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A large deviation principle is established for a general class of stochastic flows in the small noise limit.
This result is then applied to a Bayesian formulation of an image matching problem, and an approximate
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1. Introduction

Stochastic flows of diffeomorphisms have been a subject of much research [4,6,13,15]. In this
paper, we are interested in an important subclass of such flows, namely the Brownian flows of
diffeomorphisms (cf. [15]). Our goal is to study small noise asymptotics, specifically, the large
deviation principle (LDP) for such flows.

Elementary examples of Brownian flows are those constructed by solving finite dimensional
Itô stochastic differential equations. More precisely, suppose b,fi , i = 1, . . . ,m, are functions
from R

d × [0, T ] to R
d that are continuous in (x, t) and (k + 1)-times continuously differen-

tiable (with uniformly bounded derivatives) in x. Let β1, . . . , βm be independent standard real
Brownian motions on some filtered probability space (�, F ,P, {Ft }). Then for each s ∈ [0, T ]
and x ∈ R

d , there is a unique continuous {Ft }-adapted, R
d -valued process φs,t (x), s ≤ t ≤ T ,

satisfying

φs,t (x) = x +
∫ t

s

b(φs,r (x), r)dr +
m∑

i=1

∫ t

s

fi(φs,r (x), r)dβi(r). (1.1)

By choosing a suitable modification, {φs,t ,0 ≤ s ≤ t ≤ T } defines a Brownian flow of Ck-
diffeomorphisms (see Section 2). In particular, denoting by Gk the topological group of C

k-
diffeomorphisms (see Section 3 for precise definitions of the topology and the metric on Gk),
one has that φ ≡ {φ0,t ,0 ≤ t ≤ T } is a random variable with values in the Polish space
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Ŵk = C([0, T ] :Gk). For ε ∈ (0,∞), when fi is replaced by εfi in (1.1), we write the corre-
sponding flow as φε . Large deviations for φε in Ŵk , as ε → 0, have been studied for the case
k = 0 in [3,18] and for general k in [5].

As is well known (cf. [4,15,16]), not all Brownian flows can be expressed as in (1.1) and in
general one needs infinitely many Brownian motions to obtain a stochastic differential equa-
tion (SDE) representation for the flow. Indeed typical space–time stochastic models with a real-
istic correlation structure in the spatial parameter naturally lead to a formulation with infinitely
many Brownian motions. One such example is given in Section 5. Thus, following Kunita’s [15]
notation for stochastic integration with respect to semimartingales with a spatial parameter, the
study of general Brownian flows of C

k-diffeomorphisms leads to SDEs of the form

dφs,t (x) = F(φs,t (x),dt), φs,s(x) = x, 0 ≤ s ≤ t ≤ T ,x ∈ R
d , (1.2)

where F(x, t) is a C
k+1-Brownian motion (see Definition 2.2). Note that such an F can be

regarded as a random variable with values in the Polish space Wk = C([0, T ] : Ck+1(Rd)), where
Ck+1(Rd) is the space of (k + 1)-times continuously differentiable functions from Rd to Rd .
Representations of such Brownian motions in terms of infinitely many independent standard
real Brownian motions is well known (see, e.g., Kunita [15], Exercise 3.2.10). Indeed, one can
represent F as

F(x, t)
.=

∫ t

0
b(x, r)dr +

∞∑
i=1

∫ t

0
fi(x, r)dβi(r), (x, t) ∈ R

d × [0, T ], (1.3)

where {βi}∞i=1 is an infinite sequence of i.i.d. real Brownian motions and b,fi are suitable func-
tions from R

d × [0, T ] to R
d (see below Definition 2.2 for details).

Letting a(x, y, t) = ∑∞
i=1 fi(x, t)f ′

i (y, t) for x, y ∈ R
d , t ∈ [0, T ], the functions (a, b) are

referred to as the local characteristics of the Brownian motion F . When equation (1.2) is driven
by the Brownian motion Fε with local characteristics (εa, b), we will denote the corresponding
solution by φε . In this work we establish a large deviation principle for (φε,F ε) in Ŵk−1 ×Wk−1.
Note that the LDP is established in a larger space than the one in which (φε,F ε) take values
(namely, Ŵk × Wk). This is consistent with results in [3,5,18], which consider stochastic flows
driven by only finitely many real Brownian motions. The main technical difficulty in establishing
the LDP in Ŵk × Wk is the proof of a result analogous to Proposition 4.10, which establishes
tightness of certain controlled processes, when k − 1 is replaced by k.

As noted above, the stochastic dynamical systems considered in this work are driven by an
infinite dimensional Brownian motion. A broadly applicable approach to the study of large
deviations for such systems, based on variational representations for functionals of infinite-
dimensional Brownian motions, has been developed in [7,8]. Several authors have adopted this
approach to analyze the large deviation properties of a variety of models, including stochastic
PDEs with random dynamic boundary conditions [22], stochastic Navier–Stokes equations [21]
and infinite-dimensional SDEs with non-Lipschitz coefficients [19,20]. The approach is a partic-
ularly attractive alternative to standard discretization/approximation methods (cf. [2]) when the
state spaces are non-standard function spaces, such as the space of diffeomorphisms used in the
present paper.
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The proof of our main result (Theorem 3.2) proceeds by verification of a general sufficient
condition obtained in [8] (see Assumption 2 and Theorem 6 therein; see also Theorem 3.6 of
the current paper). The verification of this condition essentially translates into establishing weak
convergence of certain stochastic flows defined via controlled analogues of the original model
(see Theorem 3.5). These weak convergence proofs proceed by first establishing convergence
for N -point motions of the flow and then using Sobolev and Rellich–Kondrachov embedding
theorems (see the proof of Proposition 4.10) to argue tightness and convergence as flows. The key
point here is that the estimates needed in the proofs are precisely those that have been developed
in [15] for general qualitative analysis (e.g., existence, uniqueness) of the uncontrolled versions
of the flows. Unlike in [3,5,18] (which consider only finite-dimensional flows), the proof of the
LDP does not require any exponential probability estimates or discretization/approximation of
the original model.

In Section 5 of this paper we study an application of these results to a problem in image
analysis. Stochastic diffeomorphic flows have been suggested for modeling prior statistical dis-
tributions on the space of possible images/targets of interest in the study of nonlinear inverse
problems in this field (see [12] and references therein). Along with a data model, noise corrupted
observations with such a prior distribution can then be used to compute a posterior distribution
on this space, the “mode” of which yields an estimate of the true image underlying the obser-
vations. Motivated by such a Bayesian procedure, a variational approach to this image matching
problem has been suggested and analyzed in [12]. A goal of the current paper is to develop a rig-
orous asymptotic theory that relates standard stochastic Bayesian formulations of this problem,
in the small noise limit, with the deterministic variational approach taken in [12]. This is done in
Theorem 5.1 of Section 5.

Large deviations for finite-dimensional stochastic flows were studied for asymptotic analysis
of small noise finite-dimensional anticipative SDEs in [18] and of finite-dimensional diffusions
generated by εL1 + L2, where L1,L2 are two second-order differential operators, in [5]. Analo-
gous problems for infinite-dimensional models can be treated using the large deviation principle
established in the current paper.

We now give an outline of the paper. Section 2 contains some background definitions of C
k-

Brownian motions and Brownian flows. Section 3 presents the main large deviation result of the
paper. The key weak convergence needed to prove this result, Theorem 3.5, is given in Section 4.
Finally, Section 5 introduces the image analysis problem and uses the results of Section 3 to ob-
tain an asymptotic result relating the Bayesian formulation of the problem with the deterministic
variational approach of [12].

We generally follow the notation of [15]. A list of standard notational conventions is given at
the end of the paper, but specialized notation is as follows:

• Let α = (α1, α2, . . . , αd) be a multiindex of non-negative integers and |α| = α1 +α2 +· · ·+
αd . For an |α|-times differentiable function f : Rd → R, set ∂αf

.= ∂α
x f = ∂ |α|f

(∂x1)
α1 ···(∂xd )αd .

For such an f , we write ∂f (x)
∂xi

as ∂if . If f ≡ (f1, f2, . . . , fd)′ is an |α|-times differentiable

function from R
d to R

d , we write ∂αf
.= (∂αf1, ∂

αf2, . . . , ∂
αfd)′. By convention ∂0f = f .

• For m ≥ 0 denote by C
m the space of m-times continuously differentiable functions from

R
d to R.
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• For any subset A ⊂ R
d , m ≥ 0 and f ∈ C

m, let

‖f ‖m;A
.=

∑
0≤|α|≤m

sup
x∈A

|∂αf (x)|.

