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Using Riemann–Stieltjes methods for integrators of bounded p-variation we define a pathwise integral
driven by a fractional Lévy process (FLP). To explicitly solve general fractional stochastic differential
equations (SDEs) we introduce an Ornstein–Uhlenbeck model by a stochastic integral representation, where
the driving stochastic process is an FLP. To achieve the convergence of improper integrals, the long-time
behavior of FLPs is derived. This is sufficient to define the fractional Lévy–Ornstein–Uhlenbeck process
(FLOUP) pathwise as an improper Riemann–Stieltjes integral. We show further that the FLOUP is the
unique stationary solution of the corresponding Langevin equation. Furthermore, we calculate the autoco-
variance function and prove that its increments exhibit long-range dependence. Exploiting the Langevin
equation, we consider SDEs driven by FLPs of bounded p-variation for p < 2 and construct solutions us-
ing the corresponding FLOUP. Finally, we consider examples of such SDEs, including various state space
transforms of the FLOUP and also fractional Lévy-driven Cox–Ingersoll–Ross (CIR) models.

Keywords: fractional integral equation; fractional Lévy process; fractional Lévy–Ornstein–Uhlenbeck
process; long-range dependence; p-variation; Riemann–Stieltjes integration; stationary solution to a
fractional SDE; stochastic differential equation

1. Introduction

In this paper we consider (stationary) solutions to SDEs of the form

dXt = μ(Xt)dt + σ(Xt )dLd
t , t ∈ R, (1.1)

where Ld is a fractional Lévy process (FLP) of bounded p-variation for p < 2 and μ and σ

are appropriate coefficient functions. Applying pathwise Riemann–Stieltjes integration for func-
tions of bounded p-variation, we solve such equations by constructing explicit solutions. The
basic model will be a fractional Lévy–Ornstein–Uhlenbeck process (FLOUP) introduced by the
stochastic integral representation

Ld,λ
t =

∫ t

−∞
e−λ(t−u) dLd

u, t ∈ R.
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We further show that this is the unique stationary pathwise solution of the corresponding
Langevin equation

dLd,λ
t = −λLd,λ

t dt + dLd
t , t ∈ R. (1.2)

Using this relation we will consider SDEs of the form (1.1) and impose assumptions on the coef-
ficient functions μ and σ , under which solutions can be constructed by monotone transformation
of Ld,λ.

Although our paper is purely theoretical, we are aiming at applications where positive solutions
of (1.1) are of interest. An approach, developed in [1] for SDEs driven by FBM, can be modified
to SDEs driven by FLPs. On the other hand, a squared FLOUP is positive and a solution to the
SDE

dXt = −2λXt dt + 2
√|Xt |dLd

t , t ∈ R.

We will discuss various examples with different state spaces and different μ and σ . We will also
present some properties of the respective solutions, also concerning the stationary distribution.

Our paper is organized as follows. Section 2 considers FLPs and pathwise integration. Sec-
tion 3 introduces the FLOUP as a pathwise improper Riemann–Stieltjes integral and shows that
it is the unique stationary pathwise solution of the corresponding Langevin equation. Moreover,
we calculate its autocovariance function and show that the increments of an FLOUP exhibit
long-range dependence. Section 4 mainly extends Buchmann and Klüppelberg [1] from frac-
tional Brownian motion to FLPs and states structural conditions for the coefficient functions μ

and σ , which guarantee an existence (and uniqueness) theorem. Section 5 provides examples and
simulations. The Appendix reviews the Riemann–Stieltjes analysis via p-variation.

The following notation will be used throughout. We always assume a complete probability
space (�, F ,P ). We denote the F -measurable real functions by L0(�), the Hilbert space of
square integrable random variables by L2(�), the vector space of continuous real functions on
A ⊆ R by C 0(A) and by ‖ · ‖A

sup the supremum norm. Furthermore, Lip(A) and C1(A) are the
spaces of real functions on A, which are Lipschitz continuous on compacts and continuously
differentiable, respectively. The spaces of integrable and square integrable real functions are
denoted by L1(R) and L2(R), respectively. When speaking of a two-sided Lévy process we
mean the following: given two independent copies of the same Lévy process, L1 and L2, we take

Lt := L1
t 1{t≥0} + L2−t−1{t<0}, t ∈ R. (1.3)

The Dirac measure in 1 we denote by δ1. Finally, for −∞ ≤ b ≤ a ≤ ∞ we set [a, b] := [b, a].
Integrals throughout this paper are considered in the Riemann–Stieltjes sense, if not stated

otherwise.

2. Fractional Lévy processes and pathwise integration

Fractional Lévy processes (FLPs) were introduced as a natural generalization of the integral
representation of fractional Brownian motion (FBM). We shortly review the main properties
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of FLPs, see [12], Section 3, for details and more background. For notational convenience we
work with the fractional integration parameter d ∈ (− 1

2 , 1
2 ) instead of the Hurst index H , where

d = H − 1
2 . Because we are only interested in long memory models, we restrict ourselves to

d ∈ (0, 1
2 ). Furthermore, we only consider FLPs with existing second moments. Analogously to

[11] for FBM we choose (like Marquardt [12]) the following definition.

Definition 2.1. Let L = (Lt )t∈R be a zero-mean two-sided Lévy process with E[L(1)2] < ∞
and without a Brownian component. For d ∈ (0, 1

2 ) we define

Ld
t := 1

�(d + 1)

∫ ∞

−∞
[(t − s)d+ − (−s)d+]L(ds), t ∈ R. (2.1)

We call Ld = (Ld
t )t∈R a fractional Lévy process (FLP) and L the driving Lévy process of Ld .

The integrals above exist in the L2(�)-sense; see [12], Theorem 3.5, for details.
Recall that, by the Lévy–Itô decomposition, every Lévy process can be represented as the sum

of a Brownian motion and an independent jump process. The Brownian motion gives rise to an
FBM, which has been studied extensively; see, for instance, [13] for general background or [1]
in the context of the present paper.

The next result ensures that there is, in fact, a modification of (2.1) that equals a pathwise
improper Riemann integral and gives first properties.

Proposition 2.2 ([12], Theorems 3.7, 4.1 and 4.4). Let Ld be an FLP with d ∈ (0, 1
2 ). Then the

following assertions hold:

(i) Ld has a modification that equals the improper Riemann integral

1

�(d)

∫
R

[(t − s)d−1+ − (−s)d−1+ ]L(s)ds, t ∈ R. (2.2)

Furthermore, (2.2) is continuous in t .
(ii) For s, t ∈ R we have

Cov(Ld
t ,Ld

s ) = E[L(1)]2

2�(2d + 2) sin(π(d + 1/2))
[|t |2d+1 + |s|2d+1 − |t − s|2d+1]. (2.3)

(iii) Ld has stationary increments and is symmetric, i.e., (Ld−t )t∈R

d= (−Ld
t )t∈R.

