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Bayesian Graphical Lasso Models and Efficient
Posterior Computation

Hao Wang ∗

Abstract. Recently, the graphical lasso procedure has become popular in esti-
mating Gaussian graphical models. In this paper, we introduce a fully Bayesian
treatment of graphical lasso models. We first investigate the graphical lasso prior
that has been relatively unexplored. Using data augmentation, we develop a simple
but highly efficient block Gibbs sampler for simulating covariance matrices. We
then generalize the Bayesian graphical lasso to the Bayesian adaptive graphical
lasso. Finally, we illustrate and compare the results from our approach to those
obtained using the standard graphical lasso procedures for real and simulated data.
In terms of both covariance matrix estimation and graphical structure learning, the
Bayesian adaptive graphical lasso appears to be the top overall performer among
a range of frequentist and Bayesian methods.

Keywords: Adaptive graphical lasso, Block Gibbs sampler, Constrained parameter
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1 Introduction

The graphical lasso (Meinshausen and Bühlmann 2006; Yuan and Lin 2007; Banerjee
et al. 2008; Friedman et al. 2008; Guo et al. 2011) is widely used for simultaneous
graphical model determination and covariance matrix estimation. Let S be the sum of
the products matrix such that S = Y′Y where Y(n×p) is the data matrix of p variables
and n samples. The graphical lasso problem is to maximize the penalized log-likelihood

log(detΩ)− tr(
S

n
Ω)− ρ||Ω||1 (1)

over the space of positive definite matrices M+ with ρ ≥ 0 being the shrinkage pa-
rameter. Here, Ω = (ωij) is the p × p inverse of the covariance matrix and ||Ω||1 =∑

1≤i,j≤p |ωij | is the L1 norm of Ω. Some authors omit the diagonal elements from the
penalty. We discuss the graphical lasso that applies the penalty to all of the elements
in Ω unless otherwise noted. Equation (1) is a convex objective function and various
algorithms have been proposed to solve it (Yuan and Lin 2007; Friedman et al. 2008;
Rothman et al. 2008). The penalty parameter ρ is chosen by cross-validation or criteria
similar to the Bayesian information criterion (BIC).

The graphical lasso has a Bayesian interpretation. The graphical lasso estimator is
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equivalent to the maximum a posteriori estimation of the following model:

p(yi | Ω) = N(yi | 0,Ω−1) (i = 1, . . . , n),

p(Ω | λ) = C−1
∏

i<j

{
DE(ωij | λ)

} p∏

i=1

{
Exp(ωii | λ

2
)
}

1Ω∈M+ , (2)

where (i) N(y |,Σ) represents the density function, evaluated at y, of a multivariate
normal random vector with mean and covariance matrix Σ; (ii) DE(x | λ) represents
the double exponential density function of the form p(x) = λ/2 exp(−λ|x|); (iii) Exp(x |
λ) represents the exponential density function of the form p(x) = λ exp(−λx)1x>0; and
(iv) C is the normalizing constant not involving λ as shown in Section (2.5). For any
fixed values λ ≥ 0, the posterior mode of Ω is the graphical lasso estimate with ρ = λ/n.
Bayesian interpretations based on the model (2) and its variants have been examined
by Marlin et al. (2009) and Marlin and Murphy (2009), among others. The emphasis of
these works has been placed on constructing flexible penalties to induce group and block
structures in graphs and on efficiently finding the maximum a posteriori estimation of
the corresponding posterior distribution, with little mention of the properties of the
prior distribution and the inference that can address parameter estimation uncertainty
and the choice of shrinkage parameters.

In this paper, our objective is to develop a framework for efficient Bayesian inference
for the graphical lasso model (2) with low, i.e., p =10, to moderate, i.e., p =100–200,
dimensions. We first investigate the properties of the graphical lasso prior, along with
the discussion of the simulation-based Bayesian inference. We then provide a novel
block Gibbs sampler for sampling Ω from model (2). This block Gibbs sampler is
remarkably efficient – it generates 1000 iterations with excellent mixing for p = 100
problems in about 1.2 minutes under a MATLAB implementation. The basic Bayesian
graphical lasso then generalizes to the Bayesian adaptive graphical lasso to overcome the
well-known shortcomings of double exponential priors. We empirically illustrate that
the Bayesian adaptive graphical lasso is a very attractive method for both covariance
matrix estimation and graphical structure learning.

