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Simultaneous Linear Quantile Regression:
A Semiparametric Bayesian Approach

Surya T. Tokdar∗ and Joseph B. Kadane†

Abstract. We introduce a semi-parametric Bayesian framework for a simultaneous
analysis of linear quantile regression models. A simultaneous analysis is essential
to attain the true potential of the quantile regression framework, but is computa-
tionally challenging due to the associated monotonicity constraint on the quantile
curves. For a univariate covariate, we present a simpler equivalent characterization
of the monotonicity constraint through an interpolation of two monotone curves.
The resulting formulation leads to a tractable likelihood function and is embedded
within a Bayesian framework where the two monotone curves are modeled via lo-
gistic transformations of a smooth Gaussian process. A multivariate extension is
suggested by combining the full support univariate model with a linear projection
of the predictors. The resulting single-index model remains easy to fit and provides
substantial and measurable improvement over the first order linear heteroscedastic
model. Two illustrative applications of the proposed method are provided.

Keywords: Bayesian Inference, Bayesian Nonparametric Models, Gaussian Pro-
cesses, Joint Quantile Model, Linear Quantile Regression, Monotone Curves.

1 Introduction

Ever since the seminal work by Koenker and Bassett (1978), linear quantile regression
models have provided a useful and popular alternative to the traditional linear regres-
sion models. The latter, which link the conditional mean of a response to a linear
combination of covariates, fail to provide an adequate modeling platform when different
parts of the conditional response distribution are suspected to change at different rates.
This difficulty is particularly acute when scientific interest focuses on how the covari-
ates affect the tails and other non-central parts of the conditional distribution. Such
situations routinely arise in economics, health and environment studies where the tails
of the response distribution constitute events of special interest.

Let QY (τ | x) := inf{q : P (Y ≤ q | X = x) ≥ τ} denote the τ -th conditional
quantile (0 ≤ τ ≤ 1) of a response Y given a vector of covariates X = x. A linear
quantile regression model for QY (τ | x), at a given τ , specifies

QY (τ | x) = β0(τ) + x′β(τ) (1)

where β0(τ) is a scalar intercept, β(τ) is a coefficient vector of length p = dim(x) and
x′ denotes vector transpose of x. This specification retains the interpretability of linear
regression by entertaining unknown parameters as linear coefficients. But, crucially,
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it targets a specific part of the conditional distribution of Y , encoded by the quantile
point τ chosen by the analyst. By choosing τ appropriately, one can focus on the tails
of the conditional distribution, as well as its other central or non-central parts. More
importantly, by considering (1) simultaneously for all τ ∈ [0, 1], one obtains a complete
description of the conditional distribution of Y (subject to monotonicity constraints that
we discuss later) with the flexibility that x can have different effects on different parts of
this distribution. The traditional linear regression model is a special case corresponding
to a constant β(τ) ≡ β.

For a given τ , Koenker and Bassett (1978) proposed to estimate the coefficients in (1)
from data {(xi, yi) : 1 ≤ i ≤ n} by minimizing the loss function

∑n
i=1 εi(τ − I(εi < 0))

where εi = yi − β0(τ) − x′iβ(τ). This approach, which can be efficiently computed
by linear programming, remains popular. A huge literature has emerged studying fre-
quentist asymptotic properties of the resulting estimate, estimation of its standard er-
ror, derivation of tests of a given asymptotic size as well as various other extensions
and improvements (see Koenker and Bassett 1978; Gutenbrunner and Jurečkóva 1992;
Gutenbrunner et al. 1993; Koenker and Xiao 2002; Zhou and Portnoy 1996; Koenker
and Machado 1999; Koenker 2005, and the references therein). This approach also influ-
enced early attempts at a Bayesian analysis of (1) with a conditional sampling density
for the response constructed as Y = β0(τ) + x′β(τ) + σε with ε having the asymmetric
Laplace density fε(ε) = const × exp[−ε(τ − I(ε < 0))] (Yu and Moyeed 2001; Tsionas
2003). Subsequent Bayesian approaches have looked into more flexible formulations
of fε(ε), including non-parametric formulations with extensions to the heteroscedastic
case: fε(ε | X = x) (Kottas and Gelfand 2001; Gelfand and Kottas 2003; Kottas and
Krnjajić 2009; Thompson et al. 2010).

Arguably, a single-τ fit of (1) does not do justice to the full potential of the model,
which lies in the simultaneous description

{QY (τ | x) = β0(τ) + x′β(τ); 0 ≤ τ ≤ 1} (2)

encoded by the function valued parameters β0(·) and β(·). A post-estimation pooling
of the individual estimates, though valid from the viewpoint of asymptotic, frequentist
calculations, faces serious philosophical and practical difficulties in drawing inference on
β(τ) (or β0(τ)) simultaneously for a range of τ values when limited data are available.
This is illustrated in Figure 1 that describes individual fits of (1) to a dataset on north
Atlantic hurricane intensities (Elsner et al. 2008) with Y = maximum windspeed of a
hurricane and X = year of its occurrence (between 1981 and 2006). The vertical bars in
Figure 1 give the P-value for testing H0 : β(τ) = 0, as derived from the corresponding
individual fits for τ ∈ {0.01, 0.02, · · · , 0.99}. It is not clear how to combine these P-
values to draw inference on β(τ) even for fairly short ranges of τ values, say τ ∈ (0.4, 0.6).
Moreover, a substantial fluctuation between the P-values highlights a poor borrowing
of information across cases and indicates possible gaps in utilizing the information in
the data in deriving a joint inference on the β(·) curve.

