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1. Introduction

The centre of a distribution is often estimated by the sample mean or the sample median.

However, it is well known that the sample mean is sensitive to outliers and thus not robust.

On the other hand, the sample median is robust against outliers but is not very efficient if

the underlying distribution is, for instance, normal. An estimator showing intermediate

behaviour, and which includes both the sample mean and sample median, is the trimmed

(sample) mean. Compared with robust M-estimates of maximum likelihood type, the

trimmed mean not only has the same asymptotic variance but also is easy to compute.

The asymptotic normality of the trimmed mean is derived by Stigler (1973) under

minimal conditions, while Bjerve (1974) and Helmers (1982) derive Edgeworth expansions

under general conditions. Easton and Ronchetti (1986) obtained approximations to the

density of trimmed means. The Edgeworth expansion for the studentized trimmed mean was

established by Hall and Padmanabhan (1992), while a simple explicit form of the

Edgeworth expansion was obtained in Gribkova and Helmers (2002). It is well known that

Edgeworth expansions generally provide accurate approximation near the centre of the

distribution, but the relative error can become unacceptably large in the far tail of the

distribution. On the other hand, saddlepoint approximation will offer an approximation

whose relative error is controlled both near the centre and in the far tail of the distribution.

Therefore, in this paper, we derive saddlepoint approximations to the densities and tail

probabilities of the trimmed mean and its studentized version. To do this, we shall exploit

the special structure of the trimmed mean and employ a simple conditioning argument in

the same way as Bjerve (1974) does in his derivation of an Edgeworth expansion for the

trimmed mean. Conditionally given the values of the two extreme order statistics appearing
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in the trimmed mean, the conditional distribution of a trimmed mean reduces to a sum of

independent and identically distributed (i.i.d.) random variables, to which we can apply a

saddlepoint approximation. Finally, we integrate out these two extreme order statistics by

means of a Laplace approximation. Tail probabilities of Lugannani–Rice type are derived

by another Laplace approximation of Temme type (see Temme 1982), as was done in

Daniels and Young (1991) and Jing and Robinson (1994). For a rigorous account of

saddlepoint approximations, the reader is referred to a recent monograph by Jensen (1995).

A general approach dealing with saddlepoint approximations for L-estimators was presented

by Easton and Ronchetti (1986).

The layout of this paper is as follows. Some basic notation will be introduced in Section

2. In Section 3, we shall derive saddlepoint approximations to the density and tail-area

probabilities for the trimmed mean. In Section 4, we shall carry out the same analysis as in

Section 3 for the studentized trimmed mean. Numerical results are given in Section 5.

Finally, some of the technical details are given in the Appendix.

2. Some preliminaries

Let X1, . . . , X n be a random sample from a population with distribution function F(�) and
density f (�), respectively. Let X1:n < . . . < X n:n be the corresponding order statistics.

Define the trimmed mean by

XÆ� ¼ 1

m

Xs
i¼r

X i:n,

where

r ¼ [nÆ]þ 1, s ¼ n� [n�], m ¼ n� [nÆ]� [n�],

and 0 < Æ , 1
2
, 0 < � , 1

2
; [x] is the largest integer less than or equal to x. That is, we

discard the smallest [nÆ] and the largest [n�] observations and take the average of the rest of

data in the middle. (In particular, if we suspect that the underlying distribution is symmetric,

we can take Æ ¼ �.) For any 0 < p < 1, we define

� p ¼ F�1( p) ¼ inf fx: F(x) > pg:

It is well known that the asymptotic mean and variance of XÆ� are respectively given by (see

Stigler 1973)

� ¼ 1

1� Æ� �

ð�1��

�Æ

x dF(x),

�2Æ� ¼ 1

(1� �� Æ)2
((1� �� Æ)� 2 þ �(1� �)(�1�� � �)2

� 2Æ�(�Æ � �)(�1�� � �)þ Æ(1� Æ)(�Æ � �)2),

where
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� 2 ¼ 1

(1� �� Æ)

ð�1��

�Æ

x2 dF(x)� �2:

We shall need the joint distribution of two order statistics. Define qr,s:n(x, y) to be the

joint density function of order statistics (X r:n, X s:n). From David (1981),

qr,s:n(x, y) ¼ DnÆ�[F(x)]
r�1[F(y)� F(x)]s�r�1[1� F(y)]n�s f (x) f (y)Ifx , yg,

where DnÆ� ¼ n!=f(r � 1)!(s� r � 1)!(n� s)!g and If�g is the indicator function.

Finally, for fixed values x and y with x , y, let Fx, y(t) be the truncation of F to the left

of x and to the right of y. That is,

Fx, y(t) ¼

0, t < x,

F(t)� F(x)

F(y)� F(x)
, x < t < y,

1, t > y:

8>>><
>>>:

Also, let Y1, . . . , Ym be a random sample from a distribution Fx, y(t). Let Y1:m < . . . < Ym:m

be the order statistics of Y1, . . . , Ym. Write Y ¼ m�1
Pm

i¼1Yi, and denote its density and

distribution functions by f Y (�) and FY (�), respectively.

3. Saddlepoint approximation to the trimmed mean

In this section, we shall derive the saddlepoint approximation to the distribution and density

function of XÆ� defined by

G(t) ¼ P(XÆ� < t), g(t) ¼ G9(t):

For any t, denote � ¼ f(x, y) 2 R2: x , yg and �(t) ¼ f(x, y) 2 R2: x , t , yg. First, we
note that

G(t) ¼ P(XÆ� < t)

¼
ðð

�
P m�1

Xs
i¼r

X i:n < t

����X r�1:n ¼ x, X sþ1:n ¼ y

 !
qr�1,sþ1:n(x, y)dx dy

¼
ðð

�
P m�1

Xm
i¼1

Yi:m < t

 !
qr�1,sþ1:n(x, y)dx dy

¼
ðð

�
P(Y < t)qr�1,sþ1:n(x, y)dx dy

¼
ðð

�
F
Y
(t)qr�1,sþ1:n(x, y)dx dy,

and
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g(t) ¼
ðð

�( t)

f Y (t)qr�1,sþ1:n(x, y)dx dy: (3:1)

The first step in obtaining a saddlepoint approximation to g(t) is to replace f Y (t) in (3.1) by

its saddlepoint approximation. To do this, define the cumulant generating function of Y1 by

KY1 (º) ¼ log E expfºY1g ¼ log

ð y

x

eºz dF(z)

F(y)� F(x)

0
B@

1
CA
:

It follows that

K9Y1 (º) ¼
dKY1 (º)

dº
¼

ð y

x

z eºz dF(z)ð y

x

eºz dF(z)

,

K 0Y1 (º) ¼
d2KY1 (º)

dº2
¼

ð y

x

z2 eºz dF(z)ð y

x

eºz dF(z)

� (K9Y1 (º))
2:

Therefore, the saddlepoint approximation to f
Y
(t) is (see Daniels 1954, for instance)

f Y (t) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

2�K 0Y1 (
~ºº)

s
expf�m[~ººt � KY1 (

~ºº)]gf1þ m�1 rm(x, y, t)g, (3:2)

where ~ºº ¼ ~ºº(t) satisfies the saddlepoint equation

K9Y1 (
~ºº(t)) ¼ t, (3:3)

and rm(x, y, t) is an error term.

3.1. Saddlepoint approximation to the density of the trimmed mean

We shall now derive a saddlepoint approximation to the density of the trimmed mean.

Substituting (3.2) into (3.1), we obtain
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g(t) ¼
ðð

�( t)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2�K 0Y1 (
~ºº)

s
expf�m[~ººt � KY1 (

~ºº)]gqr�1,s�1:n(x, y)

3 f1þ m�1 rm(x, y, t)gdx dy

¼
ðð

�( t)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2�K 0Y1 (
~ºº)

s
f (x) f (y)exp[�m¸(x, y, t)]

3 f1þ m�1 rm(x, y, t)gdx dy, (3:4)

where ~ºº is the solution to K9Y1 (
~ºº) ¼ t and

¸(x, y, t) ¼ ¸1(x, y, t)þ¸2(x, y),

with

¸1(x, y, t) ¼ ~ººt � KY1 (
~ºº),

¸2(x, y) ¼ �m�1 log(CnÆ�[F(x)]
r�2[F(y)� F(x)]m[1� F(y)]n�s�1),

and CnÆ� ¼ n!=f(r � 2)!(s� r þ 1)!(n� s� 1)!g. Define

˜(x, y, t) ¼ ( f (x) f (y))�1

@2¸(x, y, t)

@x2
@2¸(x, y, t)

@x@ y

@2¸(x, y, t)

@ y@x

@2¸(x, y, t)

@x2

0
BBB@

1
CCCA:

For each t, let x0 ¼ x0(t), y0 ¼ y0(t), ~ºº0 ¼ ~ºº0(t) be the solution to

@¸(x0, y0, t)

@x
¼ 0,

@¸(x0, y0, t)

@ y
¼ 0,

K9Y1 (
~ºº0) ¼ t:

(3:5)

If the density function is non-zero in the support of X , then (3.5) can be reduced to

m expf~ºº0x0gð y0

x0

expf~ºº0zgdF(z)
¼ r � 2

F(x0)
,

m expf~ºº0 y0gð y0

x0

expf~ºº0zgdF(z)
¼ n� s� 1

1� F(y0)
,

K9Y1 (
~ºº0) ¼ t:

(3:6)
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That is, (x0(t), y0(t)) is a stationary point of ¸(x, y, t) for fixed t. For simplicity, we write

¸0(t) ¼ ¸(x0, y0, t).

Proposition 3.1. Let t belong to the support of X . Then, for any n satisfying [nÆ] > 2,

[n�] > 2 and n� [nÆ]� [n�] > 1, ¸(x, y, t) attains its global minimum at some finite point

(x0, y0) such that not only both x0 and y0 satisfy (3.5), but also both F(x0) and F(y0) are

unique.

Remark 3.1. Proposition 3.1 guarantees that the saddlepoint equation (3.5) always has a solution

under condition (i) of Theorem 3.1 below; and the solution is unique in the sense of distribution

functions. In fact, (x0, y0) is unique except in one case where ~ºº0 ¼ 0, which causes no trouble

because we can regard x0 and y0 as F�1(F(x0)) and F�1(F(y0)). The conditions [nÆ] > 2,

[n�] > 2 and n� [nÆ]� [n�] > 1 are imposed to guarantee that the exponents in

qr�1,sþ1:n(x, y) are greater than 0.

