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Current theories of cosmology suggest that the Universe began in a hot, dense state
approximately 13 billion years ago, and that it has been expanding rapidly ever since.
However, observations of galaxies imply that there must exist far more matter in the
Universe than the visible matter that makes up stars, planets and us. This is referred
to as ‘Dark Matter’ and understanding its nature and role in the evolution of galaxies is
one of the most important problems in modern cosmology. The Galform group, based
at the Institute of Computational Cosmology, Durham University, is the world leading
group in the study of Galaxy Formation in the presence of Dark Matter (see Bower et al.
(2006) and references therein). Over the last 13 years, they have developed a detailed
computer model, known as Galform, which simulates the creation and evolution of
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approximately one million galaxies from the beginning of the Universe until the present
day. The simulation produces various physical features of each of the galaxies which
can be compared to observed galaxy survey data.

The Galform model requires many input parameters to be specified in order to run
the simulation. It is therefore necessary to explore the input parameter space and find
the set of all input configurations that give rise to acceptable matches between model
output and observed data. As the model run time is significant, this is a challenging
task. Further, even to assess what constitutes an acceptable match, we must consider
all of the uncertainties that are involved in the comparison between model and reality,
including input parameter uncertainty, function uncertainty, observational error, forcing
function uncertainty and structural uncertainty. Such a detailed level of uncertainty
quantification has never been attempted for such a cosmological model.

This case study describes a collaboration between members of the Statistics group
and the Galform group, at Durham, to carry out such an uncertainty analysis for Gal-
form. Our aim is to identify all choices of input parameters that generate consistent
physical models in the sense that they would yield sufficiently good matches to certain
important features of observational data, when we have taken into account all relevant
sources of uncertainty. In particular, it is of fundamental interest to know whether this
set of acceptable inputs is non-empty.

In order to treat all uncertainties in a consistent and unified manner, we use general
techniques related to the Bayesian treatment of uncertainty for computer models for
large scale physical systems. In addition to the uncertainty associated with the Galform
function itself, we elicit all of the other sources of uncertainty which must be addressed
in order to make meaningful comparisons between Galform output and observations.

Our approach is based on the construction of an emulator for Galform, this being
a stochastic function that represents our beliefs about the behaviour of the simulator.
We use the emulator and the model uncertainties to define implausibility measures over
the input parameter space for Galform, based on a Bayes Linear analysis. We exclude
regions of input space by imposing cutoffs on our implausibility measures. We proceed
iteratively, making function evaluations over the full range of the input space, emulating
Galform over this space, using implausibility measures to remove a part of the space,
making a further collection of evaluations of Galform in the reduced space, re-emulating
within the reduced space, re-evaluating our implausibility measures over this subspace
and therefore removing a further portion of the space and continuing in this fashion.
We performed this cycle four times, in each case making a substantial further reduction
to the allowable input space. We then made a final set of runs to check that we did
have many acceptable matches between Galform output and observations over a range
of input parameter choices within the final reduced space.

This is a significant contribution toward understanding the Galform model, as pre-
viously no knowledge of the shape and extent of the acceptable region of input space
existed. Further, the previous best matches to the primary data set of interest were not
compatible with other secondary, but important, observational data sets. Our analysis
demonstrates that, by making realistic assessments of structural uncertainty, we are
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indeed able to simultaneously match data sets that were previously thought to be in-
compatible, contradicting authors who suggested that the Universe is “anti-hierarchical”
(see section 2), and that such a match is impossible. Thus this work should be viewed
as consistent with the hypothesis that galaxies formed in the presence of large amounts
of Dark Matter, and in particular via hierarchical merging.

This collaboration began in an informal fashion. Members of the statistics group
were interested in applying various techniques that they had developed for the analysis
of large scale computer models. The Galform group offered the use of their model and
some of their computing facilities. Over time, it became clear that such an analysis was
a useful tool for understanding various scientific issues related to the model, and merited
a serious collaborative effort to pursue these questions. This account is a description of
the results of the collaboration, described more or less as it has evolved.

The Case Study paper is structured as follows. In section 2 we discuss the physical
motivation for the study of galaxy evolution and give a general description of the Gal-
form model. Section 3 describes the Computer Model methodology that we will employ,
and highlights all the relevant uncertainties that must be considered. In section 4 we
describe the construction of the Wave 1 emulator. In section 5 we assess all remaining
uncertainties relevant to the analysis and in section 6 we perform the first iteration
of the History Matching process. Section 7 deals with the remaining iterations, and
the results are reported in section 8. We conclude with discussions regarding physical
insight gained in section 9.

