dimensionality,” more parsimonious models become
desirable in practice; see Fan [10], Hall, Müller and Wang [11] and Wang et al. [32]. Variable
selection is fundamental to high-dimensional statistical modeling. In the absence of prior knowl-
edge, a large number of variables may be included at the initial stage of modeling in order to
reduce possible model bias. This may lead to a complicated model including many insignificant
variables, resulting in less predictive powers and difficulty in interpretation. There is an extensive
literature on variable selection via various approaches, for example, the classical information cri-
teria such as the Akaike information criterion (AIC) and Bayesian information criterion (BIC)
in Yang [40], the least absolute shrinkage and selection operator (LASSO) proposed in Tibshi-
rani [30,31], the non-negative garrote in Yuan and Liu [41], the difference convex algorithm in
Wu and Liu [36], the combination of L0 and L1 penalties in Liu and Wu [22], and the nonpara-
metric independence screening procedure in Fan, Feng and Song [6].

Many traditional variable selection procedures in use, including stepwise selection, AIC or
BIC, can be expensive in computation and ignore stochastic errors inherited in the variable se-
lection process. Penalized least squares approaches have gained popularity in recent years to au-
tomatically and simultaneously select significant variables; for example, Antoniadis [1] proposed
the hard thresholding penalty which enables best subset selection and stepwise deletion in certain
cases. The LASSO (Tibshirani [30,31]) is one of the most popular shrinkage estimators, but it
has some deficiencies (Meinshausen and Bühlmann [26]). Fan and Li [7] proposed the smoothly
clipped absolute deviation penalty (SCAD), which achieves an “oracle” property in the sense that
it performs as well as if the subset of significant variables were known in advance. The SCAD-
penalized selection procedures were illustrated in Fan and Li [7] for parametric models; Cai et al.
[2] and Fan and Li [8] for survival models; Li and Liang [16] for generalized varying-coefficient
models; Liang and Li [17] and Ma and Li [25] for measurement error models; Xue [37] for pure
additive models; and Xue, Qu and Zhou [38] for generalized additive models with correlated
data.

We propose a model selection method for APLMs with repeated measures by penalizing ap-
propriate estimating functions. We approximate nonparametric components by spline functions
and obtain asymptotic normality for the coefficient estimators via one step least squares. The
proposed approach is computationally expedient and easy to implement, in contrast to the back-
fitting approach in Carroll et al. [3]. Moreover, it avoids the pitfall of the backfitting algorithms
caused by dependence between covariates. Furthermore, we show that the estimator can correctly
select the nonzero coefficients with probability converging to 1 and the

√
n-consistent estimators
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of the non-zero coefficients can perform as well as an oracle estimator in the sense of Fan and
Li [7] with a suitable choice of penalty function.

The paper is organized as follows. In Section 2, we introduce the penalized polynomial spline
estimating method. Section 3 provides the asymptotic properties of the proposed estimators, in-
cluding the consistency and oracle property of the parametric components, as well as the rate of
the L2-convergence of the nonparametric components. In Section 4, we discuss some implemen-
tation issues of the proposed procedure. Simulation studies are presented in Section 5. Section 6
illustrates the application using longitudinal CD4 cell-count data. We conclude with a discussion
in Section 7. Technical proofs are presented in the Appendix.

2. Penalized spline estimation

For simplicity, denote vectors Yi = (Yi1, . . . , Yimi
)T and μ

i
= (μi1, . . . ,μimi

)T, 1 ≤ mi ≤ M ,

1 ≤ i ≤ n. Similarly, let Xi = {(Xi1, . . . ,Ximi
)T}mi×d1 and Zi = {(Zi1, . . . ,Zimi

)T}mi×d2 . As-
sume that Zijl has the same distribution as Zl , which is distributed on a compact interval
[al, bl],1 ≤ l ≤ d2, and, without loss of generality, we take all intervals [al, bl] = [0,1],1 ≤ l ≤
d2. Let ηl(Zil) = {ηl(Zi1l ), . . . , ηl(Zimi l)}T, for l = 1, . . . , d2. The mean function in model (1)
can be written in matrix notation as μ

i
= Xiβ +∑d2

l=1 ηl(Zil), which is a semiparametric exten-
sion of the marginal model in Liang and Zeger [19] with an identity link.

As in Wang, Carroll and Lin [35], we allow X and Z to be dependent. Let Vi = Vi (Xi ,Zi )

be the assumed “working” covariance of Yi , where Vi = A1/2
i RiA

1/2
i , Ai denotes a mi × mi

diagonal matrix that contains the marginal variances of Yij , and Ri is an invertible working
correlation matrix. Throughout, we assume that Vi depends on a nuisance finite dimensional
parameter vector α.

Following Wang and Yang [33], we approximate the nonparametric functions ηl’s by polyno-
mial splines. Let Gn be the space of polynomial splines of degree q ≥ 1. We introduce a sequence
of spline knots

t−q = · · · = t−1 = t0 = 0 < t1 < · · · < tN < 1 = tN+1 = · · · = tN+q+1,

where N ≡ Nn is the number of interior knots, and N increases when sample size n increases
with the precise order given in Assumption (A5). Then Gn consists of functions � satisfying
(i) � is a polynomial of degree q on each of the subintervals Is = [ts , ts+1), s = 0, . . . ,Nn − 1,
INn = [tNn,1]; (ii) for q ≥ 1, � is (q − 1) times continuously differentiable on [0,1]. In the
following, let Jn = Nn +q + 1, and we adopt the normalized B-spline space G0

n = {Bs,l : 1 ≤ l ≤
d2,1 ≤ s ≤ Jn}T in Xue and Yang [39]. Equally spaced knots are used in this article for simplicity
of proof. However, other regular knot sequences can also be used with similar asymptotic results.

Suppose that ηl can be approximated well by a spline function in G0
n so that

ηl(zl) ≈ η̃l(zl) =
Jn∑

s=1

γslBs,l(zl). (2)
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Let γ = (γsl : 1 ≤ s ≤ Jn,1 ≤ l ≤ d2)
T be the collection of the coefficients in (2), and let

Bij l = [{Bs,l(Zijl): 1 ≤ s ≤ Jn}T]Jn×1, Bij = {(BT
ij1, . . . ,BT

ijd2
)T}d2Jn×1; (3)

then we have an approximation μij ≈ XT
ijβ + BT

ijγ . We can also write the approximation in

matrix notation as μ
i
≈ Xiβ + Biγ , where Bi = {(Bi1, . . . ,Bimi

)T}mi×d2Jn .

