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Inference of global clusters from locally

distributed data

XuanLong Nguyen∗

Abstract. We consider the problem of analyzing the heterogeneity of cluster-
ing distributions for multiple groups of observed data, each of which is indexed
by a covariate value, and inferring global clusters arising from observations ag-
gregated over the covariate domain. We propose a novel Bayesian nonparametric
method reposing on the formalism of spatial modeling and a nested hierarchy of
Dirichlet processes. We provide an analysis of the model properties, relating and
contrasting the notions of local and global clusters. We also provide an efficient
inference algorithm, and demonstrate the utility of our method in several data ex-
amples, including the problem of object tracking and a global clustering analysis
of functional data where the functional identity information is not available.

Keywords: global clustering, local clustering, nonparametric Bayes, hierarchical Dirichlet

process, Gaussian process, graphical model, spatial dependence, Markov chain Monte Carlo,

model identifiability

1 Introduction

In many applications it is common to separate observed data into groups (populations)
indexed by some covariate u. A particularly fruitful characterization of grouped data
is the use of mixture distributions to describe the populations in terms of clusters of
similar behaviors. Viewing observations associated with a group as local data, and the
clusters associated with a group as local clusters, it is often of interest to assess how
the local heterogeneity is described by the changing values of covariate u. Moreover,
in some applications the primary interest is to extract some sort of global clustering
patterns that arise out of the aggregated observations.

Consider, for instance, a problem of tracking multiple objects moving in a geograph-
ical area. Using covariate u to index the time point, at a given time point u we are
provided with a snapshot of the locations of the objects, which tend to be grouped into
local clusters. Over time, the objects may switch their local clusters. We are not really
interested in the movement of each individual object. It is the paths over which the
local clusters evolve that are our primary interest. Such paths are the global clusters.
Note that the number of global and local clusters are unknown, and are to be inferred
directly from the locally observed groups of data.

The problem of estimating global clustering patterns out of locally observed groups
of data also arises in the context of functional data analysis where the functional identity
information is not available. By the absence of functional identity information, we mean
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the data are not actually given as a collection of sampled functional curves (even if such
functional curves exist in reality or conceptually), due to confidentiality constraints or
the impracticality of matching the identity of individual functional curves. As another
example, the progesterone hormone behaviors recorded by a number of women on a
given day in their monthly menstrual cycle is associated with a local group, which
are clustered into typical behaviors. Such local clusters and the number of clusters
may evolve throughout the monthly cycle. Moreover, aggregating the data over days
in the cycle, there might exist one or more typical monthly (“global” trend) hormone
behaviors due to contraception or medical treatments. These are the global clusters.
Due to privacy concern, the subject identity of the hormone levels are neither known nor
matched across the time points u. In other words, the data are given not as a collection
of hormone curves, but as a collection of hormone levels observed over time.

In the foregoing examples, the covariate u indexes the time. In other applications,
the covariate might index geographical locations where the observations are collected.
More generally, observations associated with different groups may also be of different
data types. For instance, consider the assets of a number of individuals (or countries),
where the observed data can be subdivided into holdings according to different currency
types (e.g., USD, gold, bonds). Here, each u is associated with a currency type, and
a global cluster may be taken to represent a typical portforlio of currency holdings by
a given individual. In view of a substantial existing body of work drawing from the
spatial statistics literature that we shall describe in the sequel, throughout this paper a
covariate value u is sometimes referred to as a spatial location unless specified otherwise.
Therefore, the dependence on varying covariate values u of the local heterogeneity of
data is also sometimes referred to as the spatial dependence among groups of data
collected at varying local sites.

We propose in this paper a model-based approach to learning global clusters from
locally distributed data. Because the number of both global and local clusters are
assumed to be unknown, and because the local clusters may vary with the covariate u,
a natural approach to handling this uncertainty is based on Dirichlet process mixtures
and their variants. A Dirichlet process DP(α0, G0) defines a distribution on (random)
probability measures, where α0 is called the concentration parameter, and parameter
G0 denotes the base probability measure or centering distribution [ Ferguson 1973]. A
random draw G from the Dirichlet process (DP) is a discrete measure (with probability
1), which admits the well-known “stick-breaking” representation [ Sethuraman 1994]:

G =

∞
∑

k=1

πkδφk
, (1)

where the φk’s are independent random variables distributed according to G0, δφk
de-

notes an atomic distribution concentrated at φk, and the stick breaking weights πk are
random and depend only on parameter α0. Due to the discrete nature of the DP real-
izations, Dirichlet processes and their variants have become an effective tool in mixture
modeling and learning of clustered data. The basic idea is to use the DP as a prior on the
mixture components in a mixture model, where each mixture component is associated
with an atom in G. The posterior distribution of the atoms provides the probabil-
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ity distribution on mixture components, and also yields a probability distribution of
partitions of the data. The resultant mixture model, generally known as the Dirichlet
process mixture, was pioneered by the work of [ Antoniak (1974)] and subsequentially
developed by many others (e.g., [ Lo 1984; Escobar and West 1995; MacEachern and
Mueller 1998]).

A Dirichlet process (DP) mixture can be utilized to model each group of obser-
vations, so a key issue is how to model and assess the local heterogeneity among a
collection of DP mixtures. In fact, there is an extensive literature in Bayesian non-
parametrics that focuses on coupling multiple Dirichlet process mixture distributions
(e.g., [ MacEachern (1999); Mueller et al. (2004); DeIorio et al. (2004); Ishwaran and
James (2001); Teh et al. (2006)]). A common theme has been to utilize the Bayesian
hierarchical modeling framework, where the parameters are conditionally independent
draws from a probability distribution. In particular, suppose that the u-indexed group
is modeled using a mixing distribution Gu. We highlight the hierarchical Dirichlet pro-
cess (HDP) introduced by [ Teh et al. (2006)], a framework that we shall subsequentially
generalize, which posits that Gu|α0, G0 ∼ DP(α0, G0) for some base measure G0 and
concentration parameter α0. Moreover, G0 is also random, and is distributed accord-
ing to another DP: G0|γ,H ∼ DP(γ,H). The HDP model and other aforementioned
work are inadequate for our problem, because we are interested in modeling the linkage
among the groups not through the exchangeability assumption among the groups, but
through the more explicit dependence on changing values of a covariate u.

Coupling multiple DP-distributed mixture distributions can be described under
a general framework outlined by [ MacEachern (1999)]. In this framework, a DP-
distributed random measure can be represented by the random “stick” and “atom” ran-
dom variables (see Eq. (1)), which are general stochastic processes indexed by u ∈ V .
Starting from this representation, there are a number of proposals for co-varying in-
finite mixture models [ Duan et al. 2007; Petrone et al. 2009; Rodriguez et al. 2010;
Dunson 2008; Nguyen and Gelfand 2010]. These proposals were designed for functional
data only, i.e., where the data are given as a collection of sampled functions of u, and
thus not suitable for our problem, because functional identity information is assumed
unknown in our setting. In this regard, the work of [ Griffin and Steel (2006); Dunson
and Park (2008); Rodriguez and Dunson (2009)] are somewhat closer to our setting.
These authors introduced spatial dependency of the local DP mixtures through the
stick variables in a number of interesting ways, while [ Rodriguez and Dunson (2009)]
additionally considered spatially varying atom variables, resulting in a flexible model.
These work focused mostly on the problem of interpolation and prediction, not cluster-
ing. In particular, they did not consider the problem of inferring global clusters from
locally observed data groups, which is our primary goal.

To draw inferences about global clustering patterns from locally grouped data, in
this paper we will introduce an explicit notion of and model for global clusters, through
which the dependence among locally distributed groups of data can be described. This
allows us to not only assess the dependence of local clusters associated with multiple
groups of data indexed by u, but also to extract the global clusters that arise from
the aggregated observations. From the outset, we use a spatial stochastic process, and
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more generally a graphical model H indexed over u ∈ V to characterize the centering
distribution of global clusters. Spatial stochastic process and graphical models are ver-
satile and customary choices for modeling of multivariate data [ Cressie 1993; Lauritzen
1996; Jordan 2004]. To “link” global clusters to local clusters, we appeal to a hierar-
chical and nonparametric Bayesian formalism: The distribution Q of global clusters is
random and distributed according to a DP: Q|H ∼ DP(γ,H). For each u, the distri-
bution Gu of local clusters is assumed random, and is distributed according to a DP:

Gu|Q
indep
∼ DP(αu, Qu), where Qu denotes the marginal distribution at u induced by the

stochastic process Q. In other words, in the first stage, the Dirichlet process Q provides
support for global atoms, which in turn provide support for the local atoms of lower
dimensions for multiple groups in the second stage. Due to the use of hierarchy and
the discreteness property of the DP realizations, there is sharing of global atoms across
the groups. Because different groups may share only disjoint components of the global
atoms, the spatial dependency among the groups is induced by the spatial distribution
of the global atoms. We shall refer to the described hierarchical specification as the
nested Hierarchical Dirichlet process (nHDP) model.