From now on, we always work with the modification of Proposition 2.2(i).
Next we define integration with respect to FLPs. As has been shown in [12], Theorem 4.10,

FLPs may not be semimartingales, and integration in the L2(�)-sense has been developed
in [12], Section 5. Theorem 4.4 in [12] also shows that FLPs are only Hölder continuous up
to the fractional integration parameter d and not to the Hurst index H as in the case for FBM.
Therefore, pathwise Riemann–Stieltjes integration by Hölder continuity does not make sense for
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SDEs. On the other hand, using an approach like Young [17] based on p-variation of the sam-
ple paths, integration in a pathwise Riemann–Stieltjes sense can be defined; for details see the
Appendix. This means we have a chain rule and a density formula provided the integrator is of
bounded p-variation for p ∈ [1,2).

We recall the definition of p-variation over a compact interval [a, b] ⊂ R. Let f : [a, b] 	→ R.
We define for 0 < p < ∞ the p-variation of f as

vp(f, [a, b]) := sup
κ

n∑
i=1

|f (xi) − f (xi−1)|p, (2.4)

where the supremum is taken over all subdivisions κ of [a, b]. If vp(f, [a, b]) < ∞, then we say
that f is of bounded p-variation on [a, b]. We will further call an FLP Ld of bounded p-variation
if it is a.s. of bounded p-variation on compacts.

Let Ld be an FLP of bounded p-variation, d ∈ (0, 1
2 ) and p ∈ [1,2). For A ⊂ R we define

Wcon
p (A) := {f ∈ C 0(A) :vp(f, [s, t]) < ∞∀[s, t] ⊆ R}. (2.5)

Then we define for every stochastic process with sample paths H ∈ Wcon
q (R) a.s. and for p,q > 0

with p−1 + q−1 > 1 the integral∫ b

a

Hs dLd
s , −∞ ≤ a ≤ b ≤ ∞, (2.6)

pathwise in the Riemann–Stieltjes sense.
As stated in the Appendix the integral in (2.6) always exists on finite intervals [a, b]. We

consider also improper integrals, where a = ∞ or b = −∞. The existence of the tail integral has
then to be justified.

For example, FLPs, where the driving Lévy process is of finite activity, are of bounded p-
variation for all p ≥ 1; cf. Theorem 2.25 of [12].

3. Fractional Lévy–Ornstein–Uhlenbeck processes

We introduce fractional Lévy–Ornstein–Uhlenbeck processes (FLOUPs) as improper Riemann–
Stieltjes integrals and prove that they are stationary solutions of the Langevin equation (1.2). To
show the existence of the improper Riemann–Stieltjes integral, we first need some knowledge
about the long-time behaviour of FLPs. A similar result considering t → ∞ has been proven by
Muneya Matsui (personal communication).

Theorem 3.1. Let Ld be an FLP, d ∈ (0, 1
2 ). Then for all α > d + 1

2 we have

lim
t→−∞

|Ld
t |

|t |α = 0 a.s. (3.1)
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Proof. Without loss of generality we can assume that t < 0. By the law of the iterated logarithm
(LIL) for Lévy processes (cf. [14], Proposition 48.9) we find a random variable T and a constant
M > 0 such that a.s. for all s < T

|L(s)| ≤ M(2|s| log log |s|)1/2. (3.2)

We can always make T smaller and so we choose T < −e. For any such path we can assume that
t < T and estimate

1

|t |α |Ld
t | = 1

|t |α
1

�(d)

∣∣∣∣ ∫ ∞

−∞
[(t − s)d−1+ − (−s)d−1+ ]L(s)ds

∣∣∣∣
(3.3)

≤ 1

�(d)

1

|t |α
(∫ t

−∞
[(−s)d−1 − (t − s)d−1]|L(s)|ds +

∫ 0

t

(−s)d−1|L(s)|ds

)
.

Therefore, it suffices to show that a.s.

lim
t→−∞

1

|t |α
∫ t

−∞
[(−s)d−1 − (t − s)d−1]|L(s)|ds = 0 (3.4)

and

lim
t→−∞

1

|t |α
∫ 0

t

(−s)d−1|L(s)|ds = 0. (3.5)

We start with (3.4). Using the LIL we get an upper bound of (3.3) as follows:

1

|t |α
∫ t

−∞
[(−s)d−1 − (t − s)d−1]|L(s)|ds

≤ M

|t |α
∫ −|t |

−∞
[(−s)d−1 − (−|t | − s)d−1](2|s| log log |s|)1/2 ds

(3.6)

= M|t |
e|t |α

∫ −e

−∞
[(−e−1|t |u)d−1 − (−|t | − e−1|t |u)d−1]

× (2e−1|t ||u| log log(e−1|t ||u|))1/2 du,

where we have used in the last line the change of variable e−1|t |u = s. Now note that for large
|t | and |u| ≥ e

|t ||u| log log(e−1|t ||u|) = |t ||u| log
(
log(e−1|t |) + log |u|)

≤ |t ||u| log log |t | + |t ||u| log(1 + log |u|).
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Combining (3.7) with |a + b|1/2 ≤ |a|1/2 + |b|1/2 for a, b ∈ R we get an upper bound for (3.6)

by

M(2e−1|t | log log |t |)1/2

e|t |α−d

∫ −e

−∞
[(−e−1u)d−1 − (−1 − e−1u)d−1]|u|1/2 du

+ M(2e−1|t |)1/2

e|t |α−d

∫ −e

−∞
[(−e−1u)d−1 − (−1 − e−1u)d−1](|u| log(1 + log |u|))1/2 du

(3.7)

= M(2e−1 log log |t |)1/2

e|t |α−(d+1/2)

∫ ∞

e
[(e−1u)d−1 − (−1 + e−1u)d−1]u1/2 du

+ M(2e−1)1/2

e|t |α−(d+1/2)

∫ ∞

e
[(e−1u)d−1 − (−1 + e−1u)d−1](u log(1 + logu)

)1/2
du.

By a binomial expansion we get (e−1u − 1)d−1 = (e−1u)d−1 − (d − 1)(e−1u)d−2 + O(ud−3)

and, therefore (writing a(u) ∼ b(u) for limu→∞ a(u)/b(u) = 1),

[(e−1u)d−1 − (−1 + e−1u)d−1](u log(1 + log |u|))1/2

(3.8)
∼ (d − 1)(e−1)d−2ud−3/2(log log(u))1/2,

which ensures the existence of the two integrals in (3.7).
Letting t → −∞, we obtain (3.4). Next we calculate

1

|t |α
∫ 0

t

(−s)d−1|L(s)|ds = 1

|t |α
∫ T

t

(−s)d−1|L(s)|ds + 1

|t |α
∫ 0

T

(−s)d−1|L(s)|ds.