Finally, we note that the work reported here was developed independently and con-
currently by a recent paper of Khondker et al. (2012). Their work has substantial
overlap as well as differences with ours. The main difference is that our algorithm
is a block Gibbs sampler while Khondker et al. (2012)’s algorithm is a random walk
Metropolis-Hasting. We expect our block Gibbs sampler to be much more efficient than
their Metropolis-Hasting algorithm, especially for higher dimensional problems. More-
over, we have investigated the distributional properties of the graphical lasso priors
while Khondker et al. (2012) only developed a sampling algorithm without exploring
the properties of the prior distributions.
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2 The Bayesian graphical lasso

2.1 The graphical lasso prior

The graphical lasso prior (2) has the form of the product of double exponential densities.
However, due to the positive definite constraint, the resulting marginal distributions for
individual ωij ’s are not double-exponential. Figure 1 (a)–(c) display marginal distribu-
tions of one of the p diagonal elements, one of the p(p− 1)/2 off-diagonal elements, and
one of the p(p− 1)/2 partial correlations, respectively, when λ = 3 and p ∈ {2, 10, 50}.
These densities are based on Monte Carlo samples generated by the sampling schemes
described in Section 2.4. Clearly, the marginal distribution of individual diagonal el-
ements is not exponential and tends to have larger mean and variance as p increases.
The marginal distribution of individual off-diagonal elements has more probability mass
around 0 than the double-exponential distribution with the scale parameter λ = 3. The
partial correlation becomes tighter around 0 as p increases. More interestingly, a change
of variable of Ω reveals that the marginal distribution of partial correlations does not
depend on λ under the joint prior (2). This suggests that, regardless of λ, the graphical
lasso prior increasingly favors the value of a partial correlation close to 0 as p grows.
When structural learning is based on the posterior distributions of partial correlations,
it is desirable to have a prior that increases its shrinkage of a partial correlation towards
0 as p increases in order to control the number of false positive signals.

We next examine the hierarchical representation of the graphical lasso prior (2).
The double exponential distribution can be represented as a scale mixture of normals
(Andrews and Mallows 1974; West 1987). In the Bayesian regression lasso, the assump-
tion of prior independence allows the use of this hierarchical representation (Park and
Casella 2008; Hans 2009). The use of a scale mixture of normals for the ωij ’s in the
graphical lasso prior seems to be a natural choice, however, the positive definite con-
straint implies that the normals for the ωij ’s are no longer independent given the scale
parameters. Let ω = {ωij}i≤j be the vector of the upper off-diagonal and diagonal
entries of Ω, τ = {τij}i<j be the latent scale parameters and

p(ω | τ , λ) = C−1
τ

∏

i<j

{
1√

2πτij

exp(− ω2
ij

2τij
)
} p∏

i=1

{
λ

2
exp(−λ

2
ωii)

}
1Ω∈M+ , (3)

where the normalizing term, Cτ , depends on τ and is analytically intractable. To
induce the marginal distribution that is of the form (2), the following mixing density is
proposed here for τ ,

p(τ | λ) ∝ Cτ
∏

i<j

λ2

2
exp(−λ2

2
τij). (4)
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Note that p(Ω | τ ) and p(τ | λ) are proper priors because

Cτ =
∫ ∏

i<j

{
1√

2πτij

exp(− ω2
ij

2τij
)
} p∏

i=1

{
λ

2
exp(−λ

2
ωii)

}
1Ω∈M+d(ωij)i≤j

<

∫ ∏

i<j

{
1√

2πτij

exp(− ω2
ij

2τij
)
} p∏

i=1

{
λ

2
exp(−λ

2
ωii)

}
d(ωij)i≤j = 1.

The intractable terms Cτ in (3) and (4) cancel out so that the marginal distribution
of the ωij ’s follows (2). This hierarchical representation (3) and (4) is further exploited
to construct a data-augmented block Gibbs sampling algorithm in Section 2.4. Our
representation is related to the “shadow” prior of Liechty et al. (2004, 2009), although
the “shadow” prior is motivated by the acceleration of the posterior computation rather
than the introduction of new marginal priors. In particular, the shadow prior uses an
additional level in the probability model to move the constraints on a particular param-
eter to another level, and to reduce the computational burden due to the intractable
normalizing constant. It can be seen that our prior corresponds to a special case of the
shadow prior when the variance parameter of the shadow prior is zero.
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Figure 1: Marginal prior densities for diagonal (a), off-diagonal (b), and partial cor-
relation (c) when λ = 3 and p =2 (dotted), 10 (dashed) and 50 (solid). For (b),
double-exponential with λ = 3 is also shown (dashdot).



Hao Wang 871

2.2 Bayesian inference on the covariance matrix

Bayes estimators of the covariance and precision matrices can be derived through a de-
cision theoretic approach. For example, consider Stein’s loss function for the covariance
matrix Σ = Ω−1:

L1(Σ̂,Σ) = tr(Σ̂Σ−1)− log{det(Σ̂Σ−1)} − p (5)

where Σ̂ denotes the estimator of Σ. Then, the corresponding Bayes estimator derived
by Yang and Berger (1994) is

Σ̂1 = E(Σ−1 | Y)−1, (6)

which can be estimated from a Monte Carlo sample from the posterior distribution of Ω.
The standard graphical lasso estimator is sometimes referred to as a Bayes estimator
because the posterior mode is the limit of a sequence of Bayes estimators under a
sequence of loss functions (Hans 2009). Note that the covariance matrix is positive
definite and also typically of high dimension. This suggests that the mode estimates
and other Bayes estimates can be substantially different.