The space C
m is a Fréchet space with the countable collection of seminorms ‖f ‖m;An

,An =
{x : |x| ≤ n}. In particular, it is a Polish space with a topology that corresponds to “uniform
convergence on compacts”.

• For 0 < δ ≤ 1, let

‖f ‖m,δ;A
.= ‖f ‖m;A +

∑
|α|=m

sup
x,y∈A;x �=y

|∂αf (x) − ∂αf (y)|
|x − y|δ ,

and

C
m,δ .= {f ∈ C

m :‖f ‖m,δ;An
< ∞ for any n ∈ N}.

The seminorms {‖ · ‖m,δ;An
,n ∈ N} make C

m,δ a Fréchet space.
• For m ≥ 0 denote by C̃

m the space of functions g : Rd × R
d → R such that g(x, y), x, y ∈

R
d is m-times continuously differentiable with respect to both x and y. Endowed with the

seminorms

‖g‖∼
m;An

.=
∑

0≤|α|≤m

sup
x,y∈An

|∂α
x ∂α

y g(x, y)|,

where n ∈ N, C̃
m is a Fréchet space. Also, for 0 < δ ≤ 1 let

‖g‖∼
m,δ;An

.= ‖g‖∼
m;An

+
∑

|α|=m

sup
x �=x′,y �=y′

x,y,x′,y′∈An

|	α
x,x′g(y) − 	α

x,x′g(y′)|
|x − x′|δ|y − y′|δ ,

where 	α
x,x′g(y)

.= ∂̂α
x,yg(x, y) − ∂̂α

x′,yg(x′, y), ∂̂α
x,yg(x, y)

.= ∂α
x ∂α

y g(x, y). Then

C̃
m,δ .= {g ∈ C̃

m; ‖g‖∼
m,δ;An

< ∞, for any n ∈ N}
is a Fréchet space with respect to the seminorms {‖ · ‖∼

m,δ;An
,n ∈ N}.

• We write ‖f ‖m;Rd as ‖f ‖m. The norms ‖ · ‖m,δ,‖ · ‖∼
m,‖ · ‖∼

m,δ are to be interpreted in
a similar manner.

• Let C
m(Rd)

.= {f = (f1, f2, . . . , fd)′ :fi ∈ C
m, i = 1,2, . . . , d} and ‖f ‖m = ∑d

i=1 ‖fi‖m.
The spaces C

m,δ(Rd), C̃
m(Rd×d), C̃

m,δ(Rd×d) and their corresponding norms are defined
similarly. In particular, note that h ∈ C̃

m,δ(Rd×d) is a map from R
d × R

d to R
d×d .

• Let C
m,δ
T (Rd) and C̃

m,δ
T (Rd×d) be the classes of measurable functions b : [0, T ] →

C
m,δ(Rd) and a : [0, T ] → C̃

m,δ(Rd×d), respectively, such that

‖b‖T ,m,δ
.= sup

0≤t≤T

‖b(t)‖m,δ < ∞ and

‖a‖∼
T ,m,δ

.= sup
0≤t≤T

‖a(t)‖∼
m,δ < ∞.
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• We denote the Hilbert space

l2
.=

{
(x1, x2, . . .) :xi ∈ R, i ≥ 1 and

∞∑
i=1

x2
i < ∞

}
,

where the inner product on l2 is defined as 〈x, y〉l2 .= ∑∞
i=1 xiyi, x, y ∈ l2. We denote the

corresponding norm as ‖ · ‖l2 .
• Given a filtered probability space (�, F ,P, {Ft }), we define

A[l2] .=
{
φ ≡ {φi}∞i=1

∣∣∣ φi : [0, T ] → R is {Ft }-predictable for all i

and P

{∫ T

0
‖φ(s)‖2

l2
ds < ∞

}
= 1

}
.

• Define

SN [l2] .=
{
φ ≡ {φi}∞i=1 ∈ L2([0, T ] : l2) s.t.

∫ T

0
‖φ(s)‖2

l2
ds ≤ N

}
.

Endowed with the weak topology for the Hilbert space L2([0, T ] : l2), SN [l2] is a compact
Polish space.

• Define

AN [l2] .= {u ∈ A[l2] :u(ω) ∈ SN,P-a.s.}.
We will always consider SN [l2] with the weak topology when referring to convergence in
distribution of SN [l2]-valued random variables.

2. Preliminaries

Let ◦ denote the composition of maps and let id denote the identity map on R
d .

Definition 2.1 (Stochastic flows of homeomorphisms/diffeomorphisms). A collection {φs,t (x) :
0 ≤ s ≤ t ≤ T ,x ∈ R

d} of R
d -valued random variables on some filtered probability space

(�, F ,P, {Ft }) is called a forward stochastic flow of homeomorphisms if there exists N ∈ F
with P(N) = 0 such that for any ω ∈ Nc:

1. (s, t, x) �→ φs,t (x,ω) is a continuous map,
2. φs,u(ω) = φt,u(ω) ◦ φs,t (ω) holds for all s, t, u, 0 ≤ s ≤ t ≤ u ≤ T ,
3. φs,s(ω) = id for all s, 0 ≤ s ≤ T ,
4. the map φs,t (ω) : Rd → R

d is an onto homeomorphism for all s, t,0 ≤ s ≤ t ≤ T .

If in addition φs,t (x,ω) is k-times differentiable with respect to x for all s ≤ t and the deriva-
tives are continuous in (s, t, x), it is called a stochastic flow of C

k-diffeomorphisms.
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We now introduce a Brownian motion with a spatial parameter, with local characteristics
(a, b). Throughout Sections 2–4, we will assume that (a, b) ∈ C̃

k,δ
T (Rd×d)× C

k,δ
T (Rd), for some

k ∈ N and δ ∈ (0,1]. Fix ν such that 0 < ν < δ.

Definition 2.2 (Ck,ν -Brownian motion). A continuous stochastic process {F(t)}t≥0 on some fil-
tered probability space (�, F ,P, {Ft }) with values in C

k,ν(Rd) is said to be a C
k,ν -Brownian

motion with local characteristics (a, b) if F(0),F (ti+1) − F(ti), i = 0,1, . . . , n − 1, are inde-
pendent C

k,ν(Rd)-valued random variables whenever 0 ≤ t0 < t1 < · · · < tn ≤ T and if for each
x ∈ R

d,M(x, t)
.= F(x, t) − ∫ t

0 b(x, r)dr is a continuous (d-dimensional) martingale such that

〈〈M(x, ·),M(y, ·)〉〉t = ∫ t

0 a(x, y, r)dr for all (x, y) ∈ R
d × R

d .

The existence of a C
k,ν -Brownian motion with local characteristics (a, b) follows from [15]

(see, e.g., Theorem 3.1.2 and Exercise 3.2.10). Indeed, for any γ < δ one can represent F as
in (1.3), where fi : Rd × [0, T ] → R

d are such that for each t ∈ [0, T ], fi(·, t) ∈ C
k,γ (Rd),

a(x, y, t) =
∞∑
i=1

fi(x, t)f ′
i (y, t), a.e. t,

and ∫ T

0

∞∑
i=1

|fi(x, r)|2 dr ≤ T ‖a‖∼
T ,k,δ < ∞.

In particular, note that if F is a C
k,ν -valued Brownian motion, its finite-dimensional restric-

tion (F (x1, ·), F (x2, ·), . . . ,F (xn, ·))′ is an nd-dimensional Brownian motion (with suitable
mean and covariance) for any (x1, . . . , xn) ∈ R

nd . If F is as defined by (1.3) and {φt }0≤t≤1 is
a continuous R

d -valued {Ft }-adapted stochastic process, the stochastic integral
∫ t

0 F(φr , dr) is
a well-defined d-dimensional continuous {Ft }-adapted stochastic process (see [15], Chapter 3,
Section 2, pages 71–86).

Definition 2.3. Let F be as in Definition 2.2. Then for each s ∈ [0, T ] and x ∈ R
d , there is a

unique continuous Ft -adapted, R
d -valued process φs,t (x), s ≤ t ≤ T satisfying φs,t (x) = x +∫ t

s
F (φs,r (x), dr), t ∈ [s, T ]. This stochastic process is called the solution of Itô’s stochastic

differential equation based on the Brownian motion F .

From [15], Theorem 4.6.5, it follows that {φs,t }0≤s≤t≤T as introduced in Definition 2.3 has
a modification that is a forward stochastic flow of C

k-diffeomorphisms.

