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A Time Series Model for Responses on the Unit
Interval

A. Jara ∗, L. E. Nieto-Barajas † and F. Quintana ‡

Abstract. We introduce an autoregressive model for responses that are restricted
to lie on the unit interval, with beta-distributed marginals. The model includes
strict stationarity as a special case, and is based on the introduction of a series
of latent random variables with a simple hierarchical specification that achieves
the desired dependence while being amenable to posterior simulation schemes. We
discuss the construction, study some of the main properties, and compare it with
alternative models using simulated data. We finally illustrate the usage of our
proposal by modelling a yearly series of unemployment rates.

Keywords: Autoregressive models, beta processes, latent variables, unemployment
rates

1 Introduction

In this article we introduce a novel autoregressive model for time series of observations
which are restricted to lie on the unit interval. Our proposal is based on a hierarchical
representation using a series of beta random variables, which are linked via a set of
exchangeable latent indicators in an autoregressive fashion. The construction implies
a beta marginal distribution and includes strict stationarity and non stationarity as
special cases.

Classical time series analysis focuses on models for observations on unbounded support.
This is the case for traditional autoregressive and moving average models with white
noise errors (Box and Jenkins 1970). However, time series with observations on bounded
support has received little attention. In particular, Wallis (1987) uses a logistic trans-
formation to convert the observables in the unit interval to an unbounded support and
then apply standard models. While other transformations could be equally considered,
a limitation of this modeling approach is that it may not be possible to adequately
represent data sets that concentrate near the boundaries.

In the Bayesian framework, dynamic models present an alternative for time series
analysis. West et al. (1985) developed the general theory for dynamic generalized
linear models, and da Silva et al. (2011) concentrated on the beta case with a suit-
able parametrization. The latter proposal includes an observation equation with beta-
distributed marginal responses, and a linear system equation that is only partially spec-
ified. Indeed, following West et al. (1985), they proposed estimating the system equa-
tion using only moments of order up to two, but without a distributional assumption.
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For multivariate proportions in the simplex, Grunwald et al. (1993) use a generalized
Dirichlet dynamic model, and Bekele et al. (2012) induce a dynamic model via a Markov
structure. As will be shown later, our model provides a flexible autocorrelation struc-
ture, the posterior simulation is straightforward to implement, and the user can easily
specify the desired order of dependence. Furthermore, the model performs well and can
outperform the existing models.

Describing the layout of the paper, we define our model and study its properties in
Section 2. We carry out a simulation study to assess the performance of model with
respect to competing models in Section 3. Section 4 illustrates the model with a real
dataset of unemployment rates in Chile, and also compares the proposed model against
other alternatives. We finally discuss extensions of our model in Section 5.

Before we proceed we introduce notation: N(µ, σ2) denotes a normal density with mean
µ and variance σ2; Be(a, b) denotes a beta density with mean a/(a+b); Ga(a, b) denotes
a gamma density with mean a/b; Un(a, b) denotes a continuous uniform density on the
interval (a, b); Bin(n, p) denotes a binomial density with size n and probability of success
p; Po(λ) denotes a Poisson density with mean λ.

2 The Model

Let {yt}, t = 1, 2, . . . be a sequence of random variables with values on the unit interval,
P (0 ≤ yt ≤ 1) = 1 for all t. We want to define a sampling probability model for {yt}
that includes serial dependence on q lagged terms. Instead of defining the dependence
directly through the yt’s, we will specify the model in terms of a sequence of non-
negative integer-valued latent variables {ut}. These latent variables will share a common
parameter w. To have a better idea of how the variables are linked, Figure 1 shows a
graphical representation of the relationship among the observables {yt}, the latent sets
{ut} and w for an autoregressive dependence of order two.