The second term tends to zero as t → −∞, and we consider the first:

1

|t |α
∫ T

t

(−s)d−1|L(s)|ds ≤ M

|t |α
∫ T

t

(−s)d−1(2|s| log log |s|)1/2 ds

≤ M(2|t | log log |t |)1/2

|t |α
∫ T

t

(−s)d−1 ds

= M(2 log log |t |)1/2

d|t |α−(d+1/2)
− |T |dM(2 log log |t |)1/2

d|t |α−1/2
.

Letting t → −∞, we get (3.5) and therefore the assertion. �

Theorem 3.1 ensures the existence of the improper Riemann–Stieltjes integral.

Lemma 3.2. Let Ld be an FLP, d ∈ (0, 1
2 ) and λ > 0. Then for −∞ ≤ a < ∞∫ t

a

eλs dLd
s , t > a, (3.9)
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exists a.s. as a Riemann–Stieltjes integral and is equal to

eλtLd
t − eλaLd

a − λ

∫ t

a

Ld
s eλs ds. (3.10)

Furthermore, the function (a,∞) → R defined by t 	→ ∫ t

a
eλs dLd

s is continuous.

Proof. From Theorem 3.1 we know that for all α > d + 1
2 there is a null set N ⊂ � such that for

ω ∈ � \ N we have

lim
t→−∞

Ld
t (ω)

|t |α = 0 (3.11)

and, hence, for all ω ∈ �\N and t > a, the integral
∫ t

a
Ld

u(ω)eλu du exists as a Riemann–Stieltjes
integral. For a compact interval [a, t] this is clear. Now consider a = −∞. It suffices to show
that

∫ T

−∞ Ld
u(ω)eλu du exists for T < −1. This follows from the inequality∣∣∣∣∫ T

R

Ld
u(ω)eλu du

∣∣∣∣ ≤
∫ T

R

|Ld
u(ω)|
|u|α eλu|u|α du ≤ C

∫ T

R

eλu|u|α du

for some constant C > 0, and the integral on the right-hand side exists for R → −∞. Similarly,

lim
a→−∞ eλaLd

a(ω) = 0. (3.12)

Now it follows by Wheeden and Zygmund [16], Theorem 2.21, that (3.9) also exists as a
Riemann–Stieltjes integral and is equal to (3.10). Since (3.10) is continuous in t for all t > a,
the result is proven. �

Now we are ready to define the central object of this paper. Recall that all integrals are
Riemann–Stieltjes integrals based on Lemma 3.2.

Definition 3.3. Let Ld be an FLP, d ∈ (0, 1
2 ) and λ > 0. Then

Ld,λ
t :=

∫ t

−∞
e−λ(t−s) dLd

s , t ∈ R, (3.13)

is called an FLOUP.

Before returning to the Langevin equation in connection with the FLOUP, we present some
distributional properties of Ld,λ. With a little effort one can prove that Ld,λ is stationary, i.e., for
all t1 < · · · < tm, m ∈ N, h ∈ R,

(Ld,λ
t1

, . . . , Ld,λ
tn

)
d= (Ld,λ

t1+h, . . . , Ld,λ
tn+h). (3.14)

For details see [5], Lemma 6.1.3.
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Although we mainly concentrate on Riemann–Stieltjes integrals, there exist several results
based on integrals in the L2(�)-sense that we can use. Fractional integration can be considered
as a transformation of classical Riemann–Liouville fractional integrals, which are defined for
0 < α < 1 by

(Iα−f )(x) = 1

�(α)

∫ ∞

x

f (t)(t − x)α−1 dt and

(3.15)

(Iα+f )(x) = 1

�(α)

∫ x

−∞
f (t)(t − x)α−1 dt,

if the integrals exist for almost all x ∈ R. This is, for instance, the case if f ∈ Lp(R) with
1 ≤ p ≤ 1

α
. The following result is a Riemann–Stieltjes version of Theorem 3.5 of [12].

Proposition 3.4. Let Ld,λ be an FLOUP driven by an FLP Ld of bounded p-variation, d ∈
(0, 1

2 ), λ > 0 and p > 0. Then its finite-dimensional distributions have a characteristic function

E

[
exp

{
m∑

j=1

iuj Ld,λ
tj

}]
= exp

{∫
R

ψL

(
m∑

j=1

uj

(
I d−e−λ(tj −·)1{tj ≥·}

)
(s)

)
ds

}
,

u1, . . . , um ∈ R,

for −∞ < t1 < · · · < tm < ∞ and ψL(u) := ∫
R
(eiux − 1 − iux)ν(dx), where ν is the Lévy mea-

sure of L. Furthermore, for every t ∈ R, the random variable Ld,λ
t is infinitely divisible with a

characteristic triple given by (γ t
Ld,λ ,0, νt

Ld,λ ), where

γ t
Ld,λ = −

∫
R

∫
R

(
I d−e−λ(t−·)1{t≥·}

)
(s)x1{|(I d−e−λ(t−·)1{t≥·})(s)x|>1} dν(x)ds, (3.16)

νt
Ld,λ (B) =

∫
R

∫
R

1B

((
I d−e−λ(t−·)1{t≥·}

)
(s)x

)
dν(x)ds ∀Borel sets B in R. (3.17)

Proof. For simple functions, the Riemann–Stieltjes integral and the L2(�)-integral agree a.s.
(see [12], Proposition 5.2). Now approximate the function e−λ(t−s)1{t≥s} by simple functions.
While a.s. and L2(�)-convergence of the Riemann–Stieltjes sums imply both convergence in
probability, the integrals are equal in probability and thus in distribution. Therefore the result
follows as in Theorem 3.5 of [12]. �

We now turn to the second-order properties of an FLOUP. Cheridito, Kawaguchi and Mae-
jima [2] present details concerning the long memory property of an OU process driven by FBM.
Similarly, we shall show that the increments of the FLOUP exhibit long-range dependence. First,
however, we need the following result (see also Proposition 4.4 of [9] and Proposition 5.7 of
[12]).

Theorem 3.5. Let Ld be an FLP of bounded p-variation, d ∈ (0, 1
2 ), λ > 0, p > 0 and f,g :

R → R with |f |, |g| ∈ Wcon
q (R) for p−1 +q−1 > 1, such that

∫
R

f (s)dLd
s and

∫
R

g(s)dLd
s exist
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as Riemann–Stieltjes integrals. Then we have

E

[∫
R

f (t)dLd
t

∫
R

g(s)dLd
s

]
(3.18)

= �(1 − 2d)E[(L(1))2]
�(d)�(1 − d)

∫
R

∫
R

f (t)g(s)|t − s|2d−1 ds dt.

