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The discrete-time GARCH methodology which has had such a profound influence on the modelling of
heteroscedasticity in time series is intuitively well motivated in capturing many ‘stylized facts’ concerning
financial series, and is now almost routinely used in a wide range of situations, often including some where
the data are not observed at equally spaced intervals of time. However, such data is more appropriately
analyzed with a continuous-time model which preserves the essential features of the successful GARCH
paradigm. One possible such extension is the diffusion limit of Nelson, but this is problematic in that the
discrete-time GARCH model and its continuous-time diffusion limit are not statistically equivalent. As an
alternative, Klüppelberg et al. recently introduced a continuous-time version of the GARCH (the ‘COGA-
RCH’ process) which is constructed directly from a background driving Lévy process. The present paper
shows how to fit this model to irregularly spaced time series data using discrete-time GARCH methodol-
ogy, by approximating the COGARCH with an embedded sequence of discrete-time GARCH series which
converges to the continuous-time model in a strong sense (in probability, in the Skorokhod metric), as the
discrete approximating grid grows finer. This property is also especially useful in certain other applications,
such as options pricing. The way is then open to using, for the COGARCH, similar statistical techniques to
those already worked out for GARCH models and to illustrate this, an empirical investigation using stock
index data is carried out.

Keywords: COGARCH process; continuous-time GARCH process; Lévy process; pseudo-maximum
likelihood estimation; Skorokhod distance; stochastic volatility

1. Introduction

The modelling of time series in finance, economics and other fields frequently has to account for
heteroscedasticity in the underlying data. Popular approaches to this problem use the autoregres-
sive conditional heteroscedasticity (ARCH) model of Engle [6] and its generalized version, the
GARCH model of Bollerslev [4]. The main principle of time series modelling using GARCH is
that a ‘large’ innovation (or unexpected change) in a period increases the variance of the innova-
tion in the following periods. This constitutes a feedback mechanism whereby a single univariate
series of innovations determines both the time series and its conditional variance structure.

The GARCH concept has had a profound influence on time series modelling. Many other
stochastic volatility models have been proposed, but the GARCH remains one of the easiest to
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conceptualize, is well established and thoroughly studied from a theoretical point of view and
has been successfully applied in many practical situations. Some measure of the volatility (or
risk) of an asset price is crucial in a wide variety of risk management areas (e.g., Jorion [11],
Chapter 8.2, page 186, McNeil and Frey [19]) and in the valuation of financial derivatives (e.g.,
Ritchken and Trevor [23]).

In practice, for various reasons, including weekend and holiday effects, or in tick-by-tick data,
many financial time series are irregularly spaced and this, together with options pricing require-
ments, in particular, has created a demand for continuous-time models. Nelson [21] suggested
that GARCH models be seen as discrete approximations to diffusions. He showed that some stan-
dard GARCH models, when scaled in certain ways on an approximating grid, converge in distri-
bution, as the grid grows finer, to a bivariate diffusion process, the variance rate (or volatility) of
which exhibits mean reverting behavior. Nelson’s result served for some time as a justification
for statistical inference of continuous-time models using GARCH as an approximation.

However, in Nelson’s setup, the limiting process involves two independent Brownian motions,
one of which drives the volatility and the other the accumulated time series (which then becomes
a stochastic integral). This runs quite counter to the philosophy of the original GARCH para-
digm, whereby a single univariate series of innovations drives both mean and variance equations,
thus providing a feedback mechanism. It is possible to modify Nelson’s diffusion approximation
so as to obtain convergence in distribution to a process which is driven by a single Brownian
motion; however, the limit then has a deterministic volatility and the GARCH features disappear
(see Corradi [5]). As a further problematic aspect, Wang [26] showed that a GARCH model and
its continuous-time diffusion limit are not statistically equivalent, except in the case of the deter-
ministic volatility limit derived by Corradi. This means that parameter estimation and testing for
an underlying continuous-time diffusion model with stochastic volatility cannot be accomplished
using a GARCH approximation in discrete-time.

Recently, Klüppelberg, Lindner and Maller [14] introduced a continuous-time version of the
GARCH model, which they dubbed the ‘COGARCH’. In contrast to the approaches of Nel-
son and Corradi based on limiting diffusions, [14] starts with a pure jump Lévy process and
generalizes a discrete recursion which lies at the heart of the GARCH. In this way, the main
characteristics of the original GARCH are preserved: a single univariate process drives both the
volatility process and the integrated GARCH process itself, and the same sort of feedback mech-
anism is built into the continuous-time model, that is, a large change in the Lévy process results
in an increase of the volatility, as well as simultaneously increasing or decreasing the level of the
process.

In the present paper, we study approximations to a COGARCH and estimation of its pa-
rameters when the COGARCH is the underlying data generating process. We show how the
COGARCH can be obtained as the limit of an embedded sequence of discrete-time GARCH
series. This demonstrates that Nelson’s bivariate diffusion limit is not the only possible limit of
a sequence of GARCH models and is, perhaps, not even the most natural. Further, our approach
suggests how statistical techniques developed for GARCH models can be carried over to the
COGARCH, after appropriate rescaling, to match the discrete- and continuous-time parameter
sets. This allows us, in particular, to overcome difficulties associated with the analysis of irregu-
larly spaced data. To illustrate, we carry out an empirical investigation using ASX200 stock index
data, and some simulations. The convergence of the discrete- to the continuous-time processes is
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shown to be in probability in the Skorokhod metric and is therefore stronger than the previously
mentioned weak convergence results of Nelson and Corradi.

While there are studies on discretely observed diffusions (see, e.g., [1] and [10] for recent
references), very little has been done with jump processes in our context. But, recently, Kallsen
and Vesenmayer [13] have obtained COGARCH as a weak limit of embedded GARCH series
(see also [12]). Their approach is quite different to ours, proceeding by way of the infinitesimal
generator of the bivariate Markov process representation of the COGARCH process. In our setup,
the embedded GARCH models and the COGARCH model are defined on the same probability
space and pathwise arguments are invoked when proving the convergence. There are areas of
applications where the stronger convergence is essential, for example, in the pricing of American
options (see [17] and their discussion and references).

In related investigations, Müller [20] developed a Markov chain Monte Carlo estimation proce-
dure for the parameters of a COGARCH, which is applicable to irregularly spaced data. However,
it assumes quite detailed knowledge about the driving Lévy process and is heavily computer in-
tensive, so simulations using it are currently infeasible. Haug et al. [9] use a method of moments
procedure for COGARCH parameter estimation, but this is not easily adapted for unequally
spaced series.

Our paper is organized as follows. Section 2 briefly recalls the GARCH and COGARCH mod-
els and the main convergence result, Theorem 2.1, is stated. In Section 3, an estimation proce-
dure for the COGARCH parameters is proposed, applied to a financial data set and supported
by a Monte Carlo study. In Section 4, we discuss the implications of our results, especially with
reference to Wang’s [26] far reaching observation. All proofs are contained in Section 5.