2 A universe full of galaxies

The night sky is full of stars. Yet the stars that are visible to the human eye are only
an unimaginably tiny fraction of the stars in the universe as a whole. Equipped with
telescopes, astronomers have discovered that at great distances beyond our own galaxy
lie millions of millions of other galaxies, each with their own populations of stars.

Because of the finite speed of light, such distant galaxies are seen when the universe
was much younger. Astronomers can use this time delay to observe the build up and
formation of galaxies. The most distant galaxies identified to date are seen only 10°
years after the big bang, when the universe was less than 1/10'" of its current age. Such
observations reveal some puzzling results: they suggest that a large proportion of the
most massive galaxies are present quite early in the history of the universe. This is in
seeming contradiction to the theoretical predictions of the popular Cold Dark Matter
model, which suggests galaxies form through a process of ‘hierarchical aggregation’:
small galaxies form early in the history of the universe, building larger and larger galaxies
through gravitational collapse and collision. Explaining this apparent contradiction is a
key motivation in the development of the Galform model described below. See Appendix
A for more details, and for an introduction to galaxy formation.
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2.1 Modelling Galaxy Formation: The GALFORM Model

There are essentially two approaches to modelling the formation of galaxies (see appen-
dices A and B). The first is the “numerical simulation” method, a simple and direct
approach which uses fundamental physical equations only. This suffers greatly from res-
olution issues and cannot model many critical features of galaxy formation, for example
the winds produced by stars at their deaths, or the formation and effect of black holes.

“Semi-analytic modelling” represents the alternative approach. Rather than tackling
the whole problem in a single numerical integration, it is broken down into its separate
components or modules. For example, one component of the model is the growth and
merging of dark matter haloes (each visible galaxy is thought to be contained within
a massive halo of dark matter, which dominates the galaxy’s motion). This can be
computed by running a numerical calculation known as the Millennium simulation that
only includes mass and the force of gravity (see section 2.2). As the various processes
involved in galaxy formation are not precisely understood, the modules include a number
of uncertain, adjustable input parameters x, the exploration of which is the main goal
of this case study. Because of the intrinsic complexity of the galaxy formation problem,
“semi-analytic models” currently offer the best avenue for progress.

Galform is a world-leading example of such a semi-analytic galaxy formation model
(see Bower et al. (2006)). The principle modules within the Galform code track: [1] the
gravitational collapse and build-up of dark matter haloes; [2] the cooling and accretion of
gas; the formation of stars, stellar evolution and “feedback” from supernova explosions;
[3] galaxy mergers and instabilities in stellar disks; [4] the formation of black holes
and the associated feedback; [5] the effects due to re-ionisation of the universe by the
ultra-violet radiation field.

The computer code for each section implements astrophysically motivated algo-
rithms, each process drawing on the inputs provided by each of the other modules. The
modules link together to form a network of non-linear equations that are integrated in
time to trace the evolving properties of the galaxy population. In total the model uses
over 50,000 lines of computer code. Further details are described in appendix B, while
Baugh (2006) presents an introduction to the internal workings of the code.

2.2 Galform and Dark Matter

In order to run, Galform requires a forcing function' that represents the positions,
and subsequent collisions, of all lumps of dark matter containing galaxies, at all times
(referred to as the “merger histories of the Dark Matter Haloes”). This information is
extracted from the Millennium simulation (a large Dark matter simulation described in
appendix B), and, with it, Galform can model the far more complicated behaviour of
baryonic (i.e. normal) matter. It is the baryonic matter that is responsible for the more

1 We use the term ‘forcing function’ in the differential equation sense, referring to a function that
appears in a network of differential equations and which depends on time only. Knowledge of this
function is required before one can attempt to numerically solve or integrate the system of equations.
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Figure 1: The bj (left) and K (right) Luminosity Functions giving the (log) number
of galaxies per unit volume, binned by luminosity. The data are shown as the black
points, along with 2 sigma intervals representing all relevant uncertainties identified
in section 5. The coloured lines are the Galform outputs from 993 Wave 1 runs of the
model described in section 4.2, none of which were found to be acceptable as they didn’t
pass sufficiently close to all of the observed data points. The vertical lines show the 7
outputs chosen for emulation also described in section 4.2.

intricate processes involved in galaxy formation.