To investigate the difference, we consider a subset of n = 10 observations from the
flow cytometry dataset of Friedman et al. (2008), which consists of p = 11 proteins
and a total of 7466 cells. The sample size was chosen to be relatively small so that the
posterior distribution is not a peak. We compare the posterior mode and the posterior
mean estimates of Ω which are produced by the standard graphical lasso procedure
and the Bayesian graphical lasso procedure under Stein’s loss, respectively. Figure 2
displays the path of the mean and mode estimates of two entries of Ω together with
their corresponding 95% credible intervals. Each estimate is plotted as a function of its
relative L1 norm defined as the ratio of the L1 norm of the graphical lasso estimate of Ω
over the L1 norm of the sample precision matrix estimate. Evidently, the width of the
credible intervals increases as the relative L1 norm increases. This important feature
of the estimation uncertainty associated with λ is not taken into account by the point
estimate of the graphical lasso. Furthermore, the posterior mean estimate is generally
larger in absolute value than the posterior mode estimate; the majority of the posterior
mass is generally far away from the mode.

2.3 Bayesian inference on graphical structures

The classical graphical lasso procedure is able to produce possible ω̂ij = 0 for i 6= j
in the maximizer of (1), thus providing a method for graphical model determination.
The Bayesian graphical lasso places zero probability on the event {ωij = 0}, hence
has zero posterior probability on the event {ωij = 0}. When fully Bayesian posterior
inferences about the event such as {ωij = 0} are desired, positive prior mass must be
allocated to these events. This requires discrete and continuous mixture prior distribu-
tions such as the popular G-Wishart prior (Dawid and Lauritzen 1993; Roverato 2000)
for Ω. However, under our absolutely continuous graphical lasso priors, the Bayesian
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Figure 2: The graphical lasso and Bayesian graphical lasso estimates of one diagonal (a)
element and one off-diagonal (b) element of Ω as λ varies. Estimates are plotted versus
the relative L1 norm. For the Bayesian graphical lasso, the 95% credible intervals (light
gray band), and the posterior mean (solid line within the light gray band) are shown.
For the graphical lasso, the posterior mode (dashed line) is shown.

approaches need some heuristic treatments for graphical model determination. We de-
scribe a thresholding approach which is recommended by Carvalho et al. (2010) for
classification under absolutely continuous priors.

Recall that, under the discrete and continuous mixture prior, the Bayesian posterior
mean estimator of the partial correlation of ρij is

ρ̂ij = πijEg(ρij | Y)

where πij is the posterior probability of the event {ωij 6= 0} and g is the continuous
prior distribution for non-zero ωij . Here πij has dual roles: Posterior edge inclusion
probability that forms the basis for graphical model determination and the amount of
shrinkage that is performed on ρij . Now, consider the graphical lasso prior which also
shrinks ρij towards zero. Its posterior mean estimator ρ̃ij of ρij can be written as

ρ̃ij = π̃ijEg(ρij | Y),

where π̃ij is the amount of shrinkage applied by the graphical lasso prior on Eg(ρij | Y).
By linking the two shrinkage parameters, π̂ij and π̃ij , we may claim the event {ωij 6= 0}
if and only if

π̃ij =
ρ̃ij

Eg(ρij | Y)
> 0.5,

where ρ̃ij is the posterior sample mean estimate of the partial correlation under graphical
lasso priors. As for the choice of g, we use the standard conjugate Wishart prior,
W (3, Ip) (Jones et al. 2005) in the simulation study of Section 4.
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2.4 A data-augmented block Gibbs sampling scheme

We propose a block Gibbs sampler for posterior computation using the hierarchical
representations in (3) and (4). The data-augmented target distribution can be expressed
as follows:

p(Ω, τ | Y, λ) ∝ |Ω|n
2 exp{−tr(

1
2
SΩ)}

∏

i<j

{
τ
− 1

2
ij exp(− ω2

ij

2τij
) exp(−λ2

2
τij)

}

×
p∏

i=1

{
exp(−λ

2
ωii)

}
1Ω∈M+ . (7)

Marginally, the original model in (2) is maintained. Note that, in (7), only the parame-
ters in Ω are constrained to be positive definite. The parameters in τ are unrestricted.
At first glance, the conditional distributions in (7) for subsets of Ω are not standard
distributions. However, an efficient block Gibbs sampler actually exists for (7) after
appropriate reparametrization.

We show how to update Ω one column and row at a time. Without loss of generality,
we focus on the last column and row. Let Υ = (τij) be a p× p symmetric matrix with
zeros in the diagonal entries and τ in the upper diagonal entries. Partition Ω,S and Υ
as follows:

Ω =
(

Ω11, ω12

ω′12, ω22

)
, S =

(
S11, s12

s′12, s22

)
, Υ =

(
Υ11, τ 12

τ ′12, 0

)
. (8)

From (7), the conditional distribution of the last column in Ω is

p(ω12, ω22 | Ω11, Υ,Y, λ) ∝ (ω22 − ω′12Ω
−1
11 ω12)

n
2

× exp
[− 1

2
{ω′12D−1

τ ω12 + 2s′12ω12 + (s22 + λ)ω22}
]
,

where Dτ = diag(τ 12). Make a change of variables

(ω12, ω22) → (β = ω12, γ = ω22 − ω′12Ω
−1
11 ω12).

