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We propose a new concept of modulated bipower variation for diffusion models with microstructure noise.
We show that this method provides simple estimates for such important quantities as integrated volatility
or integrated quarticity. Under mild conditions the consistency of modulated bipower variation is proven.
Under further assumptions we prove stable convergence of our estimates with the optimal rate n−1/4.
Moreover, we construct estimates which are robust to finite activity jumps.
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1. Introduction

Continuous time stochastic models represent a widely accepted class of processes in mathemati-
cal finance. Itô diffusions, which are characterised by the equation

Xt = X0 +
∫ t

0
as ds +

∫ t

0
σs dWs, (1.1)

are commonly used for modelling the dynamics of interest rates or stock prices. Here W denotes
a Brownian motion, a is a locally bounded predictable drift function and σ is a cadlag volatility
process. A key issue in econometrics is the estimation (and forecasting) of the quadratic variation
of X

IV =
∫ 1

0
σ 2

s ds,

which is known as integrated volatility or integrated variance in the econometric literature. In
recent years the availability of high frequency data on financial markets has motivated a huge
number of publications devoted to measurement of the integrated volatility. A typical way to es-
timate the integrated volatility is to use the realised volatility (RV), which has been proposed by
Andersen, Bollerslev, Diebold and Labys [3] and Barndorff-Nielsen and Shephard [7]. RV is the
sum of squared increments over non-overlapping intervals within a sampling period. The con-
sistency result justifying this estimator is a simple consequence of the definition of the quadratic
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variation (see, e.g., Protter [21]). Theoretical and empirical properties of the realised volatility
have been studied in numerous articles (see Jacod [17]; Jacod and Protter [19]; Andersen, Boller-
slev, Diebold and Labys [3]; Barndorff-Nielsen and Shephard [7] among many others).

More recently, the concept of realised bipower variation has built a nonparametric framework
for backing out several variational measures of volatility (see, e.g., Barndorff-Nielsen and Shep-
hard [8] or Barndorff-Nielsen, Graversen, Jacod, Podolskij and Shephard [5]), which has led to
a new development in econometrics. Realised bipower variation, which is defined by

BV(X, r, l)n = n(r+l)/2−1
n−1∑
i=1

|�n
i X|r |�n

i+1X|l , (1.2)

with �n
i X = Xi/n − X(i−1)/n and r, l ≥ 0, provides a whole class of estimators for different

(integrated) powers of volatility. Another important feature of realised bipower variation is its
robustness to finite activity jumps when estimating the integrated volatility (in the case r ∨ l < 2).
This property has been used to construct tests for jumps (see Barndorff-Nielsen and Shephard
[9] or Christensen and Podolskij [11]).

However, in finance it is widely accepted that the true price process is contaminated by mi-
crostructure effects, such as price discreteness or bid-ask spreads, among others. This invalidates
the asymptotic properties of RV, and in the presence of microstructure noise RV is both biased
and inconsistent (see Bandi and Russell [4] or Hansen and Lunde [15] among others). Nowadays
there exist two concurrent methods of estimating the integrated volatility in the presence of i.i.d.
noise. Zhang [24] has proposed to use a multiscale estimator as a generalisation of the concept
of two scale estimators, which was introduced by Zhang, Mykland and Ait-Sahalia [25] based
on a subsampling procedure. Another method is a realised kernel estimator, which has been pro-
posed by Barndorff-Nielsen, Hansen, Lunde and Shephard [6]. Both methods provide consistent
estimates of the integrated volatility in the presence of i.i.d. noise and achieve the optimal rate
n−1/4 (whereas the two scale approach achieves the rate n−1/6). However, these procedures can
not be generalised in an obvious way in order to obtain estimators of other (integrated) powers
of volatility, such as the integrated quarticity, which is defined by

IQ =
∫ 1

0
σ 4

s ds.

This quantity is of particular interest because, properly scaled, it occurs as the conditional vari-
ance in central limit theorems for estimators of IV and has therefore to be estimated. Moreover,
both methods are not robust to jumps in the price process (here we would like to mention the work
by Fan and Wang [12], who obtain jump-robust estimates of IV by applying wavelet methods).

In this paper we propose a new concept of modulated bipower variation (MBV) for diffu-
sion models with (i.i.d.) microstructure noise. The novelty of this concept is twofold. First, this
method provides a whole class of estimates for arbitrary integrated powers of volatility. Second,
modulated multipower variation, which is a direct generalisation of MBV, turns out to be robust
to finite activity jumps (when the powers are appropriately chosen). In particular, starting with
MBV we construct estimators of IV and IQ which are robust to finite activity jumps. An easy
implementation of MBV is another nice feature of our method.
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This paper is organised as follows: In Section 2 we state the basic notation and definitions. In
Section 3 we show the consistency of our estimators and prove a central limit theorem for their
normalised versions with an optimal rate n−1/4. In particular, we construct some new estimators
of the integrated volatility and the integrated quarticity and present the corresponding asymptotic
theory. Moreover, we demonstrate how the assumptions on the noise process can be relaxed.
Section 4 illustrates the finite sample properties of our approach by means of a Monte Carlo
study. Some conclusions and directions for future research are highlighted in Section 5. Finally,
we present the proofs in the Appendix.

2. Basic notations and definitions

We consider the process Y , observed at time points ti = i/n, i = 0, . . . , n. Y is defined on the
filtered probability space (�, F , (Ft )t∈[0,1],P ) and exhibits a decomposition

Yi/n = Xi/n + Ui, (2.1)

where X is a diffusion process defined by (1.1), and (Ui)0≤i≤n is an i.i.d. noise process with

EUi = 0, EU2
i = ω2. (2.2)

Further, we assume that X and U are independent.
The core of our approach is the following class of statistics:

MBV(Y, r, l)n = n(r+l)/4−1/2
M∑

m=1

∣∣Ȳ (K)
m

∣∣r ∣∣Ȳ (K)
m+1

∣∣l , r, l ≥ 0, (2.3)

Ȳ (K)
m = 1

n/M − K + 1

mn/M−K∑
i=(m−1)n/M

(
Y(i+K)/n − Yi/n

)
, (2.4)

with

K = c1n
1/2, M = n

c2K
= n1/2

c1c2
(2.5)

for some constants c1 > 0 and c2 > 1 (which will be chosen later).
The intuition behind the quantity Ȳ

(K)
m can be explained as follows: Since X is a continuous

process and (Ui)0≤i≤n is an i.i.d. process with EUi = 0 we deduce that

1

n/M − K + 1

mn/M−K∑
i=(m−1)n/M

Yi/n = X(m−1)/M + op(1),

1

n/M − K + 1

mn/M−K∑
i=(m−1)n/M

Y(i+K)/n = X(m−1)/M+K/n + op(1).
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This means that the quantity Ȳ
(K)
m behaves like the increment X(m−1)/M+K/n − X(m−1)/M (al-

though it has a bias that has to be corrected), and consequently it contains information about the
volatility process σ .