2. Setup and convergence theorem

To begin, we recall the definition of a continuous-time GARCH process, as introduced in [14].
On a filtered probability space (�,F ,P, (Ft )t≥0) satisfying the ‘usual hypothesis’ (see Protter,
[22], page 3), we are given a background driving Lévy process L = (L(t))t≥0, that is, a real-
valued, pure jump Lévy process with characteristic triplet (γ,0,�) and L(0) = 0. Thus, it has
characteristic function satisfying

EeiθL(t) = exp

(
itγ θ + t

∫
R\{0}

(
eiθx − 1 − iθx1{|x|≤1}

)
�(dx)

)
, t ≥ 0;

see [2,3] and [24] for detailed background and results concerning Lévy processes. The Lévy
measure � is a measure on the Borel subsets of R \ {0}, and γ is a constant depending on the
truncation at 0; we choose the standard truncation 1{|x|≤1}. The filtration (Ft )t≥0 is the completed
natural filtration of the Lévy process L. Note that no Brownian component is present in the Lévy
process; we show later how it can be included if desired. We suppose throughout that EL(1) = 0
and EL2(1) = 1.

Given parameters (β, η,ϕ), with β > 0, η > 0, ϕ ≥ 0, and a square-integrable random variable
(r.v.) σ(0) independent of L, the COGARCH variance process σ 2 = (σ 2(t))t≥0 is defined as the
almost surely (a.s.) unique solution of the stochastic differential equation (SDE)

dσ 2(t) = (
β − ησ 2(t−)

)
dt + ϕσ 2(t−)d[L,L](t), t > 0, (2.1)



522 R.A. Maller, G. Müller and A. Szimayer

where [L,L] is the bracket process (quadratic variation) of L (Protter [22], page 66). We then
define the integrated COGARCH process G = (G(t))t≥0 in terms of L and σ as

G(t) =
∫ t

0
σ(s−)dL(s), t ≥ 0. (2.2)

We refer to [14] and [15] for detailed properties of G and σ 2.

2.1. Approximating the COGARCH

Our aim is to define a family of discrete-time processes, Gn = (Gn(t))t≥0, n = 1,2, . . . , con-
structed from a GARCH(1,1) process, which approximates the continuous-time process G. This
allows us to take advantage of widely used inferential and other methods in time series mod-
elling and econometrics for this well-established process class. After appropriate rescaling to
match the discrete- and continuous-time parameter sets, Gn will be shown to converge to G in a
quite strong sense.

The discretization is over a finite interval [0, T ], T > 0, and is operationalized as follows.
Take deterministic sequences (Nn)n≥1 with limn→∞ Nn = ∞ and 0 = t0(n) < t1(n) < · · · <

tNn(n) = T , and, for each n = 1,2, . . . , divide [0, T ] into Nn subintervals of length 	ti(n) :=
ti (n) − ti−1(n) for i = 1,2, . . . ,Nn. Assume 	t(n) := maxi=1,...,Nn 	ti(n) → 0 as n → ∞ and
define, for each n = 1,2, . . . , a discrete-time process (Gi,n)i=1,...,Nn satisfying

Gi,n = Gi−1,n + σi−1,n

√
	ti(n)εi,n, i = 1,2, . . . ,Nn, (2.3)

where G0,n = G(0) = 0 and the variance σ 2
i,n follows the recursion

σ 2
i,n = β	ti(n) + (

1 + ϕ	ti(n)ε2
i,n

)
e−η	ti (n)σ 2

i−1,n, i = 1,2, . . . ,Nn. (2.4)

Here, the innovations (εi,n)i=1,...,Nn , n = 1,2, . . . , are constructed using a ‘first jump’ approx-
imation to the Lévy process, as follows. Take a strictly positive sequence 1 ≥ mn ↓ 0 of reals

satisfying limn→∞ 	t(n)�
2
(mn) = 0, where �(x) = ∫

|y|>x
�(dy) is the tail of �. Such a se-

quence always exists, as limx↓0 x2�(x) = 0 for any Lévy measure. Let 	L(t) = L(t) − L(t−),
t > 0, 	L(0) = 0. Fix n ≥ 1 and define stopping times τi,n by

τi,n = inf{t ∈ [ti−1(n), ti(n)) : |	L(t)| ≥ mn}, i = 1, . . . ,Nn. (2.5)

(Throughout, an infimum over the empty set is understood as being +∞.) τi,n is the time of the
first jump of L in the ith interval whose magnitude exceeds mn, if such a jump occurs.

By the strong Markov property, (1{τi,n<∞}	L(τi,n))i=1,...,Nn is for each n = 1,2, . . . a se-
quence of independent r.v.s, with distribution specified by:

�(dx)1{|x|>mn}
�(mn)

(
1 − e−	ti(n)�(mn)

)
, x ∈ R \ {0}, i = 1,2, . . . ,Nn, (2.6)
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and with mass e−	ti(n)�(mn) at 0. These r.v.s have finite mean, νi(n), and variance, ξi(n), say,
since EL2(1) is finite. The innovations series (εi,n)i=1,...,Nn required for (2.3) is now defined by

εi,n = 1{τi,n<∞}	L(τi,n) − νi(n)

ξi(n)
, i = 1,2, . . . ,Nn. (2.7)

For each n = 1,2, . . . , the εi,n are independent with Eε1,n = 0 and Var(ε1,n) = 1. Finally, in
(2.4), we take σ 2

0,n = σ 2(0), independent of the εi,n.

Remark 2.1. Equations (2.3) and (2.4) specify a GARCH(1,1)-type recursion in the following
sense. In the ordinary discrete-time GARCH(1,1) series, the volatility sequence satisfies

σ 2
i = a + bσ 2

i−1ε
2
i−1 + cσ 2

i−1 (2.8)

for constants a, b, c. When the time grid is equally spaced so that 	ti(n) = 	t(n), i =
1,2, . . . ,Nn, (2.4) is equivalent to (2.8), after rescaling by 	t(n) and a reparametrization from
(β,ϕ,η) to (a, b, c), and (2.3) becomes a rescaled GARCH equation for the differenced sequence
Gi,n − Gi−1,n. More generally, with an unequally spaced grid, if the series are scaled as in (2.3)
and (2.4), convergence to the COGARCH is obtained, as we show next.

Embed the discrete-time processes G·,n and σ 2·,n into continuous-time versions Gn and σ 2
n

defined by

Gn(t) := Gi,n and σ 2
n (t) := σ 2

i,n, when t ∈ [ti−1(n), ti(n)),0 ≤ t ≤ T , (2.9)

with Gn(0) = 0. The processes Gn and σn are in D[0, T ], the space of càdlàg real-valued stochas-
tic processes on [0, T ]. Recall that the Skorokhod J1 distance between two, R

d -valued processes
U , V , each in D

d [0, T ] (the space of càdlàg R
d -valued stochastic processes on [0, T ]), is defined

by

ρ(U,V ) = inf
λ∈�

{
sup

0≤t≤T

∥∥Ut − Vλ(t)

∥∥ + sup
0≤t≤T

|λ(t) − t |
}
, (2.10)

where � is the set of strictly increasing continuous functions with λ(0) = 0 and λ(T ) = T (Gih-
man and Skorokhod [7], page 470). We can now state our main result for this section.