Then the Jacobian is a constant not involving (β, γ) and so

p(β, γ | Ω11,Υ,Y, λ) ∝ γ
n
2 exp(−s22 + λ

2
γ)

× exp
(
− 1

2
[
β′{D−1

τ + (s22 + λ)Ω−1
11 }β + 2s′12β

])
.

This implies that:

(γ, β) | (Ω11,Υ,Y, λ) ∼ Ga(
n

2
+ 1,

s22 + λ

2
)N(−Cs21,C),
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where Ga(a, b) represents a gamma distribution with a shape parameter a and scale
parameter b, and C = {(s22 +λ)Ω−1

11 +D−1
τ }−1. This leads to a block Gibbs procedure

for iteratively sampling one column in Ω at a time. Note that the positive definite
constraint on Ω is maintained in each iteration because of γ > 0. To see this, suppose at
iteration t, the current sample, denoted by Ω(t), is positive definite. This is equivalent to
the condition that all of its p leading principal minors are positive. Now, after updating
the last column and row of Ω using the above procedure, the new sample, denoted by
Ω(t+1), has the same leading principal minors as Ω(t) except for the last one which is
of order p. Clearly, this last leading principal minor is det(Ω(t+1)) = γ det(Ω(t)

11 ), where
det(Ω(t)

11 ) is the (p − 1)-th leading principal minor of Ω(t) and is positive. Therefore,
{γ > 0} implies that det(Ω(t+1)) > 0 and so all p leading principal minors of Ω(t+1) are
positive, which yields that Ω(t+1) is positive definite.

To update τ in (7), the conditional posterior distributions of the 1/τij ’s are clearly
independently inverse Gaussian, Inv-Gau(µ′, λ′), with parameters

µ′ =
√

(λ2/ω2
ij), λ′ = λ2,

in the inverse Gaussian density:

p(x) = (
λ′

2πx3
)1/2 exp

{−λ′(x− µ′)2

2(µ′)2x

}
, x > 0.

With this elaboration, we summarize the block Gibbs sampler as follows:

Block Gibbs sampler. Given the current value Ω ∈ M+ and τ

1. For i = 1, . . . , p,

(a) Partition Ω,S and Υ as in (8).
(b) Sample γ ∼ Ga(n/2 + 1, (s22 + λ)/2) and β ∼ N(−Cs21,C) where C = {(s22 +

λ)Ω−1
11 + D−1

τ }−1.
(c) Update ω21 = β, ω12 = β′, ω22 = γ + β′Ω−1

11 β.

2. For i < j, sample uij ∼ Inv-Gau(µ′, λ′) where µ′ =
√

(λ2/ω2
ij) and λ′ = λ2, and

then update τij = 1/uij .

The above data-augmented block Gibbs sampler is not the only Gibbs sampler for
fitting model (2). Rather than working with the hierarchical representation (3) and
(4), we may also consider the direct representation of the posterior distribution of (2)
without relying the on the latent scale τ . Using the Cholesky decomposition of Ω,
we have explored an alternative Gibbs sampler. The Cholesky-based Gibbs sampler
updates one element at a time and is thus far less efficient than the block Gibbs sampler,
although it does not use the latent variables of τ . The details of the Cholesky-based
Gibbs sampler are given in supplement, together with instructions for the free MATLAB
routines for implementing these two Gibbs samplers.
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2.5 Choosing the shrinkage parameter λ

The graphical lasso requires the selection of the shrinkage parameter λ. Typically
one can estimate this parameter by selecting a value for λ that maximizes the normal
likelihood on the validation data with Ω estimated from the training data, or by cross-
validation (Friedman et al. 2008; Rothman et al. 2008). In the Bayesian framework,
we can choose λ by placing an appropriate hyperprior on it and then extending the
Markov chain Monte Carlo sampler to sample from the full conditional distribution
of λ. This fully Bayesian method for choosing λ has been successfully applied in the
context of Bayesian lasso regression models (Park and Casella 2008; Kyung et al. 2010;
Hans 2009). In the graphical model, the positive definite constraint on the support of
Ω gives rise to complications in the computation of the prior normalization constant
in (2). In the simplest case where a single λ is used for all elements of Ω, the prior
normalizing constant in (2) can be computed as

C =
∫

Ω∈M+

∏

i<j

{
DE(ωij | λ)

} p∏

i=1

{
Exp(ωii | λ

2
)
}

dΩ

=
∫

˜Ω∈M+

∏

i<j

{
DE(ω̃ij | 1)

} p∏

i=1

{
Exp(ω̃ii | 1

2
)
}

dΩ̃, (9)

where the last equality holds after applying the substitution Ω̃ = λΩ and noticing that
{Ω̃ : Ω̃ ∈ M+} = {Ω : Ω ∈ M+} for λ > 0. Hence C is a constant term not involving λ,
although it is unknown and intractable. We can then assign a gamma prior λ ∼ Ga(r, s),
which leads to the conditional posterior λ ∼ Ga(r + p(p + 1)/2, s + ||Ω||1/2). However,
the normalizing constant C will depend on λij when we allow different λij ’s for different
ωij ’s, or even when we only penalize the off-diagonal elements of Ω. In these situations,
the use of the standard priors on λ will complicate the posterior simulation because of
the evaluation of this normalizing constant. Techniques such as those used in equations
(3) and (4) can be useful. In Section 3, we illustrate a set of prior distributions for λij

when we allow different λij for different ωij .