As the Millennium simulation covers a substantial volume (1.63 billion light years
cubed), its results are split into 512 sub-volumes, each of which can be used as a forcing
function to the Galform model. The run time for one evaluation of the Galform model on
a single sub-volume is approximately 30 minutes. The Galform group provided shared
access to a cluster of 256 processors. Previous attempts by the cosmologists to calibrate
Galform focussed on the first 40 sub-volumes out of 512, and we follow this approach
here while taking account of the uncertainty this generates.

2.3 Inputs

Each module of Galform has associated input parameters, which define the workings
of the module. The Galform model has a total of 17 inputs that relate to various
uncertain physical processes involved in galaxy formation. We denote the vector of 17
input parameters as x. In order to run the code, the astrophysicist must specify values
for each of these input parameters. Some parameters are quite well defined by numerical
experiments or targeted observational data, but others are highly uncertain.

All 17 inputs z, along with their considered ranges, and associated modules are
shown in table 1. Also shown are the variables that are initially considered, and those
varied in Wave 1 of our analysis: this will be discussed in section 4.3.
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Input symbol min | max Initial Varied in Process
Parameters Variables | W1 (xp)) Modelled
vhotdisk Vhot,disk 100 550 X X SNe feedback
vhotburst Vhot,burst 100 550 X X .
alphahot Qlhot 2 3.7 X
alphareheat Qlreheat 0.2 1.2 X X .
alphacool Qeool 0.2 1.2 X X AGN feedback
epsilonEdd €Edd 0.004 | 0.05 .
epsilonStar €x 10 1000 X X Star Formation
alphastar Oy -3.2 -0.3
yield Pyield 0.02 0.05 X
tdisk tdisk 0 1 .
stabledisk fstab 0.65 | 0.95 X X Disk stability
tauOmrg fat 0.8 2.7 Galaxy Mergers
fellip fettip 0.1 0.35 .
fburst Sourst 0.01 | 0.15
FSMBH oy 0.001 | 0.01 :
vCcuT Veut 20 50 Reionisation
ZCUT Zeut 6 9 .

Table 1: Table of Parameter Ranges (which were converted to -1 to 1 for the analysis),
including the initial variables considered and those that are possibly active and analysed
in Wave 1 (referred to as x|p)). Parameters are grouped by physical process.

2.4 Outputs

Galform provides several different sets of output data related to various physical char-
acteristics of the simulated galaxies. Observational data of differing degrees of accuracy
are available for comparison with the Galform model output, the most important of
these being the bj and K Luminosity Functions. These Luminosity functions give the
(log) number of galaxies per unit volume, binned with respect to luminosity. We con-
sider two types of luminosity function: “bj” and “K” which correspond to blue and
infrared wavelengths of light, and which are more representative of younger and older
galaxies respectively (but not exclusively: most galaxies emit measurable amounts of
both wavelengths of light). Figure 1 shows the bj and K luminosity functions in the
left and right panels respectively. The 993 model runs used in wave 1 are given by the
coloured lines (see section 4.2). Observed data is given by the black dots, with 20 error
bars representing all the uncertainties described in section 5. Such data was gathered by
the 2dFGRS sky survey (Colless et al. (2001)): telescopes sweep across sectors of the sky
measuring hundreds of thousands of galaxies and their properties. In order to convert
the data into the form given in figure 1 (current day, absolute luminosities), the data
must be heavily processed to correct for several factors, for example, the redshifting of
light emitted by galaxies due to their velocity away from Earth, and the time delay in
receiving such light which implies we are effectively measuring distant galaxies billions
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of years in the past (this is discussed in section 5.2). See Norberg et al. (2002) and Cole
et al. (2001) for the details of such processing for the bj and K data respectively.

The Luminosity Function data set represents the most accurately measured observa-
tional data available and is seen as the benchmark by which models of galaxy formation
are judged (Norberg et al. (2002)). Even if a particular galaxy formation model performs
well with respect to other data sets, if it does not match the Luminosity function to an
acceptable level then that model will be discarded. For these reasons, it was decided
to focus our analysis on identifying the regions of input space that give rise to matches
between the model output and the bj and K observed luminosity functions. Additional
data sets could then be used at a later date to restrict the input space further.