Theorem 2.1. In the above setup, the Skorokhod distance between the processes (G,σ 2) defined
by (2.1) and (2.2), and the discretized, piecewise constant processes (Gn,σ

2
n )n≥1 defined by (2.9),

converges in probability to 0 as n → ∞, that is,

ρ((Gn,σ
2
n ), (G,σ 2))

P→ 0 as n → ∞. (2.11)

Consequently, we also have convergence in distribution in D[0, T ] × D[0, T ] : (Gn,σ
2
n )

D⇒
(G,σ 2) as n → ∞.
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Remark 2.2. (i) The derivation in [14] of the COGARCH employs an auxiliary Lévy process
X = (X(t))t≥0 constructed from L, η > 0 and ϕ ≥ 0:

X(t) = ηt −
∑

0<s≤t

log
(
1 + ϕ(	L(s))2), t ≥ 0. (2.12)

X is a spectrally negative Lévy process of bounded variation. (In (2.12), we have adopted the
parameterization of [9], which differs somewhat from that of [14]; the latter used 0 < δ < 1
whereas we use η > 0, with e−η = δ, and used λ/δ, for another parameter λ ≥ 0, whereas we
use ϕ.) Using Itô’s lemma, we can verify that the solution to (2.1) can be written in terms of X

as

σ 2(t) =
(

β

∫ t

0
eX(s) ds + σ 2(0)

)
e−X(t), t ≥ 0. (2.13)

This shows σ 2(t) to be a kind of generalized Ornstein–Uhlenbeck (OU) process (cf. [18]), para-
meterized by (β, η,ϕ) and driven by the process L.

(ii) Our procedure can be generalized to include a Brownian component. Let B = (B(t))t≥0

be a standard Brownian motion and L an independent, pure jump Lévy process with finite vari-
ance, and define L† = ςB + L, where ς > 0. Using L† in place of L in (2.1) and (2.2) in-
troduces a diffusion component into the COGARCH. Center and scale so that EL†(1) = 0 and
E(L†(1))2 = ς2 +∫

x2�(dx) = 1. The convergence result of Theorem 2.1 extends to this setting
if we modify the definition of the process X in (2.12) to

X†(t) = (η − ϕς2)t −
∑

0<s≤t

log
(
1 + ϕ(	L†(s))2), t ≥ 0.

The term ϕς2 results from the bracket process of B . For a related convergence result, see Theo-
rem 2.2 of Szimayer and Maller [25].

(iii) Now suppose that the modified COGARCH in the previous remark is, in fact, driven by a
pure diffusion, that is, L† = B . The COGARCH then reduces to the process obtained in the limit
by Corradi [5] and the GARCH approximations converge to Corradi’s deterministic volatility
limit. In this simplified situation, the GARCH models and the diffusion limit are statistically
equivalent, as shown by Wang [26].

(iv) We have restricted ourselves throughout to convergence on the compact interval [0, T ].
This is true for every T > 0, although the approximating processes depend on T in a non-
essential way. It is not difficult to modify our setup slightly so as to get approximating processes
which converge to (G,σ 2) uniformly on compacts (u.c.p., in the terminology of [22], page 57)
and, consequently, also in D[0,∞) × D[0,∞) [16]. We omit the details here.

Theorem 2.1 is proved in Section 5. Next, we illustrate how to use the convergence result to
analyze irregularly spaced time series data.
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3. GARCH analysis of irregularly spaced data

In this section, we apply the insights gained by our discrete approximation of the continuous-
time GARCH process to suggest a method of fitting the model to unequally spaced times series
data. We build on the well-understood methodology developed for the discrete-time GARCH.

Suppose we have observations G(ti), 0 = t0 < t1 < · · · < tN = T , on the integrated
COGARCH as defined and parameterized in (2.1) and (2.2), assumed to be in its stationary
regime. The {ti} are assumed fixed (non-random) time points. Let Yi = G(ti) − G(ti−1) denote
the observed returns and let 	ti := ti − ti−1. From (2.2), we can then write

Yi =
∫ ti

ti−1

σ(s−)dL(s), (3.1)

where L is a Lévy process with EL(1) = 0 and EL2(1) = 1 assumed.
Our aim is to use a pseudo-maximum likelihood (PML) method to estimate the parame-

ters (β, η,ϕ) from the observed Y1, Y2, . . . , YN . To derive the pseudo-likelihood function, ob-
serve that, because σ is Markovian ([14], Theorem 3.2), Yi is conditionally independent of
Yi−1, Yi−2, . . . , given Fti−1 . We have E(Yi |Fti−1) = 0 for the conditional expectation of Yi , and,
for the conditional variance,

ρ2
i := E(Y 2

i |Fti−1) =
(

σ 2(ti−1) − β

η − ϕ

)(
e(η−ϕ)	ti − 1

η − ϕ

)
+ β	ti

η − ϕ
. (3.2)

Equation (3.2) follows from the calculation in the third display on page 618 of [14]. To en-
sure stationarity, we take Eσ 2(0) = β/(η − ϕ), with η > ϕ, in that formula and, in our setting,∫

R
y2�(dy) = EL2(1) = 1.
Applying the PML method, then, we assume the Yi are conditionally N(0, ρ2

i ) and use recur-
sive conditioning to write a pseudo-log-likelihood function for Y1, Y2, . . . , YN as

LN = LN(β,ϕ,η) = −1

2

N∑
i=1

(
Y 2

i

ρ2
i

)
− 1

2

N∑
i=1

log(ρ2
i ) − N

2
log(2π). (3.3)

We must substitute into (3.3) a calculable quantity for ρ2
i , hence we need such for σ 2(ti−1)

in (3.2). For this, we discretize the continuous-time volatility process, just as was done in Theo-
rem 2.1. Thus, (2.4) reads, in the present notation,

σ 2
i = β	ti + e−η	ti σ 2

i−1 + ϕe−η	ti Y 2
i . (3.4)

(3.4) is a GARCH-type recursion, so, after substituting σ 2
i−1 for σ 2(ti−1) in (3.2), and the result-

ing modified ρ2
i in (3.3), we can think of (3.3) as the pseudo-log-likelihood function for fitting a

GARCH model to the unequally spaced series.
The recursion in (3.4) is easily programmed and, taking as starting value for σ 2(0) the station-

ary value β/(η − ϕ), we can maximize the function LN to get PMLEs of (β, η,ϕ). In the next
two sections, we apply this estimation approach to a data set of returns on the ASX200 share
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index and use simulation to study the properties of the estimates thus obtained. An alternative
approach to estimating the COGARCH parameters based on the method of moments (MM) has
been devised by [9]. Their results provide a baseline against which we can compare our proce-
dure via simulations. By choosing suitable values for the simulation parameters, we are able to
apply Theorem 2.1 in [9] to get moment estimates by their method as well and thus to compare
their MM estimates with our PML estimates. However, the Haug et al. method only works for
equally spaced series, so we have to restrict to this case to make the comparison.

3.1. Application to ASX stock index stock data

We used the PML method to fit a COGARCH model to a series consisting of 2529 log returns of
the ASX200 stock index as listed on the Australian Stock Exchange taken once per trading day,
March 1994 to March 2004. The data are shown in Figure 1.

Because of weekends and public holidays, the data are irregularly spaced, with the following
frequencies of the inter-observation times:

	t 1 2 3 4 5 6
frequency 1991 13 483 24 17 1

For example, 	t = 3 corresponds to a regular weekend without additional public holidays.
The data contain 2529 distinct values of the index returns, observed over a total time interval
of T = 3653 days, and there are six distinct values of 	ti . Simulations showed that instead
of using equation (3.2) directly, one can use its first-order approximation, ρ2

i = σ 2(ti−1)	ti ,
without worsening the quality of the estimates.