2.6 Computational speed and scaling experiments

We evaluated the computational speed and the scalability of the above block Gibbs
sampler. We used subsets of monthly stock return data from a set of n = 60 samples
on up to p = 200 stocks randomly selected from the population of domestic commonly
traded stocks in the New York Stock Exchange. We first standardized the data and
then applied the sampler under the hyperprior λ ∼ Ga(1,0.01). All the chains were
initialized at the identity matrix. All computations were implemented on a six-core
CPU 3.33GHz desktop running CentOS 5.0 Unix using MATLAB.

For each such data set, we measured the time it took the block Gibbs sampler to
generate all of the entries of Ω, which we called one iteration. Figure 3 displays the
number of minutes required to compute 1000 iterations versus p. The algorithm took
about 1.2 and 9 minutes to generate 1000 iterations for p = 100 and 200. In addition,
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we also used the Markov chain Monte Carlo (MCMC) output to perform convergence
diagnostics by calculating the inefficiency factor 1+2

∑∞
k=1 ρ(k) where ρ(k) is the sample

autocorrelation at lag k. We used 3000 samples after 1000 burn-ins and 500 lags in the
estimation of the inefficiency factors. The median inefficiency factor among all of the
elements of Ω was 1.1. This suggests that the MCMC mixes quite well. In summary,
the block Gibbs sampler appears to be highly efficient because of the fast column-wise
updating.

Figure 3: Computational cost as a function of p for the block Gibbs sampler.

2.7 Cell signaling example

The flow cytometry dataset of Friedman et al. (2008), described in Section 2.2, is used
here to compare the Bayesian graphical lasso with the standard graphical lasso. The
data consist of p = 11 proteins and n = 7466 cells. Sachs et al. (2005) fit a directed
acyclic graph to the data. Figure 4 (a) and (b) display their inferred network and the
moralized undirected graph, respectively. Friedman et al. (2008) applied the graphical
lasso to these data to produce a set of undirected graphs for different values of the
penalty parameter ρ. We applied the Bayesian graphical lasso and used the MCMC
outputs from 10000 iterations after 5000 burn-ins.

We compare the parameter estimates from the Bayesian graphical lasso and the
standard graphical lasso along the solution path. Figure 5 (a) and (b) show the standard
graphical lasso estimates and the posterior mean estimates, respectively, of 10 out of
all of the 55 off-diagonal ωij ’s evolving as a function of their relative L1 norm. They
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are remarkably similar in their values and patterns largely because of the large number
of observations and the small number of variables. Figure 6 displays the 95% credible
intervals for the zero off-diagonal elements estimated by the graphical lasso at two
different values of λ. The Bayesian 95% credible intervals cover the zero point for
all of the cases. However, the width of the credible interval appears to vary a great
deal between and within each λ. Moreover, many of these credible intervals are not
symmetric about zero.

(a) Directed acyclic graph (b) Moralized undirect graph

Figure 4: Directed acyclic graph (a), the moralized undirected graph (b) in the cell-
signaling data example from Sachs et al. (2005).

When modeling the shrinkage parameter λ, Friedman et al. (2008) reported choosing
the unregularized model with a 10-fold cross-validation. We used the Monte Carlo
simulation to estimate the λ with the hyperparameters r = 1 and s =0.01. The posterior
median for λ was approximately 0.35 and the 95% posterior credible interval for λ was
approximately (0.28,0.45).

3 Extension

The double exponential prior in (2) shrinks off-diagonal elements of Ω towards zero,
however, it has a few well-known limitations: It may over-shrink large coefficients but
under-shrink small ones. In the regression context, such properties of the double expo-
nential prior have been well studied and many alternative priors have been proposed
(e.g., Carvalho et al. 2010; Griffin and Brown 2010; Li and Lin 2010 ). In our graphical
model framework, the hierarchical structure and the block Gibbs sampler in Section 2
allow us to consider generalizations of the graphical lasso prior to overcome its short-
comings.
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(a) Graphical lasso (b) Bayesian graphical lasso
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Figure 5: The graphical lasso (a) and the Bayesian graphical lasso (b) estimates of 10
off-diagonal ωij ’s as λ varies. The estimates are plotted versus the relative L1 norm.
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Figure 6: Posterior 95% equal-tailed credible intervals with two different values of λ for
the zero off-diagonal elements.
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Before describing one generalization of the Bayesian graphical lasso, we briefly review
two frequentist alternatives to the graphical lasso procedure: The adaptive graphical
lasso and the graphical, smoothly clipped absolute deviation (SCAD) method (Fan et al.
2009). These two alternatives are based on the general setting of the following penalized
likelihood:

log(detΩ)− tr(
S

n
Ω)−

∑

1≤i≤p

∑

1≤j≤p

pλij
(|ωij |), (10)

where p(·) is the generic penalty function on each element, and λij is the tuning param-
eter for the (i, j)-element of Ω.