The following theorem gives the saddlepoint approximation to the density of the trimmed

mean.

Theorem 3.1. Let t belong to the support of X . Suppose that:

(i) f (x) ¼ F9(x) and f 0(x) exists;

(ii) for any n satisfying [nÆ] > 2, [n�] > 2 and n� [nÆ]� [n�] > 1, ˜(x0, y0, t) is

positive definite;

(iii) jEei�X j 2 Lv(R) for some v . 0:

Then we have

g(t) ¼ gsp(t)(1þ m�1Rn(t)), (3:7)

where

gsp(t) ¼
ffiffiffiffiffiffi
2�

m

r
exp(�m¸(x0(t), y0(t), t))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 0Y1 (

~ºº0(t))jx¼x0( t), y¼ y0( t)j˜0(t)j
q , (3:8)

the error term Rn(t) in (3.7) is bounded when t is in some compact set and x0(t), y0(t) and
~ºº0(t) are solutions to (3.5).

Remark 3.2. Condition (i) is a natural smoothness condition, which we need to validate

Laplace approximation. Also note that (3.8) involves f 9(x): Since ¸(x, y, t) attains its

minimum at (x0, y0), ˜(x0, y0, t) is non-negative definite. The purpose of condition (ii) is to

simplify the proof. Conditon (iii) ensures smoothness so that we may apply the Fourier

inversion theorem.

The proof of Proposition 3.1 and Theorem 3.1 is postponed to the Appendix.
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3.2. Saddlepoint approximation to the tail probability of trimmed mean

One way to obtain an approximation to the tail probability 1� G(t) ¼ P(XÆ� > t) is to

integrate the saddlepoint approximation gsp(t) numerically. Since
Ð1
�1 gsp(t)dt may not be

one in general, renormalization will usually improve the accuracy of the resulting

saddlepoint approximation. The resulting approximation to 1� G(t) will be denoted by

1� Gss(t). However, it would be more convenient to have an explicit approximation

formula for the tail probability. Theorem 3.2 below will give a saddlepoint approximation to

the tail probability 1� G(t) of the trimmed mean. For ease of notation, let

a(t) ¼ (2�=m)1=2(K 0Y1 (
~ºº0(t))

����
x¼x0( t), y¼ y0( t)

� j˜0(t)j)�1=2,

h(t) ¼ ¸(x0(t), y0(t), t):

Then (3.8) can be rewritten as gsp(t) ¼ a(t)expf�mh(t)g. Let t̂t be the solution to h9( t̂t ) ¼ 0.

Then we define

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(h(t)� h( t̂t ))

q
sgn(t � t̂t ), (3:9)

ł(w) ¼ (2�=m)1=2a(t(w))expf�mh( t̂t )g
���� dtdw

����: (3:10)

Then we have:

Theorem 3.2. Under the conditions of Theorem 3.1, we have

P(XÆ� > t) ¼ 1��(w
ffiffiffiffi
m

p
)� �(w

ffiffiffiffi
m

p
)ffiffiffiffi

m
p ł(0)� ł(w)

wł(0)
þ O(m�1)

� �
,

where w and ł(w) are given in (3.9) and (3.10).

The proof of the theorem is similar to but simpler than that of Theorem 4.2 below, hence

omitted here.

4. Saddlepoint approximation to studentized trimmed mean

4.1. Introduction

In Section 3 we derived saddlepoint approximations to the density and tail probabilities of

the trimmed mean. In this section, we shall carry out the same derivations for the

studentized trimmed mean. This will have greater practical relevance if we are interested in

constructing confidence intervals or hypothesis testing concerning the centre of the

distribution.

To studentize the trimmed mean, we employ the plug-in estimate of the variance, which

is given by
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�̂�2Æ� ¼ 1

(1� �� Æ)2
((1� �� Æ)�̂� 2

Æ� þ �(1� �)(�̂�1�� � XÆ�)
2

� 2Æ�(�̂�Æ � XÆ�)(�̂�1�� � XÆ�)þ Æ(1� Æ)(�̂�Æ � XÆ�)
2),

where �̂� p ¼ inffx: F̂F(x) > pg for any 0 , p , 1 and F̂F(x) is the empirical distribution, and

�̂� 2
Æ� ¼ 1

(1� �� Æ)

ð �̂�1��

�̂�Æ

x2 dF̂F(x)� X
2

Æ�,

(see Hall and Padmanabhan 1992). Because of its complicated form, we shall restrict our

attention from now on to the special case where we assume that:

(C1) f (x) is symmetric around the origin, i.e., f (x) ¼ f (�x);

(C2) the trimming proportions are the same, i.e., Æ ¼ �.

Clearly, (C1) and (C2) imply that � ¼ 0. The case for the non-zero mean can be dealt with by

a simple mean shift.

Under assumptions (C1) and (C2), �̂�2Æ� above reduces to

�̂�2ÆÆ ¼ 1

n(1� 2Æ)2

Xs�1

i¼rþ1

(X i:n � XÆÆ)
2 þ r[(X r:n � XÆÆ)

2 þ (X s:n � XÆÆ)
2]

 !
:

Therefore, we can define the studentized trimmed mean by

T ¼ XÆÆ

�̂�ÆÆ
:

The purpose of this section is to derive saddlepoint approximations to the density and tail

probability for the studentized trimmed mean T , denoted by

~GG(t) ¼ P(T < t), ~gg(t) ¼ ~GG9(t):

As in Section 2, let Y1, . . . , Ym�2 be a random sample from the truncated distribution

Fx, y(t). We further define Zi ¼ Y 2
i and

Y ¼ 1

m� 2

Xm�2

i¼1

Yi, Z ¼ 1

m� 2

Xm�2

i¼1

Y 2
i :

Now, for fixed x and y, define

s(Y , Z) ¼ n�1=2(1� 2Æ)�1 (m� 2)Z � (m� 2r þ 2)
m� 2

m
Y þ xþ y

m

� �2
"

þ r(xþ y)2 � 2(r � 1)(xþ y)
m� 2

m
Y þ xþ y

m

� ��1=2

and
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b � b(Y , Z) ¼ m� 2

m
Y þ xþ y

m

� �
,

a � a(Y , Z) ¼ b(Y , Z)

s(Y , Z)
:

(4:1)

Then, conditional on X r:n ¼ x and X s:n ¼ y, we can show, after some simple algebra, that

XÆÆ ¼ b(Y , Z),

�̂�ÆÆ ¼ sfY , Z):

Therefore, we have

~GG(t) � P(T < t)

¼
ðð

�
P(T < tjX r:n ¼ x, X s:n ¼ y)qr,s:n(x, y)dx dy

¼
ðð

�
P(a(Y , Z) < t)qr,s:n(x, y)dx dy

and

~gg(t) � ~GG9(t) ¼
ðð

�( t)

f
a(Y ,Z)(t)qr,s:n(x, y)dx dy, (4:2)

where a(�, �) is defined in (4.1).

Similarly to Section 3, we first obtain a saddlepoint approximation to the density of

a(Y , Z) and then substitute this into the above to obtain saddlepoint approximations to ~gg(t)
and ~GG(t). For this purpose, we shall need the joint cumulant generating function of

(Yi, Zi) ¼ (Yi, Y
2
i ),

K(d, u) ¼ log Efexp(dY þ uY 2)g ¼ log

ð y

x

exp(dzþ uz2)dF(z)

F(y)� F(x)
:

Note that K(d, u) is also a function of x and y, and its derivatives with respect to x and y are

given by
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@K(d, u)

@x
¼ (1� exp(dxþ ux2 � K(d, u)))

f (x)

F(y)� F(x)
,

@K(d, u)

@ y
¼ (exp(dyþ uy2 � K(d, u))� 1)

f (y)

F(y)� F(x)
,

@2K(d, u)

@2x
¼ � (d þ 2ux) f (x)

F(y)� F(x)
þ @K(d, u)

@x
3 d þ 2uxþ f 9(x)

f (x)
þ 2 f (x)

F(y)� F(x)

� �
� @K(d, u)

@x

� �2

,

@2K(d, u)

@2 y
¼ (d þ 2uy) f (y)

F(y)� F(x)
þ @K(d, u)

@ y
3 d þ 2uyþ f 9(y)

f (y)
� 2 f (y)

F(y)� F(x)

� �
� @K(d, u)

@ y

� �2

,

@2K(d, u)

@x@ y
¼ f (x)@K(d, u)=@ y� f (y)@K(d, u)=@x

F(y)� F(x)
� @K(d, u)

@x

@K(d, u)

@ y
:

4.2. Saddlepoint approximation to the density of the studentized

trimmed mean

Note that the inverse transformation of (4.1) is

Y � Y (a, b) ¼ (m� 2)�1(mb� x� y),

Z � Z(a, b) ¼ (m� 2)�1 n(1� 2Æ)2b2

a2
þ (m� 2r þ 2)b2 � r(xþ y)2 þ 2(r � 1)(xþ y)b

� �
,

whose Jacobian is given by

J � J (a, b) ¼

@Y

@a

@Y

@b

@Z

@a

@Z

@b

��������

��������
¼ 2n(1� 2Æ)2mb2

(m� 2)2a3
:

Define

¸s(a, b) ¼ dY þ uZ � K(d, u),

˜s(a, b) ¼

@2K(d, u)

@2d

@2K(d, u)

@d@u

@2K(d, u)

@u@d

@2K(d, u)

@2u

���������

���������
,

G(a, b) ¼ j˜s(a, b)j
@2¸s(a, b)

@b2
:

Similarly to Daniels and Young (1991) and Jing and Robinson (1994), a saddlepoint

approximation to the density of a(Y , Z) is given by
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f
a(Y ,Z)(t)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 2

2�

r
J (t, b0(t))G

�1=2(t, b0(t))exp[�(m� 2)¸s(t, b0(t))]3 f1þ m�1~rrm(x, y, t)g,

where ~rrm(x, y, t) is an error term which will not be given here explicitly. Substituting this

into (4.2), we obtain

~gg(t) ¼
ðð

�( t)

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 2

2�

r
J (t, b0(t))G

�1=2(t, b0(t))exp[�(m� 2)¸s(t, b0(t))]

3 qr,s:n(x, y)f1þ m�1~rrm(x, y, t)gdx dy

¼
ðð

�( t)

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 2

2�

r
J (t, b0(t))

G1=2(t, b0(t))
exp[�(m� 2) ~̧̧ (x, y, t)]