The pooling of single-τ fits also poses a serious foundational challenge to a Bayesian
analysis of (1). The sampling distribution of Y under a Bayesian quantile regression
model for a τ = τ1 is usually different from that under the model for a different τ =
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Figure 1: P-values from individual linear quantile regression analyses of north Atlantic
tropical cyclone intensity against time. A substantial fluctuation leads to difficulties in
drawing a composite inference.

τ2. Therefore, although one could calculate posterior probabilities such as P (β(τ) <
0 | data) for every individual τ -model, there is no coherent way to combine these
probabilities across τ values, as they each represent posterior belief under a different
model. Therefore, the issue of simultaneous inference remains unsolved (see, however,
Dunson and Taylor 2005; Lancaster and Jun 2010, who offer partial solutions based on
pseudo and empirical likelihoods).

A major obstacle in performing a simultaneous fitting of the joint model (2) appears
to be the monotonicity constraint that the map τ 7→ QY (τ | x) must be increasing in
τ (non-decreasing if the distribution of Y has atoms) for every x ∈ X , the domain of
X. This constraint puts stringent restrictions on the (β0(·), β(·)) curves that do not sit
well with the loss function minimization approach of Koenker and Bassett (1978). It
is possible to avoid the monotonicity problem altogether by specifying a nonparametric
model for the conditional distribution FY (y | x) and then inverting it to derive con-
ditional quantile curves QY (τ | x) (Scaccia and Green 2003; Geweke and Keane 2007;
Taddy and Kottas 2010). The resultant curves, however, lack the interpretability of the
linear model (2). This lack of interpretability could be a serious issue in studies where
linear coefficients have meanings as rates of change with respect to input variables, such
as time or diet, that can be understood and interpreted by an expert.

In this paper we introduce a semi-parametric Bayesian framework for a simultaneous
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analysis of (2). We make use of the observation that (2) automatically lends itself to
a likelihood based inference on the function valued parameters β0(·) and β(·). This is
because, when (β0(·), β(·)) are such that τ 7→ QY (τ | x) is strictly increasing for each
x ∈ X , (2) uniquely determines a conditional sampling density for Y in the form:

fY (y | x) =
1

∂
∂τ QY (τ | x)

∣∣∣∣
τ=τx(y)

=
1

∂
∂τ β0(τ) + x′ ∂

∂τ β(τ)

∣∣∣∣
τ=τx(y)

(3)

where τx(y) solves y = QY (τ | x) in τ . A likelihood function over the monotonicity
preserving choices of (β0(·), β(·)) is then simply defined as

∏n
i=1 fY (yi | xi). To establish

(3) observe that fY (y | x) is the derivative at y of the conditional distribution function
y 7→ FY (y | x), which is the inverse of τ 7→ QY (τ |x) and note that for any invertible and
differentiable function h(u) with derivative ḣ(u), one has ∂

∂v h−1(v) = 1/{ḣ(h−1(v))}.
For a univariate X, we show that the monotonicity constraint is easily satisfied by

reparametrizing β0(·) and β(·) as linear combinations of two monotonically increasing
curves. Thus a Bayesian model is obtained whenever a prior distribution is specified on
these monotone curves. We introduce a specific choice of this prior distribution induced
by a logistic transformation of a smooth Gaussian process. An efficient Markov chain
Monte Carlo (MCMC) is available for this model, making use of the recent approxima-
tion techniques developed in Tokdar (2007), Banerjee et al. (2008) and Tokdar et al.
(2010).

For a multivariate X, a single index extension of the univariate model is proposed,
i.e., the univariate model is applied to the one dimensional summary X ′α where α is
taken to be an additional model parameter. Although the single index approach captures
only a subset of the monotonicity preserving joint models (2), it strikes a useful balance
between computational difficulty and model richness. In particular, our single index
implementation is computationally as efficient as a Bayesian implementation of the first
order heteroscedastic model of He (1997) (as done in Reich et al. 2010), but provides
non-trivial and measurable improvement over this simplistic approach that restricts
the conditional densities fY (y | x) to be linear location-scale transformations of each
other. On the other hand, it is computationally easier than the recent proposal in Reich
et al. (2011) which offers greater model coverage. Nevertheless, we put forward our
multivariate model as only a promising extension for further research.

We present two illustrative real data applications of our Bayesian model. Our first
application is an analysis of the north Atlantic hurricane data (Elsner et al. 2008) that
was referred to in Figure 1. For this study, scientific interest focuses on how hurricane
intensities are changing with time. The linear quantile regression model provides a suit-
able framework to study these changes in the form of linear trends, where the rate of
change can be different in different parts of the intensity distribution. The upper tail
is of particular interest due to the damage potential of the strongest hurricanes as well
as their alleged connection with global warming (Trenberth 2005). We find that the
trends estimated by our Bayesian model provide a natural smoothing of those found
from the Koenker-Bassett scheme. The smoothing is a byproduct of borrowing of infor-
mation across τ , which leads to a more homogeneous inference on how different parts
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of the hurricane intensity distribution are changing with time. Our second application
is a study of the relationship between infant birthweight and various demographic and
pregnancy related factors of the mother (Abrevaya 2001). We illustrate that our single
index model offers a smooth, homogeneous inference on this relationship across τ , but
captures interesting features at the two tails by going beyond first order heteroscedastic-
ity. Compared to individual Koenker-Bassett fits, our method provides equally accurate
out-of-sample prediction without quantile crossing.