In general, we assume that

yt | ut, ut−1, . . . , ut−q
ind∼ Be

a+

q∑
j=0

ut−j , b+

q∑
j=0

(ct−j − ut−j)

 , (1)

for t = 1, 2, . . ., where a and b are positive parameters, the latent variables ut are
defined to be zero with probability one for t ≤ 0, ct = 0 for t ≤ 0, and ct ∈ IN
otherwise. This implies that for t ≤ q, y1|u1 ∼ Be(a + u1, b + c1 + u1), y2|u2, u1 ∼
Be(a+ u1 + u2, b+ c1 − u1 + c2 − u2) and so on. In turn, we specify the distribution of
the latent variables ut in terms of a common parameter w such that

ut | w
ind∼ Bin(ct, w), (2)

for t = 1, 2, . . ., and

w ∼ Be(a, b), (3)
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Figure 1: Graphical representation of autoregressive beta process of order q = 2, BeP2.

with a > 0, b > 0 and ct ∈ IN, and with the convention that ct = 0 implies ut = 0.
Note that specifications (2) and (3) define an exchangeable sequence for {ut}. The
role of the latent ut’s is to establish a link between observations, whereas the latent
w acts as anchor determining the overall level of the series. We refer to the process
{yt} induced by (1)–(3), as an order-q dependent beta process with parameters a, b and
c = {c1, c2, . . .}, and denote it by {yt} ∼ BePq(a, b, c).

It is not difficult to see that construction (1)–(3) defines a process whose marginal
distributions are yt ∼ Be(a, b) for all t. To see this we note that, from (2), the ut
are conditionally independent binomial variables with common success probability w.
Therefore the sum of these variables is also binomial, conditional on w, that is

q∑
j=0

uj | w ∼ Bin

 q∑
j=0

cj , w

 ,

so that, unconditionally, its distribution becomes a beta-binomial distribution BeBin(a, b,∑q
j=0 cj). Finally, since the conditional distribution of yt only depends on ut, ut−1, . . . ,

ut−q through its sum
∑q
j=0 ut−j , it follows (Bernardo and Smith 1994, pg. 436) that

each yt is marginally beta-distributed. Note that the role of the third latent variable w
is to make the marginal distribution of any sum of ut’s to be beta-binomial. Note also
that by adequately choosing a or b the model allows for data that accumulates near the
boundaries.

The correlation structure induced by this construction can be computed in closed form.
This is given in the following proposition.
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Proposition 1. The autocorrelation function of the order-q dependent beta process,
defined by equations (1)–(3), depends on the three parameters (a, b, c) and is given by

Corr(yt, yt+s) =
(a+ b)

(∑q−s
j=0 ct−j

)
+
(∑q

j=0 ct−j

)(∑q
j=0 ct+s−j

)
(
a+ b+

∑q
j=0 ct−j

)(
a+ b+

∑q
j=0 ct+s−j

) , (4)

for t, s ≥ 1.

Proof. Using conditional expectation and the marginal beta distributions of the process
we obtain the result. �

The numerator of expression (4) can be split in two parts, namely, a function of a, b
and the shared c parameters, ct+s−q, . . . , ct, plus a function of the two whole sets of c
parameters that define yt and yt+s. If these two variables do not share any of the cj
parameters, as is the case when s > q, then the first term in the numerator becomes
zero. When we let both a and b approach 0, then (4) converges to 1 for all s, q, c, and
when either a or b go to infinity the autocorrelation function converges to zero for all
s, q, c.

A particular case of the process arises when ct = c for all t, which makes {yt} be
strictly stationary with Be(a, b) marginal distributions, and with autocorrelation func-
tion Corr(yt, yt+s) that depends only on the distance s. In fact, the autocorrelation
function of Proposition 1 reduces to

Corr(yt, yt+s) =
(a+ b) max{q − s+ 1, 0}c+ (q + 1)2c2

{a+ b+ (q + 1)c}2
. (5)

It is easy to see that (5) converges to 1 when c → ∞ and to 0 when c → 0 for any
fixed values of a, b, q, s. On the other hand, (5) converges to 1 when q → ∞ and to
{c/(a+ b+ c)}2 when q → 0 for any fixed values of a, b, c, s.