The idea of incorporating spatial dependence in the base measure of Dirichlet pro-
cesses goes back to [ Cifarelli and Regazzini (1978); Muliere and Petrone (1993); Gelfand
et al. (2005)], although not in a fully nonparametric hierarchical framework as is consid-
ered here. The proposed nHDP is an instantiation of the nonparametric and hierarchical
modeling philosophy eloquently advocated in [ Teh and Jordan (2010)], but there is a
crucial distinction: Whereas Teh and Jordan generally advocated for a recursive con-
struction of Bayesian hierarchy, as exemplified by the popular HDP [ Teh et al. 2006],
the nHDP features a richer nested hierarchy: instead of taking a joint distribution, one
can take marginal distributions of a random distribution to be the base measure to
a DP in the next stage of the hierarchy. This feature is essential to bring about the
relationship between global clusters and local clusters in our model. In fact, the nHDP
generalizes the HDP model in the following sense: If H places a prior with probability
one on constant functions (i.e., if φ = (φu)u∈V ∼ H then φu = φv∀u, v ∈ V ) then the
nHDP is reduced to the HDP.

Most closely related to our work is the hybrid DP of [ Petrone et al. (2009)], which
also considers global and local clustering, and which in fact serves as an inspiration for
this work. Because the hybrid DP is designed for functional data, it cannot be applied
to situations where functional (curve) identity information is not available, i.e., when
the data are not given as a collection of curves. When such functional id information is
indeed available, it makes sense to model the behavior of individual curves directly, and
this ability may provide an advantage over the nHDP. On the other hand, the hybrid
DP is a rather complex model, and in our experiment (see Section 5), it tends to overfit
the data due to the model complexity. In fact, we show that the nHDP provides a
more satisfactory clustering performance for the global clusters despite not using any
functional id information, while the hybrid DP requires not only such information, it
also requires the number of global clusters (“pure species”) to be pre-specified. It is
worth noting that in the proposed nHDP, by not directly modeling the local cluster
switching behavior, our model is significantly simpler from both viewpoints of model
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complexity and computational efficiency of statistical inference.

The paper outline is as follows. Section 2 provides a brief background of Dirichlet
processes, the HDP, and we then proceed to define the nHDP mixture model. Section 3
explores the model properties, including a stick-breaking characterization, an analysis of
the underlying graphical and spatial dependency, a Pólya-urn sampling characterization.
We also offer a discussion of a rather interesting issue intrinsic to our problem and the
solution, namely, the conditions under which global clusters can be identified based on
only locally grouped data. As with most nonparametric Bayesian methods, inference is
an important issue. We demonstrate in Section 4 that the confluence of graphical/spatial
with hierarchical modeling allows for efficient computations of the relevant posterior
distributions. Section 5 presents several experimental results, including a comparison
to a recent approach in the literature. Section 6 concludes the paper.

2 Model formalization

2.1 Background

We start with a brief background on Dirichlet processes [ Ferguson 1973], and then pro-
ceed to hierarchical Dirichlet processes [ Teh et al. 2006]. Let (Θ0,B, G0) be a probability
space, and α0 > 0. A Dirichlet process DP(α0, G0) is defined to be the distribution of a
random probability measure G over (Θ0,B) such that, for any finite measurable parti-
tion (A1, . . . , Ar) of Θ0, the random vector (G(A1), . . . , G(Ar)) is distributed as a finite
dimensional Dirichlet distribution with parameters (α0G0(A1), . . . , α0G0(Ar)). α0 is
referred to as the concentration parameter, which governs the amount of variability of
G around the centering distribution G0. A DP-distributed probability measure G is
discrete with probability one. Moreover, it has a constructive representation due to [
Sethuraman (1994)]: G =

∑∞
k=1

πkδφk
, where (φk)

∞
k=1 are iid draws from G0, and δφk

denotes an atomic probability measure concentrated at atom φk. The elements of the
sequence π = (πk)

∞
k=1 are referred to as “stick-breaking” weights, and can be expressed

in terms of independent beta variables: πk = π′
k

∏k−1

l=1
(1 − π′

l), where (π′
l)

∞
l=1 are iid

draws from Beta(1, α0). Note that π satisfies
∑∞
k=1

πk = 1 with probability one, and
can be viewed as a random probabity measure on the positive integers. For notational
convenience, we write π ∼ GEM(α0), following [ Pittman (2002)].

A useful viewpoint for the Dirichlet process is given by the Pólya urn scheme, which
shows that draws from the Dirichlet process are both discrete and exhibit a clustering
property. From a computational perspective, the Pólya urn scheme provides a method
for sampling from the random distribution G, by integrating out G. More concretely,
let atoms θ1, θ2, . . . are iid random variables distributed according to G. Because G is
random, θ1, θ2, . . . are exchangeable. [ Blackwell and MacQueen (1973)] showed that
the conditional distribution of θi given θ1, . . . , θi−1 has the following form:

[θi|θ1, . . . , θi−1, α0, G0] ∼
i−1
∑

l=1

1

i− 1 + α0

δθl
+

α0

i− 1 + α0

G0.
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This expression shows that θi has a positive probability of being equal to one of the
previous draws θ1, . . . , θi−1. Moreover, the more often an atom is drawn, the more likely
it is to be drawn in the future, suggesting a clustering property induced by the random
measure G. The induced distribution over random partitions of {θi} is also known as
the Chinese restaurant process [ Aldous 1985].

A Dirichlet process mixture model utilizes G as the prior on the mixture component
θ. Combining with a likelihood function P (y|θ) = F (y|θ), the DP mixture model is

given as: θi|G ∼ G; yi|θi
ind
∼ F (·|θi). Such mixture models have been studied in the

pioneering work of [ Antoniak (1974)] and subsequentially by a number of authors [
Lo 1984; Escobar and West 1995; MacEachern and Mueller 1998], For more recent and
elegant accounts on the theories and wide-ranging applications of DP mixture modeling,
see [ Hjort et al. (2010)].

Hierarchical Dirichlet Processes. Next, we proceed giving a brief description of the
background on the HDP formalism of [ Teh et al. (2006)], which is typically motivated
from the setting of grouped data. Under this setting, the observations are organized into
groups indexed by a covariate u ∈ V , where V is the index set. Let yu1, yu2, . . . , yunu

be the observations associated with group u. For each u, the {yui}i are assumed to
be exchangeable. This suggests the use of mixture modeling: The yui are assumed
identically and independently drawn from a mixture distribution. Specifically, let θui ∈
Θu denote the parameter specifying the mixture component associated with yui. Under
the HDP formalism, Θu is the same space for all u ∈ V , i.e., Θu ≡ Θ0 for all u, and Θ0

is endowed with the Borel σ-algebra of subsets of Θ0. θui is referred to as local factors

indexed by covariate u. Let F (·|θui) denote the distribution of observation yui given the
local factor θui. Let Gu denote a prior distribution for the local factors (θui)

nu

i=1. We
assume that the local factors θui’s are conditionally independent given Gu. As a result
we have the following specification:

θui|Gu
iid
∼ Gu; yui|θui

iid
∼ F (·|θui), for any u ∈ V ; i = 1, . . . , nu. (2)

Under the HDP formalism, to statistically couple the collection of mixing distribu-
tions Gu, we posit that random probability measures Gu are conditionally independent,
with distributions given by a Dirichlet process with base probability measure G0:

Gu|α0, G0
iid
∼ DP(α0, G0).

Moreover, the HDP framework takes a fully nonparametric and hierarchical specifica-
tion, by positing that G0 is also a random probability measure, which is distributed
according to another Dirichlet process with concentration parameter γ and base prob-
ability measure H :

G0|γ,H ∼ DP(γ,H).

An interesting property of the HDP is that because Gu’s are discrete random proba-
bility measures (with probability one) whose support are given by the support of G0.
Moreover, G0 is also a discrete measure, thus the collection of Gu are random discrete
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measures sharing the same countable support. In addition, because the random par-
titions induced by the collection of θui within each group u are distributed according
to a Chinese restaurant process, the collection of these Chinese restaurant processes
are statistically coupled. In fact, they are exchangeable, and the distribution for the
collection of such stoschastic processes is known as the Chinese restaurant franchise [
Teh et al. 2006].

2.2 Nested hierarchy of DPs for global clustering analysis

Setting and notations. In this paper we are interested in the same setting of grouped
data as that of the HDP that is described by Eq. (2). Specifically, the observations
yu1, yu2, . . . , yunu

within each group u are iid draws from a mixture distribution. The
local factor θui ∈ Θu denotes the parameter specifying the mixture component associ-
ated with yui. The (θui)

nu

i=1 are iid draws from the mixing distribution Gu.