2 Linear Quantiles: The Univariate Case

2.1 The Model

For a univariate X, we can assume without loss of generality that X is bounded and
convex, i.e., X is a bounded interval on the line. We shall take this interval to be [−1, 1]
with suitable redefinition of origin and scale, if necessary. Assuming X to be bounded
is unavoidable for a valid linear specification of QY (τ | x) = β0(τ) + xβ1(τ), because
the only non-intersecting lines on an unbounded X are parallel lines. Convexity of X
is not restrictive, because lines that do not intersect each other over a given set remain
non-intersecting also over its convex hull. An easy characterization of the required
monotonicity of the quantile regression lines is offered by the following result.

Theorem 1. A linear specification QY (τ | x) = β0(τ) + xβ(τ), τ ∈ [0, 1] is monotoni-
cally increasing in τ for every x ∈ X = [−1, 1] if and only if

QY (τ | x) = µ + γx +
1− x

2
η1(τ) +

1 + x

2
η2(τ) (4)

where η1(τ) and η2(τ) are monotonically increasing in τ ∈ [0, 1].

Proof. If QY (τ | x) is given by (4) then it must be monotonically increasing in τ
for every x ∈ [−1, 1] for which both (1 − x)/2 and (1 + x)/2 are non-negative. One
can express such a QY (τ | x) as in (2) by defining β0(τ) = µ + (η1(τ) + η2(τ))/2 and
β(τ) = γ + (η2(τ) − η1(τ))/2. For the converse, any monotonicity obeying QY (τ | x)
of the form (2) can be expressed as (4) by taking µ = 0, γ = 0, η1 = QY (· | −1) and
η2 = QY (· | 1). ¥

Therefore a model over η = (η1, η2) induces via (4) a model over all valid, linear
specifications of QY (τ | x), provided it satisfies the boundary conditions:

QY (0 | x) = y(x), QY (1 | x) = y(x), ∀x ∈ X (5)

where (y(x), y(x)) gives the range of Y given X = x. We restrict attention to the
special case where this range does not change with x, y(x) ≡ y, y(x) ≡ y, although
linear changes are not difficult to accommodate. We allow both finite and infinite
values for these boundaries.
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To construct η1, η2 that are monotonically increasing and satisfy the above boundary
conditions, we make use of monotonically increasing maps ξ1, ξ2 from [0, 1] onto itself
and subject these to the following parametric transformations:

η1 = σ1Q̃(ξ1(τ)), η2 = σ2Q̃(ξ2(τ)) (6)

where σ1 > 0, σ2 > 0 and Q̃(τ) gives the quantiles of some fixed density with Q̃(0) = y

and Q̃(1) = y. For y = −∞, y = ∞, one can take Q̃ to give the conditional quantiles of
a N(µ0, σ0) density or more generally, of a tν(µ0, σ0) density if heavy tails are desired.
In this case µ, γ, σ1, σ2 can be arbitrary and are treated as model parameters. When
both y and y are finite, we take Q̃ to give the quantiles of a distribution supported over
[y, y] and fix µ = γ = 0 and σ1 = σ2 = 1. In (6), Q̃ represents the target parametric
model. Indeed, the parametric first order heteroscedastic model (He 1997; Reich et al.
2010) determined by linear location-scale changes of Q̃ is a special case when ξi’s are the
identity maps ξi(τ) = τ , i = 1, 2. Below we discuss a specific construction of ξ = (ξ1, ξ2)
where the identity map represents a central value for the ξi’s.

Let ω(i, τ) denote a zero-mean Gaussian process defined on {1, 2} × [0, 1], with
covariance Cov(ω(i, τ), ω(i′, τ ′)) = κ2cii′ exp(−λ2(τ − τ ′)2), where c11 = c22 = 1 and
c12 = c21 = ρ ∈ [0, 1], λ > 0, κ > 0 are to be specified later. Define

ξi(τ) =

∫ τ

0
eω(i,t)dt∫ 1

0
eω(i,t)dt

, τ ∈ [0, 1], i = 1, 2. (7)

Then ξ1, ξ2 are monotonically increasing random functions that map [0, 1] to [0, 1].
The transformation in (7), often called the logistic transformation, has been studied
previously for modeling random densities (Lenk 1988, 1991, 2003; Tokdar 2007). Of
importance to us is the result in Tokdar and Ghosh (2007) that the support of ω(i, τ)
includes all continuous or piecewise continuous functions. Due to continuity of the
logistic transformation, the same can be said about ξi in supporting all continuous or
piecewise continuous, monotonically increasing bijections of [0, 1] onto itself. The zero-
mean property of ω implies that ξi concentrates around the identity function – the
logistic transform of the zero function.

To summarize, our specifications (4), (6) and (7) together define a valid, linear
model on QY (τ | x), with Q̃ as the base quantile function, supporting any continuous or
piecewise continuous specification. It is easy to see that the first order heteroscedastic
model is a special case of our specification with ρ = 1, with further reduction to the
homoscedastic model with σ1 = σ2. We complete the model by specifying

(ρ, λ2, κ−2) ∼ U(0, 1)× Ga(5, 1/10)× Ga(3, 1/3), (8)

although the analyses reported in the subsequent sections are fairly robust to the choice
of prior on these parameters. A uniform prior on ρ offers a broad range of dependence be-
tween the curves ξ1 and ξ2 and puts positive mass around the first order heteroscedastic
case ρ = 1. Our prior on λ specifies a central 95% interval (0.36, 0.85) for the correlation
between ω(i, τ) and ω(i, τ +0.1) – a sufficiently wide range that precludes functions that
are either too spiky or too flat but non-zero. A shape of 3 for the gamma distribution
on κ−2 ensures a finite variance for the marginal distribution of ω(i, τ).
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2.2 Model Fitting