3. Large deviation principle

Given ε > 0, let Fε be a C
k,ν -Brownian motion on some filtered probability space (�, F ,

P, {Ft }), with local characteristics (εa, b), where (k, ν) and (a, b) are as in Section 2. Without
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loss of generality we assume that Fε is represented as

Fε(x, t)
.=

∫ t

0
b(x, r)dr + √

ε

∞∑
l=1

∫ t

0
fl(x, r)dβl(r), (x, t) ∈ R

d × [0, T ], (3.1)

where (βl, fl)l≥1 are as in Section 2. Note in particular that

Fε(x, t) −
∫ t

0
b(x, r)dr = √

εM(x, t).

With an abuse of notation, when ε = εn we write Fε as Fn. Observe that 〈〈M(x, ·), βl(·)〉〉t =∫ t

0 fl(x, r)dr for all t ∈ [0, T ], a.s. Let φε ≡ {φε
s,t (x),0 ≤ s ≤ t ≤ T ,x ∈ R

d} be the forward sto-
chastic flow of C

k-diffeomorphisms based on Fε . With another abuse of notation, we write φε
0,t

as φε
t and φε = {φε

t (x),0 ≤ t ≤ T ,x ∈ R
d}.

The goal of this paper is to show that the family (φε,F ε)ε>0 satisfies an LDP on a suitable
function space, as ε → 0. We begin by recalling the definition of a rate function.

Definition 3.1. Let E be a Polish space. A function I : E → [0,∞] is called a rate function on E ,
if for each M < ∞ the level set {x ∈ E : I (x) ≤ M} is a compact subset of E .

We remark that some authors define a rate function by replacing the requirement of compact-
ness of level sets by the requirement that these level sets be closed and refer to a rate function
satisfying the property of compact level sets as a “good rate function”.

For m ∈ N, let Gm be the group of C
m-diffeomorphisms on R

d . Gm is endowed with the
metric

dm(φ,ψ) = λm(φ,ψ) + λm(φ−1,ψ−1), (3.2)

where

λm(φ,ψ) =
∑

|α|≤m

ρ(∂αφ, ∂αψ),

(3.3)

ρ(φ,ψ) =
∞∑

N=1

1

2N

sup|x|≤N |φ(x) − ψ(x)|
1 + sup|x|≤N |φ(x) − ψ(x)| .

Under this metric Gm is a Polish space. Let Ŵm
.= C([0, T ] :Gm) be the set of all continuous

maps from [0, T ] to Gm and Wm
.= C([0, T ] : Cm(Rd)) be the set of all continuous maps from

[0, T ] to C
m(Rd). The space Ŵm endowed with the metric d̂m(φ,ψ) = sup0≤t≤T dm(φ(t),ψ(t))

and the space Wm with the metric d̄m(φ,ψ) = sup0≤t≤T λm(φ(t),ψ(t)) are Polish spaces. Note

that (φε,F ε) belongs to Ŵk × Wk ⊆ Ŵk−1 × Wk−1 ⊆ Wk−1 × Wk−1. We will show that the pair
(φε,F ε)ε>0 satisfies LDPs in both of the spaces Ŵk−1 × Wk−1 and Wk−1 × Wk−1, with a rate
function I that is introduced below.

Let u ≡ {ul}∞l=1 ∈ ⋃
N≥1 AN [l2]. Given any such control, we want to construct a corre-

sponding controlled flow in the form of a perturbed analogue of (3.1). Observe that Zt
.=
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∫ t

0 ul(s)dβl(s) is a continuous square integrable martingale. For any γ < δ one can
find bu : Rd × [0, T ] × � → R

d such that bu(t,ω) ∈ C
k,γ (Rd) for a.e. (t,ω), such that for

each x ∈ R
d, bu(x, ·) is predictable, and such that

∫ t

0 bu(x, s)ds = 〈〈Z,M(x, ·)〉〉t for each
(x, t) ∈ R

d × [0, T ]. In particular, for each x ∈ R
d, bu(x, t)

.= ∑∞
l=1 ul(t)fl(x, t) a.e. (t,ω).

Furthermore, for some c ∈ (0,∞),

‖bu(t)‖2
k,γ ≤ c‖a‖∼

T ,k,δ

∞∑
l=1

|ul(t)|2, [dt ⊗ P]-a.e. in (t,ω). (3.4)

The proofs of these statements follow along the lines of Exercise 3.2.10 and Lemma 3.2.3 of [15].
Next, define

F 0,u(x, t)
.=

∫ t

0
bu(x, s)ds +

∫ t

0
b(x, s)ds. (3.5)

It follows that F 0,u(·, t) is a C
k,γ (Rd)-valued continuous adapted stochastic process. Let b̂u

.=
bu + b and for (t0, x) ∈ [0, T ] × R

d let {φ0,u
t0,t

(x)}t0≤t≤T be the unique solution of the equation

φ
0,u
t0,t

(x)
.= x +

∫ t

t0

b̂u(φ
0,u
t0,r

(x), r)dr, t ∈ [t0, T ]. (3.6)

From [15], Theorem 4.6.5, it follows that {φ0,u
s,t ,0 ≤ s ≤ t ≤ T } is a forward flow of C

k-
diffeomorphisms.

For (φ0,F 0) ∈ Ŵk × Wk define

I (φ0,F 0)
.= inf

u∈L(φ0,F0)

1

2

∫ T

0
‖u(s)‖2

l2
ds, (3.7)

where L(φ0,F 0) = {u ∈ L2([0, T ] : l2) | (φ0,F 0) = (φ0,u,F 0,u)}. Note in particular that u

in (3.7) is deterministic. If (φ0,F 0) ∈ (Wk−1 × Wk−1) \ (Ŵk × Wk) then we set I (φ0,F 0) = ∞.
We denote the restriction of I to Ŵk−1 × Wk−1 by the same symbol. The following is the main
result of the section.

Theorem 3.2 (Large deviation principle). The family (φε,F ε)ε>0 satisfies an LDP in the
spaces Ŵk−1 × Wk−1 and Wk−1 × Wk−1 with rate function I .

Let {un}∞n=1(un ≡ {un
l }∞l=1) be a sequence in AN [l2] for some fixed N < ∞. Let {εn}n≥0 be

a sequence such that εn ≥ 0 for each n and εn → 0 as n → ∞. Note that we allow εn = 0 for
all n. Recall that M(x, t) = ∑∞

i=1

∫ t

0 fi(x, r)dβi(r), (x, t) ∈ R
d × [0, T ]. Define

F̂ n(x, t)
.=

∫ t

0
b̂un(x, r)dr + √

εnM(x, t) (3.8)

and let φn be the solution to

φn
t (x) = x +

∫ t

0
b̂un(φ

n
r (x), r)dr + √

εn

∫ t

0
M(φn

r (x), dr). (3.9)
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Clearly F̂ n ∈ Wk , and from [15], Theorem 4.6.5, equation (3.9) has a unique solution φn ∈ Ŵk

a.s. We next introduce some basic weak convergence definitions.

Definition 3.3. Let u ∈ AN [l2] and {φn} be as above. Let P̂
n
k−1, P̂

0
k−1 be the measures induced

by (φn, F̂ n), (φ0,u,F 0,u), respectively, on Ŵk−1 × Wk−1. Thus for A ∈ B(Ŵk−1 × Wk−1),

P̂
n
k−1(A) = P

(
(φn, F̂ n) ∈ A

)
, P̂

0
k−1(A) = P

(
(φ0,u,F 0,u) ∈ A

)
.

The sequence {(φn, F̂ n)}n≥1 is said to converge weakly as Gk−1-flows to (φ0,u,F 0,u) as n → ∞
if P̂

n
k−1 converges weakly to P̂

0
k−1 as n → ∞.

Definition 3.4. Let P
n
k−1,P

0
k−1 be the measures induced by (φn, F̂ n), (φ0,u,F 0,u), respectively,

on Wk−1 × Wk−1. The sequence {(φn, F̂ n)}n≥1 is said to converge weakly as C
k−1-flows to

(φ0,u,F 0,u) as n → ∞ if P
n
k−1 converges weakly to P

0
k−1 as n → ∞.

As noted in the Introduction, proofs of large deviations properties based on the general frame-
work developed in [8] essentially reduce to weak convergence questions for controlled analogues
of the original process. For our problem the following theorem gives the needed result. The proof
is given in the next section.