Figure 2 shows various examples of the autocorrelation function (4), fixing a = b = 0.5,
q = 3, t = 1 and varying s = 1, . . . , 17. Focusing on the left panel, cases 1 (solid line)
and 2 (dashed line) are non-stationary, while cases 3 (dotted line) and 4 (dotted-dashed
line) are stationary versions of the BeP. Observe that the autocorrelations can drop all
the way to zero, and go up and/or down along a given sequence.

By varying the values of the a, b, c parameters we can obtain quite different expressions
for the autocorrelation function. A few very special cases of this are depicted in the
right panel of Figure 2. Therefore, it is natural to consider a hierarchical approach that
models these parameters as well. Concretely, in addition to (1)–(3) we assume

ct | λ
iid∼ Po(λ), t = 1, 2, . . . , λ ∼ Un(0, L) (6)

and
a ∼ Un(0, A), b ∼ Un(0, B), (7)

for known values of hyper-parameters L, A and B. When genuine prior information is
unavailable, these choices provide reasonable default vague prior distributions. Alter-
native choices in (6) and (7) are certainly possible, but we found these to also provide
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Figure 2: Autocorrelation function of BePq(a, b, c) for q = 3. Left panel: Fixed values
a = b = 0.5, c = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 10, 10, 10, 10, 10, 1, 1, 1, 1, 1, . . .) (solid
line), c = (1, 0, 3, 10, 1, 0, 3, 10, · · · ) (dashed line), ct = 1 for all t (dotted line), and
ct = 10 for all t (dotted-dashed line). Right panel: Five realizations using random
values of (a, b, c) according to (6) and (7) with A = B = L = 10.

more stable results in the posterior computations. Nevertheless, these prior distributions
provide great flexibility in the model, and learning about them allows the BePq(a, b, c)
model to adapt to a greater range of datasets.

Posterior inference of our model is carried out by implementing a Gibbs sampler. The
required full conditional distributions are postponed to the Appendix. Due to the prior
choices, with distributions on bounded supports, sampling from the conditional distribu-
tions can be easily done by numerical integration of the density function and inverting.
Alternatively, since the model is defined through standard distributions, posterior infer-
ence can also be obtained in OpenBUGS (available at http://www.openbugs.info/) or
JAGS (available at http://mcmc-jags.sourceforge.net/). All the models considered
here were implemented in JAGS. The codes are available upon request to the authors.

3 Simulation Study

We designed a simulation study to help us further understand the relative merits and
performance of the proposed BeP model with respect to alternative models. Specifically,
we compare how well these models fit batches of synthetic data, assessing at the same
time their comparative predictive performances.

http://www.openbugs.info/
http://mcmc-jags.sourceforge.net/
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The simulated data were generated from the autoregressive model

yi | yi−1, . . . , yi−q ∼ Be

a0 +

q∑
j=1

yi−j , b0 +

q∑
j=1

(1− yi−j)

 , i = 1, . . . , n (8)

where a0 = b0 = 1, q is the true order of dependence and initially we choose y0 =
y−1 = · · · y−q+1 = 0. We note that (8) is not a particular case of the proposed model
(1), since the beta distribution parameters are computed in terms of actual lagged
responses rather than latent variables.

We considered simulated time series of lengths n = 30 and n = 50 and values of q ranging
in {1, . . . , 5} in (8). Each combination of n and q was repeated 100 times, leaving on
every occasion the last 10 observations out of the analysis. These ten observations are
used for assessing predictive performance. Therefore, the effective time series lengths
for fitting the models are 20 and 40, respectively. For every combination of n, q and
experiment repetition, we fitted three models.

We compare our model with two alternatives that we describe as follows. Let zt =
log{yy/(1− yt)}, for all t, the logit transformation of the original responses yt ∈ (0, 1).
Then a simple autoregressive model on the z′ts has the form

zt | µt, σ2 ind∼ N(µt, σ
2), t = 1, . . . , q

zt | zt−1, . . . , zt−q, β0, β1, . . . , βq
ind∼ N

(
β0 +

q∑
i=1

βizt−i, σ
2

)
, t ≥ q + 1 (9)

µ1, . . . , µq
iid∼ N(m0, τ

2
m), σ−2 ∼ Ga(s0, s1), β0, . . . , βq

iid∼ N(b0, τ
2
b ).