3 f (x) f (y)f1þ m�1~rrm(x, y, t)gdx dy, (4:3)

where d0 ¼ d0(t), u0 ¼ u0(t) and b0 ¼ b0(t) are solutions to the following three equations,

@¸s(a, b0(t))

@b
jd¼d0( t),u¼u0( t) ¼ 0,

@K(d0(t), u0(t))

@d
¼ Y (t, b0(t)),

@K(d0(t), u0(t))

@u
¼ Z(t, b0(t))

and, further,

~̧̧ (x, y, t) ¼ ~̧̧
1(x, y, t)þ ~̧̧

2(x, y, t),

~̧̧
1(x, y, t) ¼ d0(t)Y (t, b0(t))þ u0(t)Z(t, b0(t))� K(d0(t), u0(t)),

~̧̧
2(x, y, t) ¼ �(m� 2)�1log(DnÆ�[F(x)]

r�1[F(y)� F(x)]m�2[1� F(y)]n�s)

with DnÆ� ¼ n!=f(r � 1)!(m� 2)!(n� s)!g.
Note that Y (t, b0(t)), Z(t, b0(t)) and K(d0(t), u0(t)) are also functions of x and y. We

can therefore find their partial derivatives with respect to x and y. Some simple algebra

yields
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@ ~̧̧ (x, y, t)

@x
¼ (m� 2)�1(�d0 � 2ru0(xþ y)þ 2(r � 1)u0b0)

þ exp(d0xþ u0x
2 � K(d0, u0))

F(y)� F(x)
� r � 1

(m� 2)F(x)

 !
f (x),

@ ~̧̧ (x, y, t)

@ y
¼ (m� 2)�1(�d0 � 2ru0(xþ y)þ 2(r � 1)u0b0)

� exp (d0 yþ u0 y
2 � K(d0, u0))

F(y)� F(x)
� n� s

(m� 2)(1� F(y))

 !
f (y),

@2 ~̧̧ (x, y, t)

@x2
¼ 1

(F(y)� F(x))2
þ r � 1

(m� 2)F 2(x)

� �
f 2(x)

þ 1

F(y)� F(x)
� r � 1

(m� 2)F(x)

� �
f 9(x)

� 2ru0

m� 2
þ @2K(d0, u0)

@2x

� �
,

@2 ~̧̧ (x, y, t)

@ y2
¼ 1

(F(y)� F(x))2
þ n� s

(m� 2)(1� F(y))2

� �
f 2(y)

þ � 1

F(y)� F(x)
þ n� s

(m� 2)(1� F(y))

� �
f 9(y)

� 2ru0

m� 2
þ @2K(d0, u0)

@2 y

 !
,

@2 ~̧̧ (x, y, t)

@x@ y
¼ � f (x) f (y)

[F(y)� F(x)]2
� 2ru0

m� 2
þ @2K(d0, u0)

@x@ y

 !
:

Define

~̃̃ (t) � ~̃̃ (x, y, t) ¼ ( f (x) f (y))�1

@2 ~̧̧ (x, y, t)

@x2
@2 ~̧̧ (x, y, t)

@x@ y

@2 ~̧̧ (x, y, t)

@ y@x

@2 ~̧̧ (x, y, t)

@y2

0
BB@

1
CCA:

For each t, let ~xx0 ¼ ~xx0(t), ~yy0 ¼ ~yy0(t), ~dd0 ¼ ~dd0(t), ~uu0 ¼ ~uu0(t) and ~bb0 ¼ ~bb0(t) be the solutions

to
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@¸s(a, ~bb0)

@b
jd¼~dd0,u¼~uu0

¼ 0,

@K(~dd0, ~uu0)

@d
¼ Y (t, ~bb0),

@K(~dd0, ~uu0)

@u
¼ Z(t, ~bb0),

@ ~̧̧ (~xx0, ~yy0, t)

@x
¼ 0,

@ ~̧̧ (~xx0, ~yy0, t)

@ y
¼ 0:

(4:4)

We now present the following proposition and theorem whose proofs are given in the

Appendix.

Proposition 4.1. Let t belong to the support of X . Suppose t 6¼ 0, and let conditions (C1)–

(C2) be satisfied. Then, for any n satisfying [nÆ] > 1 and n� 2[nÆ] > 3, ¸s(t, b) attains its

minimum at some interior point b0(t) and ~̧̧ (x, y, t) attains its global minimum at the finite

point (~xx0, ~yy0) which satisfies (4.4).

Remark 4.1. Proposition 4.1 guarantees that the saddlepoint equation (4.4) always has a

solution under conditions (C1)–(C2). The conditions [nÆ] > 1, n� 2[nÆ] > 3 guarantee that

qr,s:n(x, y) is meaningful.

Theorem 4.1. Let t belong to the support of X . Suppose t 6¼ 0: In addition to conditions

(C1)–(C2), we make the following assumptions:

(i) f (x) ¼ F9(x) and f 0(x) exists.

(ii) For any n satisfying [nÆ] > 1 and n� 2[nÆ] > 3, (~xx0, ~yy0) is unique, that is,
~̧̧ (x, y, t) . ~̧̧ (~xx0, ~yy0, t) if (x, y) 6¼ (~xx0, ~yy0), and ~̃̃ (~xx0, ~yy0, t) is positive definite. In

addition, the minimum point b0(t) is unique as (x, y) varies in AB,B0
(cf. also (4.4).

(iii) jEei�1Xþi�2X 2 jv1 2 L(R2) for some v1 . 0:
(iv) There exist w1 . 0, w2 . 0 such that both jxj(F(x))w1 and y(1� F(y))w2 are

bounded when x , 0 and y . 0:
Then we have

~gg(t) ¼ ~ggsp(t)f1þ m�1~RRn(t)g,

where

~ggsp(t) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

m� 2

r
J (t, ~bb0)

G1=2(t, ~bb0)j ~̃̃ (~xx0, ~yy0, t)j1=2
exp(�(m� 2) ~̧̧ (~xx0, ~yy0, t)),

where ~xx0(t), ~yy0(t), ~dd0(t), ~uu0(t) and ~bb0(t) are the solutions to equations (4.4).
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Note that conditions (i)–(iii) in Theorem 4.1 are similar to those in Theorem 3.1. The

first three conditions guarantee that f (Y ,Z)(y, z) has a uniform saddlepoint approximation as

x and y vary in some compact set AB,B0
. Since (Y , Z) ! (a(Y , Z), b(Y , Z)) is a one-to-one

and differentiable transformation, f a(Y ,Z)(t) has a uniform saddlepoint approximation as x

and y vary in AB,B0
, that is, ~rrm(x, y, t) is bounded as x and y vary. Condition (iv) implies

that the random variable X will have finite moments of arbitrarily small order. It is used in

the proof of Lemma A.13. We conjecture that it can be removed.

4.3. Saddlepoint approximation to the tail probability of the studentized

trimmed mean

To conclude this section, we shall derive a saddlepoint approximation to the tail probability

of the studentized trimmed mean by integrating the density approximation obtained in

Theorem 4.1. To simplify our notation, let

~aa(t) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

m� 2

r
J (t, ~bb0)G

�1=2(t, ~bb0)j ~̃̃ (~xx0, ~yy0, t)j�1=2,

~hh(t) ¼ ~̧̧ (~xx0, ~yy0, t):

Then, we can rewrite ~ggsp(t) from Theorem 4.1 as

~ggsp(t) ¼ ~aa(t) expf�(m� 2)~hh(t)g: (4:5)

From the proof of Theorem 4.1, we see that ~hh(t) ¼ ~̧̧ (~xx0, ~yy0, t) achieves its minimum at

t ¼ t0. Let

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(~hh(t)� ~hh(t0))

q
sgn(t � t0), (4:6)

~łł(v) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

m� 2

r
~aa(t(v))expf�(m� 2)~hh(t0)g

���� dtdv
����: (4:7)

Then we have the following theorem whose proof is provided in the Appendix.

Theorem 4.2. Under the conditions of Theorem 4.1, we have

P(T > t) ¼ 1��(v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 2

p
)� �(v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 2

p
)ffiffiffiffiffiffiffiffiffiffiffiffiffi

m� 2
p

~łł(0)� ~łł(v)

v~łł(0)
þ O(m�1)

 !
, (4:8)

where v and ~łł(v) are given in (4.6) and (4.7).

5. Numerical results

In this section, we present some numerical evidence on the quality of our saddlepoint

approximations. For simplicity, we shall do so only for ordinary trimmed means (cf.
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Theorems 3.1 and 3.2). Different distributions F and varying trimming proportions Æ and �
are chosen in the simulations. The results are presented in Figures 1–4. In these figures, the

left-hand panels give the right-tail probabilities 1� G(x), 1� GLR(x) and 1� Gss(x). The

right-hand panels display absolute relative errors; that is, we plot jGss(x)� G(x)j=(1� G(x))

x

0.0 1.0 2.0 3.0

0.0

0.1

0.2

0.3

0.4

0.5
right-tail probabilities

x

0.0 1.0 2.0 3.0

0.0

0.01

0.02

0.03

0.04

0.05

abs(relative errors)

Figure 1. Simulation for standard normal distribution, Æ ¼ � ¼ 0:1, n ¼ 20: (left) 1� G(x) (solid,

N ¼ 106), 1� GLR(x) (dotted), 1� Gss(x) (dashed); (right) relative errors with respect to exact

1� G(x)

x

0 1 2 3

0.0

0.1

0.2

0.3

0.4

0.5

right-tail probabilities

x

0 1 2 3

0.0

0.02

0.04

0.06

0.08

abs(relative errors)

Figure 2. Simulation for a mixture of normal distributions 0:9�(x)þ 0:1�(x=5)), Æ ¼ � ¼ 0:25,
n ¼ 20: (left) 1� G(x) (solid, N ¼ 106), 1� GLR(x) (dotted), 1� Gss(x) (dashed); (right) relative

errors with respect to exact 1� G(x)
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(dashed) and jGLR(x)� G(x)j=(1� G(x)) (dotted), where G denotes the exact distribution

function computed by Monte Carlo using N ¼ 106 samples from F, while Gss is the

integrated saddlepoint density (3.8), renormalized by dividing through its integral, which is

computed by numerical integration; GLR denotes the Lugannani–Rice type approximation

x

0 2 4 6

0.0

0.1

0.2

0.3

0.4

0.5

right-tail probabilities

x

0 2 4 6

0.0

0.1

0.2

0.3

abs(relative errors)

Figure 3. Simulation for a mixture of normal distributions (0:7�(x)þ 0:3�(x=5)), Æ ¼ � ¼ 0:1,
n ¼ 20: (left) 1� G(x) (solid, N ¼ 106), 1� GLR(x) (dotted), 1� Gss(x) (dashed); (right) relative

errors with respect to exact 1� G(x)

x

0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

0.5
right-tail probabilities

x

0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

abs(relative errors)

Figure 4. Simulation for Cauchy distribution, Æ ¼ � ¼ 0:25, n ¼ 80: (left) 1� G(x) (solid, N ¼ 106),

1� GLR(x) (dotted), 1� Gss(x) (dashed); (right) relative errors with respect to exact 1� G(x)
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given in Theorem 3.2. We note that in our simulations, ł(0) in Theorem 3.2 is calculated

approximately by ł(a) for some small value very close to zero.