Theorem 3.5. Let {un} converge to u in distribution as an SN [l2]-valued sequence of random
variables. Then the sequence {(φn, F̂ n)}n≥1 converges weakly as C

k−1-flows and Gk−1-flows to
the pair (φ0,u,F 0,u) as n → ∞.

The following theorem is taken from [8]. Let R
∞ denote the product space of countably many

copies of the real line. Then S ≡ C([0, T ] : R∞) (with the usual topology) is a Polish space and
β ≡ {βi}∞i=1 is an S-valued random variable.

Theorem 3.6. Let E be a Polish space, let {Gε}ε≥0 be a collection of measurable maps from
(S, B(S)) to (E , B(E )), and let Xε = Gε(

√
εβ). Suppose that there exists a measurable map

G 0 :S → E such that for every N < ∞ the set �N
.= {G 0(

∫ ·
0 u(s)ds) :u ∈ SN [l2]} is a compact

subset of E . For f ∈ E let Cf = {u ∈ L2([0, T ] : l2) :f = G 0(
∫ ·

0 us ds)}. Then Î defined by

Î (f ) = inf
u∈Cf

{
1

2

∫ T

0
‖u(s)‖2

l2
ds

}
, f ∈ E ,

is a rate function on E . Furthermore, suppose that for all N < ∞ and families {uε} ⊂
AN [l2] such that uε converges in distribution to some u ∈ AN [l2], we have that Gε(

√
εβ(·) +∫ ·

0 uε(s)ds) → G 0(
∫ ·

0 u(s)ds) in distribution as ε → 0. Then the family {Xε, ε > 0} satisfies the

LDP on E , as ε → 0, with rate function Î .

Proof of Theorem 3.2. We will only show that the sequence (φε,F ε) satisfies an LDP in
Ŵk−1 × Wk−1 with rate function I defined as in (3.7). The LDP in Wk−1 × Wk−1 follows simi-
larly. Let Gε :S → Ŵk−1 ×Wk−1 be a measurable map such that Gε(

√
εβ) = (φε,F ε) a.s., where
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Fε is given by (3.1) and φε is the associated flow based on Fε . Define G 0 :S → Ŵk−1 × Wk−1

by G 0(
∫ ·

0 u(s)ds) = (φ0,F 0) if u ∈ L2([0, T ] : l2) and with φ0,F 0 as defined in (3.6) and (3.5),
respectively. We set G 0(f ) = 0 for all other f ∈ S.

Fix N < ∞ and consider �N = {G 0(
∫ ·

0 u(s)ds), u ∈ SN [l2]}. We first show that �N is a com-

pact subset of Ŵk−1 ×Wk−1. It suffices to show that if un,u ∈ SN [l2] are such that un → u, then
G 0(

∫ ·
0 un(s)ds) → G 0(

∫ ·
0 u(s)ds) in Ŵk−1 ×Wk−1. This is immediate from Theorem 3.5 on not-

ing that G 0(
∫ ·

0 un(s)ds) = (φn, F̂ n), where φn, F̂ n are as in (3.9) and (3.8), respectively, with
εn = 0 and G 0(

∫ ·
0 u(s)ds) = (φ0,u,F 0,u), where φ0,u,F 0,u are as in (3.6) and (3.5), respectively.

Next let {un} ⊂ AN [l2] and εn ∈ (0,∞) be such that εn → 0 and un converges in distribution
to some u as n → ∞. In order to complete the proof, it is enough, in view of Theorem 3.6 and
the definition (3.7), to show that Gεn(

√
εnβ + ∫ ·

0 un(s)ds) → G 0(
∫ ·

0 u(s)ds) in Ŵk−1 ×Wk−1, as

n → ∞. An application of Girsanov’s theorem shows that Gεn(
√

εnβ + ∫ ·
0 un(s)ds) = (φn, F̂ n),

where φn, F̂ n are defined as in (3.9) and (3.8), respectively. Also G 0(
∫ ·

0 u(s)ds) = (φ0,u,F 0,u),
where φ0,u,F 0,u are the same as in (3.6) and (3.5), respectively. The result now follows from
Theorem 3.5. �

4. Proof of Theorem 3.5

This section will present the proof of Theorem 3.5. It is worth recalling the assumptions that will
be in effect for this section, which are that {un} is converging to u in distribution as an SN [l2]-
valued sequence of random variables and that (a, b) ∈ C̃

k,δ
T (Rd×d) × C

k,δ
T (Rd), for some k ∈ N

and δ ∈ (0,1].
We begin by introducing the (m + p)-point motion of the flow and the related notion of

“convergence as diffusions”. Let x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yp) be arbitrary fixed
points in R

d×m and R
d×p , respectively. Set

φn
t (x) = (φn

t (x1),φ
n
t (x2), . . . , φ

n
t (xm))

and

F̂ n(y, t) = (F̂ n(y1, t), F̂
n(y2, t), . . . , F̂

n(yp, t)).

Then the pair {φn
t (x), F̂ n(y, t)} is a continuous stochastic process with values in R

d×m × R
d×p

and is called an (m + p)-point motion of the flow. Let Vm
.= C([0, T ] : Rd×m) be the Fréchet

space of all continuous maps from [0, T ] to R
d×m, with the usual seminorms, and let Vm,p =

Vm × Vp be the product space.

Definition 4.1. Let P
n
(x,y) and P

0
(x,y) be the measures induced by (φn(x), F̂ n(y)) and (φ0,u(x),

F 0,u(y)), respectively, on Vm,p . Thus for A ∈ B(Vm,p),

P
n
(x,y) = P

(
(φn(x), F̂ n(y)) ∈ A

)
, P

0
(x,y) = P

(
(φ0,u(x),F 0,u(y)) ∈ A

)
.
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The sequence {(φn, F̂ n)}n≥1 is said to converge weakly as diffusions to (φ0,u,F 0,u) as n → ∞
if P

n
(x,y) converges weakly to P

0
(x,y) as n → ∞ for each (x,y) ∈ R

d×m × R
d×p, and m,p =

1,2, . . . .

The following well-known result (cf. [15], Theorem 5.1.1) is a key ingredient to the proof of
Theorem 3.5.

Theorem 4.2. The family of probability measures P̂
n
k−1(respectively, P

n
k−1) converges weakly

to probability measures P̂
0
k−1(respectively, P

0
k−1), as n → ∞ if and only if the following two

conditions are satisfied:

1. the sequence {(φn, F̂ n)}n≥1 converges weakly as diffusions to (φ0,u,F 0,u) as n → ∞,
2. the sequence {P̂n

k−1} (respectively, {Pn
k−1}) is tight.

We will show first that under the condition of Theorem 3.5 the sequence {(φn, F̂ n)}n≥1 con-
verges weakly as diffusions to (φ0,u,F 0,u) as n → ∞. We begin with the following lemma.

Lemma 4.3. For each x ∈ R
d

E sup
0≤t≤T

∣∣∣∣∣
∞∑

k=1

∫ t

0
fk(x, s)dβk(s)

∣∣∣∣∣
2

< ∞, (4.1)

sup
n

E sup
0≤t≤T

∣∣∣∣∣
∞∑

k=1

∫ t

0
fk(φ

n
s (x), s)dβk(s)

∣∣∣∣∣
2

< ∞. (4.2)

Proof. We will only prove (4.2). The proof of (4.1) follows in a similar manner. From the
Bürkholder–Davis–Gundy inequality the left-hand side of (4.2) is bounded by

c1E

∣∣∣∣∣
∞∑
l=1

∫ T

0
Tr(flf

′
l )(φr (x), r)dr

∣∣∣∣∣ = c1E

∣∣∣∣∫ T

0
Tr(a(φr(x),φr (x), r))dr

∣∣∣∣
≤ c2‖a‖∼

T ,k,δ.

The last expression is finite since a belongs to C̃
k,δ
T (Rd×d). �

An immediate consequence of Lemma 4.3 is the following corollary (cf. (3.8), (3.9)).

Corollary 4.4. For each x ∈ R
d and t ∈ [0, T ],

F̂ n(x, t) =
∫ t

0
b̂un(x, r)dr + Sn(x, t)

and

φn
t (x) = x +

∫ t

0
b̂un(φ

n
r (x), r)dr + Tn(x, t),
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where Sn(x, ·) and Tn(x, ·) are continuous stochastic processes with values in R
d , satisfying

sup0≤t≤T {|Sn(x, t)| + |Tn(x, t)|} → 0 in probability as n → ∞.

The following lemma, showing the tightness of P
n
(x,y), plays an important role in the proof of

the weak convergence as diffusions.

