Open Access
November 2011 First passage time law for some Lévy processes with compound Poisson: Existence of a density
Laure Coutin, Diana Dorobantu
Bernoulli 17(4): 1127-1135 (November 2011). DOI: 10.3150/10-BEJ323

Abstract

Let ($X_t, t \geq 0)$ be a Lévy process with compound Poisson process and $τ_x$ be the first passage time of a fixed level $x > 0$ by ($X_t, t \geq 0$). We prove that the law of $τ_x$ has a density (defective when $\mathbb{E}(X_{1})\ < 0)$ with respect to the Lebesgue measure.

Citation

Download Citation

Laure Coutin. Diana Dorobantu. "First passage time law for some Lévy processes with compound Poisson: Existence of a density." Bernoulli 17 (4) 1127 - 1135, November 2011. https://doi.org/10.3150/10-BEJ323

Information

Published: November 2011
First available in Project Euclid: 4 November 2011

zbMATH: 1230.60049
MathSciNet: MR2854766
Digital Object Identifier: 10.3150/10-BEJ323

Keywords: first passage time law , jump process , Lévy process

Rights: Copyright © 2011 Bernoulli Society for Mathematical Statistics and Probability

Vol.17 • No. 4 • November 2011
Back to Top