Figure 1 deals with the case where F is standard normal, the trimming proportions Æ and

� are both equal to 0.10, and the sample size n ¼ 20. The results are very satisfactory. In

Figure 2, we take F to be a normal mixture, namely F(x) ¼ 0:9�(x)þ 0:1�(x=5), the

trimming proportions Æ and � are both equal to 0.25, and the sample size is again n ¼ 20.

The results are again very satisfactory, though not as good as in the first example. In this

example, we find that, for jxj . 5:1206, the determinant appearing in (3.8) becomes

negative; the probability that the trimmed mean takes values outside the interval

(�5.1206, 5.1206) is 10�4 (estimated by Monte Carlo), so that the renormalization factor

is in fact a little too small. In the first example (F normal) these difficulties do not arise, as

the determinant in (3.8) is positive for all values of x.

Figures 3 and 4 depict two cases of interest for which we find that the resulting

saddlepoint approximations behave much less well than those described in Figures 1 and 2.

Figure 3 deals with the normal mixture F(x) ¼ 0:7�(x)þ 0:3�(x=5), trimming proportions

Æ ¼ � ¼ 0:1 and sample size n ¼ 20, while in Figure 4 we present results for the case

where F is Cauchy, Æ ¼ � ¼ 0:25, and n ¼ 80. The reason for taking a sample size as large

as 80 in the Cauchy example is that, for smaller sample sizes, the determinant appearing in

(3.8) is positive only for a rather small interval of x-values; the probability that the trimmed

mean takes values outside this interval is less than 10�6 (estimated by Monte–Carlo). One

way to improve upon this would be the use of higher-order saddlepoint approximations to

the trimmed mean.

Appendix

Throughout this appendix, we suppose that t is in the support of X , x , t , y. We will use

(x, y) to denote a point or an open interval. They can be distinguished from the context.

We begin with six lemmas which will be used to prove Theorem 3.1.

Lemma A.1. Under condition (iii) of Theorem 3.1, there exist some constant M and some

even integer u such that ð1
�1

jF(y)� F(x)jujEei�Y1 ju d� < 2�M :

Proof. Let u be the smallest even integer which is greater than or equal to v. Since

Eei�X 2 Lv(R) and jEei�X j < 1, we have

Eei�X 2 Lu(R): (A:1)

Suppose X1, X2, . . . , Xu are i.i.d. with the same distribution as X . So jEei�X ju is the

characteristic function of (X 1 þ . . . þ Xu=2)� (Xu=2þ1 þ . . . þ Xu): Expression (A.1)

implies that jEei�X ju 2 L1(R): Thus the density function f u(z) of (X1 þ . . . þ Xu=2)

Saddlepoint approximations to the trimmed mean 481



�(Xu=2þ1 þ . . . þ Xu) is bounded by some constant M (see Feller 1971, Chapter XV,

Section 3). Now Parseval’s inequality (see Feller 1971, Section XV.3) gives

1

2�

ð1
�1

jE exp i�[(Y1 þ . . . þ Yu=2)� (Yu=2þ1 þ . . . þ Yu)]je�a2�2=2 d� (A:2)

¼ 1ffiffiffiffiffiffi
2�

p
a

ð1
�1

e�z2=2a2 f u(x, y)(z)dz,

where Y1, . . . , Yu are i.i.d. with the same distribution as Y1, and f u(x, y)(z) is the density

function of (Y1 þ . . . þ Yu=2)� (Yu=2þ1 þ . . . þ Yu) and a is some positive constant. Noting

that

f u(x, y)(z) <
1

[F(y)� F(x)]u
f u(z),

we have, from (A.2),

1

2�

ð1
�1

jF(y)� F(x)jujEei�Y1 jue�a2�2=2 d� (A:3)

<
1ffiffiffiffiffiffi
2�

p
a

ð1
�1

e�z2=2a2 f u(z)dz

< M :

Letting a ! 0 in (A.3) completes the proof. h

Denote the root of K9Y1 (º) ¼ t by ~ºº: Let Y (~ºº) be the random variable with density

function f
Y (~ºº)(z) ¼ e

~ººz f (z)I(x < z < y)=
Ð y
x
e
~ººz f (z)dz: For each pair of positive numbers B

and B0 such that B . B0, B� B0 > jtj, define
AB,B0

:¼ f(x, y) : �B < x < t � B0, t þ B0 < y < Bg: (A:4)

Lemma A.2. Under condition (iii) of Theorem 3.1, we have

sup
(x, y)2AB,B0

ð1
�1

jEei�Y (~ºº)ju d� , 1, (A:5)

where u is the smallest even integer greater then or equal to v.

Proof. Since K9Y1 (
~ºº) ¼ t, we have ð y

x

(z� t)e
~ººz f (z)dz ¼ 0:

Let p(x, y, º) ¼
Ð y
x
(z� t)eºz f (z)dz: Since p(x, y, ~ºº) ¼ 0 and @ p(x, y, ~ºº)=@º ¼Ð y

x
(z� t)2e

~ººz f (z)dz . 0, it follows from the implicit function theorem that there exists some

E . 0 such that ~ºº ¼ ~ºº(x, y) is a continuous function on AE(x1, y1) ¼ f(x, y) :
jx� x1j < E, jy� y1j < Eg for each point (x1, y1) 2 AB,B0

: Hence ~ºº is bounded on AE(x1, y1):
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Define

j(i�; x, y) :¼ 1

F(y)� F(x)

ð y

x

ei�z f (z)dz:

Lemma A.1 shows that j(i�; x, y) 2 Lu(R), where u is the smallest even integer greater than

or equal to v. By changing the path of integration, we haveð1
�1

ju(i�; x, y)d� ¼ 1

i

ði1
�i1

ju(�; x, y)d�

¼ 1

i

ð ~ºº(x, y)þi1

~ºº(x, y)�i1
ju(�; x, y)d�

¼
ð1
�1

ju(i�þ ~ºº(x, y); x, y)d�:

By the definition of Lebesgue integrability, ju(i�þ ~ºº(x, y)) 2 L1(R): Hence

Eei�Y (
~ºº) 2 Lu(R): (A:6)

Suppose ~YY1, ~YY2, . . . , ~YYu are i.i.d. with the same distribution as Y (~ºº): Thus jEei�Y (~ºº)ju is the

characteristic function of ( ~YY1 þ . . . þ ~YYu=2)� ( ~YYu=2þ1 þ . . . þ ~YYu): Expression (A.6) implies

that jEei�Y (~ºº)ju 2 L1(R): Now Parseval’s inequality gives

1

2�

ð1
�1

jE exp i�[( ~YY1 þ . . . þ ~YYu=2)� ( ~YYu=2þ1 þ . . . þ ~YYu)]je�a2�2=2 d� (A:7)

¼ 1ffiffiffiffiffiffi
2�

p
a

ð1
�1

e�z2=2a2 f
u(~ºº;x, y)(z)dz,

where f
u(~ºº;x, y)(z) is the density function of ( ~YY1 þ . . . þ ~YYu=2)� ( ~YYu=2þ1 þ . . . þ ~YYu): Note

that f
u(~ºº;x, y)(z) is the convolution of f ~YY1 (z), . . . , f ~YYu=2 (z), f� ~YYu=2þ1

(z), . . . , f� ~YYu
(z), where

f ~YY1 (z) ¼ . . . ¼ f ~YYu=2
(z) ¼ f

Y (~ºº)(z) and f� ~YYu=2þ1
(z) ¼ . . . ¼ f� ~YYu

(z) ¼ f
Y (~ºº)(�z); and that f u(z)

is the convolution of f X1
(z), . . . , f X u=2

(z), f�X u=2þ1
(z), . . . , f�X u

(z), where f X1
(z) ¼ . . .

¼ f X u=2
(z) ¼ f (z) and f�X u=2þ1

(z) ¼ . . . ¼ f�X u
(z) ¼ f (�z):

Since f
Y (~ºº)(z) ¼ e

~ººz f (z)I(x < z < y)=
Ð y
x
e
~ººz f (z)dz < Cf (z) for some absolute constant C

as (x, y) varies in AB,B0
by the boundedness of ~ºº, we have f

u(~ºº;x, y)(z) < Cu f u(z): Hence, by
(A.7),

1

2�

ð1
�1

jEei�Y (~ºº)jue�a2�2=2d� (A:8)

<
1ffiffiffiffiffiffi
2�

p
a

ð1
�1

e�z2=2a2Cu f u(z)dz

< CuM ,

where M is the same as in Lemma A.1. Letting a ! 0 in (A.8) gives
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Ð1
�1 jEei�Y (~ºº)ju d� < 2�CuM : Thus sup(x, y)2AE(x1, y1)

Ð1
�1 jEei�Y (~ºº)ju d� , 1: Since AB,B0

can be

covered by a finite number of AE(x1, y1), the proof is complete. h

Lemma A.3. Let f (x) ¼ F9(x): For arbitrary E1 . 0, there exists � . 0 such that, if j�j > �,

sup
(x, y)2AB,B0

jEei�Y1þ~ººY1=Ee
~ººY1 j < E1:

Proof. Define f̂f (�) ¼
Ð y
x
ei�ze

~ººz f (z)dz: Then

f̂f (�) ¼ �
ð y

x

ei�(zþ�=�) e
~ººz f (z)dz

¼ �
ð yþ�=�

xþ�=�
ei�ze

~ºº(z��=�) f z� �

�

� �
dz:

So

2 f̂f (�) ¼
ð1
�1

f (z)e
~ººz I(x < z < y)� f z� �

�

� �
e
~ºº(z��=�) I x < z� �

�
< y

� �� �
ei�z dz

¼
ð1
�1

[ f (z)e
~ººz � f (z)e

~ºº(z��=�) I(x < z < y)dz

þ
ð1
�1

f (z)e
~ºº(z��=�) I(x < z < y)� f z� �

�

� �
e
~ºº(z��=�) I x < z� �

�
< y

� �
ei�z dz

¼
ð y

x

f (z)e
~ººz(1� e�

~ºº�=�)ei�z dz (A:9)