Lemma 4.5. For each x ∈ R
d the sequence {(φn(x), F̂ n(x))}n≥1 is tight in C([0, T ] : Rd × R

d).

Proof. We will only argue the tightness of {φn(x)}. Tightness of {F̂ n(x)} is proved similarly.
Corollary 4.4 yields that Tn(x, ·) is tight in C([0, T ] : Rd). Thus it suffices to show the tightness
of {∫ ·

0 b̂un(φ
n
r (x), r)dr}. Fix p > 0. From the Cauchy–Schwarz inequality, (3.4) and recalling

that un ∈ AN [l2], E| ∫ t

s
b̂un(φ

n
r (x), r)dr|p can be bounded by

E

[∫ t

s

|b̂un(φ
n
r (x), r)|2 dr

]p/2

(t − s)p/2 ≤ c1{‖a‖∼
T ,k,δ + ‖b‖2

T ,k,δ}p/2(t − s)p/2

≤ c2(t − s)p/2,

the result follows. �

Proposition 4.6. Let un → u in distribution as SN [l2]-valued random variables. Then the se-
quence {(φn, F̂ n)}n≥1 converges weakly as diffusions to (φ0,u,F 0,u) as n → ∞.

Proof. We claim that it suffices to show that for each t ∈ [0, T ], the map

(ξ, v) �→
∫ t

0
b̂v(ξs, s)ds (4.3)

from C([0, T ] : Rd) × SN [l2] to Rd is continuous. To see the claim, note that in view of the
tightness established in Lemma 4.5, the proposition will follow if any weak limit point (φ̄, F̄ , ū)

of (φn, F̂ n, un) satisfies, for each fixed (t, x) ∈ [0, T ] × Rd ,

F̄ (x, t) =
∫ t

0
b̂ū(x, r)dr, φ̄t (x) = x +

∫ t

0
b̂ū(φ̄r (x), r)dr, a.s. (4.4)

Now fix a weakly convergent subsequence and (t, x) ∈ [0, T ] × R
d . From (4.3) (φn

t (x),∫ t

0 b̂un(φ
n
r (x), r)dr) converges weakly in R

d × R
d to (φ̄t (x),

∫ t

0 b̂ū(φ̄r (x), r)dr). The second
equality in (4.4) is now an immediate consequence of the second equality in Corollary 4.4. The
first equality in (4.4) is proved similarly on noting that (4.3) in particular implies that the map
v �→ ∫ t

0 b̂v(x, s)ds, from SN [l2] to R
d , is continuous.
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We now prove (4.3). Let (ξn, vn) → (ξ, v) in C([0, T ] : Rd) × SN [l2]. Then,∣∣∣∣∫ t

0

(
b̂vn(ξ

n
s , s) − b̂v(ξs, s)

)
ds

∣∣∣∣ ≤
∣∣∣∣∫ t

0

(
b̂vn(ξ

n
s , s) − b̂vn(ξs, s)

)
ds

∣∣∣∣
+

∣∣∣∣∫ t

0

(
b̂vn(ξs, s) − b̂v(ξs, s)

)
ds

∣∣∣∣ (4.5)

≡ L1 + L2.

For each x ∈ R
d we have that∣∣∣∣∫ t

0

(
b̂vn(x, s) − b̂v(x, s)

)
ds

∣∣∣∣ =
∣∣∣∣∣

∞∑
l=1

∫ t

0
fl(x, s)

(
vn
l (s) − vl(s)

)
ds

∣∣∣∣∣ → 0, (4.6)

since vn → v weakly in L2([0, T ] : l2) and

∞∑
l=1

∫ t

0
|fl(x, s)|2 ds ≤ T ‖a‖∼

T ,k,δ < ∞.

Furthermore from (3.4) (recall k ≥ 1) we have that for some c1 ∈ (0,∞) and all x, y ∈ R
d,0 ≤

t ≤ T , ∣∣∣∣∫ t

0

(
b̂vn(x, s) − b̂vn(y, s)

)
ds

∣∣∣∣ ≤ |x − y|
∫ t

0

(‖bvn(s)‖k,γ + ‖b(s)‖k,γ

)
ds

(4.7)
≤ c1|x − y|.

Using the Ascoli–Arzelà theorem (in the spatial variable) and equation (4.6), (4.7) now yields
that the expression on the left-hand side of (4.6) converges to 0 uniformly for x in com-
pact subsets of Rd . Thus L2 → 0 as n → ∞. Following similar arguments L1 is bounded by
c2 sup0≤s≤T |ξn

s − ξs |, which converges to 0 as n → ∞. Hence (4.5) converges to 0 as n → ∞
and the result follows. �

We next show the tightness of the family of probability measures {Pn
k−1}. Key ingredients in

the proof are the following uniform Lp-estimates on ∂αF̂ n(x, t) and ∂αφn
t (x).

Lemma 4.7. For each p ≥ 1 there exists k1 ∈ (0,∞) such that for all t, t ′ ∈ [0, T ], x ∈ R
d ,

n ≥ 1 and |α| ≤ k:

E|∂αF̂ n(x, t) − ∂αF̂ n(x, t ′)|p ≤ k1|t − t ′|p/2. (4.8)

Proof. Fix a multiindex α such that |α| ≤ k and p ≥ 1. Using the Bürkholder–Davis–Gundy
inequality for the martingale ∂αM(x, ·) and the fact that a ∈ C̃

k,δ
T (Rd), we obtain that for some

c1 ∈ (0,∞) and all x ∈ R
d, t, t ′ ∈ [0, T ],
E|∂αM(x, t) − ∂αM(x, t ′)|p ≤ c1|t − t ′|p/2. (4.9)
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Recalling that b̂un(·, t) ∈ C
k,γ (Rd) a.e. (t,ω) and using (3.4) we get∫ t

0
sup
x∈Rd

|∂αb̂un(x, r)|dr < ∞ a.e.,

and thus ∂α
∫ t

0 bun(x, r)dr = ∫ t

0 ∂αbun(x, r)dr a.e. An application of the Cauchy–Schwarz in-
equality and (3.4) now gives, for some c2 ∈ (0,∞),

E

∣∣∣∣∂α

∫ t

t ′
bun(x, r)dr

∣∣∣∣p ≤ c2|t − t ′|p/2. (4.10)

Equation (4.8) is an immediate consequence of (4.9) and (4.10). �

For g : Rd × [0, T ] → R
d, let ∇yg(y, r) be the d × d matrix with entries [∇yg(y, r)]ij =

∂
∂yj

gi(y, r). Differentiating with respect to x1 in (3.9) we obtain

∂1φ
n
t (x) = ∂1x +

∫ t

0
[∇y b̂un(φ

n
r (x), r) · ∂1φ

n
r (x)]dr

+ √
εn

∫ t

0
∇yM(φn

r (x),dr) · ∂1φ
n
r (x)

= ∂1x +
∫ t

0
∇yF̂

n(φn
r (x),dr) · ∂1φ

n
r (x).

By repeated differentiation one obtains the following lemma whose proof follows along the lines
of Theorem 3.3.3 of [15]. Given 0 ≤ m ≤ k, let �m be the set of all multiindices α satisfy-
ing |α| ≤ m. For a multiindex γ , denote by m(γ ) = �{γ0 : |γ0| ≤ |γ |}. Also for a |γ |-times
differentiable function � : Rd → R, denote by ∂≤|γ |�(x) the m(γ )-dimensional vector with
entries ∂γ0�(x), |γ0| ≤ |γ |. If � = (�1,�2, . . . ,�d) : Rd → Rd is such that each �i is |γ |-
times continuously differentiable then ∂≤|γ |�(x)

.= (∂≤|γ |�1(x), . . . , ∂≤|γ |�d(x)). We will call
a map P : Rm → R

d a polynomial of degree at most ℘ if P(x) = (P1(x), . . . ,Pd(x))′ and each
Pi : Rm → R is a polynomial of degree at most ℘. Also for u,v ∈ R

l we define

u ∗ v
.= (u1v1, . . . , ulvl)

′.

Lemma 4.8. Let α,β, γ be multiindices such that |α|, |β|, |γ | ≤ k. Then there exist subsets
�1

α,�2
α of �|α| and �|α|−1, respectively, a subset �α

β,γ of �|γ | and polynomials P α
β,γ : Rm(γ ) →

R
d of degree at most |α|, such that ∂αφn satisfies:

∂αφn
t (x) = ∂αx +

∫ t

0
Gn(∂αφn

r (x),φn
r (x),dr)

(4.11)

+
∑

(β,γ )∈�1
α×�2

α

∫ t

0
G

α,n
β,γ

(
∂≤|γ |φn

r (x),φn
r (x), dr

)
,
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where for x, y ∈ R
d,Gn(x, y, r) = ∇yF̂

n(y, r) · x and for (x, y) ∈ R
m(γ ) × R

d,G
α,n
β,γ (x, y, r) =

P α
β,γ (x) ∗ ∂

β
y F̂ n(y, r).