Model (9) is a normal AR(q) model, with mean determined as a linear combination of
the lagged responses for t > q, and a generic specification for the initial set of responses,
t = 1, . . . , q.

Generalizing the model proposed in da Silva et al. (2011) to the case of q lags, and
modifying slightly the assumptions by taking instead a fully specified probability model,
we get the following model

yt | µt, φ
ind∼ Be

(
φ exp(µt)

1 + exp(µt)
,

φ

1 + exp(µt)

)
(10)

µt = β0 + β1µt−1 + · · ·+ βqµt−q + εt, εt
iid∼ N(0, τ2e ), t ≥ q + 1

µ1, . . . , µq ∼ N(0, τ2µ), φ ∼ Ga(aφ, bφ), τ−2e ∼ Ga(ae, be), β0, . . . , βq
iid∼ N(b0, τ

2
b ).

Therefore, we denote the three competitors as: our beta autoregressive proposal (BeP),
as in (1)-(3); the normal autoregressive with logit transformed responses (logitAR), as
in (9); and the beta dynamic model (BDM), as in (10). In all cases, we used orders of
dependence ranging from 1 to 6, so in total, there were 18 fitted models to each simu-
lated dataset. In every case, we computed the log-pseudo marginal likelihood (LPML)
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statistic, originally suggested by Geisser and Eddy (1979), and the deviance informa-
tion criterion (DIC), proposed in Spiegelhalter et al. (2002). In addition, we consider
the mean squared error (MSE) for observed responses, computed as the average over
simulations of

∑n
i=1(yi − ŷi)

2, where yi is the ith simulated datapoint and ŷi is the
corresponding estimated mean response. Similarly, we consider the MSE for predicted
responses, which is computed as the average over simulations of

∑n+10
i=n+1(yi− ŷi)2, with

ŷi = E(yi | y1, . . . , yn). Finally, we also consider credibility intervals. In particular, we
report the average of credibility interval lengths (ACIL) for observed responses. This is
defined as the average over simulations of the mean of all lengths `1, . . . , `n of 95% credi-
bility intervals for observations. Similarly, we consider the ACIL measure for predictions
as the average over simulations of mean lengths `n+1, . . . , `n+10 of 95% credibility in-
tervals for predictions. In all cases, we also estimated the order by considering the best
value, for each of the six criteria considered.
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Figure 3: Simulation results. For each criterion considered (shown in the abscissas),
we present the proportion of times (shown in the ordinates) each model obtained the
best result compared to its competitors, averaging over number of simulations and true
order of dependence q. Values are joined by lines to facilitate comparison. The left and
right panels display the results for n = 30 and n = 50, respectively.

When running the simulation study, we used hyperparameter choices as described next.
For model BeP we set a = 1, b = 1, A = 1000, B = 100 and L = 1000. For model
logitAR, we chose b0 = 0, τ2b = 100, s0 = 2.01, s1 = 1.01, m0 = 0, and τ20 = 100.
For model BDM we defined aφ = 0.5, bφ = 10, τ2µ = 0.001, b0 = 0, τ2b = 0.001,
ae = 50, and be = 1. Models BeP and logitAR are thus fitted using vague prior
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choices, but a more informative scenario was considered for model BDM. See further
discussion on the definition of these hyperparameters in Section 4. The reason for these
particular choices when dealing with model BDM in the simulation is the highly unstable
Markov chain Monte Carlo (MCMC) behavior that frequently arises with other less
informative alternatives. Otherwise, running an automated series of MCMC algorithms
for simulated data would be unfeasible. The essential problem is produced when the
imputed values of the auto-regression coefficients β0, . . . , βq lead, for some t, to large
imputed |µt| values, thus creating illegal values for the Beta parameters in (10). In
contrast, models BeP and logitAR do not require any special practical restrictions when
defining the corresponding prior distributions.
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Figure 4: Simulation results. For each criterion considered (shown in the abscissas),
we present the proportion of times (shown in the ordinates) each model selected the
correct order of dependence q, averaging over number of simulations and q. Values are
joined by lines to facilitate comparison. The left and right panels display the results for
n = 30 and n = 50, respectively.