Proof. The proof follows again by using approximating simple functions and the fact that∫ t∧s

−∞
(t − u)d−1(s − u)d−1 du = �(d)�(1 − 2d)

�(1 − d)
|t − s|2d−1 (3.19)

for t, s ∈ R, which can be found in Gripenberg and Norros [6], page 404. �

Now we have everything together to derive the covariance structure of an FLOUP. The lengthy
calculation works in a manner similar to that of Theorem 2.3 of [2]. The asymptotic is up to a
multiplicative factor the same as in the FBM case.

Theorem 3.6. Let Ld be an FLP, d ∈ (0, 1
2 ), λ > 0 and Ld,λ the corresponding FLOUP. Then

for N ∈ N0 and for fixed t ∈ R we have as s → ∞

Cov(Ld,λ
t , Ld,λ

t+s)

= �(1 − 2d)E[L(1)]2

2d(2d + 1)�(d)�(1 − d)

N∑
n=1

(
2n−1∏
k=0

(2d + 1 − k)

)
λ−2ns2d+1−2n + O(s2d−2N−1).

Now it is clear that the increments of an FLOUP exhibit long-range dependence in the sense
of a non-summability property of the autocovariance function.

We now return to the Langevin equation presented in (1.2).

Theorem 3.7. Let Ld be an FLP, d ∈ (0, 1
2 ) and λ > 0. Then the unique stationary pathwise

solution of (1.2) is given a.s. by the corresponding FLOUP

Ld,λ
t =

∫ t

−∞
e−λ(t−u) dLd

u, t ∈ R.

Proof. From Lemma 3.2 we know that
∫ t

−∞ e−λ(t−u) dLd
u exists for all t ∈ R a.s. as a Riemann–

Stieltjes integral. We fix s ∈ R and consider the pathwise SDE

Ld,λ
t = ξs − λ

∫ t

s

Ld,λ
u du + Ld

t − Ld
s , s ≤ t, (3.20)
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where ξs := ∫ s

−∞ e−λ(s−u) dLd
u . Obviously, ξs ∈ L0(�). By arguments similar to those in the

proof of [2], Proposition A.1, we obtain

Ld,λ
t = e−λt

{
eλs

∫ s

−∞
e−λ(s−u) dLd

u +
∫ t

s

eλu dLd
u

}
=

∫ t

−∞
e−λ(t−u) dLd

u, t ∈ R,

is the unique pathwise solution of (3.20) and, therefore, by (3.14) a stationary solution of (1.2).
On the other hand, let (Xt )t∈R be a stationary solution of (1.2). We show that (Xt )t∈R =

(Ld,λ
t )t∈R holds for almost all ω ∈ �. Set A := {ω ∈ � : (Xt (ω))t∈R �= (Ld,λ

t (ω))t∈R} and assume
that P(A) > 0. For ω ∈ A fix t ∈ R with Xt(ω) �= Ld,λ

t (ω). Then we have for s ≤ t by (3.20)

0 �= |Xt − Ld,λ
t | =

∣∣∣∣e−λt

{
eλsXs +

∫ t

s

eλu dLd
u

}
−

∫ t

−∞
e−λ(t−v) dLd

v

∣∣∣∣
=

∣∣∣∣e−λ(t−s)Xs −
∫ s

−∞
e−λ(t−u) dLd

u

∣∣∣∣ = e−λteλs |Xs − Ld,λ
s |,

where we supressed the chosen ω for simplicity. Since λ > 0 and s → −∞ we conclude that
|Xs(ω)− Ld,λ

s (ω)| → ∞ for s → −∞. Therefore, on A we have |Xt − Ld,λ
t | → ∞ for t → −∞.

For a given K > 0 we define ω-wise the random variable T :A → R with |Xt − Ld,λ
t | ≥ K

P(A)
for

t ≤ T on A. Hence,

E|Xt − Ld,λ
t | ≥ E

[|Xt − Ld,λ
t |1{t≤T }1A

] + E
[|Xt − Ld,λ

t |1{t>T }1A

] ≥ K

P(A)
P ({t ≤ T } ∩ A).

Furthermore, we know that {t ≤ T } ∩ A ⊆ {s ≤ T } ∩ A for s ≤ t . Choosing a sequence (tn)n∈N

of real numbers with limn→∞ tn = −∞ we get by continuity of P

lim
n→∞P({tn ≤ T } ∩ A) = P

(⋃
n∈N

{tn ≤ T } ∩ A

)
= P(A).

Putting everything together we arrive at

lim
n→∞E|Xtn − Ld,λ

tn
| ≥ lim

n→∞
K

P(A)
P ({tn ≤ T } ∩ A) = K. (3.21)

Hence, limn→∞ E|Xtn − Ld,λ
tn

| = ∞. However, we have now

E|Xtn | = E|Xtn − Ld,λ
tn

− (−Ld,λ
tn

)| ≥ E|Xtn − Ld,λ
tn

| − E|Ld,λ
tn

|,

where E|Ld,λ
tn

| is independent of tn. Thus, limn→∞ E|Xtn | = ∞ and, by stationarity, E|Xt | = ∞
for all t ∈ R. However, we also have for fixed s ≤ t

lim
t→∞(Xt − Ld,λ

t ) = lim
t→∞ e−λt

(
eλsXs −

∫ s

−∞
eλu dLd

u

)
= 0 a.s. (3.22)
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Hence, by stationary Xt
d= Ld,λ

t , but E|Ld,λ
t | < ∞, which is a contradiction and, thus, we con-

clude that P(A) = 0. �

The following Ornstein–Uhlenbeck operator will be used in the next section to obtain solu-
tions to SDEs with different starting values. The operator here modifies the starting value of the
FLOUP and the lemma shows that this modified process still solves the Langevin equation.

Definition 3.8. Let Ld be an FLP, d ∈ (0, 1
2 ), λ > 0 and Ld,λ the corresponding FLOUP. We

define the Ornstein–Uhlenbeck operator by

Lλ(Ld, ·, ·) : R × R −→ C 0(R),
(3.23)

(τ, z) 	−→ Ld,λ
t − e−λ(t−τ)Ld,λ

τ + e−λ(t−τ)z.

It is immediate from this definition that Lλ
τ (L

d, τ, z) = z a.s. for (τ, z) ∈ R
2.

The next lemma shows that Ld transformed by the Ornstein–Uhlenbeck operator still satisfies
the Langevin equation; its proof follows directly by the definition.

Lemma 3.9. Let Ld be an FLP, d ∈ (0, 1
2 ), λ > 0 and Ld,λ be the corresponding FLOUP. For a

continuous process l := (lt )t∈R the identity lt = Lλ
t (L

d, τ, lτ ) holds for all τ, t ∈ R if and only if

dlt = −λlt dt + dLd
t , t ∈ R. (3.24)

4. Solutions of fractional SDEs by state space transforms and
proper triples

In this section we start with SDEs driven by FLPs. Using pathwise integration we must solve for
almost all ω ∈ � a deterministic integral equation. Consequently, we build on an extensive theory
starting with the seminal work by Young [17]. We also recall that for Brownian motion the path-
wise approach goes back to [4] and [15] leading to the Fisk–Stratonovich integral. Required is
that μ is Lipschitz-continuous and σ ∈ C2(R) with bounded first and second derivatives. Read-
able accounts on the history can be found in [8] and in Ikeda and [7].