3 Uncertainty Analysis for Computer Simulators

3.1 Uncertainty in complex models

Our aim is to identify that region of the input space of the Galform simulator for
which certain aspects of Galform output match closely to observations. As such, this
study falls within the general area of the analysis of uncertainty arising when we study
complex physical systems by means of mathematical models typically implemented as
computer simulators. The general version is as follows. A computer simulator f takes as
input the vector x, which represents certain physical properties of a system of interest.
The simulator output vector, f(z), corresponds to certain aspects of the behaviour
of the system. For given inputs, this behaviour is determined by equations embodying
the relevant theoretical knowledge relating system properties to system behaviour. This
approach is common to many areas of science. We can talk of an emergent methodology
because, despite the enormous differences between each of the individual models, all such
problems of physical modelling confront a similar collection of basic uncertainties.

[1] Parameter uncertainty. We do not know the appropriate values of the in-
puts z to the simulator. In some cases, we may not even know whether there is any
appropriate choice for the inputs. Galform is a case in point. If we have misrepresented
the underlying physics, for example if the role of Dark Matter is not supported by
observational evidence, then the meaning of the model and the interpretation of the pa-
rameters will be called into question. In particular, were we to discover that there were
no choices of inputs for which Galform output matched observations in our universe,
then that might provide part of the evidence which would call the current account of
cosmology into question.

[2] Simulator uncertainty. For any choice of inputs, x, the output of the Galform
code f(x) is a deterministic computer function. However, many computer simulators
are very expensive, in time and resources, to evaluate, for any choice of inputs. In
practice, it is appropriate to consider that the output values of such a simulator are
unknown except at the input choices at which the simulator has been evaluated. An
important stage in the analysis, therefore, is the construction of a statistical represen-
tation or emulator for the simulator. The emulator represents our uncertainty about
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the value of the function at each possible input choice, and therefore acts both as an
approximation to the function and as an assessment of the uncertainty introduced by
the approximation. Much of the literature on computer experiments is concerned
with efficient methods for building emulators; see for example Sacks et al. (1989); Sant-
ner et al. (2003); Currin et al. (1991). For our Galform investigations, we have made
many evaluations of the simulator. Even so, emulation has proved essential in extending
our uncertainty description from the function evaluations to the remainder of the input
space.

[3] Structural uncertainty. However carefully we have constructed our model,
there will always be a difference between the system and the simulator. Inevitably,
there will be simplifications in the physics, based on features that are too complicated
for us to include, features that we do not know that we should include, mismatches
between the scales on which the model and the system operate, and simplifications and
approximations in solving the equations determining the system. Often, understanding
this structural uncertainty will be one of the most challenging aspects of the analysis.

[4] Observational error. This uncertainty arises when we match our model to
system observations. Often, in complex physical systems, the observations are them-
selves somewhat indirect, being assessed on the basis of extensive preprocessing based
on various additional theoretical constructs, that are external to the theory underlying
and represented by, the computer model. Further, the measurements may not directly
correspond to the outputs of the simulator and therefore require an extra layer of in-
terpretation and analysis before the model predictions and the system observations can
be compared. The observational error in Galform is of a particularly complex form,
requiring considerable processing to transform the system observations to a comparable
spatio-temporal resolution to the simulator outputs.

[5] Initial condition and forcing function uncertainty. This corresponds to
all of the other aspects of the simulator which need to be specified before the model may
be evaluated. For example, the Galform simulator requires a full spatial specification of
the arrangement of Dark Matter at all times in the development of the universe, and so
we need to account for the uncertainty introduced as we do not know this configuration.
Often such specifications are too complex to be treated in the same manner as parameter
uncertainty, as is discussed by House et al. (2009).

In this study, we will describe how we address each of these sources of uncertainty
for the Galform project. We aim to be careful and thorough, but we must also recognise
that, for a complex model such as Galform, uncertainty modelling is a process which
is similar in many ways to the physical modelling process on which we are building.
Quantifications of uncertainty depend on complex scientific judgements over which dif-
ferent experts may have different views. Further, expert knowledge is held collectively
over a wide community of experimenters, observationalists, theoreticians and modellers.
Therefore, it is as misleading to talk of a definitive assessment of the uncertainty asso-
ciated with Galform as it would be to talk of a definitive form for the Galform model
itself as experts would not currently agree on the precise form the Galform code should
take. Assessment of uncertainty is an ongoing process for models which are, themselves,
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undergoing continuous development. Our account documents one iteration in this on-
going process, albeit one for which the uncertainty analysis is carried out to a much
greater level of detail than is usual in this field (or indeed in most analyses of complex
physical models in any area of application of which we are aware).