Summarizing, our simulation generated 1, 000 synthetic datasets (2 lengths and 5 true
orders of dependence, 100 times each). For each dataset we fitted 18 models (the three
competing models, each one applied with orders of dependence 1 ≤ q ≤ 6), and using
three parallel chains, which amounts to 54, 000 chains in total. The entire execution of
the study took about 200 CPU hours in an Intel Xeon X3460 2.80GHz machine with
8Gb of RAM. Roughly speaking, about 40% of the time is needed to fit the proposed
BeP model, about 10% is required for the logitAR model, and about 50% for the BDM.
Figure 3 shows the proportion of times each of the three competing models obtained



A. Jara, L. E. Nieto-Barajas and F. Quintana 731

the best performance in terms of the six criteria specified earlier. The results average
over the 100 repetitions of the experiment and over the five true orders of dependence.
Our proposed model BeP outperforms the other two competitors for both time series
lengths and all criteria, except for the MSE for predictions. Here, models logitAR and
BDM are essentially equivalent for short time series, with the former winning for long
times series.

Turning now our attention to the estimation of the order of dependence, Figure 4 shows
the proportion of times each of the three competing models selected the true simulation
order q, averaging over all repeated simulations and the true value of q. The results are in
terms of the fitted order that achieved the best value in each specific criterion. Again,
model BeP outperforms the competitors, except in the case of MSE for predictions,
where model logitAR is the overall winner.

Two facts are worth pointing out. First, when looking more carefully at the numerical
values we find that the average over repeated simulations, true and fitted order of the
MSE for predictions, were 0.0204 for BeP, 0.0232 for logitAR and 0.0187 for BDM, when
the length was n = 20. When increasing the length to n = 40, the respective values
were 0.0196, 0.0202 and 0.0192. Thus, the BeP model was, on average, very close to the
winning model, especially for longer sequences. Interestingly, logitAR had the highest
overall average, mostly explained by its rather inferior behavior for higher q values. And
second, the proportion of times the true order is detected is never over 25% in all cases,
though there is a slight improvement for longer time series.

In summary, the proposed BeP model performs generally better than the competitors
logitAR and BDM, the exception being the case of MSE for predictions where small
differences are observed, for both time series lengths that we studied.

4 Unemployment Rate Data Analysis

We consider the yearly sequence of unemployment rates in Chile from 1980 through
2010, available at http://www.indexmundi.com. These data have been plotted as big
dots in Figure 5, or big dots joined by lines in Figure 10. The data feature a peak of
21% of unemployment in 1983, and then a steady decrease in the rates through the late
1980s. After that, the rates have oscillated between a minimum of 6.12% in 1997 and a
maximum of 10.02% in 2004. We fitted our BeP model (1)–(3) with hierarchical prior
(6)–(7) to this series of length n = 31, using A = B = L = 1000, which represents diffuse
but proper priors. A conservative Gibbs sampler specification was considered by taking
220,000 iterations and a burn-in of 20,000. The posterior estimates were computed with
a spacing of 200 to save disk space.

To assess the effect of choosing q in the posterior inference, we considered fits and
predictions for the BePq model corresponding to q = 1, . . . , Q. The results are shown
in Figure 5 with Q = 8 (to simplify display, we omit the cases q = 1, 2). Notice the
non-stationary behavior of the series of unemployment rates. The posterior predictive
means and 95% credibility bands are indicated by thick and thin lines, respectively.

http://www.indexmundi.com
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q a b λ w
1 6.44 (3.015) 57.39 (28.326) 67.73 (31.547) 0.099 (0.0148)
2 6.66 (3.264) 61.90 (30.745) 56.98 (23.476) 0.100 (0.0129)
3 6.73 (3.417) 63.42 (31.263) 50.49 (18.805) 0.099 (0.0116)
4 6.60 (3.536) 60.88 (31.881) 48.29 (17.410) 0.097 (0.0108)
5 6.33 (3.525) 55.61 (30.858) 48.13 (16.314) 0.095 (0.0102)
6 5.94 (3.410) 50.20 (28.911) 45.44 (14.979) 0.093 (0.0100)
7 6.17 (3.438) 49.41 (27.436) 38.60 (12.486) 0.091 (0.0104)
8 6.33 (3.554) 46.47 (26.751) 34.42 (11.275) 0.089 (0.0106)

Table 1: Posterior means (standard deviations) for some model parameters.