Let β̂ = (β̂1, . . . , β̂d1)
T and γ̂ = {γ̂sl : s = 1, . . . , Jn, l = 1, . . . , d2}T be the minimizer of

Qn(β,γ ) = 1

2

n∑
i=1

{Yi − (Xiβ + Biγ )}TV−1
i {Yi − (Xiβ + Biγ )}, (4)

which is corresponding to the class of working covariance matrices {Vi ,1 ≤ i ≤ n}, or, equiva-
lently, they solve the estimating equations

n∑
i=1

XT
i V−1

i {Yi − (Xiβ + Biγ )} = 0, (5)

n∑
i=1

BT
i V−1

i {Yi − (Xiβ + Biγ )} = 0. (6)

Solving (6) yields

γ ≡ γ (β) =
(

n∑
i=1

BT
i V−1

i Bi

)−1 n∑
i=1

BT
i V−1

i (Yi − Xiβ). (7)

Replacing γ by γ (β) in (4), we define

Q(β) ≡ Qn{β,γ (β)} = 1

2

n∑
i=1

[Yi − {Xiβ + Biγ (β)}]T

(8)

× V−1
i [Yi − {Xiβ + Biγ (β)}].

To select the significant parametric components, we add a penalty to Q(β). Let nT =∑n
i=1 mi ,

and define the penalized version of Q(β) as

QP (β) = Q(β) + nT P (β), (9)

where P (β) =∑d1
k=1 pλk

(|βk|) for a pre-specified penalty function pλ(|β|) with a regularization
parameter λ. Minimizing QP (β) in (9) yields a penalized estimator

β̂
P = arg minQP (β). (10)

Various penalty functions can be used for P (β) in variable selection procedures. We con-
sider two penalty functions, the hard thresholding penalty (Antoniadis [1]) pλ(β) = λ2 − (|β| −
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λ)2I (|β| < λ)and the SCAD penalty (Fan and Li [7]), given by

p′
λ(β) = λ

{
I (β ≤ λ) + (aλ − β)+

(a − 1)λ
I (β > λ)

}
for some a > 2 and β > 0,

where pλ(0) = 0, and λ and a are two tuning parameters. Justifying from a Bayesian statistical
point of view, Fan and Li [7] suggested using a = 3.7, which will be used in our simulation
studies.

The minimization problem in (10) is essentially a one-step least squares problem, which can
be easily solved and implemented with many existing regression programs. The theorems estab-

lished in Section 3.3 demonstrate that β̂
P

performs asymptotically as well as an oracle estimator
in terms of selecting the correct model when the regularization parameter is appropriately chosen.

3. Asymptotic properties of the estimators

For positive numbers an and bn, n ≥ 1, let an ∼ bn denote that limn→∞ an/bn = c, where c

is some non-zero constant. Let |φ|L2 ≡ [∫ 1
0 {φ(z)}2 dz]1/2 denote the L2 norm of any square

integrable function φ(z) on [0,1]. Denote the space of the pth order smooth functions as
C(p)[0,1] = {φ | φ(p) ∈ C[0,1]}.

3.1. Assumptions

The assumptions for the asymptotic results are listed below:

(A1) The random variables Zijl are bounded, uniformly in 1 ≤ j ≤ mi , 1 ≤ i ≤ n, 1 ≤ l ≤ d2.
The marginal density fl(zl) of Zl has the uniform upper bound Cf and lower bound cf

on [0,1]. The joint density fll′(zl, zl′) of (Zijl,Zijl′) satisfies that cf ≤ fll′(zl, zl′) ≤
Cf , for all (zl, zl′) ∈ [0,1]2, 1 ≤ l �= l′ ≤ d2.

(A2) The random variables Xijk are bounded, uniformly in 1 ≤ j ≤ mi , 1 ≤ i ≤ n, 1 ≤ k ≤ d1.
The eigenvalues of E{Xij XT

ij |Zij } are bounded away from 0 and infinity, uniformly in
1 ≤ j ≤ mi , 1 ≤ i ≤ n.

(A3) The eigenvalues of the true covariance matrices �i are bounded away from 0 and infin-
ity, uniformly in 1 ≤ i ≤ n.

(A4) The eigenvalues of the working covariance matrices Vi are bounded away from 0 and
infinity, uniformly in 1 ≤ i ≤ n.

To make β estimable at the
√

n rate, we need a condition to ensure that X and Z not func-
tionally related. Define H = {ψ(z) =∑d2

l=1 ψl(zl),Eψl(zl) = 0, |ψl |L2 < ∞} the Hilbert space
of theoretically centered L2 additive functions on [0,1]d2 . Let ψ∗

k be the function ψ ∈ H that
minimizes

n∑
i=1

E
[{

X(k)
i − ψ(Zi )

}TV−1
i

{
X(k)

i − ψ(Zi )
}]

,
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where

X(k)
i = (Xi1k, . . . ,Ximik)

T, 1 ≤ k ≤ d1. (11)

Then

(A5) for 1 ≤ l ≤ d2, 1 ≤ k ≤ d1, assume that ηl(zl) ∈ C(p)[0,1], ψ∗
k ∈ C(p)[0,1] for a given

integer p ≥ 1, and the spline degree satisfies q + 1 ≥ p. The number of the spline basis
functions Jn ∼ n1/(2p) log(n).

Assumptions (A1)–(A4) are identical with (C1)–(C4) in Huang, Zhang and Zhou [14], while
Assumption (A5) is similar to (C1) and (C4) in Liu, Wang and Liang [21].

3.2. Asymptotic properties for the unpenalized estimators

According to the equations in (5) and (6), we have(
β̂

γ̂

)
=
(

n∑
i=1

DT
i V−1

i Di

)−1( n∑
i=1

DT
i V−1

i Yi

)
, (12)

where Di = (Xi ,Bi )mi×(d1+d2Jn). The centered additive component ηl(zl) is estimated by the
empirically centered estimator

η̂l(zl) =
Jn∑

s=1

γ̂slBs,l(zl) − n−1
T

n∑
i=1

mi∑
j=1

Bs,l(Zijl). (13)

Next we derive the asymptotic properties of β̂ and η̂l . Let X and Z be the collections of
all Xijks and Zijls, respectively, that is, XnT×d1 = (XT

1 , . . . ,XT
n)T and ZnT×d2 = (ZT

1 , . . . ,ZT
n)T.

Define

X̃(k)
i = X(k)

i − ψ∗
k (Zi ), 1 ≤ k ≤ d1, X̃i = (X̃(1)

i , . . . , X̃(d1)
i

)
mi×d1

, (14)

for 1 ≤ i ≤ n. Denote X̃ = {(X̃T
1 , . . . , X̃

T
n)T}nT×d1 ,

V−1 = diag(V−1
1 , . . . ,V−1

n )nT×nT , Σ = diag(�1, . . . ,�n)nT×nT .

Further define

�(V,Σ) = {Ã(V)}−1B̃(V,Σ){Ã(V)}−1 (15)

with Ã(V) = E(n−1X̃TV−1X̃) and B̃(V,Σ) = E(n−1X̃TV−1ΣV−1X̃).
The following result gives the asymptotic distribution of β̂ for general working covariance

matrices.