3.2 Linking the simulator with the system

We now introduce the general structure describing the relationship between the sim-
ulator and the physical system. We describe this link for the Galform simulator, but
the ingredients are common to many simulator analyses. We denote by z the vector
of observations that we use for this study. Our choice for z will be the observed num-
bers of galaxies of various degrees of luminosity, assessed separately for younger and for
older galaxies and expressed on the log scale. We describe the relationship between the
observations, z, and the vector of true physical system values, vy, as

2=y + €obs (1)

where €. is the experimental error, which we judge to be uncorrelated with y (€ops
represents uncertainty of type [4] in section 3.1).

Is the theoretical understanding of Galaxy formation, as embodied in Galform, con-
sistent with observations z? Galform is represented as a function, which maps the inputs
x to the outputs f(z). The theoretical description involves the notion that when we
evaluate Galform at the actual system properties, * say, then we should reproduce the
actual system behaviour y. This does not mean that we would expect perfect agreement
between f(z*) and y. Although Galform is a highly sophisticated simulator, it still of-
fers a necessarily simplified account of the evolution of galaxies, and approximates the
numerical solutions to the governing equations. The simplest way to view the difference
between f* = f(a*) and y is to express this as

y:f*+€mda (2)

where we consider that €,,4 is uncorrelated with f* and with x*. Expressing our judge-
ments about the likely size of the model discrepancy, €,4, determines how close a fit
between model output, f*, and observation y we require for an acceptable level of con-
sistency between theory and observation. €,,q4 represents uncertainties [3] and [5] from
section 3.1. Note that €,,q is a vector of length equal to the number of observations
considered, and may have a rich covariance structure across the different outputs (see
section 5.1).

We search for choices of input x for which the output f(x) is sufficiently close to
y that we would declare the observed output to be compatible with the predictions of
the model, when we allow for model discrepancy. In practice, all that we can compare
is f(x) and z, which we do by combining (1) and (2). Achieving an acceptable match,
for a particular input choice x, does not mean that the model is “correct” or that
a parameter choice which achieves the match corresponds to the “true” value of the
parameters, but simply that this version of the model will have met the challenge of
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reproducing an important observational aspect of the galaxy formation study within
our agreed tolerance level. Similarly, identifying the whole collection of possible choices
of inputs x which achieve an acceptable match and the subsequent analysis of such a
collection, is informative as regards the model and the galaxy formation process itself,
as is discussed in section 8.

The form (2) is simple and intuitive, and is widely used in computer modelling
studies. In our case, this corresponds to the natural approach in which we ask whether
we could view Galform, with appropriate choice of inputs, as adequately reproducing the
observed universe, within the tolerance set by the model discrepancy. In this account, we
therefore ignore all of those additional aspects of our uncertainty modelling which would
correspond to a more sophisticated analysis of model discrepancy, based, for example,
on informed expert judgements as to the ways in which the Galform simulator is likely to
evolve over the coming years. A detailed specification of such features would potentially
be highly insightful, and might result in a much richer correlation structure across the
elements of the discrepancy vector; see Goldstein and Rougier (2009). However, as we
shall describe, it is challenging even to make a meaningful order of magnitude assessment
of discrepancy variation, and so, as a first uncertainty quantification for Galform, we
chose to focus on the most important large scale components of uncertainty.

3.3 Bayes Linear Analysis

In this case study, we follow the Bayes linear approach to uncertainty quantification and
analysis. This approach is relatively simple in terms of belief specification and analysis,
as it is based only on mean, variance and covariance specifications which, following de
Finetti, we take as primitive; see De Finetti (1974, 1975). The appropriate updating
rules for expectations and variances for a vector B, given a vector D are

Ep[B] E(B) + Cov(B, D)Var(D)~}(D — E(D)), (3)
Varp[B] = Var(B) — Cov(B, D)Var(D) *Cov(D, B). (4)

Ep[B] and Varp|[B] are termed the adjusted mean and variance of B given D (Goldstein
(1999); Goldstein and Woofl (2007)).

In this formulation, the probability of an event is the expectation of the correspond-
ing indicator function. Conditional expectation may be viewed as the special case of
belief adjustment where we base the adjustment on the indicator functions for a collec-
tion of events which constitute a partition. There are many areas of similarity between
full Bayes and Bayes linear analyses. In particular, a full Gaussian specification for all
of the relevant quantities would lead to similar updating formulae. For a detailed treat-
ment, see Goldstein and Wooff (2007). An overview of the approach is given in Goldstein
(1999).