A stationary specification would seem inappropriate for these data, as there is a clear
difference between the responses before and after the late 1980s. Therefore, the proposed
model appears as a sensible alternative.

The posterior distributions for the hyperparameters a, b, λ and latent w can be seen in
Figure 6 (only for q = 3, . . . , 8), and posterior summaries are given in Table 1. Interest-
ingly, the effect of increasing q seems to generally shift these distributions to the left,
especially for w and most certainly for λ. This is explained by the fact that increasing q
makes the dependence split in more lags, so the distribution of λ, which determines the
common degree of dependence, is highly shifted to lower values. Additionally, the effect
of larger q can be seen, to some extent, in Figure 5 with the tendency of the posterior
predictive means to decrease with q. Numerically, this reduction is also appreciated in
the overall level parameter of the series, w, in Table 1.

The choice of q is essential for the model definition, and we have seen that it affects the
posterior inference as well (as expected). Rather than setting a prior for q and dealing
with transdimensional MCMC algorithms, we compare the models for the different q
values via the LPML statistic and the DIC criterion. High LPML values and low DIC
values are indicative of the best models according to each criterion. The corresponding
values are shown in Figure 7. In both cases the choice is the same, namely q = 6, which
provides the best fit to the data. One interesting effect of q in the predicted values
occurs when looking at the width of the 95% credibility bands for predictions. They
also show a U-shape as a function of q, similar to the right panel of Figure 7. In fact, the
average width over all observed times attains a minimum at q = 6 (values not shown),
which is consistent with the best model obtained with the previous two criteria.

To better understand how our model adapts to non stationary settings, which is the
case for the unemployment dataset at hand, Figure 8 shows a graph of ut (left panel)
and ct (right panel) for the best fitting model obtained with q = 6. Point estimates
of the ct’s do not change much along time, perhaps implying a (non significant) lower
dependence for the first five years. This is due to the choice of the prior for the ct’s,
which are assumed to be exchangeable (i.e., positively dependent). The data show a
weaker dependence in the early years, which would correspond to lower ct values, and a
stronger dependence for the late years, which would correspond to higher ct’s, however,
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Figure 5: Fitted values for unemployment data set using BeP models with q = 3, . . . , 8.
The observed values are shown as big dots. Posterior predictive means are indicated
with thicker lines, and 95% credibility bands by thinner lines.

since the ct’s are positively correlated a-priori, the different degrees of dependence shown
in the data are translated into a huge uncertainty in the posterior distribution of the ct’s.
On the other hand, the latents {ut} show the importance of each observation yt in the
model fit. The first four data points, for t = 1980, . . . , 1983, are highly influential, with
the observation at t = 1982 the most influential of all. Note that this data point does not
correspond to the highest peak observed in the data, which was at t = 1983. Recall that
the influence of each point vanishes after q = 6 times ahead, so y1982 is not influential
from t = 1989 onwards, which is the precise time when the unemployment rate reduces
its volatility and stabilizes. Additionally, observations at times t = 1998, 1999, 2000 are
the most influential for the second part of the series.