Implicit in the HDP model is the assumptions that the spaces Θu all coincide,
and that random distributions Gu are exchangeble. Both assumptions will be relaxed.
Moreover, our goal here is the inference of global clusters, which are associated with
global factors that lie in the product space Θ :=

∏

u∈V Θu. To this end, Θ is endowed
with a σ-algebra B to yield a measurable space (Θ,B). Within this paper and in the
data illustrations, Θ = R

V , and B corresponds to the Borel σ-algebra of subsets of
R
V , Formally, a global factor, which are denoted by ψ or φ in the sequel, is a high

dimensional vector (or function) in Θ whose components are indexed by covariate u.
That is, ψ = (ψu)u∈V ∈ Θ, and φ = (φu)u∈V ∈ Θ. As a matter of notations, we always
use i to denote the numbering index for θu (so we have θui). We always use t and k to
denote the number index for instances of ψ’s and φ’s, respectively (e.g., ψt and φk).
The components of a vector ψt (φk) are denoted by ψut (φuk). We may also use letters
v and w beside u to denote the group indices.

Model description. Our modeling goal is to specify a distribution Q on the global
factors ψ, and to relate Q to the collection of mixing distributions Gu associated with
the groups of data. Such resultant model shall enable us to infer about the global

clusters associated with a global factor ψ on the basis of data collected locally by the
collection of groups indexed by u. At a high level, the random probability measures Q
and the Gu’s are “glued” together under the nonparametric and hierarchical framework,
while the probabilistic linkage among the groups are governed by a stochastic process
φ = (φu)u∈V indexed by u ∈ V and distributed according to H . Customary choices of
such stochastic processes include either a spatial process, or a graphical model H .

Specifically, let Qu denote the induced marginal distribution of ψu. Our model
posits that for each u ∈ V , Gu is a random measure distributed as a DP with con-
centration parameter αu, and base probability measure Qu: Gu|αu, Q ∼ DP(αu, Qu).
Conditioning on Q, the distributions Gu are independent, and Gu varies around the
centering distribution Qu, with the amount of variability given by αu. The probability
measure Q is random, and distributed as a DP with concentration parameter γ and
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base probability measure H : Q|γ,H ∼ DP(γ,H), where H is taken to be a spatial
process indexed by u ∈ V , or more generally a graphical model defined on the collection
of variables indexed by V . In summary, collecting the described specifications gives the
nested Hierarchical Dirichlet process (nHDP) mixture model:

Q|γ,H ∼ DP(γ,H),

Gu|αu, Q
indep
∼ DP(αu, Qu), for all u ∈ V

θui|Gu
iid
∼ Gu, yui|θui

iid
∼ F (·|θui) for all u, i,

As we shall see in the next section, the φk’s, which are draws from H , provide the
support for global factors ψt ∼ Q, which in turn provide the support for the local factors
θui ∼ Gu. The global and local factors provide distinct representations for both global
clusters and local clusters that we envision being present in data. Local factors θui’s
provide the support for local cluster centers at each u. The global factors ψ in turn
provide the support for the local clusters, but they also provide the support for global
cluster centers in the data, when observations are aggregated across different groups.

Relations to the HDP. Both the HDP and nHDP are instances of the nonparametric
and hierarchical modeling framework involving hierarchy of Dirichlet processes [ Teh and
Jordan 2010]. At a high-level, the distinction here is that while the HDP is a recursive
hierarchy of random probability measures generally operating on the same probability
space, the nHDP features a nested hierarchy, in which the probability spaces associated
with different levels in the hierarchy are distinct but related in the following way: the
probability distribution associated with a particular level, say Gu, has support in the
support of the marginal distribution of a probability distribution (i.e., Q) in the upper
level in the hierarchy. Accordingly, for u 6= v, Gu and Gv have support in distinct
components of vectors ψ. For a more explicit comparison, it is simple to see that if
H places distribution for constant global factors φ with probability one (e.g., for any
φ ∼ H there holds φu = φv∀u, v ∈ V ), then we obtain the HDP of [ Teh et al. (2006)].

3 Model properties

3.1 Stick-breaking representation and graphical or spatial depen-

dency

Given that the multivariate base measure Q is distributed as a Dirichlet process, it can
be expressed using Sethuraman’s stick-breaking representation: Q =

∑∞
k=1

βkδφk
. Each

atom φk is multivariate and denoted by φk = (φuk : u ∈ V ). The φk’s are independent
draws from H , and β = (βk)

∞
k=1 ∼ GEM(γ). The φk’s and β are mutually independent.

The marginal induced by Q at each location u ∈ V is: Qu =
∑∞

k=1
βkδφuk

. Since each
Qu has support at the points (φuk)

∞
k=1, each Gu necessarily has support at these points
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Q Qu Qv Qw

Gu Gv Gw
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γ

β

φuk φvk φwk

πu πv πw

∞

Figure 1: Left: The nHDP is depicted as a graphical model, where each unshaded node
represents a random distribution. Right: A graphical model representation of the nHDP
using the stick-breaking parameterisation.

as well, and can be written as:

Gu =

∞
∑

k=1

πukδφuk
; Qu =

∞
∑

k=1

βkδφuk
. (3)

Let πu = (πuk)
∞
k=1. Since Gu’s are independent given Q, the weights πu’s are

independent given β. Moreover, because Gu|αu, Q ∼ DP(αu, Qu) it is possible to derive
the relationship between weights πu’s and β. Following [ Teh et al. (2006)], if H is non-
atomic, it is necessary and sufficient forGu defined by Eq. (3) to satisfy Gu ∼ DP(αuQu)
that the following holds: πu ∼ DP(αu, β), where πu and β are interpreted as probability
measures on the set of positive integers.

The connection between the nHDP and the HDP of [ Teh et al. (2006)] can be
observed clearly here: The stick-breaking weights of the nHDP-distributed Gu have the
same distributions as those of the HDP, while the atoms φuk are linked by a graphical
model distribution, or more generally a stochastic process indexed by u.

The spatial/graphical dependency given by base measure H induces the dependency
between the DP-distributed Gu’s. We shall explore this in details by considering specific
examples of H .

Example 1 (Graphical model H). For concreteness, we consider a graphical model
H of three variables φu, φv, φw which are associated with three locations u, v, w ∈ V .
Moreover, assume the conditional independence relation: φu ⊥ φw|φv. Let ψ =
(ψu, ψv, ψw) be a random draw from Q. Because Q ∼ DP(γ,H), ψ also has distri-
bution H once Q is integrated out. Thus, ψu ⊥ ψw|ψv.

At each location u ∈ V , the marginal distribution Qu of variable ψu is random
and Qu|γ,H ∼ DP(γ,Hu). Moreover, in general the Qu’s are mutually dependent
regardless of any (conditional) independence relations that H might confer. This fact
can be easily seen from Eq. (3). With probability 1, all Qu’s share the same β. It follows
that Qu ⊥ Qw|Qv,β. Because β is random, the conditional independence relation no
longer holds amongQu, Qw, Qv in general. From a modeling standpoint, the dependency
among the Qu’s is natural for our purpose, as Q provides the distribution for the global
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factors associated with the global clusters that we are also interested in inferring.

Turning now to distributions Gu for local factors θui, we note that Gu, Gv, Gw are
independent given Q. Moreover, for each u ∈ V , the support of Gu is the same as
that of Qu (i.e., θui for i = 1, 2, . . . take value among (ψut)

∞
t=1). Integrating over

the random Q, for any measurable partition A ⊂ Θu, there holds: E[Gu(A)|H ] =
E[E[Gu(A)|Q]|H ] = E[Qu(A)|H ] = Hu(A). In sum, the global factors ψ’s take values
in the set of (φk)

∞
k=1 ∼ H , and provide the support set for the local factors θui’s at each

u ∈ V . The prior means of the local factors θui’s are also derived from the prior mean
of the global factors.

Example 2 (Spatial model H). To quantify more detailed dependency among DP-
distributed Gu’s, let V be a finite subset of R

r and H be a second-order stochastic
process indexed by v ∈ V . A customary choice for H is a Gaussian process. In effect,
φ = (φu : u ∈ V ) ∼ N(µ,Σ), where the covariance Σ has entries of the exponential
form: ρ(u, v) = σ2 exp−{ω‖u− v‖}.

For any measurable partitions A ⊂ Θu, and B ⊂ Θv, we are interested in expressions
for variation and correlation measures under Q and Gu’s. Let Huv(A,B) := p(φu ∈
A, φv ∈ B|H). Define g(γ) = 1/(γ + 1). Applying stick-breaking representation for Qu,
it is simple to derive that:

Proposition 5. For any pair of distinct locations u, v), there holds:

Cov(Qu(A), Qv(B)|H) = g(γ)(Huv(A,B) −Hu(A)Hv(B)), (4)

Var(Qu(A)|H) = g(γ)(Hu(A) −Hu(A)2), (5)

Corr(Qu(A), Qv(B)) :=
Cov(Qu(A), Qv(B)|H)

Var(Qu(A)|H)1/2Var(Qv(B)|H)1/2

=
(Huv(A,B) −Hu(A)Hv(B))

(Hu(A) −Hu(A)2)1/2(Hv(B) −Hv(B)2)1/2
. (6)

For any pair of locations u, v ∈ V , if ‖u − v‖ → ∞, it follows that ρ(u, v) =
Cov(φu, φv|H)
→ 0. Due to standard properties of Gaussian variables, φu and φv become less dependent
of each other, and Huv(A,B) − Hu(A)Hv(B) → 0, so that Corr(Qu(A), Qv(B)) → 0.
On the other hand, if u− v → 0, we obtain that Corr(Qu(A), Qv(A)) → 1, as desired.