The constants K and M control the stochastic order of the term Ȳ
(K)
m . In particular, we have

Ū (K)
m = Op

(√
1

n/M − K

)
and X̄(K)

m = Op

(√
K

n

)
, (2.6)

where U
(K)
m and X

(K)
m are defined analogously to Y

(K)
m in (2.4). By (2.5) the stochastic orders of

the quantities in (2.6) are balanced, and we obtain

Ȳ (K)
m = Op(n−1/4), (2.7)

which explains the normalising factor in (2.3).
More generally, we define the modulated multipower variation by setting

MMV(Y, r1, . . . , rk)n = nr+/4−1/2
M−k+1∑

m=1

k∏
j=1

∣∣Ȳ (K)
m+j−1

∣∣rj ,
where k is a fixed natural number, rj ≥ 0 for all j and r+ = r1 + · · · + rk . This type of construc-
tion has been intensively used in a pure Itô diffusion framework (see, e.g., Barndorff-Nielsen,
Graversen, Jacod, Podolskij and Shephard [5] or Christensen and Podolskij [11] among others).
Later on we will show that the modulated multipower variation for an appropriate choice of k

and r1, . . . , rk , turns out to be robust to finite activity jumps when estimating arbitrary powers of
volatility.

In the sequel we mainly focus on the asymptotic theory of the modulated bipower variation,
but we also state the corresponding results for MMV(Y, r1, . . . , rk)n for the sake of completeness.

3. Asymptotic theory

In this section we study the asymptotic behaviour of the class of estimators MBV(Y, r, l)n,
r, l ≥ 0. Before we state the main results of this section we introduce the following notation:

μr = E[|z|r ], z ∼ N (0,1). (3.1)

3.1. Consistency

Theorem 1. Assume that E|U |2(r+l)+ε < ∞ for some ε > 0. If M and K satisfy (2.5) then the
convergence in probability

MBV(Y, r, l)n
P−→ MBV(Y, r, l) = μrμl

c1c2

∫ 1

0
(ν1σ

2
u + ν2ω

2)(r+l)/2 du (3.2)
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holds. The constants ν1 and ν2 are given by

ν1 = c1(3c2 − 4 + (2 − c2)
3 ∨ 0)

3(c2 − 1)2
, ν2 = 2((c2 − 1) ∧ 1)

c1(c2 − 1)2
. (3.3)

Note that the limit MBV(Y, r, l) in (3.2) depends only on the second moment ω2 of U , and no
higher moments are involved.

Next, we present the convergence in probability of the modulated multipower variation
MMV(Y, r1, . . . , rk)n.

Theorem 2. Assume that E|U |2r++ε < ∞ for some ε > 0. If M and K satisfy (2.5) then the
convergence in probability

MMV(Y, r1, . . . , rk)n
P−→ MMV(Y, r1, . . . , rk) = μr1 · · ·μrk

c1c2

∫ 1

0
(ν1σ

2
u + ν2ω

2)r+/2 du (3.4)

holds.

3.1.1. Consistent estimates of integrated volatility and integrated quarticity

Theorem 1 shows that MBV(Y, r, l)n is inconsistent when estimating arbitrary (integrated) pow-
ers of volatility. However, when r + l is an even number (this condition is satisfied for the most
interesting cases), a slight modification of MBV(Y, r, l)n turns out to be consistent. Let us il-
lustrate this procedure by providing consistent estimates for the integrated volatility and the
integrated quarticity.

As already mentioned in Zhang, Mykland and Ait-Sahalia [25] the statistic

ω̂2 = 1

2n

n∑
i=1

∣∣Yi/n − Y(i−1)/n

∣∣2 (3.5)

is a consistent estimator of the quantity ω2 with the convergence rate n−1/2. Consequently, we
obtain the convergence in probability of the modulated realised volatility

MRV(Y )n := c1c2MBV(Y,2,0)n − ν2ω̂
2

ν1

P−→
∫ 1

0
σ 2

u du (3.6)

as a direct application of Theorem 1 and (3.5).
Now we are in a position to construct a consistent estimator of the integrated quarticity. By

(3.6) and Theorem 1 we obtain consistency of the modulated realised quarticity, namely

MRQ(Y )n := (c1c2/3)MBV(Y,4,0)n − 2ν1ν2ω̂
2MRV(Y )n − ν2

2(ω̂2)2

ν2
1

P−→
∫ 1

0
σ 4

u du. (3.7)

Note, however, that Theorem 1 provides a whole class of new estimators of the integrated volatil-
ity and the integrated quarticity.
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3.1.2. Robustness to finite activity jumps

As already mentioned in the introduction, one of our main goals is finding consistent estimates
of volatility functionals when both microstructure noise and jumps are present. For this purpose
we consider the model

Z = Y + J, (3.8)

where Y is a noisy diffusion process defined by (2.1) and J denotes a finite activity jump process,
that is, J exhibits finitely many jumps on compact intervals. Typical examples of a finite activity
jump process are compound Poisson processes.

The next result gives conditions on r1, . . . , rk under which the modulated multipower variation
MMV(Z, r1, . . . , rk)n is robust to finite activity jumps.

Proposition 3. If the assumptions of Theorem 2 are satisfied, max(r1, . . . , rk) < 2 and Z is of
the form (3.8) then we have

MMV(Z, r1, . . . , rk)n
P−→ MMV(Y, r1, . . . , rk), (3.9)

where MMV(Y, r1, . . . , rk) is given by (3.4).

Proposition 3 is shown by the same methods as the corresponding result in the noiseless model
(i.e., U = 0). We refer to Barndorff-Nielsen, Shephard and Winkel [10] (Proposition 1, page 799)
for a detailed proof.

Now we can construct consistent estimates for the integrated volatility and the integrated quar-
ticity, which are robust to noise and finite activity jumps. Since ω̂2 is robust to jumps, the con-
vergence in probability

MBV(Z)n := (c1c2/μ
2
1)MBV(Z,1,1)n − ν2ω̂

2

ν1

P−→
∫ 1

0
σ 2

u du (3.10)

holds as a direct consequence of Proposition 3. Similar to the previous subsection, a robust
(tripower) estimate of the integrated quarticity is given by

MTQ(Z)n

:= (c1c2/μ
3
2/3)MMV(Z,4/3,4/3,4/3)n − 2ν1ν2ω̂

2MBV(Z)n − ν2
2(ω̂2)2

ν2
1

(3.11)

P−→
∫ 1

0
σ 4

u du.