þ
ðxþ�=�

x

f (z)e
~ºº(z��=�) ei�z dz�

ð yþ�=�

y

f z� �

�

� �
e
~ºº(z��=�)ei�z dz

þ
ð y

xþ�=�
f (z)� f z� �

�

� �
e
~ºº(z��=�)ei�z dz:

�

From the proof of Lemma A.2, we know that ~ºº is a continuous function on AE(x1, y1): Hence
~ºº is bounded on each AE(x1, y1): The compactness of AB,B0

shows that ~ºº is also bounded on

AB,B0
: Thus 1� e�

~ºº�=� ! 0 uniformly on AB,B0
as j�j ! 1: This implies thatð y

x

f (z)e
~ººz(1� e�

~ºº�=�)ei�z dz ! 0 (A:10)

uniformly on AB,B0
as j�j ! 1: Since F(x) is absolutely continuous with respect to the

Lebesgue measure, it follows from Theorem 6.11 of Rudin (1987) thatðxþ�=�

x

f (z)dz ! 0
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uniformly in x as j�j ! 1: Hence����
ðxþ�=�

x

f (z)e
~ºº(z��=�)ei�z dz

���� <
ðxþ�

x

f (z)dz sup
(x, y)2AB,B0

,x<z< y

e
~ºº(z��=�) (A:11)

! 0

uniformly on AB,B0
as j�j ! 1: Similarly,ð yþ�=�

y

f z� �

�

� �
e
~ºº(z��=�)ei�z dz ! 0 (A:12)

uniformly on AB,B0
as j�j ! 1: Sinceð y

xþ�=�
f (z)� f z� �

�

� �� �
e
~ºº(z��=�)ei�z dz < sup

(x, y)2AB,B0
,x<z< y

e
~ºº(z��=�)

ð1
�1

���� f (z)� f z� �

�

� �����dz
and

Ð1
�1 j f (z)� f (z� �=�)jdz ! 0 as j�j ! 1 (Rudin 1987, Theorem 9.5), we haveð y

xþ�=�
f (z)� f z� �

�

� �� �
e
~ºº(z��=�)ei�z dz ! 0 (A:13)

uniformly on AB,B0
as j�j ! 1:

Combining (A.9)–(A.13), we see that f̂f (�) ! 0 uniformly on AB,B0
as j�j ! 1. Since

E e
~ººY1 is bounded away from 0 as (x, y) 2 AB,B0

, the proof is complete. h

Lemma A.4. Suppose conditions (i) and (iii) of Theorem 3.1 hold. Then f
Y
(t) has a uniform

saddlepoint approximation as (x, y) varies in AB,B0
, that is,

f Y (t) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

2�K 0Y1 (
~ºº)

s
expf�m[~ººt � KY1 (

~ºº)]g(1þ m�1 rm(x, y, t)), (A:14)

where jrm(x, y, t)j is bounded by some absolute constant C0.

Proof. Denote the mean and variance of Y (~ºº) by ~�� and ~�� 2 , respectively. Define

T (~ºº) ¼ 1ffiffiffiffi
m

p
~��

Xm
j¼1

(Y j(~ºº)� ~��),

where Y1(~ºº), . . . , Ym(~ºº) are i.i.d. with the same distribution as Y (~ºº): In order to prove (A.14),

it suffices to prove that the Edgeworth expansion of the density f
T(~ºº)(t) of T (

~ºº) has a uniform

error as (x, y) varies in AB,B0
, that is,

f
T(~ºº)(t) ¼

1ffiffiffiffiffiffi
2�

p e� t2=2 1þ ~��3
6 ~�� 3

ffiffiffiffi
m

p (t3 � 3t)

� �
þ m�1 rm(t), (A:15)

where ~��3 ¼ E(Y (º)� ~��)3 and jrm(t)j is bounded by some finite constant C1 as (x, y) varies in

AB,B0
.

Lemma A.1 guarantees that
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jm�1 rm(t)j < Nm :¼ 1

2�

ð1
�1

����jm
1

i�
~��
ffiffiffiffi
m

p
� �

� e��2=2 � ~��3
6 ~�� 3

ffiffiffiffi
m

p (i�)3e��2=2jd�, (A:16)

where j1(i�) ¼ Eei�(Y (
~ºº)� ~��):

By Lemma A.3, for all E1 , 1, there exists � . 0 such that if j�j > �,
sup(x, y)2AB,B0

jj1(i�)j < E1: Hence the contribution of the interval (�1, �� ~��
ffiffiffiffi
m

p

[ (� ~��
ffiffiffiffi
m

p
, þ1) to the integral in (A.16) is at most

�m�u

ð1
�1

����j1

i�
~��
ffiffiffiffi
m

p
� �����

u

d�þ
ð
j�j.� ~��

ffiffiffi
m

p e��2=2 1þ
���� ~��3�3~�� 3

����
 !

d�,

which decreases to 0 faster than any power of 1=m if we note Lemma A.2 and the fact that

~��3 is uniformly bounded and ~�� 2 is uniformly bounded away from 0 and 1 as (x, y) varies in

AB,B0
:

Define ł(�) ¼ logj1(i�)þ 1
2
~�� 2�2: Thus we have

Nm ¼ 1

2�

ð
j�j<� ~��

ffiffiffi
m

p e��2=2

����exp mł
�

~��
ffiffiffiffi
m

p
� �� �

� 1� ~��3
6 ~�� 3

ffiffiffiffi
m

p (i�)3
����d�þ o

1

m

� �
(A:17)

uniformly on AB,B0
as m ! 1:

The integrand can be estimated by the inequality (see Feller 1971)

jeÆ � 1� �j < jeÆ � e� þ e� � 1� �j (A:18)

< (jÆ� �j þ 1
2
�2)eª,

where ª > max(jÆj, j�j):
The function ł(�) is four times continuously differentiable, and ł(0) ¼

ł9(0) ¼ ł 0(0) ¼ 0, ł-(0) ¼ i3 ~��3: Since ł(4)(�) is continuous, we can choose � such that

if j�j , �, jł(4)(�)j is uniformly bounded by some finite constant as (x, y) 2 AB,B0
: By the

four-term Taylor expansion we have

jł(�)� 1
6
~��3(i�)

3j < C2 ~��
4j�j4, j�j < �, (A:19)

for some finite constant C2 as (x, y) 2 AB,B0
:

Next we shall choose sufficiently small � so that

jł(�)j < 1
4
~�� 2�, j1

6
~��3(i�)

3j < 1
4
~�� 2�2, j�j < �, (A:20)

uniformly as (x, y) 2 AB,B0
:

Thus if � is so small that (A.19) and (A.20) hold, the integrand is at most

e��2=4 C2

m
�4 þ ~��23

72m
�6

� �
:

This shows that (A.15) holds. h

Lemma A.5. If F(x) is continuous at x ¼ t, where t is in the support of X , then for any n

satisfying [nÆ] > 2, [n�] > 2 and n� [nÆ]� [n�] > 1, ¸(x, y, t) attains its minimum at
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some finite point (x0, y0) such that not only both x0 and y0 satisfy (3.5), but also both F(x0)

and F(y0) are unique.

Proof. Suppose (xn, yn) is an arbitrary sequence in �(t): We will prove the following five

assertions:

(i) If xn ! �1, yn ! y0, where t , y0 < 1, then ¸(xn, yn, t) ! 1:
(ii) If xn ! x0, yn ! þ1, where �1 < x0 , t, then ¸(xn, yn, t) ! 1:
(iii) If xn ! t, yn ! t, then ¸(xn, yn, t) ! 1:
(iv) If xn ! t, yn ! y0, where t , y0 < 1, then ¸(xn, yn, t) ! 1:
(v) If xn ! x0, yn ! t, where �1 < x0 , t, then ¸(xn, yn, t) ! 1:

Since

¸(x, y, t) ¼ ~ººt � log

ð y

x

e
~ººz dF(z)� m�1 log(CnÆ�[F(x)]

r�2[1� F(y)]n�s�1),

noting that

xn ! �1 implies F(xn) ! 0,

yn ! þ1 implies F(yn) ! 1,

xn ! t and yn ! t imply ~ºº ! t and

ð y

x

e
~ººz dF(z) ! 0,

we have assertions (i)–(iii).

We now turn to the proof of (iv). Since K9Y1 (
~ºº) ¼ t, we haveð y

x

(t � z)e
~ººz dF(z) ¼ 0: (A:21)

For each (xn, yn), we have a solution ~ººn to (A.21). Hence, we have a sequence f~ººn, n > 1g:
Now consider a convergent subsequence f~ººnk

, k ¼ 1, 2, . . .g of f~ººn, n > 1g: Hence, we

suppose ~ººnk
! º0 . From (A.21), we haveð t

xn k

(t � z)e
~ººn k

z dF(z) ¼
ð ynk

t

(z� t)e
~ºº n k

z dF(z): (A:22)

If º0 is finite, the left-hand side of (A.22) goes to 0 but the right-hand side of (A.22) goes to

some positive number as xnk
! t: If º0 is +1, we can consider the formulað t

xn k

(t � z)e
~ºº n k

(z� t) dF(z) ¼
ð ynk

t

(z� t)e
~ººn k

(z� t) dF(z),

which is obtained from (A.22). The left-hand side of the above formula goes to 0 but the

right-hand side goes to 1: Therefore º0 ¼ �1: And we can conclude that ~ººn ! �1 as

n ! 1: Noting that ea < 1þ a ea if a > 0, we have, for xn sufficiently close to t,
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ð t
xn

e
~ºº(z� t) dF(z) <

ð t
xn

dF(z)þ
ð t
xn

~ºº(z� t)e
~ºº(z� t) dF(z) (A:23)

¼
ð t
xn

dF(z)�
ð yn

t

~ºº(z� t)e
~ºº(z� t) dF(z),

where in the last equality we have used (A.22). Since ~ºº(z� t)e
~ºº(z� t) is bounded and goes to 0

for each z . t, we have
Ð yn
t

~ºº(z� t)e
~ºº(z� t) dF(z) ! 0 by the dominated convergence theorem.

