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1. Introduction

Simulation of stochastic processes is widely used in science, engineering and economics to

model complex phenomena. There is a vast literature on this subject; see the classical

monographs of Kloeden and Platen (1992) on numerical solutions of stochastic differential

equations and of Janicki and Weron (1994) on simulation of one-dimensional stable

processes, for example. Applications of Lévy processes to stochastic finance (Cont and

Tankov 2004) and physics created the need for efficient simulation schemes. Contrary to the

one-dimensional case, closed formulae for simulation of increments of multidimensional

Lévy processes are rarely available. Thus one needs to use approximate methods. The

present paper develops a general framework for this in the multidimensional case.

At the first level of approximation of a Lévy process one can use an appropriate

compound Poisson process. However, if the Lévy process has paths of infinite variation,

then the error (the remainder process) of such approximation can be significant. In the one-

dimensional case it was shown in Asmussen and Rosiński (2001) that the remainder process

can often be approximated by a Brownian motion with small variance. Adding such a

small-variance Brownian motion to a compound Poisson process introduces variability

between the epochs of the latter process, improving the approximation in general; see

Asmussen and Rosiński (2001).

There are several issues related to the extension of this method to multidimensional Lévy

processes. The first one is how to choose for a given Lévy process a family of successive
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compound Poisson approximations that are easy to simulate. This choice determines the

form of the remainder process which, in turn, we want to approximate by a Brownian

motion with a small covariance matrix. The level of difficulty for proving that the

remainder is asymptotically Gaussian may depend on the form of the remainder and that

form, in turn, is determined by the type of Poisson approximation. Let � be the Lévy

measure of the Lévy process under consideration. In the one-dimensional case one usually

takes compound Poisson processes with jump measures �jfjxj>Eg and E & 0. We found that

this method is too restrictive in the multidimensional case and may lead to substantial

technical and theoretical difficulties in concrete situations. We propose to use generalized

shot noise series representations of Lévy processes (see Rosiński 2001) to generate a family

of successive compound Poisson approximations. Such expansions can also be related to

Lévy copulas (see Cont and Tankov 2004: Section 6.6), but we do not consider them here.

Finally, let us mention a small issue which is of practical importance. The covariance

matrix of the remainder process at time 1 serves as the covariance matrix of the asymptotic

Brownian motion and thus it should be explicitly known for the purpose of simulation.

However, this is not often the case in the multidimensional situation. Therefore, an

additional requirement is that the remainder should be defined in such a way that the

covariance matrix (or its square root, to be precise) is asymptotically equivalent to some

explicitly known matrix. All these issues are usually non-essential, or trivial, in the one-

dimensional case. They are present in the multidimensional situation as we demonstrate it

on an example of simulation of multivariate tempered stable processes. These issues are

even more acute in the case of simulation of operator stable Lévy processes, which we will

consider in a forthcoming paper together with some other practical issues.

The present paper is organized as follows. The general problem of Gaussian approximation of

Lévy processes is considered in Section 2. We find the necessary and sufficient conditions for

such approximation to hold (Theorem 2.2) as well as some useful sufficient conditions

(Theorems 2.4 and 2.5). In Section 3.1 we present a general set-up for the approximate

simulation of multivariate Lévy processes (Theorem 3.1). We illustrate this method in Sections

3.2 and 3.3 by applying it to multivariate stable and tempered stable Lévy processes, respectively.

For the reader’s convenience we list here some basic facts from matrix theory that will

used in this paper and which can be found, for example, in Graybill (1983). The square root

of a positive definite matrix A is a unique positive definite matrix B such that A ¼ B2

(Graybill 1983: 449), and we write A1=2 :¼ B. The inverse of a positive definite matrix is

positive definite (Graybill 1983: Theorem 12.2.1(3b)). The inequality A > B between two

symmetric matrices A and B of the same size means that A � B is non-negative definite. If

A and B are non-singular symmetric matrices and A > B, then B�1 > A�1 (Graybill 1983:

Theorem 12.2.14(2)).