Remark 1. Recall that the realised volatility RV converges in probability to the integrated volatil-
ity plus the sum of squared jumps in the jump-diffusion model. It is interesting to see that the
presence of jumps destroys the consistency of the estimator MRV(Z)n, which can be interpreted
as an analogue of RV . This is explained by the fact that jumps appear with different factors in the
statistic MRV(Z)n, according to their positions in the intervals [m−1

M
, m

M
].
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In contrast to our approach, the multiscale estimator of Zhang [24] and the realised kernel
estimator of Barndorff-Nielsen, Hansen, Lunde and Shephard [6] converge in probability to the
quadratic variation of the jump-diffusion process X + J (in the presence of noise).

Another important object of study is the impact of infinite activity jumps on the modulated
bipower (multipower) variation. Such studies can be found in Barndorff-Nielsen, Shephard and
Winkel [10], Woerner [23] and in a recent paper of Ait-Sahalia and Jacod [1] for the noiseless
framework. We are convinced that similar results hold also for the noisy model, although a more
detailed analysis is required.

3.1.3. Relaxing the assumptions on the noise process U

So far we have assumed that U is an i.i.d. sequence and is independent of the diffusion X.
Hansen and Lunde [15] have reported that both assumptions are somewhat unrealistic for ultra-
high-frequency data. In the following we demonstrate how these conditions can be relaxed.

First, note that the i.i.d. assumption is not essential to guarantee the stochastic order of Ū
(K)
m

in (2.6). When we assume, for instance, that U is a q-dependent sequence, the result of The-
orem 1 holds, although higher order autocorrelations of U appear in the limit. In this case we
require a stationarity condition on U for the estimation of the autocorrelations and a bias correc-
tion of the limit in (3.2).

Further, by using other constants M and K the influence of the noise process U can be made
negligible, and independence between X and U is not required. (2.6) implies that, in particular,
when we set

K = c1n
1/2+γ , M = n

c2K
(3.12)

for some 0 < γ < 1
2 , the quantity X̄

(K)
m driven by the diffusion process dominates the term Ū

(K)
m .

More precisely, the convergence in probability

n(1−2γ )(r+l)/4−(1−2γ )/2
M∑

m=1

∣∣Ȳ (K)
m

∣∣r ∣∣Ȳ (K)
m+1

∣∣l P−→ μrμlν
(r+l)/2
1

c1c2

∫ 1

0
|σu|r+l du (3.13)

holds. The convergence in (3.13) has another useful side effect. It provides consistent estimates
for arbitrary integrated powers of volatility. However, since the diffusion term X̄

(K)
m dominates

the noise term Ū
(K)
m , the above choice of K and M leads to a slower rate of convergence.

3.2. Central limit theorems

In this subsection we present the central limit theorems for a normalised version of MBV(Y, r, l)n.
For this purpose we need a structural assumption on the process σ .

(V): The volatility function σ satisfies the equation

σt = σ0 +
∫ t

0
a′
s ds +

∫ t

0
σ ′

s dWs +
∫ t

0
v′
s dVs. (3.14)
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Here a′, σ ′ and v′ are adapted cadlag processes, with a′ also being predictable and locally
bounded, and V is a second Brownian motion independent of W .

Condition (V) is a standard assumption that is required for the proof of the central limit theo-
rem for the pure diffusion part X (see, for example, Barndorff-Nielsen, Graversen, Jacod, Podol-
skij and Shephard [5] or Christensen and Podolskij [11]).

For technical reasons we require a further structural assumption on the noise process U . We as-
sume that the filtered probability space (�, F , (Ft )t∈[0,1],P ) supports another Brownian motion
B = (Bt )t∈[0,1] that is independent of the diffusion process X, such that the representation

Ui = √
nω

(
Bi/n − B(i−1)/n

)
(3.15)

holds.

Remark 2. Condition (3.15) ensures that both processes X and U are measurable with respect
to the same type of filtration. This assumption enables us to use standard central limit theorems
for high frequency observations (see Jacod and Shiryaev [20]). The same assumption has already
been used in Gloter and Jacod [13,14].

The normal distribution of the noise induced by (3.15) is not crucial for our asymptotic theory,
and other functions of rescaled increments of B can be considered. Of course, this leads to a
slight modification of the central limit theorems presented below.

In the central limit theorems that will be demonstrated below we use the concept of stable
convergence of random variables. Let us shortly recall the definition. A sequence of random

variables Gn converges stably in law with limit G (throughout this paper we write Gn
Dst−→ G),

defined on an appropriate extension (�′, F ′,P ′) of a probability space (�, F ,P ), if and only if
for any F -measurable and bounded random variable H and any bounded and continuous function
g the convergence

lim
n→∞E[Hg(Gn)] = E[Hg(G)]

holds. This is obviously a slightly stronger mode of convergence than convergence in law (see
Renyi [22] or Aldous and Eagleson [2] for more details on stable convergence).

Now we present a central limit theorem for the statistic MBV(Y, r, l)n.

Theorem 4. Assume that U is of the form (3.15) and condition (V) is satisfied. If M and K

satisfy (2.5), and

1. r, l ∈ (1,∞) ∪ {0} or
2. r or l ∈ (0,1], and σs = 0 for all s,

then we have

n1/4(MBV(Y, r, l)n − MBV(Y, r, l)
) Dst−→ L(r, l),

where L(r, l) is given by

L(r, l) =
√

μ2rμ2l + 2μrμlμr+l − 3μ2
rμ

2
l

c1c2

∫ 1

0
(ν1σ

2
u + ν2ω

2)(r+l)/2 dW ′
u. (3.16)
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Here W ′ denotes another Brownian motion defined on an extension of the filtered probability
space (�, F , (Ft )t∈[0,1],P ), which is independent of the σ -field F .

Since ω̂2 − ω2 = Op(n−1/2) we obtain the central limit theorems for the estimates MRV(Y )n
and MBV(Y )n defined by (3.6) and (3.10), respectively, as a direct consequence of Theorem 4.

Corollary 1. Assume that U is of the form (3.15) and condition (V) is satisfied. If M and K

satisfy (2.5) then we have

n1/4
(

MRV(Y )n −
∫ 1

0
σ 2

u du

)
Dst−→

√
2c1c2

ν1

∫ 1

0
(ν1σ

2
u + ν2ω

2)dW ′
u, (3.17)

where W ′ is another Brownian motion defined on an extension of the filtered probability space
(�, F , (Ft )t∈[0,1],P ), which is independent of the σ -field F .