Note in particular that in the third term on the right-hand side of (4.11), one finds partial
derivatives of φn

r (x) of order strictly less than |α|.

Lemma 4.9. For each p ≥ 1,L ∈ (0,∞), there is a constant k1 ≡ k1(k,p,L) ∈ (0,∞) such
that for every multiindex α, |α| ≤ k,

sup
n

sup
|x|≤L

E sup
0≤t≤T

|∂αφn
t (x)|p ≤ k1 (4.12)

sup
n

sup
|x|≤L

E|∂αφn
t (x) − ∂αφn

t ′(x)|p ≤ k1|t − t ′|p/2. (4.13)

Proof. Fix L > 0 and consider x ∈ R
d such that |x| ≤ L. We will first show inequality (4.12). It

suffices to prove (4.12) for α = 0 and establish that if, for some m < k, it holds for ∂αφn
t with

|α| ≤ m and all p ≥ 1 then it also holds for ∂i ∂
αφn

t with all p ≥ 1 (with a possibly larger constant
k1) and i = 1, . . . , d . The desired result then follows by induction.

Consider first α = 0. For this case the bound in (4.12) follows immediately on using (3.4)
and applying the Bürkholder–Davis–Gundy inequality to the square-integrable martingale Nt =∫ t

0 M(φn
r (x), dr) [note that 〈〈N〉〉t = ∫ t

0 a(φn
r (x),φn

r (x), r)dr and a ∈ C̃
k,δ
T (Rd×d)].

Now, suppose that (4.12) holds for all multiindices α with |α| ≤ m, for some m < k. Fix α

with |α| ≤ m, an i ∈ {1,2, . . . , d}, and consider the multiindex α̃ = α + 1i , where 1i is a d-
dimensional vector with 1 in the ith entry and 0 elsewhere. From Lemma 4.8, one finds that
∂α̃φn

t solves (4.11) for α = α̃. Note that for β ∈ �1
α̃

,

∂β
y F̂ n(y, t) =

∫ t

0
∂β
y bu(y, s)ds + √

εn ∂β
y M(y, t).

From (3.4) and recalling that (b, a) ∈ C
k,δ
T (Rd) × C̃

k,δ
T (Rd×d), we have that for some c1, c2 ∈

(0,∞),

sup
0≤t≤T

sup
y∈Rd

∣∣∣∣∫ t

0
∂β
y bu(y, s)ds

∣∣∣∣ ≤ c1 and sup
0≤t≤T

sup
y∈Rd

|〈〈∂β
y M(y, t)〉〉t | ≤ c2.

This along with the assumption

sup
n

sup
|x|≤L

E sup
0≤t≤T

|∂νφn
t (x)|p ≤ k1 for ν, |ν| ≤ |α|,

shows that for some c3 ∈ (0,∞), for all (β, γ ) ∈ �1
α̃

× �2
α̃

,

sup
n

sup
|x|≤L

E sup
0≤t≤T

∣∣∣∣∫ t

0
G

α̃,n
β,γ

(
∂≤|γ |φn

r (x),φn
r (x),dr

)∣∣∣∣p ≤ c3.
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In a similar manner one has for some c4 ∈ (0,∞),

E sup
0≤t≤T

∣∣∣∣∫ s

0
Gn(∂α̃φn

r (x),φn
r (x),dr)

∣∣∣∣p ≤ c4

∫ t

0
E

(
sup

0≤r≤s

|∂α̃φn
r (x)|p

)
ds.

Combining the above inequalities we obtain

sup
n

sup
|x|≤L

E sup
0≤s≤t

|∂α̃φn
s (x)|p ≤ c3 + c4 sup

n
sup

|x|≤L

∫ t

0
E

(
sup

0≤r≤s

|∂α̃φn
r (x)|p

)
ds.

Now an application of Gronwall’s lemma shows that for some c5 ∈ (0,∞),

sup
n

sup
|x|≤L

E sup
0≤t≤T

|∂α̃φn
t (x)|p ≤ c5.

This establishes (4.12) for all α̃ with |α̃| ≤ |α| + 1. Finally consider (4.13). For t, t ′ ∈ [0, T ],
t ′ ≤ t , we have from (4.11) that

∂αφn
t (x) − ∂αφn

t ′(x) =
∫ t

t ′
Gn(∂αφn

r (x),φn
r (x), dr)

(4.14)

+
∑

(β,γ )∈�1
α×�2

α

∫ t

t ′
G

α,n
β,γ (∂≤|γ |φn

r (x),φn
r (x),dr).

Using (4.12) on the right-hand side of (4.14) we now have (4.13) via an application of Hölder’s
and Bürkholder–Davis–Gundy’s inequalities. �

The proof of Theorem 3.5 proceeds along the lines of Section 5.4 of [15]. We begin by
introducing certain Sobolev spaces. Let j be a non-negative integer and let 1 < p < ∞. Let
BN ≡ B(0,N) be the R

d -ball with center the origin and radius N . Let h : Rd → R
d be a function

such that the distributional derivative ∂αh ∈ Lp(BN) for all α such that |α| ≤ j . Define

‖h‖j,p:N =
( ∑

|α|≤j

∫
BN

|∂αh(x)|p dx

)1/p

.

The space H loc
j,p = {h : Rd → R

d ,‖h‖j,p:N < ∞ for all N} together with the seminorms defined
above is a real separable semireflexive Fréchet space. By Sobolev’s imbedding theorem, we
have H loc

j+1,p ⊂ C
j (Rd) ⊂ H loc

j,p if p > d . Furthermore the imbedding i :H loc
j+1,p → C

j (Rd) is
a compact operator by the Rellich–Kondrachov theorem (see [1]).

Proposition 4.10. The sequence {(φn, F̂ n)}n≥1 is tight in Wk−1 × Wk−1

Proof. It suffices to show that both {φn}n≥1 and {F̂ n}n≥1 are tight in Wk−1. We will use Kol-
mogorov’s tightness criterion [15], Theorem 1.4.7, page 38. From Lemmas 4.7 and 4.9, we have
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that for each p > 1,N > 1, there exist c1, c2 ∈ (0,∞) such that for all t, t ′ ∈ [0, T ]
sup
n

E‖φn
t − φn

t ′ ‖p
k,p:N ≤ c1|t − t ′|p/2,

sup
n

E‖F̂ n(·, t) − F̂ n(·, t ′)‖p
k,p:N ≤ c2|t − t ′|p/2.

Furthermore, since F̂ n(·,0) = 0 and φn
0 (x) = x, we get that for each p > 1,N > 1 there ex-

ist c3, c4 ∈ (0,∞) such that

sup
n

E‖φn
t ‖p

k,p:N ≤ c3 and sup
n

E‖F̂ n(t)‖p
k,p:N ≤ c4.

Applying Theorem 1.4.7 of [15] with p > 2 now gives a tightness of {φn}n≥1 and {F̂ n}n≥1 in the
semi-weak topology on C([0, T ] :H loc

k,p) (cf. [15]). Since the imbedding map i :H loc
k,p → C

k−1 is
compact, tightness in Wk−1 × Wk−1 with the topology introduced in Section 2 follows (see [15],
pages 246–247). �

Recall the definitions (3.2) and (3.3). For the proof of the following lemma we refer the reader
to Section 2.1 of [4].

Lemma 4.11. Let fn,f ∈ Ŵk−1 be such that sup0≤t≤T λk−1(fn(t), f (t)) → 0, as n → ∞. Then
sup0≤t≤T dk−1(fn(t), f (t)) → 0.