To place in proper context the performance of our BeP proposal for this particular
dataset, we further compare with the two alternative models logitAR (9) and BDM
(10), discussed in Section 3. For the case of the logitAR, we chose a rather vague
prior, with b0 = m0 = 0, τm = τb = 100, and s0 = 2.01, s1 = 1.01 and applied
these settings for q = 1, . . . , 8. The best model was obtained with q = 1. For the
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Figure 6: Posterior distributions of a (upper left), b (upper right), λ (lower left) and w
(lower right) for each of the models corresponding to q = 3, . . . , 8

BDM, we noticed that a vaguely defined prior leads to MCMC divergence problems.
In particular, da Silva et al. (2011) point out that large φ values imply an increased
log-likelihood. On the other hand, low φ values imply an unstable posterior simulation
scheme. Therefore, we chose aφ = 1 and bφ = 0.007, just as da Silva et al. (2011) did
for Brazilian monthly unemployment rates data. In addition, choosing a large τb value
leads to MCMC divergence, so we chose τb = τµ = 0.1. Finally, we picked ae = 2.0 and
be = 0.5. We also fitted this model for q = 1, . . . , 8, obtaining the best fit with q = 1.

To compare among the best fitting cases for each of the three competing models, we com-
puted the LPML and the DIC statistics, as well as the one-step-ahead log-predictive den-
sities (Vivar and Ferreira 2009) for each observation. If we denote by Dt = {y1, . . . , yt}
the set of observations up to time t, the one-step-ahead predictive density is defined as
f(yt|Dt−1). The first two statistics are presented in Table 2. According to the LPML
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Figure 7: LPML (left panel) and DIC (right panel) values for model BePq, q = 1, . . . , 8.

Model LPML DIC
BeP 82.11 −171.79

logitAR 73.75 −150.68
BDM 85.45 −191.26

Table 2: Goodness of fit measures for the unemployment data. The LPML and DIC
values are reported for the following competing models: BeP (q = 6), logitAR (q = 1)
and BDM (q = 1).

the best model is the BDM followed closely by the BeP. Now, looking at the DIC val-
ues, the best model is the BDM, and our BeP is again second place. For both criteria,
the logitAR has been considered the worst fit. On the other hand, the one-step-ahead
log-predictive densities for observations yt, t = 1985, . . . , 2010, are shown in Figure 9.
From this figure we can see that apart from three observations around year 1997 and the
observation in year 2007, the log-predictive densities favour the BeP model, leaving the
BDM and the logitAR in second and third places, respectively. A possible explanation
for this is that the BDM provides a better fit for the initial portion of the series (first five
data points), which is precisely what Vivar and Ferreira (2009) recommend to discard,
due to the instability of the predictions.

For a final comparison between the BeP and the BDM models we show, in Figure 10,
the observed time series together with predictions for the observed times and future
predictions for ten years ahead. As can be seen, for the observed times, the BDM
point predictions follow closely the path of the data, but provide enormous uncertainty
for future predictions. This can be explained by the errors that quickly accumulate in
the system equation, affecting even the short term predictions. In contrast, the BeP
provides reasonable predictions for the observed times, with credible bands comparable
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Figure 8: Posterior estimates for ut (left panel) and ct (right panel).

to those of the BDM, but produces much more stable uncertainty in future predictions.
We can say that the BDM is too adaptive to the observations and provides poor future
predictions, whereas our BeP proposal produces good predictions for both observed and
future times.

Interpreting the results in the context of the data, the early years coincide with the
generally bad (political and economic) situation in the Chile. After democracy was
recovered, low rates in the early and mid 1990s were stimulated by the Construction
Boom, quickly leading to higher values after the Asian Crisis of the late 1990s. The
BeP model does provide good predictions over this period, with similar certainty to the
BDM model. The quasi-cyclical behavior that follows in the 2000s is also captured by
the BeP model and moreover projected in the predictions for the years to come. The
autoregressive feature of BeP thus helps account for seasonal effects.

5 Discussion

We have proposed a model for a time series of responses constrained to the unit inter-
val. The model is of the autoregressive type and has the feature that each response is
marginally beta-distributed. The dependence on lagged terms is achieved by means of a
sequence of latent random variables, conveniently chosen to retain the desired marginal
distributions. Naturally, the extension to a series of outcomes lying on a bounded set
is immediate. The model includes stationarity and non-stationarity as special cases.