Corollary 2. Assume that U is of the form (3.15) and condition (V) is satisfied. If M and K

satisfy (2.5), and σs = 0 for all s, then we have

n1/4
(

MBV(Y )n −
∫ 1

0
σ 2

u du

)
(3.18)

Dst−→
√

c1c2(μ
2
2 + 2μ2

1μ2 − 3μ4
1)

μ4
1ν

2
1

∫ 1

0
(ν1σ

2
u + ν2ω

2)dW ′
u,

where W ′ is another Brownian motion defined on an extension of the filtered probability space
(�, F , (Ft )t∈[0,1],P ), which is independent of the σ -field F .

Now let us demonstrate how Corollaries 1 and 2 can be applied in order to obtain confidence
intervals for the integrated volatility. Note that the central limit theorem in (3.17) is not feasible
yet. Nevertheless, we can easily obtain a feasible version of Corollary 1. Since the Brownian
motion W ′ is independent of the volatility process σ , the limit defined by (3.17) has a mixed
normal distribution with conditional variance

β2 = 2c1c2

ν2
1

∫ 1

0
(ν1σ

2
u + ν2ω

2)2 du.

By an application of Theorem 1 the statistic

β2
n = 2c2

1c
2
2

3ν2
1

MBV(Y,4,0)n

is a consistent estimator of β2.
Now we exploit the properties of stable convergence to obtain a standard central limit theorem

n1/4(MRV(Y )n − ∫ 1
0 σ 2

u du)

βn

D−→ N (0,1). (3.19)
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From the latter confidence intervals for the integrated volatility can be derived. A feasible version
of Corollary 2 can be obtained similarly.

With the above formulae for β2 and β2
n in hand we can choose the constants c1 and c2 that

minimise the conditional variance. In order to compare our asymptotic variance with the corre-
sponding results of other methods we assume that the volatility process σ is constant. In that case
the conditional variance β2 is minimised by

c1 =
√

18

(c2 − 1)(4 − c2)
· ω

σ
, c2 = 8

5
, (3.20)

and is equal to 256
3
√

18
· σ 3ω ≈ 20.11σ 3ω. Note that the limits in Corollaries 1 and 2 are the same

up to a constant. Consequently, the asymptotic conditional variance of MBV(Y )n is minimised
for the same choice of c1 and c2 as above, and is approximately equal to 26.14σ 3ω, when the
volatility function is constant.

As already mentioned in Ait-Sahalia, Mykland and Zhang [25] (see also Gloter and Jacod
[13,14]) the maximum likelihood estimator (when U is normally distributed) converges at the
rate n−1/4 and has an asymptotic variance 8σ 3ω, which is a natural lower bound. In contrast to
our concept, the family of modified Tukey–Hanning kernel estimators as proposed by Barndorff-
Nielsen, Hansen, Lunde and Shephard [6] has an optimal asymptotic variance of about 8.01σ 3ω.
This shows that our estimator is somewhat inefficient in comparison to these kernel-based esti-
mators. A natural direction of future research is to modify our procedure in order to achieve a
higher efficiency.

However, the concept of modulated bipower (multipower) variation has been established to
provide estimates of arbitrary powers of volatility for the noisy diffusion model, which are ad-
ditionally robust to finite activity jumps. These are properties which are not captured by the
multiscale or realised kernel approach.

For the sake of completeness we state a central limit theorem for the modulated multipower
variation MMV(Y, r1, . . . , rk)n.

Theorem 5. Assume that U is of the form (3.15) and condition (V) is satisfied. If M and K

satisfy (2.5), and

1. r1, . . . , rk ∈ (1,∞) ∪ {0} or
2. ri ∈ (0,1] for at least one i, and σs = 0 for all s,

then we have

n1/4(MMV(Y, r1, . . . , rk)n − MMV(Y, r1, . . . , rk)
) Dst−→ L(r1, . . . , rk),

where L(r1, . . . , rk) is given by

L(r, l) =
√

A(r1, . . . , rk)

c1c2

∫ 1

0
(ν1σ

2
u + ν2ω

2)(r+l)/2 dW ′
u, (3.21)
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with

A(r1, . . . , rk) =
k∏

l=1

μ2rl − (2k − 1)

k∏
l=1

μ2
rl

+ 2
k−1∑
j=1

j∏
l=1

μrl

k∏
l=k−j+1

μrl

k−j∏
l=1

μrl+rl+j
.

Here W ′ denotes another Brownian motion defined on an extension of the filtered probability
space (�, F , (Ft )t∈[0,1],P ), which is independent of the σ -field F .

Note that the constant A(r1, . . . , rk) also appears in the central limit theorem for multipower
variation in a pure diffusion framework (see Barndorff-Nielsen, Graversen, Jacod, Podolskij and
Shephard [5]).

4. Simulation study

In this section, we inspect the finite sample properties of various proposed estimators for both
integrated volatility and quarticity through Monte Carlo experiments. Moreover, we compare
our estimators’ behaviour with the properties of the corresponding kernel-based estimators from
Barndorff-Nielsen, Hansen, Lunde and Shephard [6]. To this end, we choose the same stochastic
volatility model as in their work, namely

dXt = μdt + σt dWt, σt = exp(β0 + β1τt ),
(4.1)

dτt = ατt dt + dBt , corr(dWt,dBt) = ρ,

with μ = 0.03, β0 = 0.3125, β1 = 0.125, α = −0.025 and ρ = −0.3. (Ui)0≤i≤n is assumed to be
i.i.d. normally distributed with variance ω2.

4.1. Simulation design

We create 20 000 repetitions of the system in equation (4.1), for which we use an Euler approx-
imation and different values of n. Whenever we have to estimate ω2, we choose ω̂2 as defined
in (3.5).

Since we state propositions for a whole class of estimators, we do not focus on one special
estimator. To be precise, we investigate the finite sample properties in three different situations.

First, we study the performance of MRV(Y )n as an estimator for the integrated volatility and
compare it with the corresponding kernel-based statistic from Barndorff-Nielsen, Hansen, Lunde
and Shephard [6], using the modified Tukey–Hanning kernel with p = 2. We denote this estima-
tor by KB(Y )n. In Table 1 we present the Monte Carlo results for both mean and variance of the
two statistics for various choices of n and ω2 = 0.01,0.001, which is a reasonable choice, since
IV is about 2 in model (4.1). Figure 1 gives histograms both of the standardised statistic in (3.19)
and of the statistic

n1/4(log(MRV(Y )n) − log(
∫ 1

0 σ 2
u du))

βn/MRV(Y )n

D−→ N (0,1), (4.2)
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which is obtained via an application of the delta method. Both statistics converge weakly to a
standard normal distribution. In this case, we choose two different values of n, namely n = 1024
and n = 16 384.

Second, we analyse the performance of the estimation of the integrated volatility in the pres-
ence of finite activity jumps. In this case we use the bipower estimator MBV(Z)n, which is robust
to jumps. We present the Monte Carlo results for this estimator in Table 2.