We handle the function valued variables ω(1, τ) and ω(2, τ) by approximating their
domain [0, 1] with a dense grid {tl = lδ : l = 0, 1, · · · , L}. We used L = 100, δ =
0.01 for the implementations reported below. During every iteration of the MCMC,
ζi(τ) = eω(i,τ), i = 1, 2, are computed and stored only at the grid points τ = tl,
l = 0, 1, · · · , L. These stored values are then used to compute numerically the integrals∫ τ

0
ζi(u)du for every τ on the grid, by using the trapezoidal rule. These integrals are

stored and are used to get a trapezoidal approximation ξ̂i(τ) of ξi(τ) for every τ on the
grid. The trapezoidal rule can be interpreted as performing the exact integration with
an approximate ζ̂i(τ) which equals ζi(τ) at the grid points τ = tl and equals the linear
interpolation ζ̂i(τ) = {(τ − tl−1)ζi(tl) + (tl − τ)ζi(tl−1)}/(tl − tl−1) for a τ ∈ (tl−1, tl).
This interpretation leads to an analytical evaluation of ξ̂i(τ) = {(τ − tl−1)ξi(tl) + (tl −
τ)ξi(tl−1)−(τ−tl−1)(tl−τ)(ζi(tl)−ζi(tl−1)}/(tl−tl−1), for any τ ∈ (tl−1, tl), whenever
such an evaluation is needed. It is this trapezoidal approximation ξ̂i(τ) that we use in
(6) for the purpose of model fitting.

At the crux of our model fitting is the computation of the log-likelihood function

∑

i

log fY (yi | xi) = −
∑

i

log
∂

∂τ
QY (τxi(yi)|xi)

= −
∑

i

log
(

1− xi

2
∂

∂τ
η1(τxi(yi)) +

1 + xi

2
∂

∂τ
η2(τxi(yi))

)
(9)

where τxi(yi) solves yi = QY (τ | xi) in τ , i = 1, 2, · · · , n. A solution τx(y) to QY (τ |
x)− y = 0 can be efficiently obtained by using Newton’s recursion:

τ (k+1)
x (y) = τ (k)

x (y)− QY (τ (k)
x (y) | x)− y

∂
∂τ QY (τ (k)

x (y) | x)
,

where τ
(0)
x (y) is some initial guess in [0, 1]. Running this recursion would require re-

peated evaluations of QY (τ | x) and ∂
∂τ QY (τ | x) at various values of τ ∈ [0, 1], which

can be done relatively easily by using the trapezoidal approximations ξ̂1(τ), ξ̂2(τ). Alter-
natively, one can simply search through the grid points to identify the interval (tl−1, tl)
that contains τx(y) and approximate ∂

∂τ QY (τx(y) | x) by {QY (tl | x) − QY (tl−1 |
x)}/(tl − tl−1).

The steps described in the above two paragraphs offer a fast algorithm to compute
the log-likelihood at any given value of the parameter ω(·, ·). This algorithm scales
linearly in the number of observations n as well as in the number of grid points L. We
were able to perform approximately 800 likelihood evaluations per second for the north
Atlantic hurricane data presented in the next section, with n = 291 and L = 100, on a
laptop computer with a 3.06 GHz Intel Core 2 Duo processor and 8 GB memory.

With an efficient algorithm in place to evaluate the log-likelihood function, we use
Markov chain Monte Carlo to sample from and summarize the posterior distribution
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of (ω, λ, ρ, µ, γ, σ2
1 , σ2

2) given data (κ2 can be integrated out). Markov chain updating
of (ω, λ, ρ) can be sticky due to the high degree of dependence between these variables
as well as the need to invert large covariance matrices. A sparse surrogate that has
been successfully implemented in the context of density estimation (Tokdar 2007) and
spatial statistics (Banerjee et al. 2008), replaces ω with a knot-based approximation
ω∗(i, τ) = E [ω(i, τ) | W ∗ := {ω(j, τ∗k ) : j = 1, 2, k = 0, 1, · · · , K}], where K is a pre-
specified order of approximation and {τ∗k = k/K : 0 ≤ k ≤ K} is a set of knots over [0, 1].
In our applications we use K = 10. The surrogate process ω∗ can be easily evaluated
at any τ given (W ∗, λ, ρ) and these parameters along with the remaining parameters
(µ, γ, σ2

1 , σ2
2) are easily updated via a block-Metropolis sampler (R codes available at

the first author’s website: http://www.stat.duke.edu/st118/~Software/).

3 Application to Cyclone Intensity

Elsner et al. (2008) argue that the strongest tropical cyclones in the North Atlantic
basin have gotten stronger over the last couple of decades. Their analysis includes
fitting separate linear quantile regression models to maximum sustained wind speed
(WmaxST) of tropical cyclones (including tropical storms) against their year of occurrence
(Year) over a range of τ values in [0, 1]. The slopes of these regression lines are found
statistically different from zero (with positive estimated values) for some of the chosen
τ values, mostly in the upper tail τ > 0.75, leading to the use of the qualifier strongest
in their summary. Figure 1 shows the P-values corresponding to these tests1 for τ on
the grid {0.01, 0.02, · · · , 0.99}.