The adaptive graphical lasso uses the following penalized likelihood:

log(detΩ)− tr(
S

n
Ω)− λ

∑

1≤i≤p

∑

1≤j≤p

wij |ωij |, (11)

where the adaptive weights are wij = 1/|ω̃ij |α for some α > 0. Fan et al. (2009)
recommended to fix α = 0.5 and the weighting matrix {ω̃ij} to be the inverse of the
sample covariance matrix for the case p < n or the graphical lasso estimates of Ω for
the case p ≥ n, and λ to be chosen by cross-validation.

The graphical SCAD uses a SCAD penalty for p(·) whose first order derivative is
given by:

p′λij
(|ωij |) = λ

{
1{|x|≤λ} +

(aλ− |x|)+
(a− 1)λ

1{|x|>λ}

}
, (12)

where a and λ are two tuning parameters. Fan et al. (2009) recommended to fix a = 3.7
and choose λ via cross-validation.

Now, we describe a Bayesian analog of the adaptive graphical lasso (11):

p(yi | Ω) = N(yi | 0,Ω−1) (i = 1, . . . , n),

p(Ω | {λij}i≤j) = C−1
{λij}i≤j

∏

i<j

{
DE(ωij | λij)

} p∏

i=1

{
Exp(ωii | λii

2
)
}

1Ω∈M+ ,

p({λij}i<j | {λii}p
i=1) ∝ C{λij}i≤j

∏

i<j

Ga(r, s), (13)

where C{λij}i≤j
is the intractable normalizing constant and {λii}p

i=1 for the diagonal
elements are hyperparameters. The two terms of C{λij}i≤j

in (13) cancel out to ease
the computations when updating λij . Model fitting is straightforward using the block
Gibbs sampler described in (2.4) with the modification to update different λij from
different gamma distributions.

In comparison with the Bayesian graphical lasso in (2), the Bayesian adaptive graph-
ical lasso places different shrinkage parameters λij on different off-diagonal elements ωij .
When compared with frequentist adaptive graphical lasso (11), the Bayesian counter-
part automatically chooses the amount of shrinkage according to the current value of
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ωij as follows. Conditional on Ω, model (13) gives

λij | Ω ∼ Ga(1 + r, |ωij |+ s),

which implies the conditional mean of λij is (1 + r)/(|ωij | + s). If the current ωij is
small (large), then in the updating stage, the shrinkage parameter λij will tend to be
large (small).

The choice of hyperparameters (r, s) is fundamentally important in the performance
of the Bayesian adaptive graphical lasso. To encourage the adaptiveness of λij to ωij ,
the hyperparameter s must be small relative to ωij . To see this, suppose a current
value of ωij = 0.01 and a hyperparameter s = 0.1 which is small in raw scale but
large relative to ωij , then in the updating stage, λij will be around (1 + r)/0.11 which
essentially ignores the small value of ωij = 0.01 and underestimates λij by a factor of
about 10 as compared with 1/|ωij |. Thus, a large s relative to ωij will not enjoy the
adaptiveness. In the simulation study, we used r = 10−2 to represent that the prior
degrees of freedom is 0.01 when the sample size of each individual ωij is one, and chose
s = 10−6 to allow λij to be adaptive to small ωij . The simulation study in Section 4
shows that this choice of prior hyperparameters provides excellent performance.

The Bayesian adaptive lasso has another interpretation under marginalization. Upon
integrating over (λij)i<j in (13) , the marginal prior for Ω is

p(Ω | a, b, {λii}p
i=1) ∝

[ ∫ ∏

i<j

{
DE(ωij | λij)Ga(λij | s, t)

}
d(λij)i<j

]

×
p∏

i=1

{
Exp(ωii | λii

2
)
}

1Ω∈M+

=
∏

i<j

{
GDP(λij | ξ = s/r, α = r)

} p∏

i=1

{
Exp(ωii | λii

2
)
}

1Ω∈M+ .

(14)

where GDP(x | ξ, α) denotes the generalized double Pareto distribution with a density
function

p(x) =
1
2ξ

(1 +
|x|
αξ

)−(1+α).

Armagan et al. (2012) showed that the generalized double Pareto distribution is a useful
shrinkage prior for linear regression models. Our Bayesian adaptive graphical lasso can
be seen as a Bayesian GDP graphical lasso with fixed parameters ξ and α.

4 Simulated example

This simulation experiment was designed to test the performance of the Bayesian and
the frequentist graphical lassos in terms of parameter estimation and structure learning.
We considered 6 different models in our simulation:
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� Model 1: An AR(1) model with σij = 0.7|i−j|.