Theorem 1. Under Assumptions (A1)–(A5), as n → ∞,

n1/2(β̂ − β) → N(0,�(V,Σ)).
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Remark 1. It is easy to show that the covariance �(V,Σ) in (15) is minimized by V = Σ, and
in this case equals to {Ã(V)}−1. To construct the confidence sets for β , �(V,Σ) is consistently
estimated by

�̂(V, Σ̂) = n(X̂TV−1X̂)−1(X̂TV−1Σ̂V−1X̂)(X̂TV−1X̂)−1,

where X̂ = {(X̂T
1 , . . . , X̂

T
n)T}nT×d1 , and

X̂i = Xi − ProjG∗
n

Xi , i = 1, . . . , n, (16)

in which ProjG∗
n

is the projection onto the empirically centered spline space.

Remark 2. The result of Proposition 2 with identity link in Wang, Carroll and Lin [35] is a
special case of Theorem 1 with V1 = · · · = Vn = V, m1 = · · · = mn = M and d2 = 1.

The next theorem shows that the estimated function η̂l in (13) is L2-consistent.

Theorem 2. Under Assumptions (A1)–(A5), |̂ηl −ηl |2L2
= OP {J 1−2p

n + (Jn/n)}, for 1 ≤ l ≤ d2.

3.3. Sampling properties for the penalized estimators

We next show that with a proper choice of λk , the penalized estimator β̂
P

has an oracle property.
To avoid confusion, let β0 be the true value of β . Let r be the number of non-zero components
of β0. Let β0 = (β10, . . . , βd10)

T = (βT
10,β

T
20)

T, where β10 is assumed to consist of all r non-
zero components of β0, and β20 = 0 without loss of generality. In a similar fashion to β , we
can write the collections of all parametric components, X = (XT

1 ,XT
2 )T, X̃ = (X̃T

1 , X̃T
2 )T. Denote

an = max1≤k≤d1{|p′
λk

(|βk0|)|, βk0 �= 0}, wn = max1≤k≤d1{|p′′
λk

(|βk0|)|, βk0 �= 0}.
Theorem 3. Under Assumptions (A1)–(A5), and if an → 0 and wn → 0 as n → ∞, then there

exists a local solution β̂
P

in (10) such that its rate of convergence is OP (n−1/2 + an).

Next define a vector κn = {p′
λ1

(|β10|) sgn(β10), . . . , p
′
λr

(|βr0|) sgn(βr0)}T and a diagonal ma-
trix �λ = diag{p′′

λ1
(|β10|), . . . , p′′

λr
(|βr0|)}. We further denote �1i = Var(Yi |X1i ,Zi ), Σ1 =

diag(�11, . . . ,�1n), Ã1(V) = E(X̃T
1 V−1X̃1) and B̃1(V,Σ1) = E(X̃T

1 V−1Σ1V−1X̃1).
The theorem below shows that under regularity conditions, all the covariates with zero coeffi-

cients can be detected simultaneously with probability tending to 1, and the estimators of all the
non-zero coefficients are asymptotically normally distributed.

Theorem 4. Under Assumptions (A1)–(A5), if limn→∞
√

nλkn → ∞ and

lim inf
n→∞ lim inf

βk→0+ λ−1
kn p′

λkn
(|βk|) > 0,

then the
√

n-consistent estimator β̂
P

in Theorem 3 satisfies P(β̂
P
2 = 0) → 1, as n → ∞, and

√
n{Ã1(V) + �λ}[β̂P

1 − β10 + {Ã1(V) + �λ}−1κn] → N(0, B̃1(V,Σ1)).
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4. Implementation

In this section, we illustrate how to implement the proposed method in the semiparametric
marginal estimation and variable selection. Let

�λ(β) = diag

{
p′

λ1
(|β1|)

ε + |β1| , . . . ,
p′

λd1
(|βd1 |)

ε + |βd1 |
}

for a small number ε (ε = 10−6 in our simulation studies). Applying the usual Taylor approxi-
mation, QP (β) can be locally approximated by

Q(β) + Q̇(β0)
T (β − β0) + 1

2 (β − β0)
T Q̈(β0)(β − β0) + 1

2nTβT �λ(β0)β.

By the local quadratic approximations for penalty functions (Fan and Li [7], Section 3.3), the
solution can be found iteratively,

β(k+1) =
[

n∑
i=1

X̂
T
i

{
V(k)

i

}−1X̂i + nT�λ{β(k)}
]−1 n∑

i=1

X̂
T
i

{
V(k)

i

}−1{Yi − �̂nYi},

where �̂nYi is the projection of Yi onto the spline space G0
n, and X̂i is given in (16).

Following Fan and Li [7], we derive a sandwich formula for the standard errors of the estimated

covariates β̂
P

Ĉov(β̂
P
) = {Q̈(β̂

P
λ) + nT�λ(β̂

P
λ)}−1Ĉov{Q̇(β̂

P
λ)}

(17)
× {Q̈(β̂

P
λ) + nT�λ(β̂

P
λ)}−1,

where Q̈(β) =∑n
i=1 X̂

T
i V−1

i X̂i and Ĉov{Q̇(β)} =∑n
i=1 X̂

T
i V−1

i �̂iV
−1
i X̂i . Applying conven-

tional techniques that arise in the likelihood setting, we can show that the above sandwich for-
mula is a consistent estimator and has good accuracy in our simulation study for moderate sample
sizes.

We use BIC to select the tuning parameters λ = (λ1, . . . , λd1). Let

e(λ) = tr{[Q̈(β̂
P
λ) + nT�λ(β̂

P
λ)]−1Q̈(β̂

P
λ)}

be the effective number of parameters in the last step of the Newton–Raphson iteration. Then

BIC(λ) = log

{
1

nT

n∑
i=1

(yi − μ̂i )
TR−1

i (yi − μ̂i )

}
+ log(nT)

nT
e(λ).

The minimization problem over a d-dimensional space is difficult. However, Li and Liang [16]
conjectured that the magnitude of λk should be proportional to the standard error of βk . So
we suggest taking λk = λ ∗ SE(β̂k), in practice, where SE(β̂k) is the standard error of β̂k , the
unpenalized estimator defined above. Thus, the minimization problem can be reduced to a one-
dimensional problem, and the tuning parameter can be estimated by a grid search.



260 S. Ma, Q. Song and L. Wang

5. Simulation

In this section, we discuss finite sample properties of the proposed estimators via simulation
studies. We simulated 100 data sets of size n = 100, 200 and 400 from the model

Yij = βT Xij + η1(Zij1) + η2(Zij2) + εij , i = 1, . . . , n, j = 1, . . . ,3 (18)

where the coefficients β = (3,1.5,0,0,2,0,0,0)T, function η1(z) = sin 2π(z − 0.5) and func-
tion η2(z) = z − 0.5 + sin{2π(z − 0.5)}.