2. Gaussian approximation

In this section we give necessary and sufficient conditions for normal approximation of

multidimensional Lévy processes. Suppose that for every E 2 (0, 1] we are given an Rd-

valued Lévy processes XE :¼ fX E(t) : t > 0g with characteristic function of the form
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Eeih y,X E( t)i ¼ exp t

ð
Rd

[eih y,xi � 1 � ihy, xi]�E(dx)

� �
, (2:1)

where ð
Rd

kxk2 �E(dx) , 1: (2:2)

Then X E(t) has zero mean and covariance matrix E[X E(t)X E(t)T] ¼ t�E, where

�E ¼
ð
Rd

xxT �E(dx): (2:3)

(AT denotes the transpose of a matrix A.) We will assume that �E is non-singular. Because of

the importance of this assumption we will first state some conditions equivalent to it.

Lemma 2.1. The following conditions are equivalent for each E . 0:

(i) �E is non singular;

(ii) �E is not concentrated on any proper linear subspace of Rd;

(iii) for each (equivalently, some) t . 0, the distribution of XE( t) is not concentrated

on any proper hyperplane of Rd .

Proof. A proof of the equivalence of (i) and (ii) is elementary and thus omitted. The

equivalence of (ii) and (iii) follows from Proposition 24.17(ii) in Sato (1999). h

Throughout this paper W ¼ fW (t) : t > 0g will denote a standard Brownian motion in

Rd . !(d)
will stand for the weak convergence of processes in the space D([0, 1), Rd) of

cadlag functions from [0, 1) into Rd equipped with the Skorokhod topology.

Theorem 2.2. With the above notation, suppose that �E is non-singular for every E 2 (0, 1].

Then, as E ! 0,

��1=2
E XE !

(d)
W (2:4)

if and only if for every k . 0,ð
h��1

E x,xi.k
h��1

E x, xi �E(dx) ! 0: (2:5)

Proof. Notice that ��1=2
E XE is a Lévy process with characteristic function

Eeih y,��1=2
E X E( t)i ¼ exp t

ð
Rd

[eih y,��1=2
E xi � 1 � ihy, ��1=2

E xi] �E(dx)

� �

¼ exp ithy, bEi þ t

ð
Rd

[eih y,xi � 1 � ihy, xi1(kxk < 1)] ~��E(dx)

� �
,

where ~��E ¼ �E � �1=2
E is the push forward of �E by the map x ! ��1=2

E x and
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bE ¼ �
ð
kxk.1

x~��E(dx) ¼ �
ð
k��1=2

E xk.1

��1=2
E x �E(dx):

First we will prove that (2.5) implies (2.4). By a theorem due to Skorokhod (cf.

Kallenberg 2002: Theorem 15.17), it is enough to show the convergence in distribution of

��1=2
E X E(1) to W (1). To this end it is enough to check three conditions of Theorem 15.14 in

Kallenberg (2002): as E ! 0,

bE ! 0; (2:6)ð
kxk<1

xxT ~��E(dx) ! I d ; (2:7)

~��E(kxk > k) ! 0, 8k . 0: (2:8)

Indeed, (2.6) holds because

kbEk <

ð
k��1=2

E xk.1

k��1=2
E xk �E(dx) <

ð
k��1=2

E xk.1

k��1=2
E xk2 �E(dx)

¼
ð
h��1

E x,xi.1

h��1
E x, xi �E(dx) ! 0

by assumption (2.5). Observe thatð
Rd

xxT ~��E(dx) ¼
ð
Rd

(��1=2
E x)(��1=2

E x)T �E(dx) (2:9)

¼ ��1=2
E

ð
Rd

xxT �E(dx)��1=2
E ¼ I d :

Denoting by k � k the operator norm, we obtain�����I d �
ð
kxk<1

xxT ~��E(dx)

����� ¼
�����
ð
k��1=2

E xk.1

(��1=2
E x)(��1=2

E x)T �E(dx)

�����
<

ð
k��1=2

E xk.1

k��1=2
E xk2 �E(dx) ! 0,

as above, which proves (2.7). To obtain (2.8) we observe that

~��E(kxk . k) < k�2

ð
kxk.k

kxk2 ~��E(dx)

¼ k�2

ð
k��1=2

E xk.k
k��1=2

E xk2 �E(dx) ! 0 as E ! 0:

Therefore, we have proved that (2.5) implies (2.4).