In this section we present an analysis of the data used by Elsner et al. (2008) with
the joint quantile regression model discussed in the previous section. We consider y = 0,
y = ∞ for the range of WmaxST, measured in nautical miles per hour (knots), and restrict
Q̃ to match the quantiles of a power-Pareto density

f̃(y) =
ak

σ

k( y
σ )k−1

(1 + ( y
σ )k)−(a+1)

, y > 0. (10)

For a random variable Y with (10) as its density function, (Y/σ)k has the familiar Pareto
distribution with index a. The heavy right tail of the Pareto distribution ensures that f̃
entertains occasional occurrences of extremely strong tropical cyclones while the power
transformation with a k > 1 makes f̃(y) vanish quickly as y → 0. One could argue that y
should be fixed at 35, as a storm system is required to have maximum sustained winds of
at least 35 knots to be labeled as a tropical cyclone. However, this thresholding applies
to the best-track record of maximum wind, while Elsner et al. (2008) derive WmaxST only
from satellite data. The two measurements are close but not identical, and some of the
storms in the data set had maximum wind below 35 knots.

We fix a = 0.45, σ = 52 and k = 4.9. The corresponding f̃ well approximates the
median and the interquartile range of the best-track maximum winds of all tropical

1Obtained through the rq() function of the R package quantreg, a 10000 Bootstrap sample is used
to compute P-values.

http://www.stat.duke.edu/st118/~Software/�
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Figure 2: Posterior summaries of our joint quantile regression analysis of maximum wind
speed (WmaxST) of north Atlantic tropical cyclones against year (Year) of occurrence.
(a) Posterior mean of QY (τ | x) for τ ∈ {0.05, 0.1, 0.2, · · · , 0.9, 0.95} overlaid on data
scatter. (b) Posterior medians and 50% and 95% central credible intervals for slopes sτ =
∂
∂xQY (τ | x). (c) Posterior probability of sτ being negative. (d) Terminal conditional
densities fY (y | 1981) and fY (y | 2006) (solid lines) found by inverting posterior means
of QY (τ | 1981) and QY (τ | 2006), overlaid on the histograms of WmaxST pooled over
the first and the last 10 years of study. The dashed curves are the base power-Pareto
density f̃ .
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cyclones2 between 1900-1979. We proceed with the model in (6) with µ = 0 and
σ2

1 , σ2
2

IID∼ Ga(2, 2) which ensures each σ2
i is centered around 1, but with a wide spread.

The ratio of σ1 to σ2 has prior median 1, and has 80% chance to be between 1/3 and 3.

The data scatter is shown in Figure 2(a), where each point represents a tropical
cyclone between 1981 and 2006, with Year on the horizontal axis and WmaxST on the
vertical axis. Overlaid on the scatter plot are some of the quantile lines estimated
from our joint model. Figure 2(b) shows the posterior credible intervals of the slopes
sτ = ∂

∂xQY (τ | x) and Figure 2(c) shows the posterior probabilities P (sτ < 0 | data).
The solid lines in Figure 2(d) are the two terminal conditional densities fY (y | 1981) and
fY (y | 2006) obtained by inverting, via (3), the posterior mean estimates of QY (τ | 1981)
and QY (τ | 2006). For a visual comparison, we have included in these plots histograms
of WmaxST pooled over the first and the last ten years of the study. The dashed lines give
the density f̃(y). All posterior summaries appearing in Figure 2 and below are Monte
Carlo approximations based on a sample of 1000 parameter values that we obtained by
running a block-Metropolis sampler for 100,000 iterations, discarding the first 10,000
iterations and saving every 90-th draw from the remaining iterations. Trace plots of sτ

(not shown here) exhibit no drifts and the autocorrelation of successive saved draws sτ

drops below 0.1 at lag 1, for all τ .

Figures 2(a)-(c) clearly indicate an upward trend of WmaxST across the entire range of
τ ∈ [0, 1]. Indeed, the posterior probabilities of sτ being positive, which equal 1−P (sτ <
0|data), are estimated to be 92% or more for all τ between [0.01, 0.99]. This indicates
that TCs in almost the entire range of intensity distribution have gotten stronger during
1981–2006. This is in contrast to the report of Elsner et al. (2008) who fail to conclude
increasing trends except for TCs in the upper tail of the intensity distribution (see also
Figure 1). It is, however, interesting that the estimated values of sτ , τ ∈ (0, 1) from our
analysis are very similar to those found by the classical, separate τ quantile regression
analysis as used in Elsner et al. (2008).

The joint quantile regression analysis presented above is quite robust to the choice
of parameters, including that of the base density f̃ . However, inference in the tails is
mildly sensitive to the tails of f̃ . This is not surprising since data are sparse in the tails,
leaving the prior with a bigger influence on the posterior. For illustration, we considered
an ‘all purpose’ choice of f̃ given by the t1(100, 8). This choice is not entirely suitable
for WmaxST as it gives y = −∞. However, our choice of center and scale ensures that
the central 95% interval of the base density f̃ is given by (0, 200). We again consider
the model in (6), with µ ∼ t1(0, 1), γ ∼ t1(0, 1) and σ2

1 , σ2
2

IID∼ Ga(2, 2). Upon fitting this
model to data, we find that the estimated quantile lines and the credible intervals on
slopes (Figure 3(a)) are quite similar to those found in our previous analysis with the
power-Pareto base model, except in the extreme tails where quantiles are estimated to
be steeper than before. The estimated posterior probabilities of sτ being negative also
remain mostly unchanged, except in the extreme lower tail. It should be noted that the
current base model differs from the power-Pareto model most severely in the lower tail.

2Source: http://weather.unisys.com/hurricane/atlantic/
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Figure 3: Posterior summaries of sτ under two choices of the base density f̃ : power-
Pareto (gray lines) and t1(100, 8) (black lines). (a) Posterior medians and 95% credible
intervals of sτ . (b) Posterior probabilities of sτ being negative.