Turning to distributions Gu’s for the local factors, the following result can be shown:

Proposition 6. For any pair of u, v ∈ V , there holds:

Var(Gu(A)|H) = E[Var(Gu(A)|Q)|H ] + Var(E[Gu(A)|Q]|H)

= (g(γ) + g(αu) − g(γ)g(αu))(Hu(A) −Hu(A)2), (7)

Corr(Gu(A), Gv(B)) =
g(γ)Corr(Qu(A), Qv(B)|H)

(g(γ) + g(αu) − g(γ)g(αu))1/2(g(γ) + g(αv) − g(γ)g(αv))1/2
.

where g(αu) = 1/(αu + 1).
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Eq. (7) exhibits an interesting decomposition of variance. Note that Var(Gu(A)|H) ≥
Var(Qu(A)|H). That is, the variation of a local factor is greater than that of the global
factor evaluated at the same location, where the extra variation is governed by concen-
tration parameter αu. If αu → ∞ so that g(αu) → 0, the local variation at u disappears,
with the remaining variation contributed by the global factors only. If αu → 0 so that
g(αu) → 1, the local variation contributed by Gu completely dominates the global
variation contributed by Qu.

Finally, turning to correlation measures in the two stages in our hierachical model,
we note that Corr(Gu(A), Gv(B)|H) ≤ Corr(Qu(A), Qv(B)|H). That is, the correlation
across the locations in V among the distributions Gu’s of the local factors is bounded
from above by the correlation among the distribution Qu’s for the global factors. Note
that Corr(Gu(A), Gv(B)) vanishes as ‖u− v‖ → ∞. The correlation measure increases
as either αu or αv increases. The dependence on γ is quite interesting. As γ ranges
from 0 to ∞ so that g(γ) decreases from 1 to 0, and as a result the correlation measure
ratio Corr(Gu(A), Gv(B))/Corr(Qu(A), Qv(B)) decreases from 1 to 0.

3.2 Pólya-urn characterization

The Pólya-urn characterization of the canonical Dirichlet process is fully retained by the
nHDP. It is also useful in highlighting both local clustering and global clustering aspects
that are described by the nHDP mixture. In the sequel, the Pólya-urn characterization
is given as a sampling scheme for both the global and local factors. Recall that the
global factors φ1,φ2, . . . are i.i.d. random variables distributed according to H . We
also introduced random vectors ψt which are i.i.d. draws from Q. Both φk and ψt are
multivariate, denoted by φk = (φuk)u∈V and ψt = (ψut)u∈V . Finally, for each location
u ∈ V , the local factor variables θui are distributed according to Gu.

Note that each ψt is associated with one φk, and each θui is associated with one ψut.
Let tui be the index of the ψut associated with the local factor θui, and kt be the index
of the φk associated with the global factor ψt. Let K be the present number of distinct
global factors φk. The sampling process starts with K = 0 and increases K as needed.
We also need notations for counts. We use notation nut to denote the present number
of local factors θul taking value ψut. nu denotes the number of local factors at group
u (which is also the number of observations at group u). nu·k is the number of local
factors at u taking value φuk. Let mu denote the number of factors ψt that provide
supports for group u. The notation qk denotes the number of global factors ψt’s taking
value φk, while q· denotes the total number of global factors ψt’s. To be precise:

nut =
∑

i

I(tui = t); nu·k =
∑

t

nutI(kt = k); nu =
∑

t

nut;

mu =
∑

t

I(nut > 0); qk =
∑

t

I(kt = k); q· =
∑

k

qk.

First, consider the conditional distribution for θui given θu1, θu2, . . . , θu,i−1, and Q,
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where the Gu is integrated out:

θui|θu1, . . . , θu,i−1, αu, Q ∼

mu
∑

t=1

nut
i− 1 + αu

δψut
+

αu
i− 1 + αu

Qu. (8)

This is a mixture, and a realization from this mixture can be obtained by drawing from
the terms on the right-hand side with probabilities given by the corresponding mixing
proportions. If a term in the first summation is chosen, then we set θui = ψut for the
chosen t, and let tui = t, and increment nut. If the second term is chosen, then we
increment mu by one, draw ψumu

∼ Qu. In addition, we set θui = ψumu
, and tui = mu.

Now we proceed to integrate out Q. Since Q appears only in its role as the distri-
bution of the variable ψt, we only need to draw sample ψt from Q. The samples from
Q can be obtained via the conditional distribution of ψt as follows:

ψt|{ψl}l 6=t, γ,H ∼

K
∑

k=1

qk
q· + γ

δφk
+

γ

q· + γ
H. (9)

If we draw ψt via choosing a term in the summation on the right-hand side of this
equation, we set ψt = φk, and let kt = k for the chosen k, and increment qk. If the
second term is chosen then we increment K by one, draw φK ∼ H and set ψt = φK ,
kjt = K, and qK = 1.

The Pólya-urn characterization of the nHDP can be illustrated by the following
culinary metaphor. Suppose that there are three groups of dishes (e.g., appetizer, main
course and dessert) indexed by u, v and w. View a global factor φk’s as a typical meal
box where each φuk, φvk and φwk is associated with a dish group. In an electic eatery,
the dishes are sold in meal boxes, while customers come in, buy dishes and share among
one another according to the following process. A new customer can join either one of
the three groups of dishes. Upon joining the group, she orders a dish to contribute to
the group, i.e., a local factor θui, based on its popularity within the group. She can also
choose to order a new dish, but to do so, she needs to order the entire meal box, i.e.
a global factor ψt. A meal box is chosen based on its popularity as a whole, across all
eating groups.

The “sharing” of global factors (meal box) across indices u can be seen by noting
that the “pool” of present global factors {ψl} has support in the discrete set of global
factor values φ1,φ2, . . .. Moreover, the spatial (graphical) distribution of the global
factors induces the spatial dependence among local factors associated with each group
indexed by u. See Fig. 2 for an illustration.

3.3 Model identifiability and complexity

This section investigates the nHDP mixture’s inferential behavior, including issues re-
lated to the model identifiability. It is useful to recall that a DP mixture model can be
viewed as the infinite limit of finite mixture models [ Neal 1992; Ishwaran and Zarepour
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{φk} {ψt}

φuk φvk ψut ψvt

{θui} {θvi}

Figure 2: Illustration of the assignments of mixture component membership via global
and local factor variables for two groups indexed by u and v.

2002b]. The nHDP can also be viewed as the limit of a finite mixture counterpart.
Indeed, consider the following finite mixture model:

β|γ ∼ Dir(γ/L, . . . γ/L) πu|αu,β ∼ Dir(αuβ) φk ∼ H

QL =

L
∑

k=1

βkδφk
GLu =

L
∑

k=1

πukδφuk
. (10)

It is a known fact that as L→ 0, QL ⇒ Q weakly, in the sense that for any real-valued
bounded and continuous function g, there holds

∫

g dQL →
∫

g dQ in distribution [
Muliere and Secchi 1995]. 1 Because for each u ∈ V , there holds GLu ∼ DP(αuQ

L), it
also follows that GLu ⇒ Gu weakly. The above characterization provides a convenient
means of understanding the behavior of the nHDP mixture by studying the behavior of
its finite mixture counterpart with L global mixture components, as L→ ∞.

Information denseness of nHDP prior. For concreteness in this section we shall
assume that for any u ∈ V the likelihood F (yu|φu) is specified by the normal dis-
tribution whose parameters such as mean and variance are represented by φu. Write
φu = (µu, σ

2
u) ∈ (R×R+). Recall that conditionally on Q, Gu’s are independent across

u ∈ V . Given Gu, the marginal distribution on observation yu has the following density:

fu(yu|Gu) =

∫

F (yu|φu)dGu(φu). (11)

Thus, each fu is the density of a location-scale mixture of normal distribution. The fu’s
are random due to the randomness of Gu’s. In other words, the nHDP places a prior
distribution, which we denote by Π, over the collection of random measures (Gu)u∈V .
This in turn induces a prior over the joint density of y := (yu)u∈V , which we call Π as
well. Replacing the mixing distributions Q and Gu by the finite mixture QL and GLu ’s

1A stronger result was obtained by Ishwaran and Zarepour (2002b), Theorem 2, in which convergence
holds for any integrable function g with respect to H.
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(as specified by Eq. (10)), we obtain the corresponding marginal density:

fLu (yu|Gu) =

∫

F (yu|φu)dG
L
u (φu). (12)

Let ΠL to denote the induced prior distribution for {fLu }u∈V . From the above, ΠL ⇒ Π
weakly.