To obtain the converse, we first notice that from Theorem 15.14 in Kallenberg (2002) we

have, for all k . 0,
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ð
kxk<k

xxT ~��E(dx) ! I d

as E ! 0. By (2.9) this is equivalent, for all k . 0, toð
kxk.k

xxT ~��E(dx) ! 0:

The latter condition implies (2.5) becauseð
h��1

E x,xi.k
h��1

E x, xi �E(dx) ¼
ð
k��1=2

E xk.k1=2

k��1=2
E xk2 �E(dx)

¼
ð
kxk.k1=2

kxk2 ~��E(dx) ¼
Xd

i¼1

ð
kxk.k1=2

hei, xi2 ~��E(dx)

¼
Xd

i¼1

ei,

ð
kxk.k1=2

xxT ~��E(dx)ei

* +
! 0,

where feigd
i¼1 is an orthonormal basis in Rd . The proof of Theorem 2.2 is complete. h

As the matrix �E can be quite complicated, a direct verification of (2.5) may be difficult

or impossible. We propose a simple method which alleviates this difficulty in many cases.

Lemma 2.3. Suppose that, for every k . 0, there exist E(k) . 0 and a family of positive

definite matrices f ~��E : E 2 (0, E(k))g such that, for all E 2 (0, E(k)),

�E > ~��E (2:10)

and

lim
E!0

ð
h ~���1

E x,xi.k
h ~���1

E x, xi �E(dx) ¼ 0: (2:11)

Then (2.5) holds.

Proof. Recall that (2.10) means that h�Ex, xi > h ~��Ex, xi, for all x 2 Rd . Hence ~���1
E > ��1

E
(see the last paragraph of the Introduction), which yieldsð

h��1
E x,xi.k

h��1
E x, xi �E(dx) <

ð
h ~���1

E x,xi.k
h ~���1

E x, xi �E(dx) ! 0

as E ! 0. h

In typical applications of Theorem 2.2, Lévy measures �E can often be written in the

form

�E(dr, du) ¼ �E(drju)º(du), r . 0, u 2 Sd�1, (2:12)
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in polar coordinates, where º is a finite measure on the unit sphere Sd�1 and, for each E . 0,

{�E(� ju) : u 2 Sd�1g is a measurable family of Lévy measures on (0, 1). Define

� 2
E (u) ¼

ð1
0

r2 �E(dr ju): (2:13)

Theorem 2.4. Let �E be Lévy measures on Rd given by (2.12) such that the support of º is

not contained in any proper linear subspace of Rd . Suppose there exists a function

b : (0, 1] 7! (0, 1) such that

lim inf
E!0

� E(u)

b(E)
. 0, º-almost everywhere, (2:14)

and, for every k . 0,

lim
E!0

b(E)�2

ð
kxk.kb(E)

kxk2 �E(dx) ¼ 0: (2:15)

Then �E is non-singular for sufficiently small E and condition (2.5) of Theorem 2.2 holds.

Proof. Let

¸ ¼
ð

Sd�1

uuT º(du):

¸ is non-singular by Lemma 2.1. Hence infv2Sd�1h¸v, vi ¼: 2a . 0. For any Borel set

B � Sd�1, consider a positive definite matrix

¸B ¼
ð

B

uuT º(du): (2:16)

There exists a � . 0 such that k¸�¸Bk , a whenever º(Sd�1nB) , �. From (2.14) we can

find E0, E1 2 (0, 1] such that the set B of the form

B :¼ fu 2 Sd�1 : inf
0,E,E0

b(E)�2� 2
E (u) . E1g

satisfies º(Sd�1nB) , �. Hence, for any v 2 Sd�1,

h¸Bv, vi > h¸v, vi � k¸�¸Bk . a,

which yields

¸B > aI d : (2:17)

Using (2.13) and (2.17), we obtain for any E 2 (0, E0),

�E ¼
ð

Sd�1

ð1
0

r2 �E(drju)uuT º(du) >

ð
B

� 2( )uuT º(du)

> E1b(E)2¸B > aE1b(E)2 I d ¼: ~��E:

