Translator Disclaimer
August 2009 The Dantzig selector and sparsity oracle inequalities
Vladimir Koltchinskii
Bernoulli 15(3): 799-828 (August 2009). DOI: 10.3150/09-BEJ187


Let $$ Y_j=f_{\ast}(X_j)+\xi_j,\qquad j=1,\dots, n, $$ where $X, X_1,\dots, X_n$ are i.i.d. random variables in a measurable space $(S,\mathcal{A})$ with distribution $\Pi$ and $\xi, \xi_1,\dots ,\xi_n$ are i.i.d. random variables with ${\mathbb E}\xi=0$ independent of $(X_1,\dots, X_n).$ Given a dictionary $h_1,\dots, h_{N}: S\mapsto{\mathbb R},$ let $ f_{\lambda}:=\sum_{j=1}^N \lambda_j h_j$, $ \lambda=(\lambda_1,\dots, \lambda_N)\in{\mathbb R}^N. $ Given $\varepsilon>0,$ define $$ \hat\Lambda_{\varepsilon}:=\Biggl\{\lambda\in{\mathbb R}^N: \max_{1\leq k\leq N} \Biggl|n^{-1}\sum_{j=1}^n \bigl(f_{\lambda}(X_j)-Y_j\bigr)h_k(X_j)\Biggr| \leq\varepsilon \Biggr\} $$ and $$\hat\lambda:=\hat\lambda^{\varepsilon}\in \operatorname{Argmin}_{\lambda\in\hat\Lambda_{\varepsilon}}\|\lambda\| _{\ell_1}. $$ In the case where $f_{\ast}:=f_{\lambda^{\ast}}, \lambda^{\ast}\in {\mathbb R}^N,$ Candes and Tao Ann. Statist. 35 (2007) 2313-2351] suggested using $\hat\lambda$ as an estimator of $\lambda^{\ast}.$ They called this estimator “the Dantzig selector”. We study the properties of $f_{\hat\lambda}$ as an estimator of $f_{\ast}$ for regression models with random design, extending some of the results of Candes and Tao (and providing alternative proofs of these results).


Download Citation

Vladimir Koltchinskii. "The Dantzig selector and sparsity oracle inequalities." Bernoulli 15 (3) 799 - 828, August 2009.


Published: August 2009
First available in Project Euclid: 28 August 2009

zbMATH: 05815956
MathSciNet: MR2555200
Digital Object Identifier: 10.3150/09-BEJ187

Rights: Copyright © 2009 Bernoulli Society for Mathematical Statistics and Probability


Vol.15 • No. 3 • August 2009
Back to Top