Regularity assumptions of sample paths of the driving process like Hölder continuity or
bounded p-variation for p < 2 have been considered by Lyons [10]. We shall work in the frame-
work of p-variation, however, to go beyond the work of Lyons, who proves only existence and
uniqueness theorems under certain Lipschitz assumptions on the coefficient functions and gives
no analytical form of the solution.

The approach by Zähle [19] is indeed comparable to ours, where explicit solutions can be given
under differentiability and Lipschitz conditions on the coefficient functions. Most of her results
can be applied to SDEs driven by an FLP of bounded p-variation for p < 2. We believe that the
contribution of our work is two-fold. First, our assumptions are easy to verify and, second, we
are able to present analytic solutions to SDEs of the form

dXt = (α|Xt |γ + βXt)dt + σ |Xt |γ dLd
t , t ∈ R. (4.1)
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In this situation we cannot apply the results of [19], since the volatility coefficient does not
match the required differentiability assumption. Lyons [10] provides us at least with an existence
theorem, but gives no closed form solution.

Aiming at solutions to similar SDEs, driven however by FBM, Buchmann and Klüppelberg [1]
presented a theory that can be modified to cover SDEs driven by FLPs. The idea is to present so-
lutions to SDEs like, for instance, (4.1) as monotone transformations of the FLOUP. The question
we shall answer is, given an SDE

dXt = μ(Xt) + σ(Xt )dLd
t (4.2)

for specific μ and σ , which monotone transformation of the FLOUP is a solution to (4.2)?
First we have to establish certain regularity conditions on the coefficients μ and σ .

Definition 4.1. (i) A triple (I,μ,σ ) is called strongly proper if and only if it satisfies the follow-
ing properties:

(P1) I = (a, b) ⊆ R is an open interval, where −∞ ≤ a < b ≤ ∞ and μ,σ ∈ C 0(I ).
(P2) There exists a strictly decreasing ψ , absolutely continuous with respect to the Lebesgue

measure such that ψ = μ/σ on I \ Z(σ) where Z(σ) are the zeros of σ , and

lim
x↗b

ψ(x) = − lim
x↘a

ψ(x) = −∞.

(P3) There exists λ > 0 such that σψ ′ ≡ λ holds on I Lebesgue-a.e.
(P4) The inverse function ψ−1 : R → ψ−1(R) = I is differentiable and (ψ−1)′ ∈ Lip(R).

(ii) We call the triple (I,μ,σ ) proper if only (P1)–(P3) are satisfied.
(iii) The interval I is called the state space, the unique constant λ > 0 in (P3) is called the fric-

tion coefficient (FC) and the unique function f : R → I = f (R), f (x) := ψ−1(−λx), is called
the state space transform (SST) for (I,μ,σ ).

Condition (P4) differs from the H -proper assumption required in [1], because we work with
p-variation instead of Hölder continuity.

As pointed out in [1], ψ : I → ψ(I) = R is by (P2) strictly decreasing and a.e. differentiable on
I with ψ ′ ≤ 0. Condition (P3) implies that Z(σ) and Z(ψ ′) have Lebesgue measure zero. Also
we have that σ is non-negative and 1/σ ∈ LC(I), where LC(I) denotes the locally integrable
functions on I ; I \Z(σ) is dense and open in I by (P1). Therefore, the equality μ = σψ extends
to I . It follows that ψ and λ are uniquely determined by μ and σ .

As can be seen from Definition 4.1 our coefficient functions are only defined on the interval I ,
which can be any interval in R. To account for this situation we need to specify what will be
understood to be a solution to an SDE.

Definition 4.2. Let Ld be an FLP of bounded p-variation, p ∈ [1,2) and d ∈ (0, 1
2 ). Suppose

that I ⊆ R is a non-empty interval and μ,σ ∈ C 0(I ). We refer to a stochastic process X :=
(Xt )t∈R as a pathwise solution of the SDE

dXt = μ(Xt)dt + σ(Xt )dLd
t , t ∈ R, (4.3)
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if for almost all sample paths the following conditions are satisfied: X ∈ Wcon
p (R) and the image

of X is a subset of I such that for s ≤ t :

(S1) σ ◦ X is a.s. Riemann–Stieltjes integrable with respect to Ld on [s, t];
(S2) The following integral equation holds:

Xt − Xs =
∫ t

s

μ(Xu)du +
∫ t

s

σ (Xu)dLd
u.

The space of all solutions of (4.3) is denoted by S(I,μ,σ,Ld).

We consider now an SDE as given in (4.3). If we assume that the triple (I,μ,σ ) is strongly
proper with SST f and FC λ, we define the following operator

Xf,λ(Ld, ·, ·) : R × I −→ C 0(R), (τ, z) 	−→ f (Lλ
t (L

d, τ, f −1(z))) (4.4)

with Ornstein–Uhlenbeck operator Lλ
t as in Definition 3.3. We also remark that

X
f,λ
t (Ld, τ, f (Ld,λ

τ )) = f (Ld,λ
t ), t ∈ R. (4.5)

Before we state our main results we state the following technical lemma, which will be needed
in the proofs.

Lemma 4.3 (Version of Lemma 3.2 [1]). Let (I,μ,σ ) be a strongly proper triple with the
corresponding SST f . Then f ∈ C 1(R) with derivative f ′ = σ ◦ f . Also f −1 ∈ C 1(I \ Z(σ))

with (f −1)′(x) = 1/σ(x) for all x ∈ I \ Z(σ).

Next we state the existence theorem. Let M(�, I) denote all mappings from � into I .

Theorem 4.4. Let Ld be an FLP of bounded p-variation, p ∈ [1,2) and d ∈ (0, 1
2 ). If (I,μ,σ )

is strongly proper with SST f and FC λ > 0, then

{Xf,λ(Ld, τ,W) : τ ∈ R,W ∈ M(�,I)} ⊆ S(I,μ,σ,Ld).

Proof. Because we consider pathwise solutions we can w.l.o.g. assume that W = z a.s. for some
z ∈ I . Now fix τ ∈ R and z ∈ I and define

lt := Lλ
t (L

d, τ, f −1(z)) and Yt := X
f,λ
t (Ld, τ, z), t ∈ R.