Thus �E is non-singular and, for any k . 0, we have

E u
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ð
h ~���1

E x,xi.k
h ~���1

E x, xi �E(dx) < a�1E�1
1 b(E)�2

ð
kxk.(aE1k)1=2 b(E)

kxk2 �E(dx) ! 0

by (2.15), as E ! 0. Lemma 2.3 concludes the proof. h

A special but important case of (2.12) is when

�E ¼ �jfkxk,Eg, (2:18)

where � is a Lévy measure given in polar coordinates by

�(dr, du) ¼ �(dr ju)º(du), r . 0, u 2 Sd�1: (2:19)

Here f�(� ju) : u 2 Sd�1g is a measurable family of Lévy measures on (0, 1) and º is a finite

measure on the unit sphere Sd�1. In this case we have �E given by

�E(dr ju) ¼ 1(r , E)�(dr ju)

and

�E ¼
ð
kxk,E

xxT �(dx): (2:20)

This is a direct multidimensional extension of the case studied in Asmussen and Rosiński

(2001) for d ¼ 1.

Theorem 2.5. Let � be a Lévy measure on Rd given by (2.19) such that the support of º is

not contained in any proper linear subspace of Rd . Let �E be given by (2.18) and �E by

(2.20). If

lim
E!0

E�2

ð
(0,E)

r2 �(dr ju) ¼ 1, º-a:e:, (2:21)

then �E is non-singular and condition (2.5) of Theorem 2.2 holds.

Proof. We will show that the conditions of Theorem 2.4 are satisfied. Recall (2.13) and notice

that

� 2
E (u) ¼

ð
(0,E)

r2 �(dr ju):

Therefore, condition (2.21) says that

lim
E!0

� E(u)

E
¼ 1, º-a:e: (2:22)

We can choose a sequence Ek & 0 such that the sets given by

Bk :¼ u 2 Sd�1 : inf
� E(u)

E
: 0 , E < Ek

� �
. k2

� �

satisfy º(Bk) . º(Sd�1)(1 � 2�k) for every k > 1. Then S0 ¼
S1

n¼1

T1
k¼n Bk has full º-

measure. Put b(E) ¼ Ek for Ekþ1 , E < Ek. It is clear that

Gaussian approximation of multivariate Lévy processes 201



lim
E!0

b(E)
E

¼ 1, (2:23)

and for each u 2 S0 there is an n such that u 2 Bk for k > n. Hence, for Ekþ1 , E < Ek < En,

� E(u)

b(E)
¼ � E(u)

kE
. k,

which proves that

lim
E!0

� E(u)

b(E)
¼ 1, º-a:e:

Thus (2.14) of Theorem 2.4 holds. Then, for each k . 0 and sufficiently small E . 0,ð
kxk>kb(E)

kxk2 �E(dx) ¼
ð
fkxk>kb(E), kxk,Eg

kxk2 �(dx) ¼ 0

because the region of the integration is empty by (2.23). This verifies the remaining condition

(2.15) of Theorem 2.4. Finally, we notice that if �E in (2.20) is non-singular for small E then

it is non-singular for all E. The proof is complete. h

Remark 2.1. If �(dr ju) ¼ f (r, u) º(du), where f (�, u) is a regularly varying function at zero

with index �Æ(u) � 1, with Æ(u) 2 (0, 2) for almost every u, then (2.21) is fulfilled and hence

condition (2.5) of Theorem 2.2 holds.

3. Approximate simulation of multivariate Lévy processes

In this section we present a general set-up for an approximate simulation of multivariate

Lévy processes and its implementation to stable and tempered stable cases.

3.1. Approximation of Lévy processes

Consider a Lévy process X ¼ fX (t) : t > 0g in Rd determined by its characteristic function

in the Lévy–Khinchine form,

Eeih y,X ( t)i ¼ exp t iha, yi þ
ð
Rd

(eih y,xi � 1 � ihy, xi1(kxk < 1))�(dx)

� �� �
: (3:1)

Suppose that, for every E 2 (0, 1], we are given a decomposition

� ¼ �E þ �E, (3:2)

where ð
Rd

kxk2 �E(dx) , 1 and �E(Rd) , 1:

dr
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Consider the corresponding decomposition of the Lévy process X into a sum of independent

terms

X ¼(d)
XE þ NE þ aE, (3:3)

where XE is a Lévy process as in (2.1) determined by

Eeih y,X E( t)i ¼ exp t

ð
Rd

(eih y,xi � 1 � ihy, xi)�E(dx)