Hence,
Ð t
xn
e
~ºº(z� t) dF(z) ! 0 as x ! t: Therefore,ð yn

xn

e
~ºº(z� t) dF(z) ! 0 as x ! t: (A:24)

Observe that

~ººt � log

Ð yn
xn

e
~ººz dF(z)

F(yn)� F(xn)
¼ �log

Ð yn
xn

e
~ºº(z� t) dF(z)

F(yn)� F(xn)
:

Therefore we have proved (iv). The proof of (v) is the same as that of (iv).

Now (i)–(v) imply that ¸(x, y, t) attains its minimum at some finite point (x0, y0) in

�(t):
Finally, we will prove the uniqueness of F(x0) and F(y0). The above proof shows that

¸(x0, y0, t) ¼ inf
(x, y)2�( t)

¸(x, y, t): (A:25)

We also know that

¸1(x, y, t) ¼ sup
º

¸1(x, y, º, t) ¼ ~ººt � KY1 (
~ºº),

where ¸1(x, y, º, t) ¼ ºt � KY1 (º) and
~ºº is uniquely determined by the equation K9Y1 (

~ºº) ¼ t:
Hence (A.25) can be re-expressed as

¸(x0, y0, t) ¼ inf
(x, y)2�( t)

sup
º
¸1(x, y, º, t)þ¸2(x, y):

Assume that (x90, y90) is another point such that

¸(x90, y90, t) ¼ inf
(x, y)2�( t)

sup
º

¸1(x, y, º, t)þ¸2(x, y):

Denote the solution of K9Y1 (
~ºº) ¼ t by ~ºº90 when x ¼ x90 and y ¼ y90. Therefore,

¸1(x0, y0, ~ºº0, t)þ¸2(x0, y0) ¼ inf
(x, y)2�( t)

¸1(x, y, ~ºº0, t)þ¸2(x, y)

< ¸1(x90, y90, ~ºº0, t)þ¸2(x90, y90)

< sup
º
¸1(x90, y90, º, t)þ¸2(x90, y90)

¼ ¸1(x90, y90, ~ºº90, t)þ¸2(x90, y90): (A:26)
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If ~ºº0 6¼ ~ºº90, then

¸1(x90, y90, ~ºº0, t)þ¸2(x90, y90) , sup
º

¸1(x90, y90, º, t)þ¸2(x90, y90) (A:27)

by the fact that ¸1(x, y, º, t) is a strictly concave function of º. Hence,

~ºº0 ¼ ~ºº90: (A:28)

Define

¸3(x, y, �, t) ¼ �
t

y
� log

ð y

x

e�z= y dF(z)

F(y)� F(x)
,

�0 ¼ ~ºº0 y0, �90 ¼ ~ºº0 y90:

We thus have

¸3(x0, y0, �0, t)þ¸2(x0, y0) ¼ ¸3(x90, y90, �90, t)þ¸2(x90, y90)

¼ inf
(x, y)2�( t)

sup
�

¸3(x, y, �, t)þ¸2(x, y):

Similarly to the proof of (A.25), we can obtain

�0 ¼ �90, (A:29)

noting that ¸3(x, y, �, t) is a strictly concave function of � for fixed x, y, t.

If ~ºº0 6¼ 0, then y0 ¼ y90, which implies the uniqueness of y0. Similarly for x0.

If ~ºº0 ¼ 0, then ¸(x0, y0, t) ¼ ¸2(x0, y0). The strict convexity of ¸2(x, y) as a function of

F(x) and F(y) shows the uniqueness of F(x0) and F(y0). h

Remark A.1. Since ¸(x, y, t) is differentiable in both x and y, Lemma A.5 implies that

(x0, y0) satisfies (3.5). So Lemma A.5 is just our Proposition 3.1. Also from the proof, we can

see the uniqueness of (x0, y0) except in one particular case where ~ºº0 ¼ 0.

Lemma A.6. Under the conditions of Theorem 3.1, for suitably chosen B and B0 which are

independent of n,ðð
�( t)nAB,B0

f Y (t)qr�1,sþ1:n(x, y)dx dy=exp(�m¸(x0, y0, t))

goes to 0 faster than any power of 1=m:

Proof. From Lemma A.1, jEei�Y1 ju is integrable. So we can apply the Fourier inversion

theorem to obtain
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f Y (t) ¼
1

2�

ð1
�1

e�i� tEei�Y d�

¼ m

2�

ð1
�1

e�i�mt(Eei�Y1 )m d�:

Again, Lemma A.1 shows that

j f
Y
(t)j < m

2�

ð1
�1

jEei�Y1 jm d� <
Mm

jF(y)� F(x)ju :

Hence ðð
�( t)nAB,B0

f Y (t)qr�1,sþ1:n(x, y)dx dy

<

ðð
�( t)nAB,B0

Mm

[F(y)� F(x)]u
qr�1,sþ1:n(x, y)dx dy

¼
ðð

�( t)nAB,B0

Mm expf�m¸3(x, y)g f (x) f (y)dx dy, (A:30)

where

¸3(x, y) ¼ �m�1 log(CnÆ�[F(x)]
r�2[F(y)� F(x)]m�u[1� F(y)]n�s�1):

Since

¸(x, y, t) ¼ ~ººt � log

ð y

x

e
~ººz dF(z)� m�1 log(CnÆ�[F(x)]

r�2[1� F(y)]n�s�1)

< ¸9(x, y, t)

:¼ ~ººt � log

ð y

x

e
~ººz dF(z)� m�1 logCnÆ� �

2Æ

1� Æ� �
logF(x)� 2�

1� Æ� �
log(1� F(y))

for sufficiently large m, we have

¸(x0, y0, t) < ¸9(x90, y90, t) :¼ inf x, t, y ¸9(x, y, t):

The existence and finiteness of (x90, y90) can be proved in the same way as that of (x0, y0):
From the expression for ¸9(x, y, t), we see that x90, y90 are independent of n: Noting that

limx!�1 F(x) ¼ 0, lim y!1 F(y) ¼ 1, lim
x! t, y! t

(F(y)� F(x)) ¼ 0: 8E9 . 0, we can choose

positive numbers B and B0 independent of n such that

inf
(x, y)2�( t)nAB,B0

¸3(x, y) . ¸9(x90, y90, t)þ E9 > ¸(x0, y0, t)þ E9: (A:31)

It follows from (A.26) that
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1

expf�m¸(x0, y0, t)g

ðð
�( t)nAB,B0

Mm expf�m¸3(x, y)g f (x) f (y)dx dy

goes to 0 faster than any power of m�1. By (A.25), the proof is complete.

Proof of Theorem 3.1. Lemma A.6 assures us of the exponential smallness ofðð
�( t)nAB,B0

f Y (t)qr�1,sþ1:n(x, y)dx dy=exp(�m¸(x0, y0, t)):

To complete the proof, we need to consider the asymptotic expansion ofðð
AB,B0

f Y (t)qr�1,sþ1:n(x, y)dx dy:

Lemma A.4 givesðð
AB,B0

f Y (t)qr�1,sþ1:n(x, y) dx dy

¼
ðð

AB,B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2�K 0Y1 (
~ºº)

s
f (x) f (y)exp[�m¸(x, y, t)]dx dyf1þ O(m�1)g:

We thus obtain a double integral of Laplace type. Conditions (i) and (ii) of the theorem

guarantee that we can use formula (8.2.55) of Bleistein and Handelsman (1986) to obtainðð
AB,B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2�K 0Y1 (
~ºº)

s
f (x) f (y) exp [�m¸(x, y, t)]dx dyf1þ O(m�1)g

¼
ffiffiffiffiffiffi
2�

m

r
expf�m¸(x0(t), y0(t), t)gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 0Y1 (

~ºº0(t))jx¼x0( t), y¼ y0( t)j˜0(t)j
q 1þ O

1

m

� �� �
,

and we are done. h

The next eight lemmas will be used to prove Theorem 4.1. Since the proofs of the first

four of these are similar to the proofs of Lemmas A.1–A.4, we shall omit the details here.

Lemma A.7. Under condition (iii) of Theorem 4.1, there exist some constant M1 and some

even integer u1 such thatð1
�1

ð1
�1

jF(y)� F(x)ju1 jEei�1Y1þi�2Y 2
1 ju1 d�1 d�2 < (2�)2M1:

Let d0, u0 be the solutions to the equations

@K(d0, u0)

@d
¼ Y (t, b),

@K(d0, u0)

@u
¼ Z(t, b):
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Lemma A.8. Under condition (iii) of Theorem 4.1, we have

sup
(x, y)2AB,B0

ðð
R2

jexp(K(d0 þ i�1, u0 þ i�2)� K(d0, u0))ju1 d�1 d�2 , 1, (A:32)

where u1 is the smallest even integer greater than or equal to v1.

Lemma A.9. Let f (x) ¼ F9(x): For arbitrary E91 . 0, there exists �9 . 0 such that if

j�1j þ j�2j > �9, then

sup
(x, y)2AB,B0

jexp(K(d0 þ i�1, u0 þ i�2)� K(d0, u0))j < E91: (A:33)

Lemma A.10. Suppose conditions (i) and (iii) of Theorem 4.1 hold. Then the density function

f (Y ,Z)(Y (t, b), Z(t, b)) has a uniform saddlepoint approximation as (x, y) varies in AB,B0
,

that is,

f (Y ,Z)(Y (t, b), Z(t, b)) ¼
m� 2

2�
˜�1=2

s (t, b)exp[�(m� 2)¸s(t, b)](1þ m�1 rm(x, y, t)),

(A:34)

where jrm(x, y, t)j is bounded by some absolute constant C90.

Lemma A.11.

sup
d,u

[dY þ uZ � K(d, u)] ! 1 as Y ! x from the right: (A:35)

sup
d,u

[dY þ uZ � K(d, u)] ! 1 as Y ! y from the left: (A:36)

Proof. We only give a proof of (A.35); that of (A.36) is similar.

Since

sup
d,u

[dY þ uZ � K(d, u)] > sup
d

[dY � K(d, 0)] ¼ ~ddY � K( ~dd, 0),

where ~dd satisfies the equation ð y

x

Ye~zz dF(z) ¼
ð y

x

z e
~ddz dF(z), (A:37)

it suffices to prove ~ddY � K( ~dd, 0) ! 1 as Y ! x from the right.