We show that Y = (Yt )t∈R ∈ S(I,μ,σ,Ld). Obviously Y takes only values in I . Since f ∈ C 1(R)

and l is of bounded p-variation, we know that Y = f ◦ l ∈ Wcon
p (R). With the chain rule from

Theorem A.2 we get for s, t ∈ R

Yt − Ys = f (lt ) − f (ls) =
∫ t

s

f ′(lu)dlu, s ≤ t, (4.6)
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since l solves (3.24),

lu = ls − λ

∫ u

s

lv dv + Ld
u − Ld

s , s ≤ u. (4.7)

The Riemann–Stieltjes integral is additive with respect to a sum of integrators, if the Riemann–
Stieltjes integrals exist separately for each integrator. This is true in our case, because

∫ u

s
lv dv

is of finite variation and Ld
u is of bounded p-variation. Since f ′(lu) is continuous and also of

bounded p-variation, (4.6) and (4.7) imply for s, t ∈ R

Yt − Ys =
∫ t

s

f ′(lu)d

(
−λ

∫ u

s

lv dv

)
+

∫ t

s

f ′(lu)dLd
u, s ≤ t.

Furthermore,
∫ u

s
lv dv is differentiable and f ′(lu)lu is continuous as a function of u and, thus, we

get by the density formula for Riemann–Stieltjes integrals on compacts for s, t ∈ R

Yt − Ys = −λ

∫ t

s

f ′(lu)lu du +
∫ t

s

f ′(lu)dLd
u, s ≤ t.

From Lemma 4.3 we obtain f ′ = σ ◦ f , hence σ ◦ Y = f ′ ◦ l ∈ Wcon
p (R). By Definition 4.1(P3)

and the interpretation following this definition we find that σf −1 = −σψ/λ = −μ/λ. This yields

Yt − Ys = −λ

∫ t

s

f ′(lu)lu du +
∫ t

s

f ′(lu)dLd
u

= −λ

∫ t

s

σ (f (lu))lu du +
∫ t

s

σ (f (lu))dLd
u

=
∫ t

s

μ(Yu)du +
∫ t

s

σ (Yu)dLd
u, s ≤ t,

where we used in the last line the equality σ(f (lu))lu = σ(Yu)f
−1(Yu) = −μ(Yu)/λ. Finally,

we have Y ∈ S(I,μ,σ,Ld). �

The following result ensures uniqueness under natural conditions.

Theorem 4.5. Let Ld be an FLP of bounded p-variation, p ∈ [1,2) and d ∈ (0, 1
2 ). Let also

(I,μ,σ ) be strongly proper with SST f and FC λ > 0. Furthermore, assume that Z(σ) = ∅.
Then

{Xf,λ(Ld, τ,W) : τ ∈ R,W ∈ M(�,I)} = S(I,μ,σ,Ld).

Proof. From Z(σ) = ∅, we know by Lemma 4.3 that f ∈ C 1(R) and (f −1)′(x) = 1/σ(x) for
all x ∈ I . Let X ∈ S(I,μ,σ,Ld). From Definition 4.1 we know that X ∈ Wcon

p (R) a.s. and from

(f −1)′ ∈ Lip(I ) we get by the chain rule from Theorem A.2 for s, t ∈ R

f −1(Xt ) − f −1(Xs) =
∫ t

s

f −1(Xu)dXu =
∫ t

s

1

σ(Xu)
dXu, s ≤ t. (4.8)
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Since X ∈ S(I,μ,σ,Ld), we know that for s, u ∈ R

Xu = Xs +
∫ u

s

μ(Xv)dv +
∫ u

s

σ (Xv)dLd
v , s ≤ u. (4.9)

Now
∫ u

s
μ(Xv)dv is of finite variation and by the density formula of Theorem A.3 the integral∫ u

s
σ (Xv)dLd

v is of bounded p-variation as a function of u. By putting (4.8) and (4.9) together
and using again Theorem A.3, we get for s, t ∈ R

f −1(Xt ) − f −1(Xs)

=
∫ t

s

1

σ(Xu)
d

(
Xs +

∫ u

s

μ(Xv)dv +
∫ u

s

σ (Xv)dLd
v

)
=

∫ t

s

1

σ(Xu)
d

(∫ u

s

μ(Xv)dv

)
+

∫ t

s

1

σ(Xu)
d

(∫ u

s

σ (Xv)dLd
v

)
=

∫ t

s

μ(Xu)

σ (Xu)
du + Ld

t − Ld
s , s ≤ t,

since (I,μ,σ ) is proper, ψ(x) = μ(x)(σ (x))−1 and ψ(x) = −λf −1(x) hold for all x ∈ I . Thus,

f −1(Xt ) − f −1(Xs) =
∫ t

s

μ(Xu)

σ (Xu)
du + Ld

t − Ld
s

=
∫ t

s

ψ(Xu)du + Ld
t − Ld

s

= −λ

∫ t

s

f −1(Xu)du + Ld
t − Ld

s , s ≤ t.

Hence, f −1(X) is a solution of (3.24). Fixing τ ∈ R we see by Lemma 3.9 that f −1(X) =
Lλ(Ld, τ, f −1(Xτ )) and, finally, X = Xf,λ(Ld, τ,Xτ ). �

The next corollary covers the important case of a stationary solution.

Corollary 4.6. Let Ld be an FLP of bounded p-variation, p ∈ [1,2) and d ∈ (0, 1
2 ) and Ld,λ

be the corresponding FLOUP. Furthermore, let (I,μ,σ ) be strongly proper with SST f and FC
λ > 0. Set Xt = f (Ld,λ

t ) for t ∈ R. Then the following assertions hold:

(i) X is a stationary pathwise solution of the SDE

dXt = μ(Xt)dt + σ(Xt )dLd
t , t ∈ R. (4.10)

(ii) If Z(σ) = ∅, then X is the unique stationary pathwise solution of (4.10).

Proof. (i) From Theorem 4.4 we know that X = Xf,λ(Ld,0, f (Ld,λ
0 )) = f (Ld,λ) is a pathwise

solution of (4.10). Furthermore, X is stationary as a transformation of a stationary FLOUP.
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(ii) Given a pathwise solution of (4.10), Theorem 4.5 supplies us with a W ∈ M(�,I) such
that Yt = f (e−λtW + Ld,λ

t ). If we want Y to be strictly stationary, we must have W = 0 a.s. and
get Y = X. �

5. Examples of SDEs driven by FLPs

5.1. Examples by means of strongly proper triples

This section is dedicated to examples, which we illustrate by simulations. For those we consider
as driving Lévy process a compensated Poisson process Lθ with intensity θ > 0; that is,

Lθ
t := P θ

t − tθ, t ∈ R,

where P θ is a Lévy process with drift γ = 0 and Lévy measure ν(dx) = θδ1(dx) without Brown-
ian component. Of course, we consider this process to be defined on the whole of R using (1.3).

In a first step we simulate sample paths of Lθ and compute the corresponding FLP Ld by a
Riemann–Stieltjes approximation; that is, we approximate

Ld
t ≈ 1

�(d + 1)

{
0∑

k=−n2

[(
t − k

n

)d

−
(

− k

n

)d](
L

a,b
(k+1)/n − L

a,b
k/n

)

+
[nt]∑
k=1

(
t − k

n

)d(
L

a,b
(k+1)/n

− L
a,b
k/n

)}
, t ∈ R.