We shall show that for each u ∈ V the prior ΠL is information dense in the space of
finite mixtures as L → ∞. Indeed, for any group index u, consider any finite mixture
of normals fu,0 associated with mixing distributions Q0 and Gu,0 of the form:

Q0 =

d
∑

k=1

βk,0δφk,0
, Gu,0 =

d
∑

k=1

πuk,0δφuk,0
, (13)

Proposition 7. Suppose that the base measure H places positive probability on a rect-

angle containing the support of Q0, then the prior ΠL places a positive probability in

arbitrarily small Kullback-Leibler neighborhood of fu,0 for L sufficiently large. That is,

for any ε > 0, there holds: ΠL(fu : D(fu,0||fu) < ε) > 0 for any sufficiently large L.

At a high level, this result implies that the nHDP provides a prior over the space of
mixture distributions that is “well spread” in the Kullback-Leibler topology. A proof of
this result can be obtained using the same proof techniques of [ Ishwaran and Zarepour
(2002a)] for a similar result applied to (non-hierarchical) finite-dimensional Dirichlet
distributions, and is therefore omitted. An immediate consequence of the information
denseness property is the weak consistency of the posterior distribution of yu for any
u ∈ V , thanks to the asymptotic theory of [ Schwartz (1965)].

Identifiability of factors φ. The above results are relevant from the viewpoint of
density estimation (for the joint vector y). From a clustering viewpoint, we are also
interested in the ability of the nHDP prior in recovering the underlying local factors
φuk’s, as well as the global factors φk’s for the global clusters. This is done by studying
the identifiability of the finite mixtures that lie in the union of the support of ΠL for
all L < ∞. This is the set of all densities (fLu )u∈V ;L<∞ whose corresponding mixing
distributions are given by Eq. (10).

Recall that each marginal fLu is a normal mixture, and the L mixture components
are parameterised by φuk = (µuk, σ

2
uk) for k = 1, . . . , L. Again, let fu,0 be the “true”

marginal density of a mixture distribution for group u that has d mixture components,
and the associated mixing distributions Q0 and Gu,0 are given by Eq. (13). The param-
eter for the k-th component for each k = 1, . . . , d is denoted by φuk,0 = (µuk,0, σ

2
uk,0).

The following is a direct consequence of Theorem 2 of [Ishwaran and Zarepour (2002a)]:

Proposition 8. Suppose that for any u ∈ V , fu(yu) = fu,0(yu) for almost all yu. In

addition, the mixing distributions GLu satisfy the following condition:
∫

R×R+

exp

(

µ2
u

2(σ∗
u − σu)

)

GLu (dφu) <∞,

for any u ∈ V , where σ∗
u = min{σu1,0, . . . , σuk,0}. Then, Gu = Gu,0 for all u ∈ V .
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In other words, this result claims that it is possible to identify all local clusters
specified by φuk and πuk for k = 1, . . . , d, up to the ordering of the mixture component
index k. A more substantial issue is the identifiability of global factors. Under additional
conditions of “true” global factors φk,0’s, and the distribution of global factors QL, the
identification of global factors φk,0’s is possible. Viewing a global factor φk = (φuk)u∈V
(likewise, φk,0) as a function of u ∈ v, a trivial example is that when φk,0 are constant
functions, and that base measure H (and consequentially QL) places probability 1 on
such set of functions, then the identifiability of local factors implies the identifiability of
global factors. A nontrivial condition is that the “true” global factors φk,0 as a function
of u can be parameterised by a small number of parameters (e.g. a linear function,
or an appropriately defined smooth function in u ∈ V ). Then, it is possible that the
identifiability of local factors also implies the identifiability of global factors. An in-
depth theoretical treatment of this important issue is beyond the scope of the present
paper.

The above observations suggest several prudent guidelines for prior specifications
(via the base measure H). To ensure good inferential behavior for the local factors
φu’s, it is essential that the base measure Hu places sufficiently small tail probabilities
on both µu and σu. In addition, if it is believed the underlying global factors are smooth
function in the domain V , placing a very vague prior H over the global factors (such
as a factorial distribution H =

∏

u∈V Hu by assuming the φu are independent across
u ∈ V ) may not do the job. Instead, an appropriate base measure H that puts most of
its mass on smooth functions is needed. Indeed, these observations are also confirmed
by our empirical experiments in Section 5.

4 Inference

In this section we shall describe posterior inference methods for the nested Hierarchi-
cal Dirichlet process mixture. We describe two different sampling approaches: The
“marginal approach” proceeds by integrating out the DP-distributed random measures,
while the “conditional approach” exploits the stick-breaking representation. The former
approach arises directly from the Pólya-urn characterization of the nHDP. However its
implementation is more involved due to book-keeping of the indices. Within this section
we shall describe the conditional approach, leaving the details of the marginal approach
to the supplemental material. Both sampling methods draw from the basic features
of the sampling methods developed for the Hierarchical Dirichlet Process of [Teh et al.
(2006)], in addition to the computational issues that arise when high-dimensional global
factors are sampled.

For the reader’s convenience, we recall key notations and introduce a few more for
the sampling algorithms. tui is the index of the ψut associated with the local factor
θui, i.e., θui = ψutui

; and kt is the index of the φk associated with the global factor ψt,
i.e., ψt = φkt

. The local and global atoms are related by θui = ψutui
= φuktui

. Let
zui = ktui

denote the mixture component associated with observation yui. Turning to
count variables, n−ui

ut denotes the number of local atoms θul’s that are associated with
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ψt, excluding atom θui. n−ui
u·k denotes the number of local atoms θul that such that

zul = k, leaving out θui. t
−ui denotes the vector of all tul’s leaving out element tui.

Likewise, k−t denotes the vector of all kr’s leaving out element kt. In the sequel, the
concentration parameters γ, αu, and parameters for H are assumed fixed. In practice,
we also place standard prior distributions on these parameters, following the approaches
of [Escobar and West (1995); Teh et al. (2006)] for γ, αu, and, e.g., [Gelfand et al. (2005)]
for H ’s.

The main idea of the conditional sampling approach is to exploit the stick-breaking
representation of DP-distributed Q instead of integrating it out. Likewise, we also
consider not integrating over the base measure H . Recall that a priori Q ∼ DP(γ,H).
Due to a standard property of the posterior of a Dirichlet process, conditioning on the

global factors φk’s and the index vector k, Q is distributed as DP(γ+q·,
γH+

∑ K
k=1

qkδφk

γ+q·
).

Note that vector q can be computed directly from k. Thus, an explicit representation
of Q is Q =

∑K
k=1

βkδφk
+ βnewQ

new, where Qnew ∼ DP(γ,H), and

β = (β1, . . . , βK , βnew) ∼ Dir(q1, . . . , qk, γ).

Conditioning on Q, or equivalently conditioning on β,φk’s in the stick breaking repre-
sentation, the distributions Gu’s associated with different locations u ∈ V are decoupled
(independent). In particular, the posterior of Gu given Q and k, t and the φk’s is dis-

tributed as DP(αu + nu,
αuQu+

∑

K
k=1

nu·kδφuk

αu+nu
). Thus, an explicit representation of the

conditional distribution of Gu is given as Gu =
∑K

k=1
πukδφuk

+ πunewG
new
u , where

Gnew
u ∼ DP(αuβnew, Q

new
u ) and

πu = (πu1, . . . , πuK , πunew) ∼ Dir(αuβ1 + nu·1, . . . , αuβk + nu·K , αuβnew).

In contrast to the marginal approach, we consider sampling directly in the mixture
component variable zui = ktui

, and in doing so we bypass the sampling steps involving
k and t. Note that the likelihood of the data involves only the zui variables and the
global atoms φk’s. The mixture proportion vector β involves only count vectors q =
(q1, . . . , qK). It suffices to construct a Markov chain on the space of (z, q,β,φ).

Sampling β. As mentioned above, β|q ∼ Dir(q1, . . . , qK , γ).

Sampling z. Recall that a priori zui|πu,β ∼ πu where πu|β, αu ∼ DP(αu,β). Let
n−ui
u·k denote the number of data items in the group u, except yui, associated with the

mixture component k. This can be readily computed from the vector z.

p(zui = k|z−ui, q,β,φk,Data) =

{

(n−ui
u·k + αuβk)F (yui|φuk) if k previously used

αuβnewf
−yui

uknew(yui) if k = knew.

(14)
where

f−yui

uk (yui) =

∫

F (yui|φuk)
∏

u′i′ 6=ui;zu′i′=k
F (yu′i′ |φu′k)H(φk)dφk

∫
∏

u′i′ 6=ui;zu′i′=k
F (yu′i′ |φu′k)H(φk)dφk

. (15)
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Note that if zui is taken to be knew, then we update K = K+1. (Obviously, knew takes
the value of the updated K).