At last, we analyse how well MRQ(Y )n works as an estimator for the integrated quarticity in
contrast to the proposed bipower variation estimator in Barndorff-Nielsen, Hansen, Lunde and
Shephard [6], which we call BP(Y )n. Note that BP(Y )n has a convergence rate of n−1/6, which is
obviously slower than the convergence rate of our estimator MRQ(Y )n. Table 3 shows the results
in the quite simple setting

dXt = μdt + dWt (4.3)

with μ = 0.03 as above.
As mentioned before, the asymptotic (conditional) variance of the estimators MRV(Y )n and

MBV(Y )n can be minimised for an appropriate choice of c1 and c2, if the volatility function is
constant and the drift function is zero. However, even in model (4.1) and (4.3) the choice of c1
and c2 as in (3.20) and with σ replaced by IV may give an idea of a reasonable size for the
two constants. Using a first estimate for IV we decided to choose c1 = 0.25 for ω2 = 0.01 and
c1 = 0.125 for ω2 = 0.001, whereas c2 = 2. Since the computation of the optimal values of c1
and c2 for the estimation of IQ involves the solution of polynomial equations with higher degrees
than two, we have dispensed with this analysis and set c1 = 1 and c2 = 1.6, both for ω2 = 0.01
and ω2 = 0.001. To produce the process J we allocate one jump in the interval [0,1]. The arrival
time of this jump is considered to be uniformly distributed, whereas the jump size is N (0, h2)

distributed with h = 0.1,0.25.
Note finally that it might be convenient not to plug in ν1 to compute MRV(Y )n and the esti-

mator for the conditional variance β2
n , but to use

ν
(n)
1 = ν1 + (3 − c2) ∧ 1/(c2 − 1)

(c2 − 1)
√

n
+ O

(
1

n

)
,

which is a better approximation to the second moment of n1/4W̄
(K)
m than ν1. Similarly, one could

use a finite sample analogue ν
(n)
2 for ν2 as well. It has turned out that the performance of our

estimators is indeed sensitive to the choice of ν1 (which is why we used ν
(n)
1 ), whereas it is

almost unaffected by the transition from ν2 to ν
(n)
2 (which is why we used ν2).

4.2. Results

Since our aim is mainly to give an idea of how well the different estimators work, we content
ourselves with computing the estimated mean and variance of the bias-corrected statistics. Except
for MRV(Y )n we therefore do not evaluate the accuracy of the stated central limit theorems.

Table 1 shows that MRV(Y )n works quite well as an estimator of the integrated volatility in
the noisy diffusion setting, since both bias and variance are rather small, at least for sample sizes
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Table 1. The Monte Carlo results for mean and variance of both MRV(Y )n − ∫ 1
0 σ 2

u du and KB(Y )n −∫ 1
0 σ 2

u du for various values of n and ω2. The data are generated from the model (4.1)

ω2 = 0.01 ω2 = 0.001

n Mean Variance Mean Variance

MRV(Y )n
256 0.1363 0.63 0.5245 1.782

1024 0.0433 0.219 0.1717 0.269
4096 0.0113 0.102 0.0478 0.055
9216 0.0045 0.064 0.0243 0.031

16 384 0.0059 0.05 0.0129 0.021
25 600 0.004 0.039 0.0094 0.017

KB(Y )n
256 −0.022 0.228 −0.0289 0.143

1024 0.0074 0.091 −0.0075 0.042
4096 0.0195 0.046 0.0004 0.015
9216 0.0203 0.038 0.001 0.009

16 384 0.0201 0.04 0.001 0.007
25 600 0.0178 0.046 0.0013 0.005

larger than n = 1024. For large values of n and ω2 = 0.01 it provides even better finite sample
properties than KB(Y )n, whereas the kernel-based estimator improves a lot when the variance of
the noise terms becomes smaller. Nevertheless, MRV(Y )n is a serious alternative to the kernel-
based estimator, especially for large values of ω2.

Figure 1 indicates that the behaviour of each standardised statistic depends heavily on the
actual size of ω2, especially for a small sample size n. In fact, even for n = 1024 we see a rea-
sonable approximation of the standard normal density when the variance of the noise variables
is large, whereas for ω2 = 0.001 the histogram exhibits a significant shift to the right. One might
suggest that these effects are caused by a large variance of the estimator of the integrated quar-
ticity. For a large value of n all statistics work pretty well; however, it is remarkable that the
transition to the log-transformed statistic provides an improvement, at least for a large choice
of ω2.

From Table 2 we conclude that in the noisy jump-diffusion framework the proposed bipower
estimator MBV(Z)n works quite well. Both bias and the variance of MBV(Z)n are rather small,
even for moderate values of n.

Finally, we see from Table 3 that MRQ(Y )n is on average closer to the true integrated quarticity
than BP(Y )n, whereas the variance of BP(Y )n is smaller than that of MRQ(Y )n, even though
BP(Y )n has a slower rate of convergence. However, we are convinced that the efficiency of
MRQ(Y )n can be improved massively by choosing the constants c1 and c2 optimally.
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Figure 1. Various histograms of the statistics defined in (3.19) and (4.2). In each line, the first data set
was computed with n = 1024, whereas for the second one we used n = 16 384. The first four histograms
illustrate the case (3.19) with ω2 = 0.01 (in the first line) and ω2 = 0.001 (in the second line). The latter
four graphics show the finite sample properties for the weak convergence in (4.2), in the same order as
above. For comparison, the dashed line shows the graph of the standard normal density and the solid line
gives a standard kernel density estimate.
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Table 2. Mean and variance of MBV(Z)n − ∫ 1
0 σ 2

u du in the presence of jumps. We choose the sample fre-

quency as before and analyse the finite sample properties for different values of ω2 and h, where h denotes
the variance of the jump size

ω2 = 0.01, h = 0.25 ω2 = 0.001, h = 0.25 ω2 = 0.001, h = 0.1

n Mean Variance Mean Variance Mean Variance

256 0.0582 0.614 −0.0839 0.332 −0.1224 0.29
1024 0.0835 0.295 0.0274 0.133 −0.102 0.112
4096 0.0707 0.15 0.0466 0.063 0.0184 0.056
9216 0.0642 0.102 0.0461 0.043 0.0107 0.038

16 384 0.0599 0.076 0.044 0.032 0.025 0.028
25 600 0.0566 0.059 0.0415 0.025 0.0181 0.023

5. Conclusions and directions for future research

This paper highlights the potential of the modulated bipower approach, and we are convinced that
many unsolved problems in a noisy (jump-)diffusion framework can be tackled by our methods.
Let us mention some most important directions for future research. First, we intend to modify
our approach by subsampling the statistic MBV(Y, r, l)n to obtain more efficient estimators of
the integrated volatility and the integrated quarticity. A first step in this direction has been made