From Theorem 2.55 of [12] we know that the quality of this approximation is

O(nd−1/2) + O(n−1/2) + O
(
n(1+2d−2d2)/(2d−3)

)
.

Furthermore, the Poisson-FLP is of finite variation by Theorem 2.25 of [12].
Now we use a version of the explicit Euler method for the SDE (1.2)

dLd,λ
t = −λLd,λ

t dt + dLd
t , t ∈ R,

to compute sample paths of the FLOUP. We want to remark that all these computations are
pathwise. Probability comes in only through the underlying paths of the driving Lévy processes.

Next we study some examples of solutions to the SDE (4.3) given by strongly proper triples.
We will mainly draw from structural results of [1] taking into account that their H -proper con-
dition has to be replaced by our assumption (P4) in Definition 4.1.

For the rest of this section, let Ld be an FLP of bounded p-variation, p ∈ [1,2) and d ∈ (0, 1
2 ).

Example 5.1. As a first example, we consider for parameters α,β ∈ R and σ > 0 an SDE of the
form

dXt = (α|Xt |γ + βXt)dt + σ |Xt |γ dLd
t , t ∈ R.
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We analyse this SDE by taking the volatility coefficient σ : R → [0,∞) defined by σ(x) :=
σ0|x|γ for σ0 > 0 and γ ∈ R as given. The question is now, what drift functions μ and intervals
I lead to strongly proper triples (I,μ,σ ) as defined in Definition 4.1? More precisely, we want
to find elements in the set

KI
σ := {(λ,μ) ∈ R

+ × C 0(I ) : (I,μ,σ ) is proper with FC λ}.
Using Proposition 5.5 of [1] we see that only γ ∈ [0,1] leads to a non-empty KI

σ . We consider
the cases γ = 0, γ = 1 and γ ∈ (0,1) separately.

Take first γ = 0. For a triple (I,μ,σ ) to be proper we must have that σψ ′ ≡ −λ with ψ =
μ/σ . This results in dXt = (α +βXt)dt +σ dLd

t with state space I = R and SST is affine, more
precisely, f (x) = α + βx for x ∈ R.

If γ = 1, by Proposition 5.6 of [1], the state space can only be either I = (−∞,0) or I =
(0,+∞). For I = (0,∞) we get

K(0,∞)
σ = {(|β|,μ) ∈ R

+ × C 0(I ) :μ(x) = αx + βx logx,α ∈ R, β < 0, x ∈ (0,∞)}
and the state space transform is f (x) = exp{σ0x − α

β
} for x ∈ (0,∞). Simple calculation ensures

that condition (P4) of Definition 4.1 is satisfied, and every element of K(0,∞)
σ leads to a strongly

proper triple. An example of an SDE of this kind for α = 0 can be found in (5.6). The case
I = (−∞,0) can be treated analogously.

Finally, we consider γ ∈ (0,1). Proposition 5.8 of [1] shows that the only possible state space
is the whole real line R and

KR

σ = {(
(1 − γ )|β|,μ) ∈ R

+ × C 0(I ) :μ(x) = α|x|γ + βx,α ∈ R, β < 0, x ∈ R
}
.

Furthermore, the SST is given by

f (x) = sign

(
(1 − γ )σ0x − α

β

)∣∣∣∣(1 − γ )σ0x − α

β

∣∣∣∣1/(1−γ )

.

The derivative of f can easily be calculated yielding that only γ ∈ [ 1
2 ,1) leads to strongly proper

triples. An example for such an SDE (with α = 0) is a fractional Cox–Ingersoll–Ross-type model,
which is investigated in detail in Section 5.2 (cf. the SDE in (5.3)).

Example 5.2. We consider the following SDEs with affine drift.

dXt = (α + βXt)dt + σ(Xt )dLd
t , t ∈ R,

that is, μ : R → R is defined by μ(x) := α + βx for α,β ∈ R. To find suitable volatility coeffi-
cients and state spaces, we consider the set

�I
μ := {λ ∈ R

+ :∃σ ∈ C 0(I ) with (I,μ,σ ) is proper with FC λ}
and, if there is a λ ∈ �I

μ, we investigate

HI
μ,λ = {σ ∈ C 0(I ) : (I,μ,σ ) is proper with FC λ}.
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Proposition 5.1 of [1] implies that there exist I, σ with (I,μ,σ ) being proper if and only if
β < 0. In this case it also follows that I = R and �I

μ = (0, |β|]. A FC λ = |β| leads again to an
affine model, namely σ(x) = σ0x for some σ0 > 0.

If we choose an FC λ = (1−δ)|β| ∈ (0, |β|) for some δ ∈ (0,1), then by Proposition 5.3 of [1],
every σ ∈ HR

μ,(1−δ)|β| is of the form

σ(x) = σ1|α + βx|δ1{x≤−α/β} + σ2|α + βx|δ1{x≥−α/β}

for some σ1, σ2 > 0. Setting fi := |β|δ/(1−δ)σ
1/(1−δ)
i (1 − δ)1/(1−δ) for i = 1,2 the SST takes the

form

f (x) =
(

α

β
− f1|x|1/(1−δ)

)
1{x≤0} +

(
α

β
+ f2|x|1/(1−δ)

)
1{x≥0}.

Calculating the derivative of f, we see that a possible proper triple is strongly proper if and only
if δ ∈ [ 1

2 ,1). An example of such an SDE is for parameters α ∈ R and β < 0 given by

dXt = (α + βXt)dt + σ
√|α + βXt |dLd

t , t ∈ R. (5.1)

Example 5.3. Consider the SDE

dXt = −σ1 sin(σ2Xt) cos(σ2Xt)dt − sin2(σ2Xt)dLd
t , t ∈ R. (5.2)

This example provides a bounded state space model. Define the triple (I,μ,σ ) by I := (0, π
σ2

),

μ(x) := −σ1 sin(σ2x) cos(σ2x) and σ(x) := − sin2(σ2x) where σ1, σ2 > 0. It can be shown
that this triple is in fact strongly proper with FC λ = σ1σ2. More precisely, we have ψ(x) =
σ1 cot(σ2x) and, therefore,

Xt := 1

σ1
arccot(−σ2 Ld,σ1σ2

t ), t ∈ R,

is the unique stationary solution of the SDE (5.2).