The 2-vector Zi was generated from a bivariate normal distribution with mean 0, a com-
mon marginal variance 0.25 with correlation 0.9, but truncated to the unit square [0,1]2.
The covariates Xijk , k = 1, . . . ,6, were generated independently from N(0,0.25). Covariate
Xij7 = 3(1−2Zij1)(1−2Zij2)+uij , where uij ∼ N(0,0.25) and is independent of Zij . Covari-
ate Xij8 was generated as −0.5 and 0.5 with equal probability. We generated εi = (εi1, εi2, εi3)

from N(0,�E), where �E = (1 − α)I + α11T with 1 being a vector with all “1” and α = 0.9,
that is, �E is exchangeable.

Cubic B-splines were used to approximate the nonparametric functions as described in Sec-
tion 2. We tried different numbers of knots (ranging from 2 to 10) and found that the choice
of number of knots didn’t make a significant difference in this simulation study. Our reported
results in Tables 1 and 2 were based on using 4 equally spaced knots.

To the simulated data sets, we applied the proposed method for estimation and variable se-
lection. To study how the structure of the working correlation could affect our estimation and
variable selection results, we considered the following three correlation structures: the correct
exchangeable working correlation structure (EX), working independence (WI) and AR (1) struc-
tures. Table 1 summarizes the estimation and variable selection results with two types of penalty
functions: SCAD and HARD. The average number of zero coefficients is reported in Table 1, in
which the column labeled “C” presents the average restricted only to the true zero coefficients,
and the column labeled “I” shows the average of numbers erroneously set to zero. The rows with
“SCAD” and “HARD” stand, respectively, for the penalized least squares with the SCAD and
HARD penalties. The oracle estimates always identify the 5 zero coefficients and 3 non-zero
coefficients correctly. The medians of relative model errors (MRME) as suggested in Fan and
Li [7] and the root mean squared errors (RMSE) of the estimated coefficients over 100 simulated
data sets are also reported in Table 1.

From Table 1, one sees that the choice of correlation structure has little impact on the results of
variable selection: the number of correctly identified zero coefficients are all close to 5 regardless
the correlation structure; and none of the nonzero coefficients were erroneously set to 0 in any
scenario. Table 1 also shows that the estimators with correct working correlation have the small-
est RMSEs, thus are more efficient than those estimators with misspecified working correlation
structures. The efficiency of the estimators based on the AR(1) is close to those based on EX, but
there seems to be some significant loss of efficiency for the estimators based on the WI structure
which ignores the within subject/cluster correlation. In terms of choosing penalty functions, we
find that both HARD and SCAD perform very well and the corresponding MRME and RMSE
are comparable to those of the ORACLE.

We also tested the accuracy of our standard error formula based on (17). The median absolute
deviation (MAD) divided by 0.6745 (denoted by SD in Table 2) of 100 estimated coefficients
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Table 1. Model selection and estimation: the average number of correct (C) and incorrect (I) 0s, MRME
(%) and RMSE

EX AR(1) WI

n Penalty C I MRME RMSE C I MRME RMSE C I MRME RMSE

100 SCAD 4.67 0 80.63 0.1592 4.64 0 84.65 0.1727 4.64 0 82.38 0.5883
HARD 4.80 0 85.90 0.1691 4.70 0 86.56 0.1916 4.85 0 85.81 0.4410
ORACLE 5.00 0 77.23 0.1586 5.00 0 73.40 0.1723 5.00 0 70.71 0.4126

200 SCAD 4.72 0 76.30 0.1053 4.72 0 81.63 0.1127 4.70 0 79.99 0.3921
HARD 4.79 0 82.81 0.1116 4.71 0 82.18 0.1252 4.98 0 86.15 0.2816
ORACLE 5.00 0 66.96 0.1038 5.00 0 66.18 0.1110 5.00 0 70.86 0.2787

400 SCAD 4.92 0 84.91 0.0733 4.86 0 84.50 0.0864 4.88 0 85.78 0.2689
HARD 4.93 0 91.23 0.0758 4.87 0 85.65 0.0924 4.90 0 91.08 0.2021
ORACLE 5.00 0 68.33 0.0731 5.00 0 66.91 0.0860 5.00 0 71.52 0.1857

from the 100 simulations can be regarded as the true standard error. The median of the 100
estimated SDs (denoted by SDm) and the MAD error of the 100 estimated standard errors divided
by 0.6745 (denoted by SDmad) gauge the overall performance of the standard error. Table 2
presents the standard errors for non-zero coefficients when the sample size n = 100, 200 and 400.
It suggests that the sandwich formula performs satisfactorily for SCAD and HARD penalties.
The standard errors based on the SCAD and HARD penalty functions are closer to those of the
ORACLE as n increases. Similarly to the RMSE results shown in Table 1, Table 2 also shows
that the estimation procedures with a correct EX working correlation are more efficient than their
counterparts with WI working correlation. Estimation based on a misspecified AR(1) correlation
structure will lead to some efficiency loss, but it is quite close to using the true EX structure.

6. Application

To illustrate our method, we considered the longitudinal CD4 cell count data among HIV se-
roconverters. This dataset contains 2376 observations of CD4 cell counts on 369 men infected
with the HIV virus; see Zeger and Diggle [42] for a detailed description of this dataset. Both
Wang, Carroll and Lin [35] and Huang, Zhang and Zhou [14] analyzed the same dataset using
a PLM. Their analysis aimed to estimate the average time course of CD4 counts and the effects
of other covariates. In our analysis, we fit the data using an APLM, with the square root trans-
formed CD4 counts as the response, and covariates including AGE, SMOKE (smoking status
measured by packs of cigarettes), DRUG (yes, 1; no, 0), SEXP (number of sex partners), DE-
PRESSION (measured by the CESD scale) and YEAR (the effect of time since seroconversion).
To take advantage of flexibility of partially linear additive models, we let both DEPRESSION
and YEAR be modeled nonparametrically, the remaining parametrically. It is of interest to exam-
ine whether there are any interaction effects between the parametric covariates, so we included
all these interactions in the parametric part.
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Table 2. Simulation results on standard error estimation for the non-zero coefficients (β1, β2, β5)

β̂1 β̂2 β̂5

n Penalty SD SDm SDmad SD SDm SDmad SD SDm SDmad

EX
100 SCAD 0.0889 0.0906 0.0141 0.1082 0.0911 0.0116 0.1034 0.0894 0.0111

HARD 0.0879 0.0907 0.0118 0.1102 0.0911 0.0113 0.0982 0.0897 0.0108
ORACLE 0.0866 0.0988 0.0062 0.1066 0.0899 0.0112 0.1012 0.0903 0.0088