Sampling q. To clarify the distribution for vector q, we recall an observation at the end
of Section 3.2 that the set of global factors ψt’s can be organized into disjoint subsets
Ψu, each of which is associated with a location u. More precisely, ψt ∈ Ψu if and only
if nut > 0. Within each group u, let muk denote the number of ψt’s taking value φk.
Then, qk =

∑

u∈V muk.

Conditioning on z we can collect all data items in group u that are associated with
mixture component φk, i.e., item indices ui such that zui = k. There are nu·k such items,
which are distributed according to a Dirichlet process with concentration parameter
αuβk. The count variable muk corresponds to the number of mixture components
formed by the nu·k items. It was shown by Antoniak (1974) that the distribution of
muk has the form:

p(muk = m|z,m−uk,β) =
Γ(αuβk)

Γ(αuβk + nu·k)
s(nu·k,m)(αuβk)

m,

where s(n,m) are unsigned Stirling number of the first kind. By definition, s(0, 0) =
s(1, 1) = 1, s(n, 0) = 0 for n > 0, and s(n,m) = 0 for m > n. For other entries, there
holds s(n+ 1,m) = s(n,m− 1) + ns(n,m).

Sampling φ. The sampling of φ1, . . . ,φk follows from the following conditional prob-
abilities:

p(φk|z,Data) ∝ H(φk)
∏

ui:zui=k

F (yui|φuk) for each k = 1, . . . ,K.

Let us index the set V by 1, 2, . . . ,M , where |V | = M . We return to our two examples.

As the first example, suppose that φk is normally distributed, i.e., under H , φk ∼
N(µk,Σk), and that the likelihood F (yui|θui) is given as well by N(θui, σ

2
ε ), then the

posterior distribution of φk is also Gaussian with mean µ̃k and variance Σ̃k, where:

Σ̃−1
k = Σ−1

k +
1

σ2
ε

diag(n1·k, . . . , nM·k),

µ̃k = Σ̃k

(

Σ−1
k µk +

1

σ2
ε

[

∑

i

y1iI(z1i = k) . . .
∑

i

yMiI(zMi = k)

]T)

. (16)

For the second example, we assume that φk is very high dimensional, and the prior
distribution H is not tractable (e.g., a Markov random field). Direct computation is
no longer possible. A simple solution is to Gibbs sample each component of vector
φk. Suppose that under a Markov random field model H , the conditional probability
H(φuk|φ

−u
k ) is simple to compute. Then, for any u ∈ V ,

p(φuk|φ
−u
k , z,Data) ∝ H(φuk|φ

−u
k )

∏

i:zui=k

F (yui|φuk).
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Computation of conditional density of data A major computational bottleneck in sam-
pling methods for the nHDP is the computation of conditional densities given by Eq. (15)
and (18). In general, φ is very high dimensional, and integrating over φ ∼ H is in-
tractable. However it is possible to exploit the structure of H to alleviate this situation.
As an example, if H is conjugate to F , the computation of these conditionals can be
achieved in closed form. Alternatively, if H is specified as a graphical model where
conditional independence assumptions can be exploited, efficient inference methods in
graphical models can be brought to bear on our computational problem.

Example 1. Suppose that the likelihood function F is given by a Gaussian distribution,
i.e., yui|θui ∼ N(θui, σ

2
ε ) for all u, i, and that the prior H is conjugate, i.e., H is also

a Gaussian distribution: φk ∼ N(µk,Σk). Due to conjugacy, the computations in
Eq. (18) are readily available in closed forms. Specifically, the density in Eq. (18) takes
the following expression:

f−yui

uk (yui) =
1

(2π)1/2σε

|Ck+|

|Ck|
exp

(

−
1

2σ2
ε

y2
ui+

1

2
µ−ui
k+

T
C−1
k+µ

−ui
k+ −

1

2
µ−ui
k

T
C−1
k µ−ui

k

)

,

where

C−1
k+ = Σ−1

k +
1

σ2
ε

diag(n−ui
1·k , . . . , 1 + n−ui

u·k , . . . , n
−ui
M·k),

µ−ui
k+ = Ck+

(

Σ−1
k µk +

1

σ2
ε

[

· · ·
∑

i′:zu′i′=k

yu′i′ + yuiI(ui = u′i′) · · ·

]T)

,

C−1
k = Σ−1

k +
1

σ2
ε

diag(n−ui
1·k , . . . , n

−ui
u·k , . . . , n

−ui
M·k),

µ−ui
k = Ck

(

Σ−1
k µk +

1

σ2
ε

[

· · ·
∑

i′:zu′i′=k;u
′i′ 6=ui

yu′i′ · · ·

]T)

. (17)

It is straightforward to obtain required expressions for f−yt

k (yt), f
−yui

uknew(yui), and f−yt

knew(yt)
– the latter two quantities are given in the Appendix.

Example 2. If H is a chain-structured model, the conditional densities defined by
Eq. (18) are not available in closed forms, but we can still obtain exact computation
using an algorithm that is akin to the well-known alpha-beta algorithm in the Hidden
Markov model [ Rabiner 1989]. The running time of such algorithm is proportional
to the size of the graph (i.e., |V |). For general graphical models, one can apply a
sum-product algorithm or approximate variational inference methods [ Wainwright and
Jordan 2008].

5 Illustrations

Simulation studies. We generate two data sets of spatially varying clustered popula-
tions (see Fig. 3 for illustrations). In both data sets, we set V = {1, . . . , 15}. For
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Figure 3: Left: Data set A illustrates a simulated problem of tracking particles organized
into clusters, which move in smooth paths. Right: Data set B illustrates bifurcating
trajectories. In both cases, data are given not as trajectories, but only as individual
points denoted by circles at each u.

data set A, K = 5 global factors φ1, . . . ,φ5 are generated from a Gaussian process
(GP). These global factors provide support for 15 spatially varying mixtures of normal
distributions, each of which has 5 mixture components. The likelihood F (θui) is given
by N(θui, σ

2
ε ), σε = 0.1. For each u we generated independently 100 samples from the

corresponding mixture (20 samples from each mixture components). Note that each
circle in the figures denote a data sample. This kind of data can be encountered in
tracking problems, where the samples associating with each covariate u can be viewed
as a snapshot of the locations of moving particles at time point u. The particles move
in clusters. They may switch clusters at any time, but the identification of each particle
is not known as they move from one time step to the next. The clusters themselves
move in relatively smoother paths. Moreover, the number of clusters is not known. It
is of interest to estimate the cluster centers, as well as their moving paths. 2 For data
set B, to illustrate the variation in the number of local clusters at different locations,
we generate a number of global factors that simulate the bifurcation behavior in a col-
lection of longitudinal trajectories. Here a trajectory corresponds to a global factor.
Specifically, we set V = {1, . . . , 15}. Starting at u = 1 there is one global factor, which
is a random draw from a relatively smooth GP with mean function µ(u) = βµu, where
βµ ∼ Unif(−0.2, 0.2) and the exponential covariance function parameterised by σ = 1,
ω = 0.05. At u = 5, the global factor splits into two, with the second one also an
independent draw from the same GP, which is re-centered so that its value at u = 4 is
the same as the value of the previous global factor at u = 4. At u = 10, the second
global factor splits once more in the same manner. These three global factors provide
support for the local clusters at each u ∈ V . The likelihood F (·|θui) is given by a normal
distribution with σε = 0.2. At each u we generated 30 independent observations.

2Particle-specific tracking is possible if the identity of the specific particle is maintained across
snapshots.
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Figure 4: Data set A. Left: Posterior distribution of the number of global clusters.
Right: Posterior distributions of the global atoms. Dashed lines denote the mean curve
and (.05,.95) credible intervals.
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Figure 5: Data set B. Left: Posterior distribution of the number of global clusters
(atoms). Right: Posterior distributions of the global atoms. Dashed lines denote the
mean curve and the (.05,.95) credible intervals.

Although it is possible to perform clustering analysis for data at each location u, it is
not clear how to link these clusters across the locations, especially given that the number
of clusters might be different for different u’s. The nHDP mixture model provides a
natural solution to this problem. It is fit for both data sets using essentially the same
prior specifications. The concentration parameters are given by γ ∼ Gamma(5, .1) and
α ∼ Gamma(20, 20). H is taken to be a mean-0 GP using (σ, ω) = (1, 0.01) for data set
A, and (1, 0.05) for data set B. The variance σ2

ε is endowed with prior InvGamma(5, 1).
The results of posterior inference (via MCMC sampling) for both data sets are illustrated
by Fig. 4 and Fig. 5. With both data sets, the number global clusters are estimated
almost exactly (5 and 3, respectively, with probability > 90%). The evolution of the
posterior distributions on the number of local clusters for data set B is given in Fig. 7.
In both data sets, the local factors are accurately estimated (see Figs. 4 and 5). For data
set B, due to the varying number of local clusters, there are regions for u, specifically
the interval [5, 10] where multiple global factors alternate the role of supporting local
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Figure 6: Effects of vague prior for H results in weak identifiability of global clusters,
even as the local clusters are identified reasonably well.
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Figure 7: Data set B: Posterior distribution of the number of local clusters associating
with different group index (location) u.

clusters, resulting in wider credible bands.