The PML estimates were computed with an implementation of the Nelder–Mead optimiza-
tion algorithm in C++. To avoid getting caught in a local (rather than the global) maximum of
the pseudo-likelihood function, we used ten different starting simplices for each data set. The
Nelder–Mead procedure was stopped when an accuracy of 10−14 in the location of the maxi-
mum of the function was reached. The approximate PMLEs were as follows (β̂ is multiplied by
365 to put it on an annualized basis, then the square root is taken so as to give a volatility rather
than a variance estimate; approximate standard errors, calculated from the second derivative of
LN are in brackets):√

365β̂ = 0.0237(0.0027); ϕ̂ = 0.0685(0.0095); η̂ = 0.0847(0.0085).

Note that our estimates satisfy the stationarity condition η̂ > ϕ̂.
These estimates imply a long-run volatility value of (365β̂/(̂η − ϕ̂))1/2 = 18.58% p.a. By

comparison, the actual standard deviation of the returns was 15.54% p.a. Estimates of the process
(σ 2(t))t≥0 at the observed time points can be calculated from

σ̂ 2
i = β̂ + (1 − η̂)̂σ 2

i−1 + ϕ̂
(
G(ti) − G(ti−1)

)2

(cf. [9], equation (3.2)). Figure 2 shows the squared log returns for the first 1000 observations
and, for comparison, the estimated annualized volatility.
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Figure 1. ASX200 stock index taken once per trading day, March 1994 to March 2004.

To see how the volatility process evolves as the value of 	ti changes, we computed estimates
of the transformed, rescaled, parameters ωi := β(	ti)

2, ϑi := ϕe−η	ti 	ti and κi := e−η	ti ,
which correspond to the discrete GARCH(1,1) parameterization. These are listed in columns
1–6 of Table 1 (but, again, we annualize the ω estimates and take the square root). Column 7
of Table 1 contains the GARCH(1,1) estimates obtained by treating the log returns as if they
were equally spaced in time. As one would expect, treating the data as if they were equally
spaced gives estimates corresponding approximately to a weighted averaging over the estimates
in columns 1–6 of Table 1.

Table 1. Estimated parameters for various period lengths (columns 1–6) and GARCH estimates treating
the data as equally spaced (column 7)

	ti 1 2 3 4 5 6 GARCH(1,1)

(365ω̂i )
1/2 0.0237 0.0473 0.0710 0.0946 0.1183 0.1419 0.0382

ϑ̂i 0.0629 0.1157 0.1594 0.1953 0.2243 0.2472 0.0962
κ̂i 0.9188 0.8442 0.7756 0.7126 0.6548 0.6016 0.8434
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Figure 2. Top: squared log returns of ASX200 for the first three years (1096 days). Bottom: corresponding
estimated annualized volatilities for the ASX index data.

Quite commonly, financial analyses treat weekends or public holidays by assuming the data
are contiguous over the missing period, thus, in effect, assuming that no information relevant to
the market is transmitted on the missing days. This is not generally the case, of course, since, for
example, trading in Australian stocks may be halted on a certain day on the ASX, while some or
many of these stocks may nevertheless be traded on other international markets which are open
at the time. While the corresponding information flow is probably not of the same strength as for
a regular day’s trading, we expect there will be some influence, and although our analysis above
allows for unequally spaced time periods, it implicitly assumes that all data carry the same weight
of information. But more generally, it can be argued that we should weight the observations in
some way.

To investigate this, we extended the analysis using a function w(·) to weight the 	ti , con-
straining the sum of the weights to remain the same as for the original analysis, that is,

N∑
i=1

w(	ti) =
N∑

i=1

	ti = T . (3.5)

In this setup, the function w0(	t) :≡ T/N represents an extreme case where the irregular spacing
of the data is ignored, while the function w1 := id corresponds to our previous analysis where
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only the irregular spacing was taken into account. Another extreme case is to allow a separate
parameter for each distinct value of 	t , rather than using the value of 	t itself. For our data, this
means fitting five extra parameters.

Allowing the five extra parameters described gives a much better fit: the likelihood increases
from 8649.61 for the original analysis to 8723.92. However, some of the extra parameters are
very poorly determined (there is only one observation at 	t = 6, for example), and inspection of
the parameter estimates suggested fitting the 1-parameter function w2(	t) := γ log(	t) + c(γ ),
where c is defined, depending only on γ , so that condition (3.5) is fulfilled. Replacing all 	ti
by w2(	ti) and repeating the PML estimation, we find that the likelihood reduces only non-
significantly from 8723.92 to 8721.00, still indicating a much better fit of the model to the data
than the original unweighted model.

This application is by no means intended to be a sophisticated analysis of the ASX data set,
which is beyond the scope of this paper. We use this irregularly spaced data example simply to
illustrate the possibilities. Our main point is that the COGARCH model can be fitted directly to
unequally spaced data exactly as it is, without the need to force it into an equally spaced setup in
some way. Further, an approximation via the common GARCH(1,1) model is easily adapted to
the irregularly spaced case.

3.2. Simulation study

In this section, our PML method is applied to simulated data sets, first with regularly spaced
observations to allow a comparison with the results of [9], then with irregularly spaced data to
see how much this influences the quality of the estimates.

For the first run, we simulated 1000 COGARCH data sets in which T = 5000 and observations
occur at times t = 1,2, . . . ,5000. Thus, N = 5000, 	t = 1 and the ratio T/N = 1 approximates
that of T/N = 3653/2529 = 1.44 in the ASX data. As driving Lévy process L, we chose a
compound Poisson process with standard normal jump sizes and jump rate λ = 1. For the ‘true’
COGARCH parameters we took β = 1, ϕ = 0.0425 and η = 0.06. These values allow for the
application of the method of moments to estimate the COGARCH parameters since all conditions
of Theorem 2.1 in [9] are satisfied. To each data set, we applied the PML method to obtain
estimates of β , ϕ and η. In addition, we computed moment estimates using the method of [9].
The calculations were done in S-PLUS. Table 2 summarizes the results. It gives the mean over the
1000 simulated parameter estimates, the average bias of the estimates, their mean absolute error
(MAE) and their root mean squared error (RMSE) around the true value, for both the PML and
MM approaches. The standard errors of simulation of the values in the table are very small, as
expected for a sample of size 1000, being less than 1%, for example, for the parameter estimates,
so we do not report them.

The RMSE is a comprehensive error metric, combining the variance of the estimator around
its true value, and its bias. Table 2 shows that our method reduces the RMSE of the moment
estimates by 8.5% for β , by 20.0% for ϕ and by as much as 32.5% for η. Note, however, that
significant bias remains in all parameter estimates for both methods.