Table 3. The finite sample properties of MRQ(Y )n − ∫ 1
0 σ 4

u du and BP(Y )n − ∫ 1
0 σ 4

u du in model (4.3).
Both sample frequency and noise are the same as in Table 1

ω2 = 0.01 ω2 = 0.001

n Mean Variance Mean Variance

MRQ(Y )n
256 0.0745 1.348 0.0686 1.274

1024 0.0128 0.587 0.0121 0.557
4096 0.0135 0.306 0.0013 0.278
9216 0.0113 0.203 0.015 0.184

16 384 0.0159 0.152 0.0155 0.14
25 600 0.0088 0.117 0.0077 0.108

BP(Y )n
256 −0.2517 0.304 −0.2803 0.274

1024 −0.1811 0.186 −0.1434 0.169
4096 −0.0312 0.108 −0.0745 0.095
9216 −0.0089 0.077 −0.04 0.065

16 384 0.0078 0.059 −0.0287 0.048
25 600 0.0148 0.047 −0.0206 0.039
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in a recent paper by Jacod, Li, Mykland, Podolskij and Vetter [18] who proposed a subsam-
pled version of MBV(Y,2,0)n to estimate IV in the presence of a more general noise process.
Second, we plan to derive a multivariate version of the current approach. This can be used to
estimate the quadratic covariation, which is a key concept in econometrics, in the presence of
noise. Finally, an interesting and very important modification of this problem is the estimation
of the quadratic covariation for non-synchronously observed data in the presence of noise (see
Hayashi and Yoshida [16] for more details in a pure diffusion case).

Appendix

In the following we assume without loss of generality that a, σ , a′, σ ′ and v′ are bounded
(for details see Barndorff-Nielsen, Graversen, Jacod, Podolskij and Shephard [5]). Moreover, the
constants that appear in the proofs are all denoted by C (even if they depend on the actual choice
of the powers l and r).

Note first that the numbers ν1 and ν2 as given in (3.3) are the limits of the variances of the
random variables n1/4W̄

(K)
m and n1/4Ū

(K)
m , respectively. Since a standard calcuation shows that

the true variances ν
(n)
i are of the form

ν
(n)
i = νi + O(n−1/2),

one may conclude from the mean value theorem that replacing ν
(n)
i by ν1 does affect neither the

consistency results nor the central limit theorem. Thus, whenever we refer to the variances of
those random quantities, we use ν1 and ν2 without further notice.

Before we start with the proofs of main results, we introduce more notation and state some
simple lemmata. We consider the quantities

βn
m = n1/4(σ(m−1)/MW̄ (K)

m + Ū (K)
m

)
, β ′n

m = n1/4(σ(m−1)/MW̄
(K)
m+1 + Ū

(K)
m+1

)
, (6.1)

which approximate Ȳ
(K)
m and Ȳ

(K)
m+1, respectively, by using the associated increments of the un-

derlying Brownian motion W . We further define

ξn
m = n1/4Ȳ (K)

m − βn
m, ξ ′n

m = n1/4Ȳ
(K)
m+1 − β ′n

m (6.2)

as the differences between the true quantities and their approximations. We further set f (x) :=
|x|r and g(x) := |x|l . In the next lemma we study the stochastic order of the terms βn

m and ξn
m.

Lemma 1. We have

E[|ξn
m|q ] + E[|ξ ′n

m |q ] + E
[∣∣n1/4X̄(K)

m

∣∣q]
< C (6.3)

for any q > 0, and

E[|βn
m|q ] + E[|β ′n

m |q ] + E
[∣∣n1/4Ȳ (K)

m

∣∣q]
< C (6.4)

for any 0 < q < 2(r + l) + ε with ε as stated in Theorem 1. Both results hold uniformly in m.
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Proof. We begin with the proof of (6.3). In the case q ≥ 1, we use Hölder’s inequality to obtain

E[|ξn
m|q ]

= E

[∣∣∣∣∣ n1/4

n/M − K + 1

nm/M−K∑
i=n(m−1)/M

(
X(i+K)/n − Xi/n

) − σ(m−1)/M

(
W(i+K)/n − Wi/n

)∣∣∣∣∣
q]

≤ 1

n/M − K + 1

×
nm/M−K∑

i=n(m−1)/M

E

[∣∣∣∣∣n1/4((X(i+K)/n − Xi/n

) − σ(m−1)/M

(
W(i+K)/n − Wi/n

))∣∣∣∣∣
q]

= 1

n/M − K + 1

×
nm/M−K∑

i=n(m−1)/M

E

[∣∣∣∣n1/4
(∫ (i+K)/n

i/n

as ds +
∫ (i+K)/n

i/n

(
σs − σ(m−1)/M

)
dWs

)∣∣∣∣
q]

.

Thus the property follows from the boundedness of the functions a and σ , and a use of Burk-
holder’s inequality. For q < 1, Jensen’s inequality yields

E[|ξn
m|q ] ≤ E[|ξn

m|]q,

and we have (6.3) just as above. The corresponding assertions for ξ ′n
m and n1/4X̄

(K)
m can be shown

analogously.
Now let us prove (6.4). In the same way as before we have

E
[∣∣n1/4Ȳ (K)

m

∣∣q] ≤ C
(
E

[∣∣n1/4Ū (K)
m

∣∣q] + E
[∣∣n1/4X̄(K)

m

∣∣q])
for any q ≥ 0. Moreover, it can be shown that n1/4Ū

(K)
m can be rewritten as a weighted sum of

independent random variables, for which the convergence in distribution

n1/4Ū (K)
m

D−→ N (0, ν2ω
2)

holds. Using the continuity theorem and the moment assumption for each 0 < q < 2(r + l) + ε

we obtain by uniform integrability of |n1/4Ū
(K)
m |q that E[|n1/4Ū

(K)
m |q ] is bounded. This proves

(6.4) for n1/4Ȳ
(K)
m . The corresponding result for the quantities βn

m and β ′n
m can be shown ana-

logously. �

The next lemma will be used later to prove that the error due to the approximation of Ȳ
(K)
m

using βn
m is small compared to the rate of convergence. For a more general setting and a proof

see Lemma 5.4 in Barndorff-Nielsen, Graversen, Jacod, Podolskij and Shephard [5].
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Lemma 2. If

Zn
m := 1 + |μn

m| + |μ′n
m| + |μ′′n

m |
satisfies E[|Zn

m|q ] < C for all 0 < q < 2(r + l) + ε and if further

1

M

M∑
m=1

E[|μ′n
m − μ′′n

m |2] → 0 (6.5)

holds, then we have

1

M

M∑
m=1

E
[
f 2(μn

m)
(
g(μ′n

m) − g(μ′′n
m )

)2] → 0.