� �� �
,

NE ¼ fN E(t) : t > 0g is a compound Poisson process with the jumps measure �E, and

aE ¼ ftaE : t > 0g is a drift. To be precise,

aE ¼ a þ
ð
kxk.1

x �E(dx) �
ð
kxk<1

x �E(dx): (3:4)

We will refer to XE

�E ¼
ð
Rd

xxT �E(dx)

be a non-singular matrix, as in Theorem 2.2. If that theorem applies, then the small-jump part

XE can be approximated by �1=2
E W, where W is a standard Brownian motion in Rd

independent of NE. Consequently, X �
(d)

�1=2
E Wþ NE þ aE when E is small. Observe that we

do not need to know the exact form of �1=2
E but only its asymptotics. The following theorem

provides a theoretical basis for the approximate simulation method discussed and gives some

information on the behaviour of the error.

Theorem 3.1. Let X ¼ fX (t) : t > 0g be a Lévy process in Rd determined by (3.1) and let

decomposition (3.2) be given. Suppose that condition (2.5) holds and there exists a family of

non-singular matrices fAEgE2(0,1] of rank d such that

A�1
E �E(A�1

E )T ! I d , as E ! 0: (3:5)

Let W, NE, and aE be as above. Then for every E 2 (0, 1] there exists a cadlag process

YE ¼ fYE(t) : t > 0g such that

X ¼(d)
AEWþ NE þ aE þ YE (3:6)

in the sense of equality of finite-dimensional distributions and such that, for each T . 0,

sup
t2[0,T ]

kA�1
E YE(t)k !(P)

0, as E ! 0: (3:7)

Proof. Consider the polar decomposition

A�1
E �1=2

E ¼ CEUE

where CE is positive definite and UE is orthogonal matrix; see, for example, Graybill (1983:

as the ‘small-jump’ part of X. Let

Gaussian approximation of multivariate Lévy processes 203



Theorem 12.2.22). Let En ! 0. There exists a subsequence fnkg such that CE n k
! C and

UEn k
! U , for some non-negative definite matrix C and an orthogonal matrix U . Since

C2
E ¼ CEC

T
E ¼ A�1

E �E(A�1
E )T ! I d ,

we obtain that C2 ¼ I d or C ¼ I d by the uniqueness of the square root of a matrix. Hence

A�1
En k

�1=2
En k

! U :

By Theorem 2.2, ��1=2
E X E(1)!(d) N (0, I d). Hence

A�1
En k

X E n k
(1) ¼ A�1

E n k
�1=2
E n k

� �
��1=2
En k

X E n k
(1)!(d) N (0, UU T) ¼ N (0, I d):

We have proved that A�1
E X E(1)!(d) N (0, I d) as E ! 0. By a theorem of Skorokhod (cf.

Kallenberg, 2002: Theorem 15.17), there exist Lévy processes ZE ¼ fZE(t) : t > 0g such that

ZE ¼(d)
A�1
E XE and

sup
t2[0,T]

kZE(t) � W (t)k !(P)
0, as E ! 0, (3:8)

for each T . 0. Making W and NE depend on different coordinates of a large enough

probability space, we may also assume that ZE and NE are independent. Put

YE ¼ AE(ZE �W):

Then

X ¼(d)
XE þ NE þ aE ¼(d)

AEZE þ NE þ aE ¼ AEWE þ NE þ aE þ YE:

This proves (3.6). Expression (3.7) follows from (3.8). h

Under the conditions of Theorem 3.1 we have

X �
(d)

AEWþ NE þ aE: (3:9)

In order to use (3.9) in practice, for an approximate simulation of X, one needs to have

decomposition (3.2) such that condition (2.5) holds, simulation of NE is unproblematic and

anasymptotics AE of �1=2
E is explicitely known.