Next, we investigate how the quality of the PML estimates is affected when analyzing irreg-
ularly, rather than equally, spaced data. We simulated 1000 COGARCH processes according to
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Table 2. Means over 1000 simulated estimates of β , ϕ and η, average biases of the estimates, their mean
absolute errors (MAE) and their root mean squared errors (RMSE) around the true value, for a time series
of 5000 equally spaced observations from a COGARCH process driven by a compound Poisson process,
using the PML method and the method of moments (MM)

β ϕ η

True 1.0000 0.0425 0.0600

PML MM PML MM PML MM

mean 1.2356 1.2487 0.0337 0.0448 0.0554 0.0672
bias 0.2356 0.2487 −0.0088 0.0023 −0.0046 0.0072
MAE 0.3799 0.4372 0.0099 0.0130 0.0125 0.0182
RMSE 0.5393 0.5892 0.0117 0.0146 0.0156 0.0231

the circumstances of the ASX data, thus, for 2659 values of t , occurring with the frequencies
specified in Section 3.1 and with β , ϕ, and η taken close to the PML estimates given there. Thus,
we assume that we observed the COGARCH processes at exactly those times at which we ob-
served the ASX data, encompassing a total time interval of T = 3653 days. Table 3 contains
similar information as Table 2 for these simulations; in addition, in brackets in the last row are
the relative RMSEs from the previous simulation study. These give some idea of how the quality
of the estimates is affected by decreasing the number of observations from 5000 to 2529 and
using irregularly, instead of equally, spaced data. In fact, we see that the quality of the estimates
is not a great deal worse than from a data set with twice as many equally spaced observations.

Table 3. Means over 1000 simulated estimates of β , ϕ and η, average biases of the estimates, their mean
absolute errors (MAE) and their root mean squared errors (RMSE) around the true value, for a time series
of length T = 3653 with 2529 irregularly spaced observations from a COGARCH process driven by a
compound Poisson process, using the PML method. Last line: relative RMSE = RMSE/true parameter
value and corresponding relative RMSEs from Table 2 (PML method) in brackets

β ϕ η

True 1.5000 0.0690 0.0850

mean 1.9573 0.0516 0.0718
bias 0.4573 −0.0173 −0.0132
MAE 0.6913 0.0197 0.0202
RMSE 1.0100 0.0227 0.0242

rel. RMSE 0.6733 (0.5393) 0.3291 (0.2744) 0.2848 (0.2606)
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4. Discussion

The GARCH methodology is now so well known and widely available that the model, or some
variant of it, is fitted to economic or financial data almost as a matter of routine. One of the
motivations for our present investigation, and that of Klüppelberg et al. in [14], in initiating the
continuous-time model was with a view to applications such as the analysis of irregularly spaced
time series, and options pricing.

Nelson’s research [21] suggested that his limiting diffusion process, or some variant of it,
might be useful as an assumed data generating process in a practical situation. (Leaving aside, at
this point, considerations of the appropriateness of the model as a description of the data at hand,
in which returns are probably not normally distributed, processes may have jumps, etc.) Assum-
ing this, then, a very natural procedure is to consider fitting a GARCH model to (necessarily
discrete) observations on the underlying process, then to substitute the resulting parameter esti-
mates into a discrete option pricing algorithm (such as, e.g., the method of Ritchken and Trevor
[23]), with the intention that the price thus obtained converges to the ‘true’ price, as it would be
obtained from the underlying continuous-time model, when the mesh size of the approximation
tends to 0.

However, this plan goes awry at the first step because the potential nexus between the discrete
GARCH estimation and the corresponding continuous-time parameters does not exist in a dif-
fusion setting. This follows from Wang’s [26] result, which shows that the GARCH estimates
cannot identify the parameters in the continuous-time model, except in the degenerate case of
the constant volatility model of Corradi [5]. This complication extends beyond options pricing
methodologies, of course, but we stress that application because the discrete- to continuous-time
step is transparent and crucial there.

In contrast, the COGARCH offers a class of models which appear as natural and appropriate
analogs of the discrete GARCH models. The limit of our discrete-time GARCH approximating
sequences is, in general, a jump process, not a diffusion and the close correspondence between the
discrete- and continuous-time GARCH models makes it very plausible that they are statistically
equivalent and will hence lead to consistent estimation. The evidence from the simulation study
in Section 3.2 lends support to this conjecture. Nevertheless, it remains to be established, as do
other large sample properties of the estimators and tests suggested by our approach. We leave
this for the future.

5. Proofs

Preliminaries

Our pathwise construction relies on a ‘first-jump’ approximation to a Lévy process developed
by Szimayer and Maller [25], which we present here in a general notation. Let Z = {Z(t) : t ≥
0} be a Lévy process with characteristic triplet (γ Z,0,�Z), where γ Z relates to the standard
truncation of �Z in [−1,1], and Z(0) = 0. Consider Z on the compact interval [0, T ], which is
divided into Nn subintervals of length 	ti(n) := ti (n) − ti−1(n) for i = 1,2, . . . ,Nn, where 0 =
t0(n) < t1(n) < · · · < tNn(n) = T is a deterministic partition of [0, T ] and (Nn)n≥1 is a sequence
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of integers with limn→∞ Nn = ∞. Assume 	t(n) := maxi=1,...,Nn 	ti(n) → 0 as n → ∞. Let
(mZ

n )n≥1 be a positive sequence such that limn→∞ mZ
n = 0 and define stopping times

τZ
i,n = inf{t ∈ [ti−1(n), ti(n)) : |	Z(t)| > mZ

n } for i = 1, . . . ,Nn, (5.1)

where 	Z(t) := Z(t) − Z(t−). Define the ‘first jump process’ (Zn(t) : 0 ≤ t ≤ T ) by

Zn(t) =
Nn∑
i=1

1{τZ
i,n≤t}	Z(τZ

i,n) + t

(
γ Z −

∫
mZ

n ≤|z|≤1
z�Z(dz)

)
for 0 ≤ t ≤ T . (5.2)

The next proposition shows that, provided 	t(n) and mZ
n converge to 0 at appropriate rates,

the processes Zn converge in probability to Z, uniformly for t ∈ [0, T ], as n → ∞. Let �
Z
(z) =

�Z{[−z, z]c}, z > 0, denote the tail of �Z and assume �
Z
(0+) > 0 to avoid trivialities.

Proposition 5.1. Suppose limn→∞
√

	t(n) �
Z
(mZ

n ) = 0. Then, (i) we have

sup
0≤t≤T

|Zn(t) − Z(t)| P→ 0 as n → ∞. (5.3)

If, in addition, E|Z(1)| < ∞ and EZ(1) = 0, we may replace γ Z − ∫
mZ

n ≤|z|≤1 z�Z(dz) by

− ∫
|z|>mZ

n
z�Z(dz) in (5.2), and (5.3) remains true.

If, further, we have E(Z(1))2 < ∞, then the convergence in (5.3) is, in fact, in L2, that is,
limn→∞ ‖Zn(t) − Z(t)‖2 = 0.

(ii) If Z is of finite variation with jump component Zd(t) := ∑
0<s≤t 	Z(s), then

sup
0≤t≤T

∣∣∣∣∣
Nn∑
i=1

1{τZ
i,n≤t}	Z(τZ

i,n) − Zd(t)

∣∣∣∣∣ P→ 0 as n → ∞. (5.4)

Proof. (i) The claimed results follow immediately from Theorem 2.1 of [25]. The setup there is
identical, except that the discretization of the state space they allow for is not needed here. So,
in their theorem, we formally set M(n) = ∞ and 	(n) = 0, and identify Ln(t) in their notation
with Zn(t). Our equation (5.3) then follows from equation (2.11) of [25].