Proof of Theorem 1. We introduce the quantities

MBVn :=
M∑

m=1

ηn
m and MBV ′n :=

M∑
m=1

η′n
m,

where ηn
m and η′n

m are defined by

ηn
m := n(r+l)/4

c1c2
E

[∣∣Ȳ (K)
m

∣∣r ∣∣Ȳ (K)
m+1

∣∣l |F(m−1)/M

]
, η′n

m := μrμl

c1c2

(
ν1σ

2
(m−1)/M + ν2ω

2)(r+l)/2
.

Riemann integrability yields

1

M
MBV ′n P−→ MBV(Y, r, l),

so we are forced to prove

MBV(Y, r, l)n − 1

M
MBVn P−→ 0 (6.6)

and

1

M
(MBVn − MBV ′n) P−→ 0 (6.7)

in two steps.
Considering the first step we recall the identity

√
n = c1c2M and obtain therefore

MBV(Y, r, l)n − 1

M
MBVn =

M∑
m=1

(
γm − E

[
γm|F(m−1)/M

])
,

where γm is given by

γm = n(r+l)/4−1/2
∣∣Ȳ (K)

m

∣∣r ∣∣Ȳ (K)
m+1

∣∣l .
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Using Lenglart’s inequality and the F(m+1)/M -measurablity of γm (for details see Lemma 5.2
in Barndorff-Nielsen, Graversen, Jacod, Podolskij and Shephard [5]) we find that the stochastic
convergence stated in (6.6) follows from

M∑
m=1

E
[|γm|2|F(m−1)/M

] P−→ 0.

Hölder’s inequality and Lemma 1 yield E[|γm|2|F(m−1)/M ] ≤ Cn−1, thus (6.6) follows.
To prove the assertion in (6.7) recall that f (x) = |x|r and g(x) = |x|l and observe that the

continuity theorem implies

E
[
n(r+l)/4f

(
σ(m−1)/MW̄ (K)

m + Ū (K)
m

)
g
(
σ(m−1)/MW̄

(K)
m+1 + Ū

(K)
m+1

)|F(m−1)/M

]
= μrμl

(
ν1σ

2
(m−1)/M + ν2ω

2)(r+l)/2 + op(1),

uniformly in m. Thus

1

M
(MBVn − MBV ′n) = 1

M

M∑
m=1

E
[
ζ n
m|F(m−1)/M

] + op(1)

with

ζ n
m = n(r+l)/4

c1c2

(
f

(
Ȳ (K)

m

)
g
(
Ȳ

(K)
m+1

) − f
(
σ(m−1)/MW̄ (K)

m + Ū (K)
m

)
g
(
σ(m−1)/MW̄

(K)
m+1 + Ū

(K)
m+1

))
.

To obtain the desired result it suffices to show

1

M

M∑
m=1

E[|ζ n
m|] → 0,

which follows from

1

M

M∑
m=1

E[|ζ n
m|2] → 0 (6.8)

using the Cauchy–Schwarz inequality. In a first step we obtain for some constant C > 0

|ζ n
m|2 = 1

c2
1c

2
2

(
f (ξn

m + βn
m)g(ξn

m+1 + βn
m+1) − f (βn

m)g(β ′n
m )

)2

≤ C
(
g2(ξn

m+1 + βn
m+1)

(
f (ξn

m + βn
m) − f (βn

m)
)2

+ f 2(βn
m)

(
g(ξn

m+1 + βn
m+1) − g(βn

m+1)
)2 + f 2(βn

m)
(
g(βn

m+1) − g(β ′n
m )

)2)
, (6.9)
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where the quantities βn
m and ξn

m are defined by (6.1) and (6.2), respectively. Since we have shown
in (6.3) and (6.4) that the conditions on the boundedness of Zn

m for an application of Lemma 2
are fulfilled, it suffices to prove

1

M

M∑
m=1

E[|ξn
m|2 + |ξn

m+1|2 + |βn
m+1 − β ′n

m |2] → 0 (6.10)

to obtain the assertion.
For the first term in (6.10) we have

E[|ξn
m|2] ≤ 1

n/M − K + 1

×
n/M−K∑

i=n(m−1)/M

E
[∣∣n1/4((X(i+K)/n − Xi/n

) − σ(m−1)/M

(
W(i+K)/n − Wi/n

))∣∣2]

as in the proof of (6.3). Using (2.5) and

(
X(i+K)/n − Xi/n

) − σ(m−1)/M

(
W(i+K)/n − Wi/n

)
=

∫ (i+K)/n

i/n

as ds +
∫ (i+K)/n

i/n

(
σs − σ(m−1)/M

)
dWs

we obtain

E
[∣∣n1/4((X(i+K)/n − Xi/n

) − σ(m−1)/M

(
W(i+K)/n − Wi/n

))∣∣2]
≤ C

(
n−1/2 + n1/2E

[∫ (i+K)/n

i/n

(
σs − σ(m−1)/M

)2 ds

])

≤ C

(
n1/2E

[∫ m/M

(m−1)/M

(
σs − σ(m−1)/M

)2
ds

])
+ o(1).

Consequently,

1

M

M∑
m=1

E[|ξn
m|2] ≤ C

M∑
m=1

E

[∫ m/M

(m−1)/M

(
σs − σ(m−1)/M

)2 ds

]
+ o(1)

= C

M∑
m=1

E

[∫ m/M

(m−1)/M

(
σs − σ�Ms�/M

)2 ds

]
+ o(1)

= C

∫ 1

0
E

[(
σs − σ�Ms�/M

)2]ds + o(1)
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follows. Since σ is bounded and cadlag, Lebesgue’s theorem yields

1

M

M∑
m=1

E[|ξn
m|2] → 0

and as well for the second term in (6.10). We further have

βn
m+1 − β ′n

m = n1/4(σm/M − σ(m−1)/M

)
W̄

(K)
m+1.

Since W̄
(K)
m+1 is independent of σt for any t ≤ m

M
we obtain

1

M

M∑
m=1

E[|βn
m+1 − β ′n

m |2] ≤ C

M

M∑
m=1

E
[∣∣σm/M − σ(m−1)/M

∣∣2]

≤ C

M

M∑
m=1

E
[|σm/M − σs |2 + ∣∣σs − σ(m−1)/M

∣∣2]
.

The assertion therefore follows with the same arguments as above. That completes the proof
of (6.7). �

Proof of Theorem 2. Theorem 2 can be proven by the same methods as Theorem 1. �

Proof of Theorem 4. Here we mainly use the same techniques as presented in Barndorff-
Nielsen, Graversen, Jacod, Podolskij and Shephard [5] or Christensen and Podolskij [11]. We
will state the proof of the key steps and refer to the articles quoted above for the details.