Choosing the base to be a t-density instead of a power-Pareto density has another
subtle effect on the inference on the quantile lines. The t(100, 8) base model produces
a posterior that concentrates over quantiles curves that are heteroscedastic beyond the
first order. A necessary condition for quantile curves to be first order heteroscedastic is
that ∆sτ does not change its sign in the interior of [0, 1]. Therefore a lower bound on
P (QY is heteroscedastic beyond first order | data) is given by the posterior probability
of a sign change of ∆sτ . We estimate this latter posterior probability to be 0.004 for
the power-Pareto model and 0.798 for the t model. These are conservative estimates as
we round ∆sτ to the nearest tenth before checking for a change in sign. It is apparent
from Figure 3(a) that unlike the power-Pareto base, the t base model favors a change
of sign in ∆sτ in the lower tail; sτ first decreases in τ , then increases. This difference
between the two models can be explained by their treatment of the lower tail. The t
model, with an unbounded, heavy lower tail, supports steeper QY (τ | x) for τ close to
zero.

In Figure 4 we compare posterior summaries of sτ from our joint, base-t model
with those from a collection of single-τ fits of a Bayesian linear quantile model with
asymmetric Laplace error distribution (Yu and Moyeed 2001). The base-t version is
chosen because it accommodates an unbounded range for the response similar to the
asymmetric Laplace model. At each τ ∈ {0.01, · · · , 0.99}, the corresponding asymmetric
Laplace model is fitted with a flat prior p(β0(τ), β(τ), σ2) ∝ 1/σ2, however, the posterior
is quite robust to the choice of prior. Posterior summaries remain virtually the same
if instead normal or t distributions were used as prior distributions for β0(τ) and β(τ)
and a gamma or an inverse gamma prior with a small degrees of freedom was assigned
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Figure 4: Comparison of joint and single-τ Bayesian quantile regression fits for tropical
cyclone study. (a) Posterior medians and 95% credible intervals of sτ . (b) Posterior
probabilities that sτ is negative. In both plots, gray lines show posterior summaries
from the single-τ fits, and the black lines show posterior summaries from the joint fit.

to σ2.

Figure 4(a) indicates that the estimates of sτ , taken to be the posterior medians, are
similar for the joint and single-τ fits. The curve of estimated sτ , obtained by combining
the single-τ fits, appears slightly more bumpy than the curve obtained from the joint
fit. This is not surprising because the single-τ fits learn a piece of the curve at every
τ , while the joint model deals with the whole curve simultaneously. The more striking
difference lies in the credible intervals for sτ , specially for τ values larger than 0.5 for
which the credible intervals from the single-τ fits are always shorter than the same from
the joint fit. It is also counterintuitive that the credible intervals from the single-τ fits
get shorter as τ approaches 0 or 1. One would expect that due to sparse data at the
tails the intervals ought to be larger. This is precisely the case with the joint fit.

This rather surprising behavior of the credible intervals from the single-τ fits can be
explained as follows. The likelihood under an asymmetric Laplace model at a fixed τ is
determined by how well the residuals εi = yi−β0(τ)−β(τ)xi are explained by the error
distribution fε. For τ close to 0 or 1, small changes in β0(τ), β(τ) can push many of these
residuals far into the tails of the error distribution. Consequently, only a small range of
these parameter values is entertained, producing shorter credible intervals for sτ . The
joint fit, on the other hand, has a much greater flexibility in accounting for uncertainty
in sτ in a localized way. The specification of QY (τ | x) at a given τ value will have little
dependence on the same at another τ value that is far apart. The lack of this ability of
localized learning for a single-τ fit also manifests in the strong sensitivity of posterior
inference on the choice of the error density fε. Posterior medians and credible intervals
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Figure 5: Sensitivity of the single-τ fits to the choice of error distribution. (a) Posterior
medians and 95% credible intervals of sτ under an asymmetric normal error distribution
(gray lines). (b) The same under an asymmetric Cauchy error distribution (gray lines).
The summaries from the base-t joint fit are used as a reference (black lines). For a
τ ∈ [0, 1], asymmetric Laplace, normal and Cauchy densities are defined by f(ε) =
2g0(2ε(τ − I(ε < 0))) with g0 equalling, respectively, g0(x) = (1/2) exp{−|x|}, g0(x) =
(1/
√

2π) exp{−x2/2} and g0(x) = (1/π){1 + x2}−1 over x ∈ (−∞,∞).

of sτ change sharply if fε is changed from an asymmetric Laplace density to a more thin
tailed asymmetric normal density or to a more flat tailed asymmetric Cauchy density
(Figure 5).

4 Linear Quantiles: The Multivariate Case

4.1 Model

By interpreting η1 and η2 in (4) as the conditional quantiles of Y −µ−γX at X = −1, 1,
one could build a similar construction for a multivariate X as follows. Fix p+1 linearly
independent vectors ak = (1, ã′k)′ with ãk ∈ X , k = 1, · · · , p + 1 and let A = [a1 : · · · :
ap+1]. Define

QY (τ | x) = µ + x′γ + (1, x′)(A′)−1η(τ), τ ∈ [0, 1], x ∈ X (11)

where η(τ) = (η1(τ), · · · , ηp+1(τ)) with each ηk(τ) monotonically increasing in τ ∈ [0, 1].
It is easy to see that such QY (τ | x) is monotonically increasing in τ ∈ [0, 1] for every
x in the convex hull of {a1, · · · , ap+1}. This convex set, however, is often very small
compared to X for moderately large p even for the best possible choice of {ak}. Verifying
monotonicity of QY (τ | x) on the whole of X , which is equivalent to verifying this
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at the extreme points of the convex hull of X , takes the form of an overdetermined
system whenever the number of these extreme points exceeds p + 1. For most choices
of η, the monotonicity condition fails to hold, making the model specifications in (11)
computationally intractable (see, however Reich et al. 2011, for an interesting alternative
construction over a finite grid of τ values).