(ii) For Lévy processes of finite variation, truncation of the Lévy measure near 0 is not nec-
essary and the truncation function 1{|z|≤1} can be dropped from the formulation. The same holds
for the approximation scheme. Thus, (5.4) follows from (5.3). �

Proof of Theorem 2.1. This proceeds in several steps. In parts (i)–(iii), the approximation pro-
cedures for L(t), σ 2(t) and G(t) are outlined. The convergence, as stated in the theorem, is then
shown in part (iv).
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Part (i): Approximation procedure for the underlying process L(t)

The approximation procedure requires two stages. On one hand, we need a discrete GARCH
approximating process satisfying (2.3) and (2.4). This does not come directly from the kind of
approximation used in Proposition 5.1, but rather from the process L̃n defined by

L̃n(t) :=
Nn(t)∑
i=1

√
	ti(n)εi,n, 0 ≤ t ≤ T ,n = 1,2, . . . . (5.5)

Here, recall the εi,n defined in (2.7). Recall, also, the first jump times τi,n defined in (2.5) and set
τ ∗
i,n = τi,n ∧ ti (n). Define the counting process

Nn(t) := #{i ∈ N : τ ∗
i,n ≤ t}, 0 < t ≤ T ,with Nn(0) = 0.

Nn(t) increases by 1 in each subinterval (ti−1(n), ti(n)], i = 1,2, . . . , n, at the first time τi,n in
the interval at which L(t) changes in magnitude by more than mn, or at ti (n), if there is no such
change. Note that, finally, Nn(tNn(T )(n)) = Nn(T ) = Nn.

As an intermediate step, we also need the sequence of processes defined by

Ln(t) =
Nn(t)∑
i=1

1{τi,n<∞}	L(τi,n) − t

∫
|x|>mn

x�(dx), 0 ≤ t ≤ T , (5.6)

to which we can apply Proposition 5.1. We have E|Ln(1)| < ∞, so, by Proposition 5.1, Ln, as
centered, converges in probability, uniformly on [0, T ], to L. Thus, to show that L̃n → L in
probability, uniformly on [0, T ], we need only control the uniform distance of L̃n from Ln.

To estimate this, write L in terms of εi,n as

Ln(t) =
Nn(t)∑
i=1

(
εi,nξi(n) + νi(n)

) − t

∫
|x|>mn

x�(dx).

Here,

νi(n) := E
(
1{τi,n<∞}	L(τi,n)

) = 1 − e−	ti(n)�(mn)

�(mn)

∫
|x|>mn

x�(dx)

and

ξ2
i (n) := Var

(
1{τi,n<∞}	L(τi,n)

) = 1 − e−	ti(n)�(mn)

�(mn)

∫
|x|>mn

x2�(dx) − ν2
i (n)

are calculated from (2.6). Their asymptotic behaviors as n → ∞ are

max
i=1,...,Nn

|νi(n)|√
	ti(n)

→ 0 and max
i=1,...,Nn

∣∣∣∣ ξ2
i (n)

	ti(n)
− 1

∣∣∣∣ → 0. (5.7)
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To see this, use the inequality 1 − e−x ≤ x, x ≥ 0, and write

|νi(n)|√
	ti(n)

= O
(√

	ti(n)
)∣∣∣∣∫

mn<|x|≤1
x�(dx) +

∫
|x|>1

x�(dx)

∣∣∣∣
≤ O

(√
	t(n)

)(
�(mn) +

∣∣∣∣∫|x|>1
x�(dx)

∣∣∣∣)

= O
(√

	t(n)�
2
(mn)

) + O
(√

	t(n)
)
.

Since limn→∞ 	t(n)�
2
(mn) = 0 by assumption, we get the result in (5.7) for νi(n), and then

the result for ξ2
i (n) holds since

∫
x2�(dx) = var(L(1)) = 1 by assumption.

From (5.5) and (5.6), we have

L̃n(t) − Ln(t) =
Nn(t)∑
i=1

(√
	ti(n) − ξi(n)

)
εi,n −

Nn(t)∑
i=1

νi(n) + t

∫
|x|>mn

x�(dx). (5.8)

Write
∑Nn(t)

i=1 	ti(n) = t − rn(t), where 0 ≤ rn(t) ≤ 	t(n) a.s., and use the inequality 0 ≤ x −
1 + e−x ≤ x2/2, x ≥ 0, and the assumption that limn→∞ 	t(n)�

2
(mn) = 0 to get∣∣∣∣∣

Nn(t)∑
i=1

νi(n) − t

∫
|x|>mn

x�(dx)

∣∣∣∣∣
=

(
1

�(mn)

Nn(t)∑
i=1

(
	ti(n)�(mn) − 1 + e−	ti(n)�(mn)

) + rn(t)

)∣∣∣∣∫|x|>mn

x�(dx)

∣∣∣∣
≤

(
O(�(mn))

Nn(t)∑
i=1

(	ti(n))2 + 	t(n)

)∣∣∣∣∫|x|>mn

x�(dx)

∣∣∣∣
= (

O
(√

	t(n)
)√

	t(n)�
2
(mn) + 	t(n)

)∣∣∣∣∫|x|>mn

x�(dx)

∣∣∣∣
= o

(√
	t(n)

)∣∣∣∣∫|x|>mn

x�(dx)

∣∣∣∣.
Note that limn→∞

√
	t(n)| ∫|x|>mn

x�(dx)| = 0 was shown in the proof of (5.7). Also, since

the (εi,n)i=1,...,Nn are independent with means 0 and variances 1, and
∑Nn(t)

i=1 	ti(n) ≤ T the
variance of the first term on the right-hand side of (5.8) is not larger than

Nn(t)∑
i=1

∣∣√	ti(n) − ξi(n)
∣∣2 ≤ T max

i=1,...,Nn

∣∣∣∣ ξi(n)√
	ti(n)

− 1

∣∣∣∣2

→ 0 as n → ∞ (5.9)



GARCH modelling in continuous time for irregularly spaced time series data 535

by (5.7). These arguments show that sup0≤t≤T |Ln(t) − L̃n(t)| P→ 0, as n → ∞, as claimed, so
we deduce from Proposition 5.1 the required convergence in probability, uniformly on [0, T ], of
L̃n to L.

Part (ii): Approximation procedure for the variance process σ 2(t)

Having defined the εi,n in (2.7) and given the parameters (β, η,ϕ), the variance process σ 2
n is

constructed using the GARCH(1,1) equation (2.4). This can then be iterated (cf. [8,21]) to get
the explicit representation

σ 2
i,n = β

i∑
j=1

	tj (n)

i∏
k=j+1

e−η	tk(n)
(
1 + ϕ	tk(n)ε2

k,n

)
(5.10)

+ σ 2
0,n

i∏
j=1

e−η	tj (n)
(
1 + ϕ	tj (n)ε2

j,n

)
for i = 0,1, . . . ,Nn (take

∑0
j=1 = 0 and

∏i
j=i+1 = 1). Define a discrete-time process

Xi,n = ηti(n) −
i∑

j=1

log
(
1 + ϕ	tj (n)ε2

j,n

)
for n = 1,2, . . . , (5.11)

then define its continuous-time counterpart by interpolation:

X̃n(t) := XNn(t),n = ηtNn(t)(n) −
Nn(t)∑
i=1

log
(
1 + ϕ	ti(n)ε2

i,n

)
, 0 ≤ t ≤ T . (5.12)