200 SCAD 0.0655 0.0638 0.0035 0.0616 0.0629 0.0036 0.0594 0.0633 0.0036
HARD 0.0655 0.0637 0.0033 0.0627 0.0630 0.0033 0.0600 0.0632 0.0035
ORACLE 0.0648 0.0699 0.0078 0.0614 0.0637 0.0034 0.0594 0.0629 0.0036

400 SCAD 0.0414 0.0445 0.0043 0.0379 0.0445 0.0041 0.0415 0.0449 0.0042
HARD 0.0414 0.0446 0.0043 0.0373 0.0445 0.0041 0.0418 0.0449 0.0042
ORACLE 0.0412 0.0485 0.0086 0.0368 0.0443 0.0049 0.0404 0.0445 0.0046

AR(1)
100 SCAD 0.0983 0.0923 0.0141 0.1035 0.0940 0.0129 0.1153 0.0924 0.0132

HARD 0.0996 0.0920 0.0160 0.1073 0.0939 0.0130 0.1117 0.0924 0.0128
ORACLE 0.0976 0.0972 0.0097 0.0971 0.0915 0.0124 0.1173 0.0930 0.0122

200 SCAD 0.0635 0.0646 0.0041 0.0539 0.0634 0.0047 0.0647 0.0639 0.0045
HARD 0.0632 0.0645 0.0045 0.0544 0.0634 0.0044 0.0626 0.0639 0.0045
ORACLE 0.0624 0.0689 0.0073 0.0535 0.0646 0.0049 0.0657 0.0635 0.0048

400 SCAD 0.0452 0.0448 0.0056 0.0390 0.0451 0.0055 0.0535 0.0452 0.0052
HARD 0.0451 0.0449 0.0057 0.0390 0.0451 0.0055 0.0537 0.0452 0.0053
ORACLE 0.0454 0.0477 0.0061 0.0392 0.0448 0.0051 0.0539 0.0450 0.0056

WI
100 SCAD 0.2177 0.2364 0.0164 0.2192 0.2381 0.0187 0.2341 0.2375 0.0189

HARD 0.2235 0.2364 0.0151 0.2185 0.2396 0.0169 0.2393 0.2389 0.0193
ORACLE 0.2239 0.0579 0.1623 0.2118 0.2341 0.0165 0.2218 0.2374 0.0181

200 SCAD 0.1864 0.1674 0.0204 0.1697 0.1677 0 .0188 0.1328 0.1671 0.0186
HARD 0.1876 0.1675 0.0201 0.1676 0.1680 0.0180 0.1385 0.1676 0.0181
ORACLE 0.1836 0.0415 0.1242 0.1656 0.1669 0.0162 0.1356 0.1671 0.0165

400 SCAD 0.0957 0.1162 0.0131 0.1055 0.1163 0.0117 0.1252 0.1164 0.0131
HARD 0.0956 0.1162 0.0129 0.1042 0.1165 0.0121 0.1222 0.1163 0.0128
ORACLE 0.0956 0.0289 0.0778 0.1069 0.1160 0.0110 0.1227 0.1162 0.0104

For the working variance, we considered the WI, the AR(1) and the “random intercept
plus serial correlation and measurement error” covariance (RSM) in Zeger and Diggle [42].
One can obtain the RSM structure by fitting a full model to the data and inspecting the var-
iogram of the residuals. Wang, Carroll and Lin [35] and Huang, Zhang and Zhou [14] also
analyzed this data set using the RSM structure. More precisely, the working covariance ma-
trices are specified by τ 2I + ν2J + ω2H, where I is an identity matrix, J is a matrix of 1s and
H(j, j ′) = exp(−α|YEARij −YEARij ′ |). We used the covariance parameters (τ 2, ν2,ω2, α2) =
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(11.32,3.26,22.15,0.23) calculated by Wang et al. [35]. Table 3 gives the estimates of the re-
gression coefficients using WI, AR(1) and RSM covariance structures. The standard errors (SE)
were all calculated using the sandwich method. We used cubic splines of 4 knots selected by
the five-fold delete-subject-out cross-validation from the range of 0–20. We refer the reader to
Huang, Wu, and Zhou [13] for the detail of the delete-subjects-out K-fold cross-validation. The
left panel of Table 3 reports the estimation using full model, and the selection results are shown
in the right panel.

We further applied the proposed approach to select significant variables. We used the SCAD
penalty, the tuning parameter λ = 0.4549,0.2829,0.3143 for WI, AR(1) and RSM covariance
structure, respectively. The results are also shown in Table 3. Under both WI and RSM struc-
tures, SMOKE, DRUGS, SEXP, SOMKE∗SEXP and DRUGS∗SEXP are identifies as signifi-
cant covariates. One notes some slight selection difference when AR(1) structure is used, which
suggests that SMOKE∗DRUGS may also be significant. Although the selection procedure is not
sensitive to the choice of covariance structure as shown in our simulation study, different co-
variance structures may still lead to slight different results. Therefore, it is important for one to
choose a covariance structure close to the true one. We also find some significant interactions
among some covariates which may be ignored by Wang, Carroll and Lin [35] and Huang, Zhang
and Zhou [14].

The nonparametric curve estimates using the WI (solid line), AR(1) (dotted line) and RSM
(dashed line) estimators are plotted in Figure 1 for “DEPRESSION” and “YEAR.” One can see
that it is more reasonable to put “DEPRESSION” as a nonparametric component.

7. Discussion

We have developed a general methodology for simultaneously selecting variables and estimating
the unknown components in APLMs for longitudinal and clustered data. We propose a one-
step least squares approach to obtain the estimation of both the parametric and nonparametric
components based on polynomial spline smoothing. This approach is flexible, computationally
simple and very easy to implement in practice. We demonstrate that the asymptotic normality
of the estimated coefficients for the linear part is retained. The proposed penalized regression
method also achieves an “oracle” property in the sense that it performs as well as if the subset of
significant parametric components were known in advance.