Proof of Theorem 3.5. Convergence as C
k−1-flows is immediate from Theorem 4.2, Propo-

sitions 4.6 and 4.10. Using Skorokhod’s representation theorem, one can find a sequence of
pairs {(φ̃n, F̃ n)}n≥1 that has the same distribution as {(φn, F̂ n)}n≥1 and {(φ̃0, F̃ 0)} that has the
same distribution as {(φ0,F 0)} and sup0≤t≤T [λk(φ̃

n
t , φ̃0

t ) + λk(F̃
n(t), F̃ 0(t))] → 0, a.s. Since

φn,φ0 ∈ Ŵk a.s., the same holds for φ̃n, φ̃0. Thus from Lemma 4.11 sup0≤t≤T dk−1(φ̃
n
t , φ̃0

t ) → 0

a.s. Hence (φn, F̂ n) → (φ0,F 0) as Gk−1-flows. �

5. Application to image analysis

A common approach to image matching problems (see [12,14,17] and references therein) is
to consider a R

p-valued, continuous and bounded function T (·), referred to as the “template”
function, defined on a bounded open set O ⊆ R

3, which represents some canonical example of
a structure of interest. By considering all possible smooth transformations h : O → O one can
generate a rich library of targets (or images) given by the form T (h(·)).

In typical situations we are given data generated by an a priori unknown function h, and the key
question of image matching is that of estimating h from the observed data. A Bayesian approach
to this problem requires a prior distribution on the space of transformations and a formulation of
a noise/data model. The “maximum” of the posterior distribution on the space of transformations
given the data can then be used as an estimate ĥ for the underlying unknown transformation h.
In certain applications (e.g., medical diagnosis), the goal is to obtain numerical approximations
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for certain key structures present in the image, such as volumes of subregions, curvatures and
surface areas. If the prior distribution on the transformations (and in particular the estimated
transformation) is on the space of diffeomorphisms, then this information can be recovered from
the template. Motivated by such a Bayesian approach, a variational problem on the space of
C

m-diffeomorphic flows was formulated and analyzed in [12].
Before going into the description of this variational problem, we note that although the chief

motivation for the variation problem studied in [12] came from Bayesian considerations, no rigor-
ous results on relationships between the two formulations (variational and Bayesian) were estab-
lished. The goal of our study is to develop a rigorous asymptotic theory that connects a Bayesian
formulation for such an image matching problem with the variational approach taken in [12]. The
precise result that we will establish is Theorem 5.1, given at the end of this section. The result
is an application of Theorem 3.2 for local characteristics (a, b) ≡ (a,0) and a ∈ C̃

k,1/2
T (R3×3),

with k = m − 2.
Let C∞

0 (O) be the space of infinitely differentiable, real-valued functions on O with com-
pact support in O. The starting point of the variational formulation is a differential operator L

on [C∞
0 (O)]3, the exact form of which is determined from specific features of the problem un-

der study. The formulation, particularly for problems from biology, often uses principles from
physics and continuum mechanics as a guide in the selection of L. We refer the reader to Chris-
tensen et al. [9,10], where natural choices of L in shape models from anatomy are provided.

Define the norm ‖ · ‖L on [C∞
0 (O)]3 by

‖f ‖2
L

.=
3∑

i=1

∫
O

|(Lf )i(u)|2 du,

where we write a function g ∈ [C∞
0 (O)]3 as (g1, g2, g3)

′. It is assumed that ‖ · ‖L generates an
inner product on [C∞

0 (O)]3 and that the Hilbert space H defined as the closure of [C∞
0 (O)]3 with

this inner product is separable. We will need the functions in H to have sufficient regularity and
thus assume that the norm ‖ · ‖L dominates an appropriate Sobolev norm. More precisely, let
W

m+2,2
0 (O) be the closure of C∞

0 (O) with respect to the norm

‖g‖
W

m+2,2
0 (O)

.=
(∫

O

∑
|α|≤m+2

|∂αg(u)|2 du

)1/2

, g ∈ C∞
0 (O), (5.1)

where α denotes a multiindex and m ≥ 3. Define Vm
.= [Wm+2,2

0 (O)]⊗3, where ⊗ is used to
denote the usual tensor product of Hilbert spaces. We denote by ‖ · ‖Vm

the norm on Vm. The
main regularity condition on L is the following domination requirement on the ‖·‖L norm. There
exists a constant c ∈ (0,∞) such that

‖f ‖L ≥ c‖f ‖Vm
for all f ∈ [C∞

0 (O)]3.

This condition ensures that H ⊆ C
m,1/2(O) (see [1], Theorem 4.12, parts II and III, page 85). We

denote by H the Hilbert space L2([0,1] :H). For a fixed ϑ ∈ H let {ηs,t (x)}s≤t≤1 be the unique
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solution of the ordinary differential equation

∂ηs,t (x)

∂t

.= ϑ(ηs,t (x), t), ηs,s(x) = x, 0 ≤ s ≤ t ≤ 1. (5.2)

Then it follows that {ηs,t ,0 ≤ s ≤ t ≤ T } is a forward flow of C
m-diffeomorphisms on O

(see [15], Theorem 4.6.5, page 173). Since ϑ(·, t) has a compact support in O, one can extend
ηs,t to all of R

3 by setting ηs,t (x) ≡ x, if x ∈ Oc . Extended in this way ηs,t can be considered as
an element of Gm, as defined in Section 3. Denoting η0,1 by hϑ , we can now generate a family
of smooth transformations (diffeomorphisms) on O by varying ϑ ∈ H. Specifically, the library
of transformations that is used in the variational formulation of the image matching problem is
{hϑ | ϑ ∈ H}.

We now describe the data that is used in selecting the transformation hϑ∗ for which the im-
age T (hϑ∗(·)) best matches the data. Let L be a finite index set and {Xi}i∈L be a collection of
disjoint subsets of O such that

⋃
i∈L Xi = O. Collected data {di}i∈L represents integrated re-

sponses over each of the subsets Xi , i ∈ L. More precisely, if T (h(·)) was the true underlying
image and the data were completely error free and noiseless, then di = ∫

Xi
T (h(σ ))dσ/vol(Xi ),

i ∈ L, where vol denotes volume. Let d = (d1, d2, . . . , dn)
′, where n = |L|. Defining Yd(x) = di ,

x ∈ Xi , i ∈ L, the expression

1

2

∫
O

|T (hϑ(x)) − Yd(x)|2 dx

is a measure of discrepancy between a candidate target image T (hϑ(·)) and the observations.
This suggests a natural variational criterion for selecting the “best” transformation matching
the data. The objective function that is minimized in the variational formulation of the image
matching problem is a sum of two terms, the first reflecting the “likelihood” of the transformation
or change-of-variable hϑ and the second measuring the conformity of the transformed template
with the observed data. More precisely, define for ϑ ∈ H,

Jd(ϑ)
.= 1

2

(
‖ϑ‖2

H +
∫

O
|T (hϑ(x)) − Yd(x)|2 dx

)
. (5.3)

Then ϑ∗ ∈ argminϑ∈H Jd(ϑ) represents the “optimal” velocity field that matches the data d and
for which the hϑ∗ , obtained by solving (5.2), gives the “optimal” transformation. This transfor-
mation then yields an estimate of the target image as T (hϑ∗(·)). Equivalently, defining for each
h ∈ G0,

Ĵd (h)
.= inf

ϑ∈�h

Jd(ϑ) (where �h = {ϑ ∈ H :h = hϑ }), (5.4)

we see that an optimal transformation is h∗ = hϑ∗ ∈ argminh Ĵd(h).
Up to a relabeling of the time variable, the above variational formulation (in particular the

cost function in (5.3)) was motivated in [12] through Bayesian considerations, but no rigorous
justification was provided. In [12] the orientation of time is consistent with the change-of-variable
evolving toward the identity mapping at the terminal time. To relate the variational problem
to stochastic flows it is more convenient to have the identity mapping at time zero. We next
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introduce a stochastic Bayesian formulation of the image matching problem and describe the
precise asymptotic result that we will establish.

Let {φi} be a complete orthonormal system in H and β ≡ (βi)
∞
i=1 be as in Section 2, a se-

quence of independent, standard, real-valued Brownian motions on some filtered probability
space (�, F ,P, {Ft }). Write (C([0, T ] : R∞), B(C([0, T ] : R∞))) ≡ (S, S), and note that β is
a random variable with values in S. Consider the stochastic flow

dψs,t (x) = √
ε

∞∑
i=1

φi(ψs,t (x))dβi(t), ψs,s(x) = x, x ∈ O,0 ≤ s ≤ t ≤ 1, (5.5)

where ε ∈ (0,∞) is fixed. From Maurin’s theorem (see [1], Theorem 6.61, page 202) it follows
that the imbedding map H → Vm−2 is Hilbert–Schmidt. Also, Vm−2 is continuously embedded
in C

m−2,1/2(O). Thus for some k1, k2 ∈ (0,∞) and all u,x, y ∈ O,

∞∑
i=1

|φi(u)|2 ≤ k1

∞∑
i=1

‖φi‖2
Vm−2

< ∞,

∞∑
i=1

|φi(x) − φi(y)|2 ≤ k1|x − y|2
∞∑
i=1

‖φi‖2
Vm−2

= k2|x − y|2.