This motivates us to look for computationaly tractable alternatives to (11), possibly
at the cost of the support of the model. One attractive choice is a single-index general-
ization of our univariate model, where the dimensionality of X is reduced to 1 by means
of a linear projection of the covariate vector. For α ∈ Rp, −∞ < a < ∞ and b > 0,
let Xα,a,b denote the cylinder {x ∈ Rp : x′α ∈ (a − b, a + b)} and pα,a,b(x) denote the
shifted and scaled projection (x′α− a)/b. Define

QY (τ | x) = µ + x′γ +
1− pα,a,b(x)

2
η1(τ) +

1 + pα,a,b(x)
2

η2(τ), x ∈ Xα,a,b (12)

where ηi(τ) = σiQ̃(ξi(τ)), i = 1, 2 are exactly as in (6). Although (12) does not support
all valid linear specifications of QY (τ | x), it does embed as a special case the first order
heteroscedastic model whenever ξ1 ≡ ξ2, which corresponds to ρ = 1. Furthermore, the
projection vector α offers a global, single-index summary of the relative influence of the
components of x.

We model α with a p-variate t-distribution: α | σ2
α ∼ N(0, σ2

αIp), 1/σ2
α ∼ Ga(1/2, 1/2),

with the understanding that the component variables of x are of similar scales, which
can be ensured by standardization of the observed values xi. The cylinder edges a, b
are fixed as: a = (maxi x′αi + mini x′αi)/2 and b = (maxi x′αi−mini x′αi)/2 to ensure
every observed xi is within the corresponding cylinder Xα,a,b. Such a data dependent
choice is unavoidable as the knowledge of the convex hull where X lives is crucial in
defining non-intersecting linear conditional quantiles.

4.2 Illustration with Birth Weight Data

As an illustration, we study the effect of a multitude of pregnancy related factors on
infant birthweight (BirthWt, in grams) quantiles. A detailed analysis of this effect, as
in Abrevaya (2001); Koenker and Hallock (2001), is beyond the scope of this paper.
We rather focus on demonstrating various aspects of our model fit and compare the
resulting inference with individual quantile regression fits and the corresponding fre-
quentist inference. Our data consist of 5000 randomly selected entries from the June
1997 detailed natality records3 of the United States on singleton, live births to mothers
recorded as either black or white, in the age group 18-45. As covariates we include
gender of the child (Boy, boy = 1, girl = 0), mother’s age (Age, in years), average daily
number of cigarattes during pregnancy (Cigarette) and weight gain during pregnancy
(WeightGain, in pounds) and indicators for her being married (Married), black (Black),
high school graduate (HighSchool), college dropout (SomeCollege), college graduate
(College), without any prenatal care (NoPrenatal), with prenatal care from second

3Obtained from National Bureau of Economic Research: www.nber.org/natality/1997/

www.nber.org/natality/1997/�
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trimester onward (PrenatalSecond), from third trimester onward (PrenatalThird)
and not a smoker (NoSmoke). NoSmoke is included to reflect the belief that a jump from
zero cigarettes to one cigarette is fundamentally different from a unit increase when the
mother is already a smoker.

We proceed with the model in (12), with Q̃(τ) giving the quantiles of the t1(4000, 320)
density which gives 95% mass to (0, 8000). We take µ ∼ t1(0, 320/3) and the same prior
is used on each component of γ. The variance inflation parameters are modeled as
σ2

1 , σ2
2

IID∼ Ga(2, 2). Although the model is fitted to the standardized versions of xi’s, the
posterior summaries reported below correspond to the original origin and scale.

Figures 6(a)-(m) show posterior medians and central 95% credible intervals for the
slope parameters sj(τ) = ∂

∂xj
QY (τ | x) from our model fit, overlaid on the estimated

slopes and 95% confidence intervals obtained from individual fits. Except for vari-
ables relating to education level and to some extent prenatal care, every other variable
appears to have an influence on the quantiles of birthweight. This influence is substan-
tially non-constant across the quantiles for infant’s gender and the mother’s weight gain
during pregnancy. While gender has a more pronounced effect in the middle range,
weight gain contributes to substantially higher birthweight at both the low and the
high ends of the weight distribution. Slopes of Boy and WeightGain clearly indicate
heteroscedasticity beyond the first order, in fact, our Monte Carlo approximation to
P (QY is heteroscedastic beyond the first order | data) is exactly 1.

While the two sets of summaries are similar in appearance (ignoring smoothness),
there is noticeable difference in the tails, particularly in the lower tail. The individual fits
show more dramatic features in the lower tail than our joint fit. To assess whether this
difference indicates a shortcoming of the single-index model in capturing the complex
structure of the natality data, we compare its fit to that of the individual models on a
new random sample of 5000 entries from the June 1997 records, with the same criteria
applied on the mother as mentioned earlier. Figure 6(n) shows the graphs of average
prediction errors 1