We propose the following strategy. The compound Poisson process NE can be generated

from a generalized shot noise series representation of a Lévy process. Namely, let � be the

Lévy measure of X as in (3.1). By a generalized shot noise series representation of the

Lévy process X on [0, T ] we mean the equation

X (t) ¼
X1
j¼1

1(U j < t)H(ª j, � j) � tc j

� 	
, almost surely, (3:10)

where the series converges almost surely uniformly in t 2 [0, T ]. Here fª jg is the sequence

of arrival times in a Poisson process of rate 1, f� jg is a sequence of independent and

identically distributed (i.i.d.) random elements taking values in a Borel space S and having
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the common distribution F, f� jg is an i.i.d. sequence of uniform on [0, T ] random variables,

and the sequences fª jg, f� jg and f� jg are independent of each other. Furthermore, fc jg is a

sequence of vectors in Rd and H : Rþ 3 S 7! Rd is a measurable map such that the function

r 7! kH(r, s)k is non-increasing for each s 2 S and

�(B) ¼
ð1

0

F(fs 2 S : H(r, s) 2 Bnf0gg)dr, B 2 B(Rd): (3:11)

There are many ways of representing a Lévy process X in the form (3.10). In fact, condition

(3.11) is crucial; if it is satisfied then there are constants c j such that (3.10) holds (see

Rosiński 2001: Theorems 4.1 and 5.1).

To define processes NE we choose a family fDEgE2(0,1] of Borel subsets of Rþ 3 S such

that (Leb � F)(DE) , 1 and DE % Rþ 3 S as E & 0. Define

N E(t) :¼
X

j : (ª j,� j)2DEf g
1(U j < t)H(ª j, � j), t 2 [0, T ]: (3:12)

Since (Leb � F)(DE) , 1, this sum has only finitely many terms, thus is well defined. Using

Theorem 4.1 in Rosiński (2001), it is easy to check that NE is a compound Poisson process

with

E exp ihy, N E(t)i ¼ exp t

ð
Rd

(eih y,xi � 1)�E(dx)

� �
,

where

�E(B) ¼
ð1

0

F(fs 2 S : H(r, s)1DE(r, s) 2 Bnf0gg)dr, B 2 B(Rd): (3:13)

Thus �E(Rd) , 1 and �E % � because DE are ascending to Rþ 3 S as E & 0. Now we define

�E :¼ �� �E. Condition (2.2) requires an extra assumption on DE following from (3.11) and

(3.13), and then one needs to show that �E satisfies (2.5). The preceding section shows how to

achieve this in several general cases.

In summary, a choice of the compound Poisson approximation determines �E and �E. The

above method based on (3.10) and (3.11) provides great flexibility in selecting the most

convenient approximation.

3.2. Application to stable processes

The Lévy measure � of an Æ-stable Lévy process X in Rd has the form

�(dr, du) ¼ Ær�Æ�1 dr º(du) (3:14)

in polar coordinates, where Æ 2 (0, 2) and º is a finite measure on Sd�1. Put kºk ¼ º(Sd�1).

Assume that X (1) is not concentrated on a proper hyperplane of Rd , which by Lemma 2.1

means that º is not concentrated on a proper linear subspace of Rd .

As explained above, the compound Poisson process NE of (3.3) can be generated from
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generalized shot noise series representations of a stable process. For this purpose we take

the well-known LePage representation

X (t) ¼ (Tkºk)1=Æ
X1
j¼1

1(� j < t)ª�1=Æ
j v j � tc j

� �
, t 2 [0, T ],

where fª jg, f� jg are as in (3.10) and � j :¼ v j are i.i.d. random vectors taking values in Sd�1

with the common distribution F :¼ º=kºk. Clearly this is a representation of the form (3.10)

and it is easy to check (3.11). Define

N E(t) ¼ (Tkºk)1=Æ
X

f j : ª j<E�ÆTkºkg
1(� j < t)ª�1=Æ

j v j, t 2 [0, T ]: (3:15)

Comparing this with (3.12), we see that DE ¼ (0, E�ÆTkºk] 3 Sd�1 and (3.13) gives

�E ¼ �jfkxk>Eg. Therefore, �E ¼ �jfkxk,Eg, as in (2.18). Theorem 2.5 applies with �(dr ju) ¼
Ær�Æ�1 dr and

�E ¼
Æ

2 � Æ
E2�Æ¸, (3:16)

where

¸ ¼
ð

Sd�1

uuT º(du): (3:17)

Theorem 3.1 yields the following.