In Section 3 we discussed the implications of prior specifications of the base measure
H for the identifiability of global factors. We have performed a sensitivity analysis for
data set A, and found that the inference for global factors is robust when ω is set to
be in [.01, .1]. For ω = 0.5, for instance, which implies that φu are weakly dependent
across u’s, we are not able to identify the desired global factors (see Fig. 6), despite the
fact that local factors are still estimated reasonably well.

The effects of prior specification for σε on the inference of global factors are somewhat
similar to the hybrid DP model: a smaller σε encourages higher numbers of and less
smooth global curves to expand the coverage of the function space (see Sec. 7.3 of [
Nguyen and Gelfand (2010)]). Within our context, the prior for σε is relatively more
robust than that of ω as discussed above. The prior for concentration parameter γ is
extremely robust while the priors for αu’s are somewhat less. We believe the reason for
this robustness is due to the modeling of the global factors in the second stage of the



838 Nested hierarchical Dirichlet processes

0 5 10 15 20 25
−3

−2

−1

0

1

2

3

4
Progresterone hormone curves

Locations u

Y

Figure 8: Progeresterone hormone curves.

0 5 10 15 20 25
−2

−1

0

1

2

3
Posterior distributions of global cluster centers

Locations u

Y

0 5 10 15 20 25
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Posterior distributions of global cluster centers

Locations u

Y

Figure 9: Clustering results using the nHDP mixture model (Left), and the hybrid-DP
of Petrone et al. (2009) (Right). Mean and credible intervals of global clusters (in
dashed lines) are compared to sample mean curves of the contraceptive group and no
contraceptive group in black solid with square markers.

nested hierarchy of DPs, and the inference about these factors has the effect of pooling
data from across the groups in the first stage. In practice, we take all αu’s to be equal
to increase the robustness of the associated prior.

Progesterone hormone clustering. We turn to a clustering analysis of Progesterone
hormone data. This data set records the natural logarithm of the progesterone metabo-
lite, measured by urinary hormone assay, during a monthly cycle for 51 female subjects.
Each cycle ranges from -8 to 15 (8 days pre-ovulation to 15 days post-ovulation). We
are interested in clustering the hormone levels per day, and assessing the evolution over
time. We are also interested in global clusters, i.e., identifying global hormone pattern
for the entire monthly cycle and analyzing the effects on contraception on the cluster-
ing patterns. See Fig. 8 for the illustration and [ Brumback and Rice (1998)] for more
details on the data set.
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Figure 10: Pairwise comparison of individual hormone curves. Each entry in the
heatmap depicts the posterior probability that the two curves share the same local

clusters, averaged over a fixed interval ([1,20] in the left, and [21,24] in the right figure)
in the menstrual cycle.
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Figure 11: The leftmost panel shows the posterior distribution of the number of global
clusters, while remaining panels show the the number of local clusters associating with
group index u.

For prior specifications, we set γ ∼ Gamma(5, 0.1), and αu = 1 for all u. Let
σε ∼ InvGamma(2, 1). For H , we set µ = 0, σ = 1 and ω = 0.05. It is found that the
there are 2 global clusters with probability close to 1. In addition, the mean estimate of
global clusters match very well with the sample means from the two groups of women,
a group of those using contraceptives and a group that do not (see Fig. 9). Examining
the variations of local clusters, there is a significant probability of having only one local
cluster during the first 20 days. Between day 21 and 24 the number of local clusters is
2 with probability close to 1.

To elaborate the effects of contraception on the hormone behavior (the last 17 female
subjects are known to use contraception), a pairwise comparison analysis is performed.
For every two hormone curves, we estimate the posterior probability that they share the
same local cluster on a given day, which is then averaged over days in a given interval. It
is found that the hormone levels among these women are almost indistinguishable in the
first 20 days (with the clustering-sharing probabilities in the range of 75%), but in the
last 4 days, they are sharply separated into two distinct regimes (with the clustering-
sharing probability between the two groups are dropped to 30%).
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Figure 12: Pairwise comparison of individual hormone curves using the hybrid-DP
(Petrone et al. 2009). Each entry in the heatmap depicts the posterior probability that
the two curves share the same local clusters, averaged over a fixed interval ([1,20] in the
left, and [21,24] in the right figure) in the menstrual cycle.

We compare our approach to the hybrid Dirichlet process (hybrid-DP) approach [
Petrone et al. 2009; Nguyen and Gelfand 2010], perhaps the only existing approach in
the literature for joint modeling of global and local clusters. The data are given to the
hybrid-DP as the replicates of a random functional curve, whereas in our approach,
such functional identity information is not used. In other words, for us only a collection
of hormone levels across different time points are given (i.e., the subject ID of hormone
levels are neither revealed nor matched with one another across time points). For a
sensible comparison, the same prior specification for base measure H of the global
clusters were used for both approaches. The inference results are illustrated in Fig. 9.
A close look reveals that the global clusters obtained by the hybrid-DP approach is
less faithful to the contraceptive/no contraceptive grouping than ours. This can be
explained by the fact that hybrid-DP is a more complex model that directly specifies
the local cluster switching behavior for functional curves. It is observed in this example
that an individual hormone curve tends to over-switch the local cluster assignments for
u ≥ 20, resulting in significantly less contrasts between the two group of women (see
Fig. 10 and 12). This is probably due the complexity of the hybrid-DP, which can only
be overcome with more data (see Propositions 7 and 8 of [ Nguyen and Gelfand (2010)]
for a theoretical analysis of this model’s complexity and posterior consistency). Finally,
it is also worth noting that the hybrid-DP approach practically requires the number
of clusters to be specified a priori (as in the so-called k-hybrid-DP in [ Petrone et al.
(2009)]), while such information is directly infered from data using the nHDP mixture.

6 Discussions

We have described a nonparametric approach to the inference of global clusters from lo-
cally distributed data. We proposed a nonparametric Bayesian solution to this problem,
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by introducing the nested Hierarchical Dirichlet process mixture model. This model has
the virtue of simultaneous modeling of both local clusters and global clusters present in
the data. The global clusters are supported by a Dirichlet process, using a stochastic
process as its base measure (centering distribution). The local clusters are supported
by the global clusters. Moreover, the local clusters are randomly selected using another
hierarchy of Dirichlet processes. As a result, we obtain a collection of local clusters
which are spatially varying, whose spatial dependency is regulated by an underlying
spatial or a graphical model. The canonical aspects of the nHDP (because of its use of
the Dirichlet processes) suggest straightforward extensions to accomodate richer behav-
iors using Poisson-Dirichlet processes (also known as the Pittman-Yor processes), where
they have been found to be particularly suitable for certain applications, and where our
analysis and inference methods can be easily adapted. It would also be interesting to
consider a multivariate version of the nHDP model. Finally, the manner in which global
and local clusters are combined in the nHDP mixture model is suggestive of ways of
direct and simultaneous global and local clustering for various structured data types.

7 Appendix

7.1 Marginal approach to sampling

The Pólya-urn characterization suggests a Gibbs sampling algorithm to obtain posterior
distributions of the local factors θui’s and the global factors ψt’s, by integrating out ran-
dom measures Q and Gu’s. Rather than dealing with the θui’s and ψt directly, we shall
sample index variables tui and kt instead, because θui’s and ψt’s can be reconstructed
from the index variables and the φk’s. This representation is generally thought to make
the MCMC sampling more efficient. Thus, we construct a Markov chain on the space of
{t,k}. Although the number of variables is in principle unbounded, only finitely many
are actually associated to data and represented explicitly.

A quantity that plays an important role in the computation of conditional proba-
bilities in this approach is the conditional density of a selected collection of data items,
given the remaining data. For a single observation i-th at location u, define the condi-
tional probability of yui under a mixture component φuk, given t,k and all data items
except yui:

f−yui

uk (yui) =

∫

F (yui|φuk)
∏

u′i′ 6=ui;zu′i′=k
F (yu′i′ |φu′k)H(φk)dφk

∫
∏

u′i′ 6=ui;zu′i′=k
F (yu′i′ |φu′k)H(φk)dφk

. (18)

Similary, for a collection of observations of all data yui such that tui = t for a chosen t,
which we denote by vector yt, let f−yt

k (yt) be the conditional probability of yt under
the mixture component φk, given t,k and all data items except yt.