In this paper, our primary interest is the linear components, and we treat the nonparametric
functions as nuisance components; thus we limit our discussions to estimation and variable se-
lection for the linear part. Nonetheless, this may be extended to the nonparametric components
using techniques similar to those in Xue [37]. An anonymous referee pointed out the feasibil-
ity of obtaining the asymptotic “oracle” property of the nonparametric components in Ma and
Yang [24]. We believe that this property can be similarly obtained via a two-step spline backfitted
kernel smoothing procedure (Ma and Yang [24]). However, the technical details deserve careful
consideration, and this is an interesting topic of future research.
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Table 3. Estimated coefficients for CD4 dataset

Full Penalized

Variable WI AR(1) RSM WI AR(1) RSM
β̂ (SE(β̂)) β̂ (SE(β̂)) β̂ (SE(β̂)) β̂ (SE(β̂)) β̂ (SE(β̂)) β̂ (SE(β̂))

INTERCEPT 24.365 (0.417) 24.540 (0.480) 24.819 (0.494) 24.487 (0.391) 24.454 (0.464) 24.793 (0.461)

AGE −0.013 (0.035) −0.023 (0.045) −0.049 (0.049) 0 (0) 0 (0) 0 (0)
SMOKE 1.070 (0.234) 0.825 (0.259) 0.654 (0.264) 0.733 (0.148) 0.824 (0.247) 0.424 (0.176)

DRUG 2.671 (0.491) 1.958 (0.517) 1.468 (0.507) 2.486 (0.454) 2.025 (0.511) 1.340 (0.462)

SEXP 0.165 (0.082) 0.153 (0.084) 0.109 (0.082) 0.170 (0.076) 0.174 (0.080) 0.144 (0.078)

AGE*SMOKE −0.014 (0.011) 0.000 (0.015) 0.002 (0.017) 0 (0) 0 (0) 0 (0)
AGE*DRUG 0.043 (0.036) 0.008 (0.042) 0.010 (0.044) 0 (0) 0 (0) 0 (0)
AGE*SEXP 0.001 (0.005) 0.005 (0.005) 0.008 (0.005) 0 (0) 0 (0) 0 (0)
SMOKE*DRUG −0.402 (0.233) −0.331 (0.246) −0.288 (0.248) 0 (0) −0.337 (0.241) 0 (0)
SMOKE*SEXP 0.058 (0.024) 0.043 (0.026) 0.047 (0.025) 0.051 (0.023) 0.045 (0.025) 0.046 (0.025)

DRUG*SEXP −0.364 (0.087) −0.251 (0.086) −0.17 (0.083) −0.355 (0.084) −0.265 (0.084) −0.186 (0.081)
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Figure 1. The estimates of the nonpararmetric components: η̂1 and η̂2. The solid, dotted and dashed curves
correspond to the estimates under WI, AR(1) and RSM structures.

The simulation result indicates that the variable selection is consistent even if the correla-
tion structure is misspecified. However, misspecification may lead to some efficiency loss. So, it
would be desirable if one could choose an appropriate correlation structure based on available
data in practice. The simulation results clearly show that there is marked improvement of effi-
ciency when one uses the correct correlation structure though the variable selection seems to be
consistent with misspecified structure. To select the correlation matrix, one might consider some
resampling-based methods, such as the bootstrap and cross-validation methods in Pan and Con-
nett [28] and other techniques in Diggle et al. [5]. There is, however, a clear need to formalize
the procedures with solid theoretical justification. Instead of modeling the correlation through the
“working” correlation matrix, one could also nonparametrically model the variance–covariance
as some unknown smooth function (Chiou and Müller [4]). This is an excellent research problem
for future study.

Appendix

For any vector x = (x1, . . . , xd)T, we denote ‖ · ‖ the usual Euclidean norm, that is, ‖x‖ =√∑d
k=1 x2

k , and ‖ · ‖∞ the sup norm, that is, ‖x‖∞ = sup1≤k≤d |xk|. For any functions φ,ϕ,
let φ(Xi ,Zi ) and ϕ(Xi ,Zi ) be mi -vectors; then define the empirical inner product and the em-
pirical norm as 〈φ,ϕ〉n ≡ 〈φ,ϕ〉n,V = n−1∑n

i=1 φ(Xi ,Zi )
TV−1

i ϕ(Xi ,Zi ), ‖φ‖2
n = 〈φ,φ〉n, for

the working covariance Vi . Further denote En(φ) = n−1∑n
i=1 1T

mi
V−1

i φ(Xi ,Zi ). If functions
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φ,ϕ are L2-integrable, we define the theoretical inner product and its corresponding theoretical
L2 norm as 〈φ,ϕ〉 = E(〈φ,ϕ〉n), ‖φ‖2 = E(‖φ‖2

n). Let �̂n and �n denote, respectively, the
projection onto G0

n relative to the empirical and theoretical inner products. For convenience, let
h = hn ∼ J−1

n and Id be the d × d identity matrix.

A.1. Proof of Theorem 1

Lemma A.1. Define

An = sup
g1,g2∈G0

n

|〈g1, g2〉n − 〈g1, g2〉|‖g1‖−1‖g2‖−1,

Bn = max
1≤k≤d1

sup
g∈G0

n

∣∣‖xk − g‖2
n/‖xk − g‖2 − 1

∣∣,
then An = OP {√log(n)/(nh2)} and Bn = OP {√log(n)/(nh2)}.

Lemma A.1 can be proved similarly to Lemmas A2 and A3 in Huang, Zhang and Zhou [14]
and are thus omitted.

To obtain the closed-form expression of β̂ , we need the following block form of the inverse of∑n
i=1 DT

i V−1
i Di :⎛⎜⎜⎜⎜⎝

n∑
i=1

XT
i V−1

i Xi

n∑
i=1

XT
i V−1

i Bi

n∑
i=1

BT
i V−1

i Xi

n∑
i=1

BT
i V−1

i Bi

⎞⎟⎟⎟⎟⎠
−1

=
(

HXX HXB

HBX HBB

)−1

=
(

H11 H12

H21 H22

)
, (A.1)

where H11 = (HXX −HXBH−1
BBHBX)−1, H22 = (HBB −HBXH−1

XXHXB)−1, H12 = −H11HXBH−1
BB

and H21 = −H22HBXH−1
XX. Consequently,

β̂ = H11

{
n∑

i=1

XT
i V−1

i Yi − HXBH−1
BB

n∑
i=1

BT
i V−1

i Yi

}
. (A.2)

Lemma A.2. Under Assumptions (A1)–(A5), for HBB in (A.1), one has (i) there exist constants
0 < cH < CH , C∗

H = c−1
H , c∗

H = C−1
H such that

cH Id2Jn ≤ E(n−1HBB) ≤ CH Id2Jn; (A.3)

(ii) with probability approaching 1 as n → ∞,

cH Id2Jn ≤ n−1HBB ≤ CH Id2Jn . (A.4)
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Since the proof of Lemma A.2 is a little complicated, we provide it in the supplemental article
(Ma, Song and Wang [23]). The proofs of Lemmas A.3 to A.7 below are also provided in (Ma,
Song and Wang [23]).

Lemma A.3. Define Û = (
∑n

i=1 BT
i Xi )d2Jn×d1 , where Bi is given in (3). Under Assumptions

(A1)–(A5), there exist constants 0 < cU < CU < ∞, such that with probability approaching 1
as n → ∞, cU Id1 ≤ (n−1h)ÛTÛ ≤ CU Id1 .

Lemma A.4. Under Assumptions (A1)–(A5), there exist constants 0 < cH1 < CH1 < ∞, such
that with probability approaching 1 as n → ∞, cH1Id1 ≤ nH11 ≤ CH1 Id1 , where H11 is given
in (A.1).