Note that X̃n(τ
∗
i,n) = Xi,n. Again, we wish to use the convergence result in Proposition 5.1, so

we specify an auxiliary version of X̃ as follows:

Xn(t) = ηtNn(t)(n) −
Nn(t)∑
i=1

log
(
1 + ϕ1{τi,n<∞}(	L(τi,n))

2), 0 ≤ t ≤ T . (5.13)

X is an approximation to X as defined in (2.12), and X is of finite variation, so, from Proposi-
tion 5.1, we have

sup
0≤t≤T

|X(t) − Xn(t)| P→ 0, as n → ∞. (5.14)

To check this, just compare (2.12) and (5.13), note that limn→∞ tNn(t)(n) = t and set Z(t) =
X(t), Z(t) = X(t) and mZ

n = log(1 + ϕm2
n) in (5.1). Then τZ

i,n = τi,n and part (ii) of Proposi-
tion 5.1 gives (5.14).
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To establish the closeness of X̃n to X, write∣∣log
(
1 + ϕ	ti(n)ε2

i,n

) − log
(
1 + ϕ1{τi,n<∞}(	L(τi,n))

2)∣∣/ϕ
≤ ∣∣	ti(n)ε2

i,n − 1{τi,n<∞}(	L(τi,n))
2
∣∣ = ∣∣	ti(n)ε2

i,n − (
εi,nξi(n) + νi(n)

)2∣∣
= ∣∣(	ti(n) − ξ2

i (n)
)
ε2
i,n − 2ξi(n)εi,nνi(n) − ν2

i (n)
∣∣. (5.15)

A similar argument as in (5.9) shows that the right-hand side of (5.15), when summed over 1 ≤
i ≤ Nn(t), tends in probability, uniformly on [0, T ], to 0. Thus, sup0≤t≤T |Xn(t) − X̃n(t)| P→ 0
as n → ∞ and, using the triangle inequality, we conclude from (5.14) that

sup
0≤t≤T

|X(t) − X̃n(t)| P→ 0 as n → ∞. (5.16)

Now we are in a position to show that an interpolated version of σ 2
n approaches σ 2(t), in the

limit. Substituting in (5.10) for Xi,n from (5.11), we can write, recalling σ 2
0,n = σ 2(0),

σ 2
i,n = βe−Xi,n

i∑
j=1

	tj (n)eXj,n + σ 2(0)e−Xi,n . (5.17)

Define the piecewise constant process

σ̃ 2
n (t) := βe−X̃n(t)

Nn(t)∑
i=1

eX̃n(τ∗
i,n)

	ti(n) + σ 2(0)e−X̃n(t), 0 ≤ t ≤ T . (5.18)

Now, by (5.16), e−X̃n converges in probability, uniformly on [0, T ], to e−X . To deal with the
summation in (5.18), note that, except possibly for the last interval, where i = Nn(t), we have
X̃n(τ

∗
i,n) = X̃n(ti(n)) since X̃n can change value only at times t = τ ∗

i,n and is constant elsewhere.
Thus,

sup
0≤t≤T

∣∣∣∣∣
Nn(t)∑
i=1

	ti(n)
(
eX̃n(τ∗

i,n) − eX̃n(ti (n))
)∣∣∣∣∣

≤ 2	t(n) sup
0≤t≤T

eX̃n(t) ≤ 2eηT 	t(n) → 0

(note that X̃n(t) is bounded above by ηT , as is X(t), for 0 ≤ t ≤ T ). Now, estimate

sup
0≤t≤T

∣∣∣∣∣
Nn(t)∑
i=1

	ti(n)
(
eX(ti (n)) − eX̃n(ti (n))

)∣∣∣∣∣
≤ eX(ti (n))

Nn(T )∑
i=1

	ti(n)
∣∣1 − eX̃n(ti (n))−X(ti (n))

∣∣



GARCH modelling in continuous time for irregularly spaced time series data 537

≤ T eηT sup
0≤s≤T

∣∣1 − eX̃n(s)−X(s)
∣∣.

By (5.16), the last expression tends to 0 in probability. Finally, note that the discretely formed
integral

∑Nn(t)
1 eX(ti (n))	ti(n) converges in probability, uniformly on [0, T ], to the integral∫ t

0 eX(s) ds by Theorem 21, Chapter II, of [22]. Hence, we deduce

sup
0≤t≤T

∣∣∣∣∣
Nn(t)∑
i=1

eX̃n(τ∗
i,n)

	ti(n) −
∫ t

0
eX(s) ds

∣∣∣∣∣ P→ 0.

From (2.13) and (5.18), we now conclude that

σ̃ 2
n (t)

P→ βe−X(t)

∫ t

0
eX(s) ds + σ 2(0)e−X(t) = σ 2(t), (5.19)

uniformly for 0 ≤ t ≤ T .

Part (iii): Approximation procedure for the COGARCH process G(t)

In this section, we define a discrete integrated GARCH sequence G̃n and prove its convergence
to the continuous-time COGARCH process G. We take Gi,n as in (2.3), thus

Gi,n =
i∑

j=1

σj−1,n

√
	tj (n)εj,n, i = 1, . . . ,Nn,

with εj,n and σ 2
j,n satisfying (2.7) and (5.10). Interpolate to get a continuous-time version:

G̃n(t) =
Nn(t)∑
i=1

σi−1,n

√
	ti(n)εi,n, 0 ≤ t ≤ T . (5.20)

By the definitions of σ̃n and L̃n in (5.5) and (5.18), we can write

G̃n(t) =
Nn(t)∑
i=1

σ̃n(τ
∗
i−1,n)

√
	ti(n)εi,n =

∫ t

0
σ̃n(s−)dL̃n(s), 0 ≤ t ≤ T ,

so it is plausible that G̃n(t)
P→ G(t) = ∫ t

0 σ(s−)dL(s), uniformly for t ∈ [0, T ]. We confirm this
as follows:

G̃n(t) =
Nn(t)∑
i=1

[̃σn(τ
∗
i−1,n) − σ(τ ∗

i−1,n)]
√

	ti(n)εi,n +
Nn(t)∑
i=1

σ(τ ∗
i−1,n)DL̃n(τ

∗
i,n)

=
Nn(t)∑
i=1

[̃σn(τ
∗
i−1,n) − σ(τ ∗

i−1,n)]
√

	ti(n)εi,n
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+
Nn(t)∑
i=1

σ(τ ∗
i−1,n)

(
DL̃n(τ

∗
i,n) − DLn(τ

∗
i,n)

) +
Nn(t)∑
i=1

σ(τ ∗
i−1,n)DLn(τ

∗
i,n),

where DL̃n(τ
∗
i,n) := L̃n(τ

∗
i,n) − L̃n(τ

∗
i−1,n) and DLn(τ

∗
i,n) := Ln(τ

∗
i,n) − Ln(τ

∗
i−1,n) for i =

1,2, . . . ,Nn. Write the last expression as

G̃n(t) = MNn(t),n + QNn(t),n + RNn(t),n, (5.21)

where

Mi,n =
i∑

k=1

[̃σn(τ
∗
k−1,n) − σ(τ ∗

k−1,n)]
√

	tk(n)εk,n =
i∑

k=1

ak−1,n

√
	tk(n)εk,n

and

Qi,n :=
i∑

k=1

σ(τ ∗
k−1,n)

(
DL̃n(τ

∗
k,n) − DLn(τ

∗
k,n)

) =
i∑

k=1

σ(τ ∗
k−1,n)Dk,n, say.