Proposition 3.2. Let X be an Æ-stable Lévy process with characteristic function given by

(3.1) and Lévy measure as in (3.14). Suppose that the support of º is not contained in any

proper linear subspace of Rd and ¸ is as in (3.17). Let T . 0 be fixed and let NE be defined

by (3.15). Assume that W is a standard Brownian motion in Rd independent of NE, and aE is

determined by (3.4). Then, for every E 2 (0, 1], there exists a cadlag process YE such that, on

[0, T ],

X ¼(d)
aE þ E1�Æ=2 Æ

2 � Æ


 �1=2

¸1=2Wþ NE þ YE (3:18)

in the sense of equality of finite-dimensional distributions and such that

EÆ=2�1 sup
t2[0,T]

kYE(t)k !(P)
0, as E ! 0: (3:19)

Proof. We apply Theorem 3.1 to AE ¼ �1=2
E , where �E is given by (3.16). We obtain (3.18)

and

kYE(t)k < kAEkkA�1
E YE(t)k < E1�Æ=2 Æ

2 � Æ


 �1=2

k¸1=2kkA�1
E YE(t)k:

Therefore (3.7) implies (3.19). h
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3.3. Application to tempered stable processes

Recall that the Lévy measure of a tempered Æ-stable process X in Rd is of the form

�(dr, du) ¼ Ær�Æ�1q(r, u)dr º(du) (3:20)

in polar coordinates, where Æ 2 (0, 2), º is a finite measure on Sd�1, and

q : (0, 1) 3 Sd�1 7! (0, 1) is a Borel function such that, for each u 2 Sd�1, q(�, u) is

completely monotone with q(0þ, u) ¼ 1 and q(1, u) ¼ 0.

that

º is not concentrated on a proper linear subspace of Rd . Define a finite measure Q on Rd by

Q(A) :¼
ð

Sd�1

ð1
0

1A(ru)Q(drju)º(du),

where fQ(�ju)gu2Sd�1 is a measurable family of probability measures on Rþ determined by

q(r, u) ¼
Ð1

0
e�rs Q(dsju). Notice that kºk :¼ º(Sd�1) ¼ Q(Rd) and Q(f0g) ¼ 0.

The compound Poisson process NE of (3.3) will be generated from a generalized shot

X (t) ¼
X1
j¼1

1(� j < t)
ª j

Tkºk


 ��1=Æ

^ e ju
1=Æ
j kv jk�1

" #
v j

kv jk
� tc j

( )
, t 2 [0, T ],

where fª jg, f� jg are as in (3.10) and � j :¼ (e j, u j, v j) are i.i.d. random elements taking

values in Rþ 3 [0, 1] 3 Rd with the common distribution F :¼ E(1) � U[0, 1] � Q=kºk.

Here E(1) and U[0, 1] denote the exponential distribution with parameter 1 and the uniform

distribution on [0, 1], respectively. Clearly this is a representation of the form (3.10). Define

N E(t) ¼
X

f j : ª j<E�ÆTkºkg
1(� j < t)

ª j

Tkºk


 ��1=Æ

^ e ju
1=Æ
j kv jk�1

 !
v j

kv jk
, t 2 [0, T ]:

(3:21)

Comparing this with (3.12), we see that DE ¼ (0, E�ÆTkºk] 3 Rþ 3 [0, 1] 3 Rd and (3.13)

gives

�E(dr, du) ¼ kE(r, u)drº(du)

in polar coordinates, where

kE(r, u) ¼
E�ÆÆ r�1q(r, u) � rÆ�1

ð1
r

Æs�Æ�1q(s, u)ds

� �
, 0 , r , E,

Ær�Æ�1q(r, u), r > E:

8><
>:

Hence �E ¼ �� �E is of the form

�E(dr, du) ¼ kE(r, u)drº(du),

Such  processes  are  considered
in Rosiński (2006)  and  called  proper  . As in Section 3.2, assumetempered -stableÆ

noise series representation of a tempered stable process given in Rosiński (2006: Theorem

5.3), which is of the form
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where

kE(r, u) ¼
Æ(r�Æ�1 � E�Æ r�1)q(r, u) þ E�ÆÆrÆ�1

ð1
r

Æs�Æ�1q(s, u)ds, 0 , r , E,

0, r > E:

8><
>:

Notice that �E is as in (2.12) but not as in (2.18). We will use Theorem 2.4 to show condition

(2.5). We begin with an estimate for � 2
E (u). Since q(� , u) is decreasing, we obtain