We define the quantity

Ln(r, l) = n−1/4
M∑

m=1

(
f (βn

m)g(β ′n
m ) − E

[
f (βn

m)g(β ′n
m )|F(m−1)/M

])
, (6.11)

where the terms βn
m and β ′n

m are given by (6.1), and f (x) = |x|r , g(x) = |x|l . In the next lemma
we state the central limit theorem for Ln(r, l).

Lemma 3. We have

Ln(r, l)
Dst−→ L(r, l),

where L(r, l) is defined in Theorem 4.

Proof. First, note that

Ln(r, l) =
M+1∑
m=2

θn
m + op(1),
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where θn
m is given by

θn
m = n−1/4(f (βn

m−1)
(
g(β ′n

m−1) − μl

(
ν1σ

2
(m−2)/M + ν2ω

2)l/2)
+ μl

(
ν1σ

2
(m−1)/M + ν2ω

2)l/2(
f (βn

m) − μr

(
ν1σ

2
(m−1)/M + ν2ω

2)r/2))
.

We have that

E
[
θn
m|F(m−1)/M

] = 0,

and

M+1∑
m=2

E
[|θn

m|2|F(m−1)/M

] P−→ μ2rμ2l + 2μrμlμr+l − 3μ2
rμ

2
l

c1c2

∫ 1

0
(ν1σ

2
u + ν2ω

2)r+l du.

Next, let Z = W or B . Since θn
m is an even functional in W and B , and (W,B)

D= −(W,B), we
obtain the identity

E
[
θn
m

(
Zm/M − Z(m−1)/M

)|F(m−1)/M

] = 0.

Finally, let N = (Nt )t∈[0,1] be a bounded martingale on (�, F , (Ft )t∈[0,1],P ), which is orthog-
onal to W and B (i.e., with quadratic covariation [W,N ]t = [B,N]t = 0 almost surely). By the
arguments of Barndorff-Nielsen, Graversen, Jacod, Podolskij and Shephard [5] we have

E
[
θn
m

(
Nm/M − N(m−1)/M

)|F(m−1)/M

] = 0.

Now the stable convergence in Lemma 3 follows by Theorem IX 7.28 in Jacod and Shiryaev [20].
�

Now we are left to prove the convergence

n1/4(MBV(Y, r, l)n − MBV(Y, r, l)
) − Ln(r, l)

P−→ 0. (6.12)

Obviously, the convergence in (6.12) is equivalent to

M∑
m=1

ϑn
m

P−→ 0, (6.13)

M∑
m=1

ϑ ′n
m

P−→ 0, (6.14)

with ϑn
m, ϑ ′n

m defined by

ϑn
m = n−1/4[f (

n1/4Ȳ (K)
m

)
g
(
n1/4Ȳ

(K)
m+1

) − f (βn
m)g(β ′n

m )
]
,

ϑ ′n
m = n1/4

∫ m/M

(m−1)/M

(
(ν1σ

2
u + ν2ω

2)(r+l)/2 − (
ν1σ

2
(m−1)/M + ν2ω

2)(r+l)/2)du.
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The convergence in (6.14) has been shown in Barndorff-Nielsen, Graversen, Jacod, Podolskij
and Shephard [5], and so we concentrate on proving (6.13). For the same reason as in the proof
of (6.6) (and from a similar argument as in the proof of (6.8)) this result follows from

M∑
m=1

E
[
ϑn

m|F(m−1)/M

] P−→ 0. (6.15)

Observe that

ϑn
m = n−1/4f

(
n1/4Ȳ (K)

m

)(
g
(
n1/4Ȳ

(K)
m+1

) − g(β ′n
m )

) + n−1/4g(β ′n
m )

(
f

(
n1/4Ȳ (K)

m

) − f (βn
m)

)
.

Now we obtain

M∑
m=1

E
[
ϑn

m|F(m−1)/M

] =
M∑

m=1

E
[
ϑn

m(1) + ϑn
m(2)|F(m−1)/M

] + op(1), (6.16)

with ϑn
m(1), ϑn

m(2) defined by

ϑn
m(1) = n−1/4∇g(β ′n

m )f
(
n1/4Ȳ (K)

m

)
ξ ′n
m ,

ϑn
m(2) = n−1/4∇f (βn

m)g(β ′n
m )ξn

m,

where ξn
m, ξ ′n

m are given by (6.2), and ∇h denotes the first derivative of h. In fact, it is quite
complicated to show (6.16) (especially when r or l ∈ (0,1]), but it can be proven exactly as
in Barndorff-Nielsen, Graversen, Jacod, Podolskij and Shephard [5]. Note also that when r or
l ∈ (0,1] the terms ∇g(β ′n

m ) and ∇f (βn
m) are still well defined (almost surely), because σs = 0

for all s. Assumption (V) implies the decomposition

ξn
m = ξn

m(1) + ξn
m(2),

where ξn
m(1), ξn

m(2) are defined by

ξn
m(1) = n1/4

n/M − K + 1

n/M−K∑
i=n(m−1)/M

(∫ (i+K)/n

i/n

(
au − a(m−1)/M

)
du

+
∫ (i+K)/n

i/n

(∫ u

i/n

a′
s ds +

∫ u

i/n

(
σ ′

s− − σ ′
(m−1)/M

)
dWs

+
∫ u

i/n

(
v′
s− − v′

(m−1)/M

)
dVs

)
dWu

)
,

ξn
m(2) = n1/4

n/M − K + 1

n/M−K∑
i=n(m−1)/M

(
K

n
a(m−1)/M + σ ′

(m−1)/M

∫ (i+K)/n

i/n

(Wu − Wi/n)dWu

+ v′
(m−1)/M

∫ (i+K)/n

i/n

(Vu − Vi/n)dWu

)
,
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and a similar representation holds for ξ ′n
m . Let us now prove that

M∑
m=1

E
[
ϑn

m(2)|F(m−1)/M

] P−→ 0. (6.17)

A straightforward application of Burkholder’s inequality shows that

n−1/4
M∑

m=1

E
[∇f (βn

m)g(β ′n
m )ξn

m(1)|F(m−1)/M

] P−→ 0.

Next, note that since f is an even function ∇f is odd. Consequently, ∇f (βn
m)g(β ′n

m )ξn
m(2) is an

odd functional of (W,V,B). Since (W,V,B)
D= −(W,V,B) we obatin

n−1/4
M∑

m=1

E
[∇f (βn

m)g(β ′n
m )ξn

m(2)|F(m−1)/M

] = 0,

which implies (6.17). Similarly we can show that

M∑
m=1

E
[
ϑn

m(1)|F(m−1)/M

] P−→ 0,

which completes the proof of Theorem 4. �

Proof of Theorem 5. Theorem 5 can be proven by the same methods as Theorem 4. �
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