Via a simulation study, we showed that our BeP model outperforms the logitAR and
the BDM models in five out of six comparison criteria, for both fitting and determining
the true level of dependence. Additionally, for the real data analysis we used a time
series of unemployment rates in Chile. Here, the BeP model provides a reasonable fit
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Figure 9: One-step ahead log-predictive densities using unemployment data, for t =
1985, . . . , 2010. BeP with q = 6 (solid line), logitAR with q = 1 (dashed line), and
BDM with q = 1 (dotted line).

to the data, as compared to the BDM, and produces predictions for future observations
with similar uncertainty to that of the observed data.

More general autoregressive models, like seasonal (Nabeya 2001), or periodic (McLeod
1994), can also be defined. If the seasonality of the data is s, then a seasonal autore-
gressive model of order q would be

yt | u ∼ Be

a+

q∑
j=0

ut−sj , b+

q∑
j=0

(ct−sj − ut−sj)

 .

Moreover, re-writing the time index parameter as t = t(r,m) = (r − 1)s + m, for
r = 1, 2 . . . and m = 1, . . . , s, allows us to define a periodic autoregressive model of
order (q1, . . . , qs). For monthly data, s = 12 and r and m denote the year and month.
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Figure 10: Fits and predictions for the BeP model (solid line), and the BDM model
(dashed line). Posterior means (thick lines) and 95% credible bands (thin lines). Ob-
served data are shown as big dots joined by lines.

Thus, the model would be

yt | u ∼ Be

a+

qm∑
j=0

ut(r,m)−j , b+

qm∑
j=0

(ct(r,m)−j − ut(r,m)−j)

 .

In both cases, the latents {ut} are defined by equations (2) and (3).

Several other extensions of the proposed model are of interest, including the incorpo-
ration of time-dependent covariates and a multivariate version of the models, retaining
the marginal properties. These and other topics are the object of current research.

Appendix

Outline of conditional distributions

In all cases recall that for t ≤ 0, ut = 0 with probability one, and ct = 0.
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i) The conditional distribution of the latent variables ut, for t = 1, . . . , T , has the
form

f(ut| rest) ∝

(
ct
ut

){(
w

1−w

)∏q
i=0

(
yt+i

1−yt+i

)}ut

I(ut ≤ ct)∏q
i=0 Γ

(
a+

∑q
j=0 ut+i−j

)
Γ
(
b+

∑q
j=0 (ct+i−j − ut+i−j)

) .
ii) The conditional distribution of the latent w is

f(w| rest) = Be

(
w

∣∣∣∣∣a+
T∑
t=1

ut , b+
T∑
t=1

(ct − ut)

)
.

iii) The conditional distribution of the parameter ct, for t = 1, . . . , T has the form

f(ct| rest) ∝


q∏
i=0

Γ
(
a+ b+

∑q
j=0 ct+i−j

)
Γ
(
b+

∑q
j=0 (ct+i−j − ut+i−j)

)


×
{λ(1− w)

∏q
i=0(1− yt+i)}

ct

(ct − ut)!
I(ct ≥ ut).

iv) The conditional distribution of the parameter a is

f(a| rest) ∝


T∏
t=1

Γ
(
a+ b+

∑q
j=0 ct−j

)
Γ
(
a+

∑q
j=0 ut−j

)
 Γ(a+ b)

Γ(a)

(
w

T∏
t=1

yt

)a
f(a).

with f(a) the prior distribution, which in our case was f(a) = Un(0, A).

v) The conditional distribution of the parameter b becomes

f(b| rest) ∝


T∏
t=1

Γ
(
a+ b+

∑q
j=0 ct−j

)
Γ
(
b+

∑q
j=0(ct−j − ut−j)

)


×Γ(a+ b)

Γ(b)

{
(1− w)

T∏
t=1

(1− yt)

}b
f(b).

with f(b) the prior distribution, which in our case was f(b) = Un(0, B).

vi) The conditional distribution of the hyper-parameter λ is

f(λ| rest) ∝ Ga

(
λ

∣∣∣∣∣1 +
T∑
t=1

ct, T

)
I(λ < L).

which is a truncated gamma distribution.
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