� 2
E (u) ¼

ð1
0

r2 kE(r, u)dr > Æq(E, u)

ðE
0

(r�Æþ1 � E�Æ r)dr ¼ Æ2

2(2 � Æ)
E2�Æq(E, u):

Then for b(E) :¼ E1�Æ=2 we obtain

lim inf
E!0

� E(u)

b(E)
>

Æffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(2 � Æ)

p q(0þ, u) . 0

because q(0þ, u) ¼ 1. Hence condition (2.14) of Theorem 2.4 is satisfied. Since �E is

concentrated on a ball of radius E we obtainð
kxk.kb(E)

kxk2 �E(dx) ¼
ð
fkxk.kE1�Æ=2,kxk,Eg

kxk2 �(dx) ¼ 0

for sufficiently small E, as the region of integration becomes empty. This proves (2.15), and

Theorem 2.4 shows that (2.5) holds.

We have

�E ¼
ð

Sd�1

� 2
E (u)uuT º(du):

It is clear that �1=2
E may have no closed form in general. However, we will find its

asymptotics, proving that

EÆ�2�E !
Æ

2 � Æ
¸, as E ! 0, (3:22)

where ¸ is given by (3.17). To establish (3.22) we will need bounds for � 2
E (u). First we notice

that

� 2
E (u) < Æ

ðE
0

r�Æþ1q(r, u)dr <
Æ

2 � Æ
E2�Æ,

which yields

EÆ�2�E ¼ EÆ�2

ð
S d�1

� 2
E (u)uuT º(du) <

Æ

2 � Æ
¸: (3:23)

To obtain a lower bound, we write
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� 2
E (u) ¼ Æ

ðE
0

r2(r�Æ�1q(r, u) � E�Æ‘E(r, u))dr

> q(E, u)
Æ

2 � Æ
E2�Æ � ÆE�Æ

ðE
0

r2‘E(r, u)dr (3:24)

where

‘E(r, u) ¼ r�1q(r, u) � rÆ�1

ð1
r

Æs�Æ�1q(s, u)ds:

Then we estimate the last term in (3.24):

ÆE�Æ

ðE
0

r2‘E(r, u)dr < ÆE2�Æ

ðE
0

‘E(r, u)dr

¼ E2�Æ

ðE
0

@

@ r
�rÆ

ð1
r

Æs�Æ�1q(s, u)ds


 �
dr

¼ E2�Æ 1 � EÆ
ð1
E
Æs�Æ�1q(s, u)ds

� �
¼: E2�Æ t(E, u):

Notice that 0 < t(E, u) < 1 and limE!0 t(E, u) ¼ 0. Combining the above estimate with (3.24)

gives

� 2
E (u) > E2�Æ q(E, u)

Æ

2 � Æ
� t(E, u)

� �
,

which together with (3.23) yields

EÆ�2�E ¼ EÆ�2

ð
S d�1

� 2
E (u)uuT º(du) >

ð
S d�1

q(E, u)
Æ

2 � Æ
� t(E, u)

� �
uuT º(du):

Since q(0þ, u) ¼ 1, the dominated convergence theorem and (3.23) yield (3.22). Hence

AE :¼ E1�Æ=2 Æ

2 � Æ


 �1=2

¸1=2

satisfies condition (3.5) of Theorem 3.1. Consequently, AE can be used in simulation of X

instead of �1=2
E . Applying Theorem 3.1, we obtain the following.

Theorem 3.3. Let X be a tempered Æ-stable Lévy process with characteristic function given

by (3.1) and Lévy measure as in (3.20). Suppose that the support of º is not contained in any

proper linear subspace of Rd and ¸ is as in (3.17). Let T . 0 be fixed and let NE be defined

by (3.21). Let W be a standard Brownian motion in Rd independent of NE and aE be a shift

determined by (3.4). Then, for every E 2 (0, 1] there exists a cadlag process YE such that, on

[0, T ],

X ¼(d)
aE þ E1�Æ=2 Æ

2 � Æ


 �1=2

¸1=2Wþ NE þ YE (3:25)
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in the sense of equality of finite-dimensional distributions and such that

EÆ=2�1 sup
t2[0,T]

kYE(t)k !(P)
0, as E ! 0: (3:26)
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