First, we show that Mi,n is uniformly asymptotically negligible. We plan to use Markov’s and
Doob’s inequalities, but σ̃ 2

n (t) does not necessarily have a finite expectation under our assump-
tions, so we need a truncation argument. For υ,C > 0, write

P

(
max

i=0,...,Nn

|Mi,n| > υ

)
≤ P

(
max

i=0,...,Nn

|Mi,n| > υ, sup
0≤t≤T

|̃σn(t) − σ(t)| ≤ C

)

+ P

(
sup

0≤t≤T

|̃σn(t) − σ(t)| > C

)
.

The second term on the right tends to 0 as n → ∞ by (5.19). The first term on the right is bounded
by

P

(
max

i=1,...,Nn

∣∣∣∣∣
i∑

k=1

ak−1,n1{|ak−1,n|≤C}
√

	tk(n)εk,n

∣∣∣∣∣ > υ

)
= P

(
max

i=1,...,Nn

|MC
i,n| > υ

)
, say.

For each n ≥ 1, (MC
i,n,Fτ∗

i,n
)i=0,...,Nn is a martingale. Use Markov’s inequality and Doob’s max-

imal quadratic inequality to obtain

P

(
max

i=1,...,Nn

|MC
i,n| > υ

)
≤ 1

υ2
E

(
max

i=1,...,Nn

(MC
i,n)

2
)

≤ 4

υ2
E(MC

Nn,n)
2 = 4

υ2

Nn∑
k=1

E
(
a2
k−1,n1{|ak−1,n|≤C}

)
	tk(n)E(ε2

k,n)

≤ 4T

υ2
E

(
min

(
sup

0≤t≤T

|̃σn(t) − σ(t)|2,C2
))

.
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By (5.19) and the dominated convergence theorem, the above expression tends to 0 in probability.

Hence, maxi=1,...,Nn Mi,n
P→ 0 as n → ∞.

Next, we deal with Qi,n. From (2.12), we have X(s) − X(t) ≤ ∑
s<u≤t log(1 + ϕ(	L(u))2)

when 0 ≤ s < t , so, from (2.13), we get

E

(
sup

0≤t≤T

σ 2(t)

)
≤ (

β/ϕ + Eσ 2(0)
)
eϕT =: C∗.

Further, for each n ≥ 1, (Qi,n,Fτ∗
i,n

)i=0,...,Nn is a martingale, and we can use a similar argument
as for Mi,n. Chebyshev’s inequality and Doob’s maximal quadratic inequality give

P

(
max

i=1,...,Nn

|Qi,n| > υ

)
≤ 1

υ2
E

[
max

i=1,...,Nn

(
i∑

k=1

σ(τ ∗
k−1,n)Dk,n

)2]

≤ 4

υ2
E

(
Nn∑
i=1

σ(τ ∗
i−1,n)Di,n

)2

= 4

υ2

Nn∑
i=1

E(σ 2(τ ∗
i−1,n))E(D2

i,n).

An upper bound for this is

4

υ2
E

(
sup

0≤t≤T

σ 2(t)

)
Var

(
Nn∑
i=1

Di,n

)
≤ 4C∗

υ2
Var

(
L̃n(τ

∗
Nn,n) − L(τ ∗

Nn,n)
)
.

≤ 4C∗

υ2
sup

0≤t≤T

E|L̃n(t) − L(t)|2.

From (5.8), we can readily obtain that sup0≤t≤T E|L̃n(t) − L(t)|2 → 0 as n → ∞. Also, from
Proposition 5.1, sup0≤t≤T E|Ln(t)−L(t)|2 → 0 as n → ∞. So, we have shown that the first and
second summands in (5.21) are oP (1) as n → ∞.

The third summand in (5.21), RNn(t),n, is a discrete stochastic integral with random partition
(τ ∗

i,n)i=0,...,Nn , where the mesh of the partition is bounded by 2	t(n) and therefore tends to 0 a.s.
Hence, Theorem 21, Chapter II, in [22] can be applied to show that this expression converges in
probability, uniformly on [0, T ], to the stochastic integral

∫ ·
0 σ(s−)dL(s). So, finally,

sup
0≤t≤T

|G̃n(t) − G(t)| P→ 0, as n → ∞. (5.22)

Part (iv): Convergence of the Skorokhod distance

Finally, we have to transfer from the tilde processes σ̃ 2
n (t) and G̃n(t) to the desired approximating

processes in (2.9). σ̃ 2
n (t) and G̃n(t) are constant between jump times τ ∗

i,n = τi,n ∧ ti (n), for n ≥ 1,
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so we can write for 0 ≤ t ≤ T ,

σ 2
n (ti(n)) = σ̃ 2

n (τ ∗
i,n) and Gn(ti(n)) = G̃n(τ

∗
i,n).

To obtain the convergence of (Gn,σ
2
n ) to (G,σ 2) in the Skorokhod distance, it is crucial to

note that both processes σ̃ 2
n and G̃n jump simultaneously and at most once in every interval

(ti−1(n), ti(n)] for i = 1, . . . ,Nn. The time change λ(t) required in the Skorokhod distance can
thus be specified pathwise as follows. On the grid (ti(n))i=1,...,Nn−1, define

λn(ti(n);ω) = τ ∗
i,n(ω) = τi,n(ω) ∧ ti (n) for i = 1, . . . ,Nn − 1,

with λn(0;ω) = 0 = t0(n) and λn(T ;ω) = T = tNn(n), and interpolate piecewise linearly (hence
continuously) between these points, thus obtaining a function λn(·;ω) in �. By this construction,
we see that

sup
0≤t≤T

|λn(t;ω) − t | ≤ 	t(n).

With the specification λn(T ;ω) = T at the endpoint, required for λ ∈ �, we ignore any jump in
the last subinterval (tNn−1, T ]. However, the event An = {τNn,n ≤ T } has probability bounded by
	tNn(n)�(mn) = o(

√
	t(n)) → 0 as n → ∞, thus this modification is asymptotically negligi-

ble.
The definition of λn(·;ω) allows us to write, on AC

n ,

σ 2
n (t) = σ̃ 2

n (λn(t;ω)) and Gn(t) = G̃n(λn(t;ω)) for 0 ≤ t ≤ T .

This implies

sup
0≤t≤T

|σ 2
n (t) − σ 2(λn(t))| = sup

0≤t≤T

|̃σ 2
n (λn(t)) − σ 2(λn(t))|

= sup
0≤t≤T

|̃σ 2
n (t) − σ 2(t)|

and

sup
0≤t≤T

|Gn(t) − G(λn(t))| = sup
0≤t≤T

|G̃n(λn(t)) − G(λn(t))|

= sup
0≤t≤T

|G̃n(t) − G(t)|.

Therefore, we can bound the Skorokhod distance by

ρ((Gn,σn), (G,σ 2)) ≤ sup
0≤t≤T

|G̃n(t) − G(t)| + sup
0≤t≤T

|̃σ 2
n (t) − σ 2(t)| + 	t(n)

and this expression tends to 0 in probability by (5.19) and (5.22), finishing the proof. �
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