5.2. Fractional Cox–Ingersoll–Ross models

Whenever positive phenomena are modeled – for instance, interest rates, volatilities or default
rates in finance – the Cox–Ingersoll–Ross (CIR) [3] model is the most prominent model. It is the
solution to

dXt = (a − γXt)dt + σ
√

Xt dBt , X0 = x0 ≥ 0,

where B = (Bt )t∈[0,∞) denotes standard Brownian motion, a, γ ∈ R and σ > 0. General exis-
tence and uniqueness theorems of Brownian SDEs cannot be applied here, because the square
root is clearly not Lipschitz continuous. However, Ikeda and Watanabe [7], page 221, showed
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Figure 1. Sample paths of a solution of the Cox–Ingersoll–Ross model (5.3) with X0 = 0 for varying σ ,
fixed λ = 2.5 and d = 0.35, using two different FLP sample paths, left θ = 0.5, right θ = 2.5.

that for any X0 = x ≥ 0 there exists a unique non-negative solution. We shall consider analogous
SDEs driven by FLPs.

Within the framework of strongly proper triples, Examples 5.1 and 5.2 show that our theory
only covers CIR models with mean reversion to a = 0. Consider for σ,γ > 0 a solution to the
pathwise SDE

dXt = −γXt dt + σ
√|Xt |dLd

t , t ∈ R. (5.3)

Define σ̃ (x) := σ |x|1/2, choose μ̃(x) = −γ x and take I = R. Example 5.1 implies that (I, μ̃, σ̃ )

is strongly proper with SST

f (x) = sign(x)
σ 2

4
x2,

and, by Theorem 4.4, a stationary solution of (5.3) is given by (f (Ld,λ
t ))t∈R with λ = γ /2,

cf. Figure 1. Obviously, this CIR model takes also negative values.
A natural non-negative transformation of the FLOUP is given by Zt := (σ Ld,λ

t )2 for t ∈ R

(cf. Figure 2), and, using the chain rule from Theorem A.2 and the existence of all appearing
Riemann–Stieltjes integrals, we get

dZt = 2σ 2 Ld,λ
t dLd,λ

t = −2λσ 2(Ld,λ
t )2 dt + 2σ 2 Ld,λ

t dLd
t

= −2λZt dt + 2σ
√

Zt dLd
t , t ∈ R.

Defining now κ(z) := −2λz and ι(z) := 2σ
√

z we have Z as a solution to

dZt = κ(Zt )dt + ι(Zt )dLd
t , t ∈ R.

However, the triple ((0,∞), κ, ι) is not strongly proper, because assumption (P2) of Defini-
tion 4.1 is violated.

We can now formulate the following general result.
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Figure 2. Sample paths of squared FLOUPs for varying σ , fixed λ = 2.5 and d = 0.35, using the same
sample paths as in Figure 1: left θ = 0.5, right θ = 2.5.

Proposition 5.4. Let Lλ/2(Ld, ·, ·) be the Ornstein–Uhlenbeck operator from Definition 3.8.
Then for τ ∈ R and z ≥ 0 the process

X
λ,τ,z
t :=

(
σ

2
L

λ/2
t (Ld, τ, z)

)2

, t ∈ R,

solves the SDEs

dXt = −λXt dt + σ
√|Xt |dLd

t (5.4)

and

dXt = −λXt dt + σ
√

Xt dLd
t , t ∈ R. (5.5)

In fact, any solution to (5.5) also solves (5.4).

This result is not surprising, because Theorem 4.5 does not hold for the SDE (5.4). However,
the reverse is not true: a solution of (5.4) does not necessarily solve (5.5), because it can be
negative. Also the constant process, Xt := 0, t ∈ R, solves both (5.5) and (5.4).

Considering a squared Ornstein–Uhlenbeck process leads in the case of a driving Brownian
motion to a CIR model with mean reversion to positive values. This approach does not work
for pathwise integrals, neither in the FLP case nor for FBM, since the Itô term in the chain rule
vanishes by finite p-variation for some p < 2.

A positive process based on Theorem 4.4 is given as a solution to

dYt = −λ
√

Yt log(Yt )dt + σ |Yt |dLd
t , t ∈ R, Y0 = y0 (5.6)

for λ,σ > 0, cf. Figure 3. Example 5.1 states that the triple for state space I = (0,∞) is strongly
proper and the SST can be calculated as f (x) = eσx .
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Figure 3. Sample paths of a solution of (5.6) for varying σ , fixed λ = 2.5 and d = 0.35, using the same
sample paths as in Figure 1: left θ = 0.5, right θ = 2.5.

Appendix: Riemann–Stieltjes integration

As mentioned in the Introduction, all integrals in this paper are considered Riemann–Stieltjes
integrals, if not stated otherwise. That is, for functions f,h : [a, b] 	→ R, we take the limit of

S(f,g, κ,ρ) :=
n∑

i=1

f (yi)[h(xi) − h(xi−1)], (A.1)

where κ = (xi)i=0,...,n is a partition and ρ = (yi)i=1,...,n an intermediate partition of [a, b], that
is,

a = x0 < x1 < · · · < xn−1 < xn = b, xi−1 ≤ yi ≤ xi for all i ∈ {1, . . . , n},

while letting mesh(κ) := supi=1,...,n |xi −xi−1| go to zero. Using the Banach–Steinhaus theorem,
one can prove that if for a right-continuous h and all continuous f the Riemann–Stieltjes sums of
(A.1) converge, h is already of bounded variation. However, we can weaken this assumption on
the integrator by restricting the space of possible integrands. Recall the definitions in (2.4) and
(2.5). Exploiting the concept of p-variation we now state an existence theorem for Riemann–
Stieltjes integrals proven by Young [17].

Theorem A.1. Let [a, b] ⊂ R be a compact interval, f ∈ Wcon
q ([a, b]) and h ∈ Wcon

p ([a, b]) for

some p,q > 0 with p−1 + q−1 > 1. Then
∫ b

a
fs dhs exists in the Riemann–Stieltjes sense.

As in the classical Riemann–Stieltjes calculus, a chain rule can be proven; see [18], Theo-
rem 3.1.

Theorem A.2 (Chain rule). Let [a, b] be a compact interval and g ∈ Wcon
p ([a, b]) for some

p ∈ (0,2). Furthermore, let F ∈ C 1(R) with F ′ ∈ Lip(R). Then the Riemann–Stieltjes integral
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a
(F ′ ◦ g)s dgs exists and we have

(F ◦ g)(b) − (F ◦ g)(a) =
∫ b

a

(F ′ ◦ g)s dgs. (A.2)

At last we state a density formula, which we have not found in the literature; for a proof we
refer to [5], Theorem 4.3.2.

Theorem A.3 (Density formula). Let [a, b] ⊂ R be a compact interval, f,h ∈ Wcon
q ([a, b]) and

g ∈ Wcon
p ([a, b]) for some q > 0 and p > 1 with p−1 + q−1 > 1. For all x ∈ [a, b] we define

φ(x) := ∫ x

a
hs dgs . Then we have φ ∈ Wcon

p ([a, b]) and∫ b

a

fs dφs =
∫ b

a

fshdgs. (A.3)
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