Let β̃μ and β̃e be the solutions of (A.2) with Yi replaced by μ
i

and ei = Yi −μ
i
, respectively.

Then β̂ − β0 = (β̃μ − β0) + β̃e.

Lemma A.5. Under Assumptions (A1)–(A5), ‖β̃μ − β0‖ = oP (n−1/2).

Note that β̃e = H11{∑n
i=1 XT

i V−1
i ei − HXBH−1

BB
∑n

i=1 BT
i V−1

i ei}; thus we can show that the
conditional variance Var(β̃e|X,Z) equals

H11
n∑

i=1

{Xi − BiH
−1
BBHBX}TV−1

i �iV
−1
i {Xi − BiH

−1
BBHBX}H11. (A.5)

Lemma A.6. Under Assumptions (A1)–(A5), as n → ∞,

{Var(β̃e|X,Z)}−1/2(β̃e) −→ N(0, Id1).

Lemma A.7. Under Assumptions (A1)–(A5), for the covariance matrix �(V,Σ) defined in (15),
c∗
V Id1 ≤ �(V,Σ) ≤ C∗

V Id1 and Var(β̃e|X,Z) = n−1�(V,Σ) + OP (n−3/2 + n−1h2p).

Theorem 1 follows from Lemmas A.5, A.6 and A.7.

A.2. Proof of Theorem 2

From (12) and (A.1), we obtain

γ̂ = H22

(
n∑

i=1

BT
i V−1

i Yi − HBXH−1
XX

n∑
i=1

XT
i V−1

i Yi

)
. (A.6)

Following the same idea as that in the proof of Lemma A.4, we have that there exist constants
0 < cH2 < CH2 < ∞, such that with probability approaching 1 as n → ∞, cH2Id2Jn ≤ nH22 ≤
CH2Id2Jn . Letting γ̃ μ and γ̃ e be the solutions of (A.6) with Yi replaced by μ

i
and ei = Yi − μ

i
,



268 S. Ma, Q. Song and L. Wang

respectively, γ̂ − γ = (γ̃ μ − γ )+ γ̃ e . Letting �̂n,X be the projection on {Xi}ni=1 to the empirical
inner product, γ̃ μ − γ equals

H22

[
n∑

i=1

BT
i V−1

i

{
d2∑
l=1

ηl(Zil)

}
− HBXH−1

XX

n∑
i=1

XT
i V−1

i

{
d2∑
l=1

ηl(Zil)

}]
− γ

= H22
n∑

i=1

BT
i V−1

i

[{
d2∑
l=1

ηl(Zil) − Biγ

}
− �̂n,X

{
d2∑
l=1

ηl(Zil) − Biγ

}]

= nH22S,

where S = (S11, . . . , SJnd2), with

Ss,l = n−1
n∑

i=1

(
B(s,l)

i

)TV−1
i

[{
d2∑
l=1

ηl(Zil) − Biγ

}
− �̂n,X

{
d2∑
l=1

ηl(Zil) − Biγ

}]
,

and B(s,l)
i = [{Bs,l(Zi1l ), . . . ,Bs,l(Zimi l)}T]mi×1. Let �η(Zi ) = ∑d2

l=1 ηl(Zil) − Biγ , then the
Cauchy–Schwarz inequality implies that

|Ss,l | ≤
{

n−1
n∑

i=1

(
B(s,l)

i

)TV−1
i B(s,l)

i

}1/2

‖�η − �̂n,X(�η)‖n = OP (hp),

thus ‖γ̃ μ − γ ‖ = OP (J
1/2
n hp). For any c ∈ RJnd2 with ‖c‖ = 1, we write cTγ̃ e =∑n

i=1 aiεi ,
where εi are independent conditioning on (X,Z) and

a2
i = cTH22{Bi − XiH

−1
XXHXB}TV−1

i �iV
−1
i {Bi − XiH

−1
XXHXB}H22c.

Following the same arguments as those in Lemma A.6, we have max1≤i≤n |ai | = OP (J
1/2
n n−1).

Thus ‖γ̃ e‖ ≤ J
1/2
n |cTγ̃ e| = J

1/2
n |∑n

i=1 aiεi | = OP (J
1/2
n n−1/2). Therefore, ‖γ̂ l − γ l‖ =

OP (J
1/2
n hp + J

1/2
n n−1/2). Because η̂l(zl) = B∗

l (zl)
Tγ̂ l , η̃l(zl) = B∗

l (zl)
Tγ l and |̂ηl − η̃l |2L2

=
‖γ̂ l − γ l‖2 × OP (1) = OP (Jnh

2p + Jnn
−1). Thus one has

|̂ηl − ηl |2L2
≤ 2(|̂ηl − η̃l |2L2

+ |̃ηl − ηl |2L2
) = OP (Jnh

2p + Jnn
−1).

A.3. Proof of Theorem 3

Let τn = n−1/2 + an. It suffices to show that for any given ζ > 0, there exists a large constant C

such that

P
{

sup
‖u‖=C

QP (β0 + τnu) > QP (β0)
}

≥ 1 − ζ. (A.7)
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Plugging γ (β) in (7) into Q(β) defined in (8), we have

Q(β) = 1

2

n∑
i=1

[
Yi −

{
Xiβ + BiH

−1
BB

n∑
i=1

BT
i V−1

i (Yi − Xiβ)

}]T

× V−1
i

[
Yi −

{
Xiβ + BiH

−1
BB

n∑
i=1

BT
i V−1

i (Yi − Xiβ)

}]
.

Thus Q(β) = 1
2

∑n
i=1(Yi − X̂iβ − �̂nYi )

TV−1
i (Yi − X̂iβ − �̂nYi ). Let Un,1 = Q(β0 + τnu)−

Q(β0) and Un,2 = nT
∑r

k=1{pλk
(|βk0 + τnuk|) − pλk

(|βk0|)}, where r is the number of compo-
nents of β10. Note that pλk

(0) = 0 and pλk
(|β|) ≥ 0 for all β . Thus, QP (β0 + τnu)−QP (β0) ≥

Un,1 + Un,2.
For Un,1, we have Q(β0 + τnu) = Q(β0) + τnuTQ̇(β0) + 1

2τ 2
n uTQ̈(β∗)u, where Q̈(β) =∑n

i=1 X̂
T
i V−1

i X̂i , β∗ = t (β0 + n−1/2u) + (1 − t)β0, t ∈ [0,1]. Note that

Q̇(β0) =
n∑

i=1

X̂
T
i V−1

i (Yi − X̂iβ0−�̂nYi )

=
n∑

i=1

X̂
T
i V−1

i

{
d2∑
l=1

ηl(Zil) − �̂n

d2∑
l=1

ηl(Zil)

}
+

n∑
i=1

X̂
T
i V−1

i (ei − �̂nei ),

where ei = Yi − μ
i
. Mimicking the proof for Lemmas A.5 and A.6, we have

n∑
i=1

X̂
T
i V−1

i

{
d2∑
l=1

ηl(Zil ) − �̂n

d2∑
l=1

ηl(Zil)

}
= oP (n1/2),

n∑
i=1

X̂
T
i V−1

i (ei − �̂nei ) = OP (n1/2).