5000

∑5000
i=1 ε∗i (τ)(τ − I(ε∗i (τ) < 0)) against τ , for test data residuals

ε∗i (τ) = y∗i − Q̂Y (τ | x∗i ) where Q̂Y (τ | x∗i ) equals the estimated value of QY (τ | x∗i )
for the individual fits and equals the posterior mean of QY (τ | x∗i ) for our single-
index joint model. The two prediction error measures are virtually indistinguishable for
τ ∈ [0.03, 0.97], with slightly inferior values for the single-index model at the extreme
tails outside this range. These extreme tails are a little more elongated than what would
have given an ideal fit, mostly because the heavy tails of the prior base Q̃ prevail over
data in these regions. However, the joint fit comes with the advantage of interpretable
quantile curves that do not intersect each other. Figures 6(o)-(p) show the quantile lines
for a hypothetical mother whose weight gain is changed from 0 lb. to 100 lb., keeping
all other attributes fixed at their corresponding average values as recorded in our data
(WeightGain in the June 1997 natality records ranges from 0 to 98, with several cases
in the nineties). The estimated lines from the individual fits intersect in the lower range
of τ .
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Figure 6: Quantile regression analysis of Birthweight data. (a)-(m) Posterior median
and 95% credible intervals for slopes from the joint fit (thin black lines) overlaid on
estimated values and 95% confidence intervals from individual fits (thick gray lines).
(n) Average prediction error on test data for individual fits (thick gray line) and joint
fit (thin black line). (o)-(p) Fitted quantile lines for a hypothetical mother whose weight
gain is changed from 0 to 100 lbs with all other attributes kept at their average values
recorded from the data. Fitted lines (τ ∈ {0.05, 0.1, 0.15, · · · , 0.95}) from individual fits
cross in the lower tail.
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5 Concluding Remarks

This paper presents a Bayesian framework for fitting the linear quantile regression model
(2) simultaneously at all quantile points τ . The hurricane intensity analysis presented
in Section 3 indicates the advantages of a simultaneous quantile regression analysis over
individual fits. A simultaneous analysis has the flexibility to borrow information across
cases and to better account for uncertainty in quantile line slopes in a localized way. The
resulting difference in inference can have nontrivial implications on an overall summary
and interpretations of results.

Multivariate quantile regression is considerably more difficult than the univariate
case. Although our proposal in Section 4 provides a solution for the multivariate case,
our work should be regarded as an initial exploration with admitted difficulties and
caveats. Our analysis of the infant birthweight data (Section 4), however, shows that the
single-index approach can match Koenker-Basett fits in predictive power, with tighter
inference on model parameters. It is also evident that it generalizes the first order
heteroscedastic model in a practically useful way. This additional flexibility does not
require any extra validation of monotonicity and retains the interpretability of an ordi-
nary linear model.

A crucial step in fitting our univariate model is a linear transformation of the original
predictor variable into the range [−1, 1]. There is clearly some flexibility regarding this
choice and the posterior inference is likely to depend on it. For our tropical cyclone
analysis, we transformed Year so that the year 1981 was mapped to −1 and the year
2006 was mapped to 1. This amounts to assuming that the quantiles of the TC intensity
distribution change linearly between 1981 and 2006, which is the same as the period
under study. If instead the linearity assumption is made over a longer period, then we
would map the observation period [1981, 2006] to a smaller subinterval of [−1, 1]. Figure
7 reports posterior summaries under two such cases. In one the linearity assumption
is made over the period [1968, 2019], so that the observation period gets mapped to
[−0.5, 0.5]. In the other the linearity assumption is made over the period [1929, 2058]
and the observation period is mapped to [−0.2, 0.2].

Note that when linearity is assumed over a longer period, the monotonicity constraint
will restrict the model to entertain a smaller range of slope values. Figure 7 shows that
this restriction has a mild effect on the posterior summaries of sτ when the period of
linearity is enlarged two fold from [1981, 2006] to [1968, 2019] and a substantial effect
when enlarged five fold to [1929, 2058].

The logistic Gaussian process construction presented here is attractive both from
computational and theoretical perspectives. Hjort and Walker (2009) have investigated
Kullback-Leibler support conditions for Bayesian density models specified through quan-
tiles. Their Proposition 3.1 holds verbatim for quantile functions defined via the logistic
Gaussian process. However, generalizing this result to the quantile regression setting,
possibly with an unbounded response variable, would require substantial further work.

The simultaneous linear quantile regression methodology presented here is just one of
many ways of generalizing the simple linear regression. A very different way of achieving
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Figure 7: The effect of the length of the linearity period over posterior summaries of sτ ,
for cyclone study. (a) posterior median and 95% credible intervals of sτ . (b) Posterior
probabilities that sτ is negative. In each plot, gray lines show posterior summaries
under the power-Pareto model of Section 3 with linearity assumed over [1981,2006],
black solid lines show the same when linearity is assumed over [1968, 2019] and black
dashed lines show the same when linearity is assumed over [1929,2058].

this generalization is to place a flexible model on the conditional density of the response
variable. This approach has recently gained attention in the Bayesian literature with
the introduction of a number of non-parametric and semi-parametric prior distributions
on conditional densities (Müller et al. 1996; MacEachern 1999, 2000; Griffin and Steel
2006; Dunson et al. 2007; Tokdar et al. 2010). Whether to model conditional quantiles
or to model conditional densities largely depends on one’s subjective preferences. The
two approaches need not always be different. A flexible nonparametric model on the
conditional quantiles is equivalent to the same on the conditional density (Scaccia and
Green 2003; Geweke and Keane 2007; Taddy and Kottas 2010). But, when the condi-
tional quantiles are modeled under shape restrictions, such as the linearity conditions of
our model, the two approaches become very different. The simultaneous linear quantile
model is much less flexible in capturing changes in the conditional behavior of the re-
sponse. But the changes it captures can be interpreted through well understood linear
coefficients. The net worth of this trade-off between flexibility and interpretability can
be debated.
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