Sampling t. Exploiting the exchangeability of the tui’s within the group of observations
indexed by u, we treat tui as the last variable being sampled in the group. To obtain the
conditional posterior for tui, we combine the conditional prior distribution for tui with
the likelihood of generating data yui. Specifically, the prior probability that tui takes on
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a particular previously used value t is proportional to n−ui
ut , while the probability that

it takes on a new value tnew = mu + 1 is proportional to αu. The likelihood due to yui
given tui = t for some previously used t is f−yui

uk (yui). Here, k = kt. The likelihood for
tui = tnew is calculated by integrating out the possible values of ktnew :

p(yui|t
−ui, tui = tnew,k,Data) =

K
∑

k=1

qk
q· + γ

f−yui

uk (yui) +
γ

q· + γ
f−yui

uknew(yui), (19)

where f−yui

uknew(yui) =
∫

F (yui|φu)Hu(φu)dφu is the prior density of yui. As a result, the
conditional distribution of tui takes the form

p(tui = t|t−ui,k,Data) ∝

{

n−ui
ut f−yui

ukt
(yui) if t previously used

αup(yui|t
−ui, tui = tnew,k) if t = tnew.

(20)

If the sampled value of tui is tnew, we need to obtain a sample of ktnew by sampling from
Eq. (19):

p(ktnew = k|t,k−t
new

,Data) ∝

{

qkf
−yui

uk (yui) if k previously used,

γf−yui

uknew(yui) if k = knew.
(21)

Sampling k. As with the local factors within each group, the global factors ψt’s are
also exchangeable. Thus we can treat ψt for a chosen t as the last variable sampled in
the collection of global factors. Note that changing index variable kt actually changes
the mixture component membership for relevant data items (across all groups u) that
are associated with ψt, the likelihood obtained by setting kt = k is given by f−yt

k (yt),
where yt denotes the vector of all data yui such that tui = t. So, the conditional
probability for kt is:

p(kt = k|t,k−t,Data) ∝

{

qkf
−yt

k (yt) if k previously used,

γf−yt

knew(yt) if k = knew,
(22)

where f−yt

knew(yt) =
∫

∏

ui:tui=t
F (yui|φu)H(φ)dφ.

Sampling of γ and α. We follow the method of auxiliary variables developed by [
Escobar and West (1995)] and [ Teh et al. (2006)]. Endow γ with a Gamma(aγ , bγ)
prior. At each sampling step, we draw η ∼ Beta(γ + 1, q·). Then the posterior of γ is
can be obtained as a gamma mixture, which can be expressed as πγGamma(aγ+K, bγ−
log(η)) + (1− πγ)Gamma(aγ +K − 1, bγ − log(η)), where πγ = (aγ +K − 1)/(aγ +K −
1 + q·(bγ − log(η))). The procedure is the same for each αu, with nu and mu playing
the role of q· and K, respectively. Alternatively, one can force all αu to be equal and
endow it with a gamma prior, as in [ Teh et al. (2006)].
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de Saint-Flour XIII-1983 , 1–198.



X. Nguyen 843

Antoniak, C. (1974). “Mixtures of Dirichlet Processes with Applications to Bayesian
Nonparametric Problems.” Annals of Statistics, 2(6): 1152–1174.

Blackwell, D. and MacQueen, J. (1973). “Ferguson Distributions via Polya Urn
Schemes.” Annals of Statistics, 1: 353355.

Brumback, B. and Rice, J. (1998). “Smoothing spline models for the analysis of nested
and crossed samples of curves.” J. Amer. Statist. Assoc., 93(443): 961–980.

Cifarelli, D. and Regazzini, E. (1978). “Nonparametric statistical problems under partial
exchangeability: The role of associative means.” Technical report, Quaderni Istituto
Matematica Finanziaria dellUniversit‘a di Torino.

Cressie, N. (1993). Statistics for Spatial Data. Wiley, NY.

DeIorio, M., Mueller, P., Rosner, G., and MacEachern, S. (2004). “An ANOVA model
for dependent random measures.” J. Amer. Statist. Assoc., 99: 205–215.

Duan, J., Guindani, M., and Gelfand, A. (2007). “Generalized spatial Dirichlet pro-
cesses.” Biometrika, 94(4): 809–825.

Dunson, D. (2008). “Kernel local partition processes for functional data.” Technical
Report 26, Department of Statistical Science, Duke University.

Dunson, D. and Park, J.-H. (2008). “Kernel stick-breaking processes.” Biometrika,
95(2): 307–323.

Escobar, M. and West, M. (1995). “Bayesian Density Estimation and Inference Using
Mixtures.” Journal of the American Statistical Association, 90: 577–588.

Ferguson, T. (1973). “A Bayesian analysis of some nonparametric problems.” Ann.

Statist., 1: 209–230.

Gelfand, A., Kottas, A., and MacEachern, S. (2005). “Bayesian nonparametric spatial
modeling with Dirichlet process mixing.” J. Amer. Statist. Assoc., 100: 1021–1035.

Griffin, J. and Steel, M. (2006). “Order-based dependent Dirichlet processes.” J. Amer.

Statist. Assoc., 101: 179–194.

Hjort, N., Holmes, C., Mueller, P., and (Eds.), S. W. (2010). Bayesian Nonparametrics:

Principles and Practice. Cambridge University Press.

Ishwaran, H. and James, L. (2001). “Gibbs sampling methods for stick-breaking priors.”
J. Amer. Statist. Assoc., 96: 161–173.

Ishwaran, H. and Zarepour, M. (2002a). “Dirichlet prior sieves in finite normal mix-
tures.” Statistica Sinica, 12: 941–963.

— (2002b). “Exact and Approximate Sum-Representations for the Dirichlet Process.”
Canadian Journal of Statistics, 30: 269–283.



844 Nested hierarchical Dirichlet processes

Jordan, M. (2004). “Graphical models.” Statistical Science, Special Issue on Bayesian
Statistics (19): 140–155.

Lauritzen, S. (1996). Graphical models. Oxford University Press.

Lo, A. (1984). “On a class of Bayesian nonparametric estimates I: Density estimates.”
Annals of Statistics, 12(1): 351–357.

MacEachern, S. (1999). “Dependent Nonparametric Processes.” In Proceedings of the

Section on Bayesian Statistical Science, American Statistical Association.

MacEachern, S. and Mueller, P. (1998). “Estimating Mixture of Dirichlet Process Mod-
els.” Journal of Computational and Graphical Statistics, 7: 223–238.

Mueller, P., Quintana, F., and Rosner, G. (2004). “A Method for Combining Inference
Across Related Nonparametric Bayesian Models.” Journal of the Royal Statistical

Society , 66: 735749.

Muliere, P. and Petrone, S. (1993). “A Bayesian Predictive Approach to Sequential
Search for an Optimal Dose: Parametric and Nonparametric Models.” Journal of the

Italian Statistical Society , 2: 349364.

Muliere, P. and Secchi, P. (1995). “A note on a proper Bayesian bootstrap.” Technical
Report 18, Dipartimento di Economia Politica e Metodi Quantitativi, Universita degli
Sudi di Pavia.

Neal, R. (1992). “Bayesian Mixture Modeling.” In Proceedings of the Workshop on

Maximum Entropy and Bayesian Methods of Statistical Analysis, volume 11, 197–
211.

Nguyen, X. and Gelfand, A. (2010). “The Dirichlet labeling process for clustering
functional data.” Statistica Sinica, to appear.

Petrone, S., Guidani, M., and Gelfand, A. (2009). “Hybrid Dirichlet processes for
functional data.” Journal of the Royal Statistical Society B, 71(4): 755–782.

Pittman, J. (2002). “Poisson-Dirichlet and GEM invariant distributions for split-and-
merge transformations of an interval partition.” Combinatorics, Probability and Com-

puting , 11: 501–514.

Rabiner, L. (1989). “A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition.” Proceedings of the IEEE, 77: 257–285.

Rodriguez, A. and Dunson, D. (2009). “Nonparametric Bayesian models through probit
stick-breaking processes.” Technical report, University of California, Santa Cruz.

Rodriguez, A., Dunson, D., and Gelfand, A. (2010). “Latent stick-breaking processes.”
J. Amer. Statist. Assoc., 105(490): 647–659.

Schwartz, L. (1965). “On Bayes procedures.” Z. Wahr. Verw. Gebiete, 4: 10–26.



X. Nguyen 845

Sethuraman, J. (1994). “A constructive definition of Dirichlet priors.” Statistica Sinica,
4: 639–650.

Teh, Y., Jordan, M., Beal, M., and Blei, D. (2006). “Hierarchical Dirichlet processes.”
J. Amer. Statist. Assoc., 101: 1566–1581.

Teh, Y. W. and Jordan, M. I. (2010). “Hierarchical Bayesian nonparametric models
with applications.” Bayesian Nonparametrics: Principles and Practice, In N. Hjort,
C. Holmes, P. Mueller, and S. Walker (Eds.).

Wainwright, M. J. and Jordan, M. I. (2008). “Graphical models, exponential families,
and variational inference.” Foundations and Trends in Machine Learning , 1: 1–305.

Acknowledgments

This work was partially supported by NSF-CDI grant No. 0940671. The author wishes to thank

the referees and the Associate Editor for valuable comments that help improve the presentation

of this work.



846 Nested hierarchical Dirichlet processes