� Model 2: An AR(2) model ωii = 1, ωi,i−1 = ωi−1,i = 0.5 and ωi,i−2 = ωi−2,i =
0.25.

� Model 3: A block model with σii = 1, σij = 0.5 for 1 ≤ i 6= j ≤ p/2, σij = 0.5 for
p/2 + 1 ≤ i 6= j ≤ 10 and σij = 0 otherwise.

� Model 4: A star model with every node connected to the first node, with ωii =
1, ω1,i = ωi,1 = 0.1 and ωij = 0 otherwise.

� Model 5: A circle model with ωii = 2, ωi,i−1 = ωi−1,i = 1, and ω1,p = ωp,1 = 0.9.

� Model 6: A full model with ωii = 2 and ωij = 1 for i 6= j.

For each model, we generated samples of size n = 50 and dimension p = 30 or size
n = 200 and dimension p = 100. For each generated sample, we fit the graphical lasso
(1), the adaptive graphical lasso (11), the graphical SCAD (12), the Bayesian graphical
lasso (2) with hyperparameters r = 1 and s =0.01 for the prior distribution of λ, and
the Bayesian adaptive graphical lasso (13) with r = 10−2 and s = 10−6 for the prior
distributions of λij for i < j and λii = 1 for i = 1, . . . , p. The tuning parameters of
the three frequentist lassos were chosen by 10-fold cross-validation. The two Bayesian
estimates were based on 10000 iterations of the Monte Carlo sampler after 5000 burn-in
iterations.

To assess the performance of the covariance matrix estimation, we calculated Stein’s
loss in (5) using the Bayes estimator (6) for the two Bayesian procedures and the mode
estimator for the three frequentist procedures. Table 1 reports the median and the
standard error of Stein’s loss for p = 30 and 100 in models 1–6 based on 50 replications.
Under each scenario, the best two performances are boldfaced in the tables. Three
things are worth noting from Table 1. First, except for the star case, the Bayesian
adaptive graphical lasso always ranks among the best two methods. Second, except for
the star and the block cases, the frequentist graphical lasso is always among the worst
two methods perhaps because it over-shrinks large coefficients. The graphical lasso
performs well in the star and the block cases perhaps because all signals are small in
these two cases – the star matrix has a non-zero partial correlation of 0.1 and the block
matrix has a non-zero partial correlation of -0.067 and -0.02 for p = 30 and p = 100
respectively. Third, the Bayesian procedures seem to have the advantage of reducing
the standard errors. This is not surprising as the estimates of the covariance matrix in
the Bayesian procedures are not based on a single and fixed value of penalty parameter
but rather are based on all of them, which leads to a robust estimation of the covariance
matrix.

To assess the performance of the graphical structure learning, we computed speci-
ficity, sensitivity and Matthews Correlation Coefficients (MCC), which have been used
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AR(1) AR(2) Block Star Circle Full
p = 30

Glas 4.50(0.52) 7.05(0.90) 3.45(0.45) 1.67(0.30) 5.31(0.67) 31.43(2.71)
Adap 3.58(0.52) 5.62(0.83) 4.00(0.42) 1.62(0.20) 4.23(0.56) 28.53(3.13)
Scad 5.22(1.46) 5.51(0.71) 7.44(0.60) 1.66(0.56) 5.40(1.34) 26.99(4.54)
Bgla 3.82(0.33) 4.99(0.31) 2.63(0.31) 2.07(0.30) 4.10(0.37) 15.23(0.51)
Bada 3.39(0.49) 4.59(0.40) 2.80(0.33) 1.93(0.53) 3.72(0.62) 15.37(1.13)

p = 100

Glas 8.21(0.38) 15.31(0.75) 6.69(0.24) 2.47(0.22) 9.49(0.42) 106.73(2.77)
Adap 4.09(0.23) 10.05(0.46) 7.64(0.25) 2.56(0.37) 5.24(0.24) 101.08(2.90)
Scad 1.75(0.40) 7.80(0.71) 17.84(0.62) 8.20(0.43) 11.48(0.56) 87.75(4.68)
Bgla 8.92(0.33) 13.94(0.31) 6.29(0.24) 4.98(0.24) 9.56(0.28) 59.42(0.70)
Bada 2.95(0.24) 5.85(0.34) 5.47(0.23) 3.83(0.26) 3.01(0.21) 70.33(1.35)

Table 1: Summary of Stein’s loss for the different models and different meth-
ods based on 50 replications. “Glas” refers to the frequentist graphical lasso with
cross-validation;“Adap” refers to the frequentist adaptive graphical lasso with cross-
validation; “Scad” refers to the SCAD method with cross-validation; “Bgla” refers to
the Bayesian graphical lasso and “Bada” refers to the Bayesian adaptive graphical lasso.
The medians are reported here, the standard errors are shown in parentheses, and the
best two methods are boldfaced.

in Fan et al. (2009) and are defined as follows:

Specificity =
TN

TN + FP
, Sensitivity =

TP
TP + FN

,

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (15)

where TP,TN,FP and FN are the number of true positives, true negatives, false positives
and false negatives, respectively. MCC is generally regarded as a balanced measure of
the classification because it takes into account TP, TN, FP, and FN. For all three metrics,
the larger the values are, the better the classification is. We compared the results from
the Bayesian thresholding of Section 2.3 and from the frequentist methods, where we
claim {ωij = 0} if ω̂ij < 10−3 as in Fan et al. (2009). The results, averaged over 50 runs,
are reported in Table 2. The standard deviations around the mean are within 10% of
the mean values for all results. The Bayesian adaptive graphical lasso tends to provide
higher specificity in all cases but lower specification in cases when signal is weak (e.g.,
block and star). Its overall performance seems to be good as its MCC ranks among the
top three methods in all cases. All the other four methods appear to perform well in
some cases, and fare badly in other cases. For example, when p = 100, the SCAD ranks
among the top two for the cases of AR(1) and AR(2) but is in the bottom for the case
of block and star.
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AR(1) AR(2) Block Star Circle

SP SE MC SP SE MC SP SE MC SP SE MC SP SE MC
% % % % % % % % % % % % % % %

p = 30

Glas 66 100 34 65 82 32 78 67 46 91 28 16 63 100 32
Adap 78 100 44 75 81 42 80 49 31 91 17 05 75 100 41
Scad 82 93 45 78 76 43 74 36 10 96 03 03 86 100 53
Bgla 74 100 38 71 33 05 68 42 10 80 28 04 58 100 30
Bada 96 100 77 90 43 33 93 34 34 94 14 07 95 100 76

p = 100

Glas 77 100 25 75 97 31 89 44 37 95 100 54 73 100 23
Adap 90 100 38 85 96 41 90 31 27 93 97 44 86 100 33
Scad 98 100 74 90 96 50 82 22 5 67 94 18 42 100 12
Bgla 79 100 27 80 36 7 78 27 7 80 92 24 73 100 23
Bada 96 100 55 94 90 56 93 20 19 91 85 36 97 100 62

Table 2: Percentage of specificity (SP%), sensitivity (SE%) and Matthews Correlation
Coefficient (MC%) for the different models and different methods based on 50 replica-
tions. These three measures are defined in equation (15). The best two methods for
MCC are boldfaced.

5 Discussion

The Bayesian graphical lassos are shown to be attractive for estimating covariance
matrices for moderately large problems. In comparison with frequentist methods, the
Bayesian graphical lassos offer MCMC outputs that can be summarized in any manner
a modeler wants at a low computational cost (e.g., a few minutes for p = 100). There is
also strong empirical evidence that the Bayesian adaptive graphical lasso has excellent
performance. In comparison with many other Bayesian shrinkage estimation methods
for covariance matrices (for example, Daniels and Kass 1999, 2001; Barnard et al. 2000;
Wong et al. 2003; Liechty et al. 2004), our methods use the block Gibbs sampler which
requires no tuning and runs quickly. To the best of our knowledge, the only existing
permutation-invariant Bayesian method that uses block Gibbs sampler and so can easily
scale up to hundreds of variables is the factor model. Thanks to the block Gibbs sampler,
the proposed Bayesian graphical lassos can also easily handle hundreds of variables,
hence adding a powerful set of new tools to the Bayesian toolbox for large covariance
matrix estimation.

On the graphical structure learning, the proposed thresholding approach is ad hoc
and lacks the formal Bayesian interpretation. A fully Bayesian treatment of structure
learning should place point mass priors on the events {ωij = 0} to make a posterior
inference about sparse structures. Using standard notation, let Γ be a p(p−1)/2-vector
of edge inclusion indicators where γij = 1 whenever ωij 6= 0 for i > j. The prior
distribution of Ω for a particular structure Γ can be expressed as

p(Ω | Γ) = C−1

Γ,λ

∏
γij=1

{
exp(−λ|ωij |)

} p∏

i=1

{
exp(−λ

2
ωii)

}
, (16)
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where CΓ,λ is the normalizing constant depending on Γ and λ. Clearly, posterior
inferences about Γ and λ require the evaluation of CΓ,λ for each setting of (Γ, λ). This
can be computationally challenging because CΓ,λ is intractable. A similar problem
occurs in the Bayesian Gaussian graphical model literature (Atay-Kayis and Massam
2005; Wang and Li 2012) where the evaluation of the normalizing constant for a given
graph is the biggest computational bottleneck. We have begun to explore methods that
can potentially eliminate these computational burdens.

The Bayesian graphical lasso can be extended to other lasso-related methods for
graphical models. Hierarchical models based on the normal scale mixtures have been
well examined in the context of the regression analysis. However, theoretical and empir-
ical studies of these priors in the context of Gaussian graphical models are less known
and are needed to increase the flexibility of Bayesian graphical models. While the im-
plied priors can be different, the block Gibbs sampler in this paper can offer ways to
apply these methods to graphical models.

Supplementary materials

Computational details for the Cholesky-based Gibbs sampler, and instructions for the
MATLAB routines implementing all frequentist and Bayesian procedures used in the
paper, are available from the author’s the web site of the paper.
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