Let h(d, Y ) ¼
Ð y
x
(z� Y )edz dF(z): Since h( ~dd, Y ) ¼ 0, we have

@ ~dd

@Y
¼

ð y

x

e
~ddzdF(z)ð y

x

(z� Y )2 e
~ddz dF(z)

:
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Hence, ~dd is a increasing function of Y . Then if Y ! x from the right, we can suppose
~dd ! ~dd0: From (A.37), we haveðY

x

(Y � z)e
~ddz dF(z) ¼

ð y

Y

(z� Y )e
~ddz dF(z): (A:38)

If ~dd0 is finite, then the left-hand side of (A.38) goes to 0 but the right goes to some positive

number as Y ! x. Therefore ~dd0 ¼ �1: Noting that ea < 1þ a ea if a > 0, we have, for Y

sufficiently close to x,ðY
x

e
~dd(z�Y ) dF(z) <

ðY
x

dF(z)þ
ðY
x

~dd(z� Y )e
~dd(z�Y ) dF(z) (A:39)

¼
ðY
x

dF(z)�
ð y

Y

~dd(z� Y )e
~dd(z�Y ) dF(z),

where in the last equality we have used (A.38). Since ~dd(z� Y)e
~dd(z�Y ) is bounded and goes to

0 for each z . Y , we have
Ð y
Y
~dd(z� Y )e

~dd(z�Y ) dF(z) ! 0 by the dominated convergence

theorem. Hence
Ð Y
x

e
~dd(z�Y ) dF(z) ! 0 as Y ! x from the right. Therefore,

~ddY � K( ~dd, 0) ¼ �log

ð y

x

e
~dd(z�Y )

F(y)� F(x)
dF(z) ! 1 as Y ! x from the right:

Remark A.2. Since

b � b(Y , Z) ¼ m� 2

m
Y þ xþ y

m

� �
,

Lemma A.11 implies that the equation

@¸s(t, b)

@b
jd¼d0( t),u¼u0( t) ¼ 0

has a solution b ¼ b0(t) 2 (x, y).

Lemma A.12. If F(x) is continuous at x ¼ t, where t is in the support of X, then for any n

satisfying [nÆ] > 1 and n� 2[nÆ] > 3, ~̧̧ (x, y, t) attains its minimum at some finite point

(~xx0, ~yy0).

Proof. Suppose (xn, yn) is an arbitrary sequence in �(t). We will prove the following five

assertions.

(i9) If xn ! �1, yn ! y0, where t , y0 < 1, then ~̧̧ (xn, yn, t) ! 1.

(ii9) If xn ! x0, yn ! þ1, where �1 < x0 , t, then ~̧̧(xn, yn, t) ! 1:
(iii9) If xn ! t, yn ! t, then ~̧̧(xn, yn, t) ! 1:
(iv9) If xn ! t, yn ! y0, where t , y0 < 1, then ~̧̧(xn, yn, t) ! 1:
(v9) If xn ! x0, yn ! t, where �1 < x0 , t, then ~̧̧(xn, yn, t) ! 1:
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The proof of (i9)–(iii9) is similar to Lemma A.5.

Turning to the proof of (iv9), since

~̧̧
1(x, y, t) ¼ d0(t)Y (t, b0(t))þ u0(t)Z(t, b0(t))� K(d0(t), u0(t))

¼ sup
d,u

[dY (t, b0(t))þ uZ(t, b0(t))� K(d, u)]

> sup
d

[dY (t, b0(t))� K(d, 0)],

it suffices to prove that

sup
d

[dY (t, b0(t))� K(d, 0)] ! 1

as xn ! t and yn ! y0: This can be proved similarly to Lemma A.5.

It remains to prove (v9). Since ~̧̧
1(x, y, t) > supu[uZ(t, b0(t))� K(0, u)], this again

follows similar lines to Lemma A.5. (i9)–(v9) give the assertions of Lemma A.12. h

Remark A.3. Lemma A.12 implies that (~xx0, ~yy0) satisfies (4.4). So (4.4) has at least one

solution ~xx0, ~yy0, ~dd0, ~uu0, ~bb0: Combining Lemmas A.11 and A.12 gives Proposition 4.2.

Lemma A.13. Under the conditions of Theorem 4.1, for suitably chosen B and B0 which are

independent of n,ðð
�( t)nAB,B0

f a(Y ,Z)(t)qr,s:n(x, y)dx dy=exp(�(m� 2) ~̧̧ (~xx0, ~yy0, t))

goes to 0 faster than any power of 1=m.

Proof. Lemma A.7 shows that jEei�1Y1þi�2 Z1 ju1 is integrable. So we can apply the Fourier

inversion theorem to obtain

f (Y ,Z)(z1, z2) ¼
1

(2�)2

ð1
�1

ð1
�1

e�i�1 z1�i�2 z2Eei�1Yþi�2 Z d�1 d�2

¼ (m� 2)2

(2�)2

ð1
�1

ð1
�1

e�i(m�2)�1 z1�i(m�2)�2 z2 (Eei�1Y1þi�2 Z1 )m�2 d�1 d�2:

Hence, using Lemma A.7, we have

f (Y ,Z)(z1, z2) <
(m� 2)2

(2�)2

ð1
�1

ð1
�1

jEei�1Y1þi�2 Z jm�2 d�1 d�2

<
M1(m� 2)2

jF(y)� F(x)ju1 :
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So

f a(Y ,Z)(t) ¼
ð y

x

f (Y ,Z)(Y (t, b), Z(t, b))jJ jdb

<
M1(m� 2)2

jF(y)� F(x)ju1
2n(1� 2Æ)2m

(m� 2)2 t3

ð y

x

b2 db

¼ M1(m� 2)2

jF(y)� F(x)ju1
2n(1� 2Æ)2m

(m� 2)2 t3
y3 � x3

3
:

Thus ðð
�( t)nAB,B0

f a(Y ,Z)(t)qr,s,:n(x, y)dx dy

<

ðð
�( t)nAB,B0

M1(m� 2)2

jF(y)� F(x)ju1
2n(1� 2Æ)2m

(m� 2)2 t3
y3 � x3

3
qr,s:n(x, y)dx dy

<
2M1(1� 2Æ)2

3t3

ðð
�( t)nAB,B0

nm expf�(m� 2)¸93(x, y)g

3 (y3 � x3)(F(x))3w1 (1� F(y))3w2 f (x) f (y)dx dy, (A:40)

where

¸93(x, y) ¼ �(m� 2)�1 log(DnÆ�[F(x)]
r�1�3w1 [F(y)� F(x)]m�2�u1 [1� F(y)]n�s�3w2 ):

Condition (iv) of Theorem 4.1 implies that (y3 � x3)(F(x))3w1 (1� F(y))3w2 is bounded.

Hence, from (A.40),ðð
�( t)nAB,B0

f
a(Y ,Z)(t)qr,s,:n(x, y)dx dy

< M2

ðð
�( t)nAB,B0

nm expf�(m� 2)¸93(x, y)g f (x)f (y)dx dy, (A:41)

where M2 is some absolute constant. As in the proof of Lemma A.6, given E2 . 0, we can

select B and B0 which are independent of n such that, for n sufficiently large,

inf
�( t)nAB,B0

¸93(x, y) . ~̧̧(~xx0, ~yy0, t)þ E2: (A:42)

Combining (A.40)–(A.42) completes the proof. h

Lemma A.14. Given t 6¼ 0, under conditions (C1)–(C2), (i) and (ii) of Theorem 4.1, f a(Y , Z)(t)
has a uniform saddlepoint approximation as (x, y) varies in AB,B0

, that is,
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f a(Y ,Z)(t) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 2

2�

r
J (t, b0(t))G

�1=2(t, b0(t))exp[�(m� 2)¸s(t, b0(t))]

3 f1þ m�1 ~rrm(x, y, t)g,

where j~rrm(x, y, t)j is bounded as (x, y) varies in AB,B0
.

Proof. First, we will show that

@2¸s(t, b0(t))

@b2
. 0 (A:43)

as (x, y) varies in AB,B0
: Lemma A.11 and Remark A.2 imply that @¸s(t, b0(t))=@b ¼ 0:

Simple calculations show that

@¸s(t, b0(t))

@b

¼ d0
m

m� 2
þ u0(m� 2)�1 2n(1� 2Æ)2

t2
b0(t)þ 2(m� 2r þ 2)b0(t)þ 2(r þ 1)(xþ y)

� �
,

@2¸s(t, b0(t))

@b2

¼ u0(m� 2)�1 2n(1� 2Æ)2

t2
þ 2(m� 2r þ 2)

� �
:

Since

(m� 2)�1 2n(1� 2Æ)2

t2
þ 2(m� 2r þ 2)

� �
! 2(1� 2Æ)2

t2(1� Æ� �)
þ 2� 4Æ

(1� Æ� �)
. 0,

we see that @2¸s(t, b0(t))=@b
2 . 0 if and only if u0 . 0 for sufficiently large n: Now we

suppose u0 ¼ 0: Then @¸s(t, b0(t))=@b ¼ 0 gives d0 ¼ 0: Define x0, y0, b0, t0 by the

following formulae:

F(x0) ¼
r � 1

n� 2
, 1� F(y0) ¼

n� s

n� 2
, (A:44)
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b0 ¼
(m� 2)

ð y0

x0

z dF(z)

m(F(y0)� F(x0))
þ x0 þ y0

m

0
B@

1
CA
, (A:45)

t0 ¼
ffiffiffi
n

p
(1� 2Æ)b0

(m� 2)

ð y0

x0

z2 dF(z)

F(y0)� F(x0)

0
B@

� (m� 2r þ 2)

(m� 2)

ð y0

x0

z dF(z)

m(F(y0)� F(x0))
þ x0 þ y0

m

0
B@

1
CA

2

þ r(x0 þ y0)
2

�2(r � 1)(x0 þ y0)

(m� 2)

ð y0

x0

z dF(z)

m(F(y0)� F(x0))
þ x0 þ y0

m

2
64

3
75
1
CA

�1=2

: (A:46)

The solutions to (4.4) can be shown by calculation to be ~xx0(t0) ¼ x0, ~yy0(t0) ¼ y0, ~dd0(t0) ¼ 0,

~uu0(t0) ¼ 0 and ~bb0(t0) ¼ b0. Now from (A.44), we can easily see that x0 � �Æ ¼ O(n�1) and

y0 � �1�Æ ¼ O(n�1). Furthermore, we have �Æ þ �1�Æ ¼ 0. Then, from these equations and

the definition of t0, we obtain jt0j ¼ O(n�1). This is a contradiction because t is a fixed non-

zero number.

