Abstract
In the paper we study sharp maximal inequalities for martingales and non-negative submartingales: if $f$, $g$ are martingales satisfying \[ |\mathrm{d}g_n|\leq|\mathrm{d}f_n|,\qquad n=0, 1, 2, \ldots, \] almost surely, then \[ \Bigl\|\sup_{n\geq0} |g_n|\Bigr\|_p \leq p \|f\|_p,\qquad p\geq2, \] and the inequality is sharp. Furthermore, if $\alpha\in[0,1]$, $f$ is a non-negative submartingale and $g$ satisfies \[ |\mathrm{d}g_n|\leq|\mathrm{d}f_n|\quad \mbox{and}\quad |\mathbb{E}(\mathrm{d}g_{n+1}|\mathcal {F}_n)|\leq\alpha\mathbb{E} (\mathrm{d}f_{n+1}|\mathcal{F}_n),\qquad n=0, 1, 2, \ldots, \] almost surely, then \[ \Bigl\|\sup_{n\geq0} |g_n|\Bigr\|_p \leq(\alpha+1)p \|f\|_p,\qquad p\geq2, \] and the inequality is sharp. As an application, we establish related estimates for stochastic integrals and Itô processes. The inequalities strengthen the earlier classical results of Burkholder and Choi.
Citation
Adam Osȩkowski. "Sharp maximal inequalities for the moments of martingales and non-negative submartingales." Bernoulli 17 (4) 1327 - 1343, November 2011. https://doi.org/10.3150/10-BEJ314
Information