Thus τnuTQ̇(β0) = OP (n1/2τn)‖u‖. By the proof of Lemma A.4, we obtain that 1
2τ 2

n uT ×
Q̈(β0)u = OP (nτ 2

n ) + oP (1). Thus

Un,1 = OP (n1/2τn) + OP (nτ 2
n ) + oP (1). (A.8)

For Un,2, by a Taylor expansion,

pλk
(|βk0 + τnuk|) = pλk

(|βk0|) + τnukp
′
λk

(|βk0|)sgn(βk0) + 1
2τ 2

nu2
kp

′′
λk

(|β∗
k |),

where β∗
k = (1 − t)βk0 + t (βk0 + n−1/2uk), t ∈ [0,1] and

pλk
(|βk0 + τnuk|) = pλk

(|βk0|) + τnukp
′
λk

(|βk0|)sgn(βk0) + 1
2τ 2

nu2
kp

′′
λk

(|βk0|) + o(n−1).
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Thus, by the Cauchy–Schwarz inequality,

n−1
T Un,2 = τn

r∑
k=1

ukp
′
λk

(|βk0|)sgn(βk0) + 1

2
τ 2
n

r∑
k=1

u2
kp

′′
λk

(|βk0|)

≤ √
rτnan‖u‖ + 1

2
τ 2
nwn‖u‖2 = Cτ 2

n

(√
r + wnC

)
.

As wn → 0, the first two terms on the right-hand side of (A.8) dominate Un,2 by taking C

sufficiently large. Hence (A.7) holds for sufficiently large C.

A.4. Proof of Theorem 4

We first show that the estimator β̂
P

must possess the sparsity property β̂2 = 0, which is stated as
follows.

Lemma A.8. Under the conditions of Theorem 4, with probability tending to 1, for any given β1
satisfying that ‖β1 − β10‖ = OP (n−1/2) and any constant C,

QP {(βT
1 ,0T)T} = min

‖β2‖≤Cn−1/2
QP {(βT

1 ,βT
2 )}.

Proof. To prove that the maximizer is obtained at β2 = 0, it suffices to show that with probability
tending to 1, as n → ∞, for any β1 satisfying ‖β1 − β10‖ = OP (n−1/2), and ‖β2‖ ≤ Cn−1/2,
∂QP (β)/∂βk and βk have different signs for βk ∈ (−Cn−1/2,Cn−1/2), for k = r + 1, . . . , d1.
Note that

Q̇P ,k(β) ≡ ∂QP (β)

∂βk

= Q̇k(β) + nTp′
λkn

(|βk|) sgn(βk),

where Q̇k(β) = Q̇k(β0) +∑d1
k′=1 Q̈kk′ {tβk′ + (1 − t)β0k′ }(βk′ − β0k′), t ∈ [0,1],

Q̇k(β0) = eT
k

n∑
i=1

X̂
T
i V−1

i (Yi − X̂iβ0 − �̂nYi ).

It follows by the similar arguments as given in the proofs of Theorems 1 and 3 that

Q̇k(β0) = eT
k

n∑
i=1

X̂
T
i V−1

i

{
d2∑
l=1

ηl(Zil) − �̂n

d2∑
l=1

ηl(Zil)

}
+ eT

k

n∑
i=1

X̂
T
i V−1

i (ei − �̂nei )

= n

{
n−1

n∑
i=1

�k(Yi ,Xi ,Zi ) + oP (n−1/2)

}
,
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where �k(Yi ,Xi ,Zi ) is the kth element of matrix X̂
T
i V−1

i (ei −�̂nei ). According to Lemma A.7,
we have

n−1Q̈(β0) = E

(
n−1

n∑
i=1

X̃
T
i V−1

i X̃i

)
+ oP (1) = R + oP (1),

1

n

d1∑
k′=1

Q̈kk′(βk′ − β0k′) = (β − β0)
T(Rk + oP (1)

)
,

where Rk is the kth column of R. Note that ‖β − β0‖ = OP (n−1/2) by the assumption. Thus,
n−1Q̇k(β) is of the order OP (n−1/2). Therefore, for any nonzero βk and k = r + 1, . . . , d1,

Q̇P ,k(β) = nλkn

{
λ−1

kn p′
λkn

(|βk|) sgn(βk) + OP

(
1√
nλkn

)}
.

Since lim infn→∞ lim infβk→0+ λ−1
kn p′

λkn
(|βk|) > 0 and

√
nλkn → ∞, the sign of the derivative is

determined by that of βk . Thus the desired result is obtained. �

Proof of Theorem 4. From Lemma A.8, it follows that β̂
P
2 = 0.

Q̇P (β) = Q̇(β0) + Q̈(β∗)(β − β0) + nT{p′
λkn

(|βk0|) sign(βk0)}rk=1

+
{

r∑
k=1

p′′
λkn

(|βk0|) + oP (1)

}
(β̂ P

k1 − βk0),

where β∗ = tβ0 + (1 − t)β , t ∈ [0,1]. Using an argument similar to the proof of Theorem 3,

it can be shown that there exists a β̂
P
1 in Theorem 3 that is a root-n consistent local minimizer

of QP {(βT
1 ,0

T
)T}, satisfying the penalized least squares equations Q̇P [{(β̂P

1)T,0
T}T] = 0. Mim-

icking the proofs for Lemmas A.5 and A.6 indicates that the left hand side of the above equation
can be written as

n−1
n∑

i=1

X̂
T
1iV

−1
i (ei − �̂nei ) + {p′

λkn
(|βk0|) sign(βk0)}rk=1 + oP (n−1/2)

+
{

E

(
n−1

n∑
i=1

X̃
T
1iV

−1
i X̃1i

)
+ oP (1)

}
(β̂

P
1 − β10) +

{
r∑

k=1

p′′
λkn

(|βk0|) + oP (1)

}
(β̂

P
1 − β10).

Thus we have

0 = n−1
n∑

i=1

X̂
T
1iV

−1
i (ei − �̂nei ) + κn + oP (n−1/2)

+
{

E

(
n−1

n∑
i=1

X̃
T
1iV

−1
i X̃1i

)
+ �λ + oP (1)

}
(β̂

P
1 − β10).
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Similar arguments to Lemmas A.6 and A.7 yield the asymptotic normality. �
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Supplementary Material

Supplement to “Simultaneous variable selection and estimation in semiparametric model-
ing of longitudinal/clustered data” (DOI: 10.3150/11-BEJ386SUPP; .pdf). We provide detailed
proofs of Lemmas A.2 to A.7 stated in the Appendix.
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