One also has that if φl is extended to all of R
3 by setting φl(u) = 0, for all x ∈ Oc, then a(x, y) =∑∞

l=1 φl(x)φ′
l (y) is in C̃

m−2,1/2
T (R3×3). Thus it follows (cf. [15], pages 80 and 106) that

F(x, t) =
∞∑
l=1

∫ t

0
φi(x)dβi(r)

is a C
m−2,ν -Brownian motion, 0 < ν < 1/2, with local characteristics (a,0). Also (5.5) admits

a unique solution {ψε
s,t (x),0 ≤ s ≤ t ≤ 1} for each x ∈ O and {ψε

s,t }0≤s≤t≤1 is a forward flow
of C

k-diffeomorphisms, with k = m − 2 (see [15], Theorem 4.6.5). In particular, Xε .= ψε
0,1 is a

random variable in the space of C
k-diffeomorpshisms on O. The law of Xε (for a fixed ε > 0)

on Gk will be used as the prior distribution on the transformation space Gk . Note that T (Xε(·))
induces a measure on the space of target images.

We next consider the data model. Let L and n be as introduced below (5.2). We suppose that
the data is given through an additive Gaussian noise model:

Di =
∫

Xi

T (Xε(x))dx + √
εξi,

where {ξi, i ∈ L} is a family of independent, p-dimensional standard normal random variables.
In the Bayesian approach to the image matching problem one considers the posterior dis-

tribution of Xε given the data D and uses the “mode” of this distribution as an estimate for the
underlying true transformation. More precisely, let {�ε}ε>0 be a family of measurable maps from
R

np to P (Gk) (the space of probability measures on Gk), such that

�ε(A|D) = P[Xε ∈ A|D] a.s. for allA ∈ B(Gk).
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We refer to �ε(·|d) as a regular conditional probability distribution (r.c.p.d.) of Xε given D = d .
In Theorem 5.1 below, we will show that there is a r.c.p.d. {�ε(·|d), d ∈ R

np}ε>0 such that for
each d ∈ R

np , the family {�ε(·|d)}ε>0, regarded as elements of P (Gk−1) ⊇ P (Gk), satisfies an
LDP with rate function

Id(h) = Ĵd (h) − λd, where λd = inf
h∈Gk−1

Ĵd (h) = inf
ϑ∈H

Jd(ϑ).

Formally writing �ε(A|d) ≈ ∫
A

e−Id (h)/ε dh, one sees that for small ε, the “mode” of the pos-
terior distribution given D = d , which represents the “optimal transformation” in the Bayesian
formulation, can be formally interpreted as argminhId(h). Note that Ĵd (h) = ∞ if h /∈ Gm (recall
m = k + 2). Theorem 5.1 in particular says that h ∈ Gm is a δ-minimizer for Id(h) if and only if
it is also a δ-minimizer for Ĵd (h). Thus Theorem 5.1 makes precise the asymptotic relationship
between the variational and the Bayesian formulation of the above image matching problem.

Theorem 5.1. There exists an r.c.p.d. �ε such that for each d ∈ R
n, the family of probability

measures {�ε(d)}ε>0 on Gk−1 satisfies a large deviation principle (as ε → 0) with rate function

Id(h)
.= Ĵd (h) − λd. (5.6)

We begin with the following proposition. Let Ĩ :Gk−1 → [0,∞] be defined as

Ĩ (h)
.= inf

ϑ∈�h

1
2‖ϑ‖2

H.

Proposition 5.2. The family {Xε}ε>0 satisfies a LDP in Gk−1 with rate function Ĩ .

Proposition 5.2 is consistent with results in Section 3 in that although the local characteristics
are in C

k and Xε ∈ Gk , the LDP is established in the larger space Gk−1. This is due to the
tightness issues described in the Introduction. Furthermore, as noted below (5.2), if ‖ϑ‖H <

∞ then ϑ induces a flow of C
m-diffeomorphisms on O. Thus if h ∈ Gk−1 \ Gm then �h is

empty, and consequently Ĩ (h) = ∞. Hence there is a further widening of the “gap” between the
regularity needed for the rate function to be finite and the regularity associated with the space in
which the LDP is set. This is due to the fact that the variational problem is formulated essentially
in terms of L2 norms of derivatives, while in the theory of stochastic flows as developed in [15]
assumptions are phrased in terms of L∞ norms.

Proof of Proposition 5.2. From Theorem 3.2 and an application of the contraction principle we
have that {Xε}ε>0 satisfies LDP in Gk−1 with rate function

I ∗(h)
.= inf

u∈L∗(h)

1

2

∫ T

0
‖u(s)‖2

l2
ds,

where L∗(h) = {u ∈ L2([0,1] : l2)|h = φ0,u(1)} and where φ0,u is defined via (3.6), but with fi

there replaced by φi . Note that there is a one-to-one correspondence between u ∈ L2([0,1] : l2)
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and ϑ ∈ H given as ϑ(t, x) = ∑∞
l=1 ul(t)φl(x) and

∫ T

0 ‖u(s)‖2
l2

ds = ‖ϑ‖2
H. In particular u ∈

L∗(h) if and only if ϑ ∈ �h. Thus I ∗(h) = Ĩ (h) and the result follows. �

Proposition 5.3. For each d ∈ R
n, Id defined in (5.6) is a rate function on Gk−1.

Proof. From (5.6) and the definition of Ĩ we have for h ∈ Gk−1 that

Id(h) = Ĩ (h) + 1

2

∫
O

|T (h(x)) − Yd(x)|2 dx

− inf
h∈Gk−1

{
Ĩ (h) + 1

2

∫
O

|T (h(x)) − Yd(x)|2 dx

}
.

From Proposition 5.2, Ĩ is a rate function and therefore has compact level sets. Additionally T is
a continuous and bounded function on O. The result follows. �

Proof of Theorem 5.1. We begin by noting that �ε(·|d) defined as

�ε(A|d)
.=

∫
A

e
−1/(2ε)

∑n
i=1 |di−

∫
Xi

T (h(y))dy|2
με(dh)∫

Gk−1 e
−1/(2ε)

∑n
i=1 |di−

∫
Xi

T (h(y))dy|2
με(dh)

,

where με = P ◦ (Xε)−1 ∈ P (Gk−1) is an r.c.p.d. of Xε given D = d . Using the equivalence
between the Laplace principle and large deviations principle (see [11], Section 1.2), it suffices to
show that for all continuous and bounded real functions F on Gk−1,

−ε log
∫

Gk−1
exp

[
−1

ε
F (v)

]
�ε(dv|d) (5.7)

converges to infh∈Gk−1{F(h) + Id(h)}. Note that (5.7) can be expressed as

−ε log
∫

Gk−1
e
−1/ε[F(h)+1/2

∑n
i=1 |di−

∫
Xi

T (h(y))dy|2]
με(dh)

(5.8)

+ ε log
∫

Gk−1
e
−1/ε[1/2

∑n
i=1 |di−

∫
Xi

T (h(y))dy|2]
με(dh).

From Proposition 5.2 we see that the first term converges to

inf
h∈Gk−1

{
Ĩ (h) + F(h) + 1

2

n∑
i=1

∣∣∣∣di −
∫

Xi

T (h(y))dy

∣∣∣∣2
}

= inf
h∈Gk−1

inf
ϑ∈�h

{
F(h) + 1

2
‖ϑ‖2

H + 1

2

∫
O

|T (h(y)) − Yd(y)|2 dy

}
= inf

h∈Gk−1
{F(h) + Ĵd (h)},
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where the last equality is a consequence of (5.3) and (5.4). Taking F = 0 in the above display,
we see that the second term in (5.8) converges to −λd . This proves the result. �

Notational conventions

• Transpose of a d-dimensional vector v will be denoted by v′.
• K ⊂⊂ R

d means that K is a compact subset of R
d .

• Given k- and m-dimensional continuous local martingales M,N on some filtered probabil-
ity space (�, F ,P, {Ft }), we write the cross-quadratic variation of M and N as 〈〈M,N〉〉t ,
and write 〈〈N〉〉t when M = N . This is a continuous R

m×k-valued {Ft }-adapted process.
• Borel σ -fields on a Polish space E will be written as B(E ).
• Generic constants will be denoted as c1, c2, . . . . Their values may change from one proof to

the next.
• The infimum over an empty set is taken to be ∞.
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