It is also impossible that u0 ! 0 as n ! 1: Otherwise u0 ! 0 implies that d0 ! 0:
Equation (A.46) shows that t0 ! 0:

Hence we can suppose @2¸s(t, b0(t))=@b
2 is positive and bounded away from 0 as (x, y)

varies in AB,B0
:

Next we will show that there exists some fixed � f such that, for n sufficiently large,

@2¸s(t, b)

@b2
. 0

if b 2 (b0(t)� � f , b0(t)þ � f ) as (x, y) varies in AB,B0
: Otherwise there exists a sequence

f�ng such that �n ! 0 as n ! 1 and @2¸s(t, b0(t)þ �n)=@b
2 < 0: Since AB,B0

is compact,

we can suppose limn!1(b0(t)þ �n) ¼ b�0 : At the same time limn!1b0(t) ¼ b�0 : Note the

uniform convergence of @2¸s(t, b)=@b
2 in any compact set as n ! 1 when @2¸s(t, b)=@b

2

is regarded as a function of x, y, b: We have @2¸s(t, b
�
0 )=@b

2 < 0: But we have already

shown that @2¸s(t, b0(t))=@b
2 is positive and bounded away from 0 as (x, y) varies in AB,B0

for sufficiently large n, thus we have a contradiction.
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So

f
a(Y ,Z)(t)

¼
ð y

x

f (a(Y ,Z),b(Y ,Z))(t, b)db

¼ m� 2

2�

ð y

x

˜�1=2
s (t, b)J (t, b)exp[�(m� 2)¸s(t, b)](1þ m�1~rrm(x, y, t))

¼ m� 2

2�

ð
jb�b0( t)j<� f

þ
ðb0( t)�� f

x

þ
ð y

b0( t)þ� f

 !

˜�1=2
s (t, b)J (t, b) exp [�(m� 2)¸s(t, b)](1þ m�1~rrm(x, y, t))db:

Laplace approximation gives the result. The uniform error comes from the compactness of

AB,B0
: h

Proof of Theorem 4.1. Lemma A.13 ensures the exponential smallness of

ðð
�( t)nAB,B0

f
a(Y ,Z)(t)qr,s:n(x, y)dx dy=exp(�(m� 2) ~̧̧(~xx0, ~yy0, t)):

To complete the proof, we need to consider the asymptotic expansion of

ðð
AB,B0

f a(Y ,Z)(t)qr,s:n(x, y)dx dy:

Lemma A.14 implies that

ðð
AB,B0

f a(Y ,Z)(t)qr,s:n(x, y)dx dy

¼
ðð

AB,B0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 2

2�

r
J (t, b0(t))

G1=2(t, b0(t))
exp[�(m� 2) ~̧̧(x, y, t)]

3 f (x) f (y)f1þ m�1 ~rrm(x, y, t)gdx dy:

We thus obtain a double integral of Laplace type. Conditions (i) and (ii) of the theorem

guarantee that we can use formula (8.2.55) of Bleistein and Handelsman (1986) to obtain
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ðð
AB,B0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 2

2�

r
J (t, b0(t))

G1=2(t, b0(t))
exp [�(m� 2) ~̧̧(x, y, t)]

3 f (x) f (y)f1þ m�1 ~rrm(x, y, t)gdx dy

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

m� 2

r
J (t, ~bb0)

G1=2(t, ~bb0)j ~̃̃(~xx0, ~yy0, t)j1=2
exp [�(m� 2) ~̧̧(~xx0, ~yy0, t)]f1þ m�1~RRn(t)g,

and we are done. h

Proof of Theorem 4.2. Setting v ¼ 0 in (4.7), we obtain

~łł(0) ¼ ~aa(t0) expf�(m� 2)~hh(t0)g
���� dtdv

����
v¼0

:

Note that ~hh9(t) ¼ ~̧̧ 9x ~xx90(t)þ ~̧̧ 9y ~yy90(t)þ ~̧̧ 9t ¼ ~̧̧ 9t: Using this and differentiating (4.6) results in

dv

dt
¼

~hh9(t)

v
¼

~̧̧ 9t
v

¼
~̧̧ 91 t
v

¼ 1

v
� d¸s(t, ~bb0(t)

dt
¼ v�1(¸9sa(t, ~bb0(t))þ¸9sb(t, ~bb0(t))~bb90(t))

¼ v�1¸9sa(t, ~bb0(t)) ¼
dv

dt

� ��1
d¸9sa(t, ~bb0(t))

dt

¼ dv

dt

� ��1

(¸ 0saa(t, ~bb0(t))þ¸ 0sab(t, ~bb0(t))~bb90(t)):

Differentiating ¸9sb(t, ~bb0(t)) ¼ 0 with respect to t, we find

d~bb0(t)

dt
¼ �¸ 0sab(t, ~bb0(t))

¸ 0sbb(t, ~bb0(t))
:

Therefore,

dv

dt
¼ ¸ 0saa(t, ~bb0(t))�

(¸ 09
sab(t,

~bb0(t)))
2

¸ 0sbb(t, ~bb0(t))

 !1=2

~łł(0) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

m� 2

r
J (t0, b0) � (dt=dv)jv¼0 � expf�(m� 2)~hh(t0)g
j˜s(t0, b0)j1=2 � j¸ 0sbb(t0, b0)j1=2 � j ~̃̃ (t0)j�1=2

:

From (4.5)–(4.7) and using an integration by parts similarly to Theorem 3.2.1 of Jensen

(1995), we obtain
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ð1
t

~ggsp(t)dt ¼
ð1
v

~łł(v) expf�(m� 2)v2=2gdv,

¼ (1��(v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 2

p
))~łł(0)þ

ð1
v

(~łł(v)� ~łł(0))expf�(m� 2)v2=2gdv:

¼ (1��(v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 2

p
))~łł(0)� �(v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 2

p
)ffiffiffiffiffiffiffiffiffiffiffiffiffi

m� 2
p

~łł(0)� ~łł(v)

v
þ O(m�1)

� �
:

From this we obtain
Ð1
�1 ~ggsp(t)dt ¼ ~łł(0). Finally, we have

P(T > t) ¼
ð1
t

~ggsp(t)f1þ m�1~RRn(t)gdt

¼
ð1
t

~ggsp(t)dt=

ð1
�1

~ggsp(t)dt:

¼ 1��(v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 2

p
)� �(v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 2

p
)ffiffiffiffiffiffiffiffiffiffiffiffiffi

m� 2
p

~łł(0)� ~łł(v)

v~łł(0)
þ O(m�1)

 !
,

where, in going from the first line to the second, we have used the relation between the

integration of the saddlepoint density approximations and renormalization outlined in Jing

and Robinson (1994). This completes our proof. h

Acknowledgement

The authors are very grateful to Rob van der Horst (Centrum voor Wiskunde en

Informatica) for carrying out the extensive numerical work which led to the results

presented in Section 5. Comments by a referee are also gratefully acknowledged.

References

Bleistein, N. and Handlesman, R.A. (1986) Asymptotic Expansions of Integrals. New York: Dover.

Bjerve, S. (1974) Error bounds and asymptotic expansions for linear combinations of order statistics.

Ph.D thesis, University of California, Berkeley.

Daniels, H.E. (1954) Saddlepoint approximations in statistics. Ann. Math. Statist., 25, 631–650.

Daniels, H.E. and Young, G.A. (1991) Saddlepoint approximation for the studentized mean, with an

application to the bootstrap. Biometrika, 78, 169–179.

David, H.A. (1981) Order Statistics, 2nd edition. New York: Wiley.

Easton, G.S. and Ronchetti, E. (1986) General saddlepoint approximations with applications to L

statistics. J. Amer. Statist. Assoc., 81, 420–430.

Feller, W. (1971) An Introduction to Probability Theory and Its Application II, 2nd edition. New York:

Wiley.

Gribkova, N. and Helmers, R. (2002) The empirical Edgeworth expansion for a studentized trimmed

mean. CWI report PNA-R0214. Submitted for publication.

500 R. Helmers, B.-Y. Jing, G. Qin and W. Zhou



Hall, P. and Padmanabhan, A.R. (1992) On the bootstrap and the trimmed mean. J. Multivariate Anal.,

41, 132–153.

Helmers, R. (1982) Edgeworth Expansions for Linear Combinations of Order Statistics, Mathematical

Centre Tracts No. 105. Amsterdam: CWI.

Jensen, J.L. (1995) Saddlepoint Approximations. Oxford: Clarendon Press.

Jing, B.-Y. and Robinson, J. (1994) Saddlepoint approximations for marginal and conditional

probabilities of transformed variables. Ann. Statist., 22, 1115–1132.

Rudin, W. (1987) Real and Complex Analysis, 3rd edition. New York: McGraw-Hill.

Stigler, S.M. (1973) The asymptotic distribution of the trimmed mean. Ann. Statist., 1, 472–477.

Temme, N.M. (1982) The uniform asymptotic expansion of integrals related to cumulative distribution

functions. SIAM J. Math. Anal., 13, 239–253.

Received October 2002 and revised October 2003

Saddlepoint approximations to the trimmed mean 501


	1.&X;Introduction
	2.&X;Some preliminaries
	3.&X;Saddlepoint approximation to the trimmed mean
	Equation 1
	Equation 2
	Equation 3
	3.1.&Y;Saddlepoint approximation to the density of the trimmed mean

	Equation 5
	Equation 6
	Equation 7
	Equation 8
	3.2.&Y;Saddlepoint approximation to the tail probability of trimmed mean

	4.&X;Saddlepoint approximation to studentized trimmed mean
	4.1.&Y;Introduction

	Equation 11
	Equation 12
	4.2.&Y;Saddlepoint approximation to the density of the studentized trimmed mean

	Equation 14
	4.3.&Y;Saddlepoint approximation to the tail probability of the studentized trimmed mean

	Equation 15
	Equation 18
	5.&X;Numerical results
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Appendix
	Equation 19
	Equation 22
	Equation 23
	Equation 24
	Equation 28
	Equation 30
	Equation 31
	Equation 32
	Equation 33
	Equation 34
	Equation 35
	Equation 37
	Equation 38
	Equation 39
	Equation 40
	Equation 42
	Equation 43
	Equation 45
	Equation 46
	Equation 47
	Equation 49
	Equation 50
	Equation 51
	Equation 52
	Equation 53
	Equation 54
	Equation 55
	Equation 56
	Equation 60
	Equation 61
	Equation 62
	Acknowledgement
	References
	mkr1
	mkr2
	mkr3
	mkr4
	mkr5
	mkr6
	mkr7
	mkr8
	mkr9
	mkr11
	mkr12
	mkr13
	mkr14
	mkr15