There are two basic interpretations that we may give for a Bayes linear analysis. The
first view arises as, when we attempt to carry out a full Bayesian analysis, we may face
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two kinds of difficulty. Firstly, the probability specification that we may be required to
make in order to describe fully all of the uncertainties for the problem may be extremely
complex and subtle, and secondly the full Bayesian analysis may be technically very
challenging to carry out and highly non-robust, as the posterior judgments may depend
on aspects of the prior specification which we are unable to specify with confidence,
given constraints of time, resource and knowledge.

In such circumstances, the Bayes linear analysis that we propose may be viewed
as a pragmatic compromise to this full analysis. The task of probability specification
is simplified as we only need to give means, variances and covariances for all of the
random quantities involved in the analysis. The subsequent analysis is simplified as,
rather than carrying out a full posterior assessment given the observations, we may
carry out a Bayes linear update, as determined by equations (3) and (4). The adjusted
expectation for B given D is the best linear fit for B, using the elements of D, in terms
of minimising expected squared error loss - this minimum expected loss is the adjusted
variance. This minimisation depends only on the second order specification that we
have made. We may expand the Bayes linear analysis by using whichever collection of
functions of the elements of D that we wish, in order to assess the adjusted expectation,
as long as, for each chosen function of the elements of D, we are prepared to assess
the full corresponding second order specification. If we introduce all functions of the
elements of D, then we are effectively adjusting B by the partition on D, and we retrieve
the conditional Bayesian expectation given the observed outcome for D.

In many problems, the extra effort and complications involved in assessing and
analysing the full probabilistic structures over the complex and high dimensional input
and output spaces which are required in order to carry out the full Bayes analysis may
not be rewarded by a corresponding improvement in accuracy. For example, in our
experience, it is usually reasonable to suppose that we can elicit expert judgements
about the order of magnitude of quantities such as model discrepancy terms which
are sufficient for us to make variance and covariance assessments across the various
components of the model. The qualitative structure that we impose in order to make
such elicitations is based on relations such as (1) and (2), which impose the requirement
that the two terms on the right hand side of each equation are uncorrelated. This already
is a strong assertion, and we might well be reluctant to extend this to a judgement of full
probabilistic independence between the corresponding terms. Therefore, we may prefer
that our analysis should only depend on those properties which follow directly from this
specified lack of correlation, rather than relying on an infinite number of further joint
orthogonality constraints as required by full probabilistic independence.

Even were we able to make a meaningful full probabilistic elicitation for the problem
described in this paper, then, due to the iterative nature of our approach, which repeat-
edly reduces the volume of the space which we are exploring by imposing a series of
very complicated and highly non-linear constraints, it would be enormously challenging
even to construct a tractable Bayesian MCMC analysis. In contrast, the Bayes linear
analysis is comparatively straightforward and is sufficient to achieve the study objective
of identifying a class of good matches to observed history. Therefore, while it would be
of interest to compare our results with the full Bayes version of the calculations that
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we will describe, the technical challenges in doing so would be very great, and this is
quite apart from the inherent non-robustness of the iterative version of the full Bayes
analysis, due to the extremely complex, multi-modal form of the likelihood function.
Having said this, if such a full Bayes analysis were feasible, it would contain additional
information about all of the relationships within the problem compared to the Bayes
linear approach, and so would allow more detailed inferences to be drawn.

The reason that the Bayes linear approach is successful as a surrogate for the full
Bayes analysis derives from the second, and more fundamental, interpretation of the
meaning and value of this analysis. We consider that a Bayesian analysis has value
largely because we view it as the appropriate way to combine expert judgement and
observations to give appropriate posterior judgements. However, there are two problems
with this view. Firstly, due to the complexity of the problems that we face, often we
are unable to make a prior specification which adequately represents our true state of
uncertainty, and so the posterior analysis unavoidably inherits this lack of accuracy.
Secondly, the operation of conditioning, itself, does not offer a complete description as
to how judgements should be modified given new evidence. This is a larger issue than we
have space to address here. For those interested in the fundamental reasons why we view
the Bayes linear analysis as appropriate for complex uncertainty problems, under partial
belief specification, we refer to the discussion in section 4 of Goldstein (2006) where
the temporal relationships between Bayes linear adjustment and posterior beliefs are
described and the foundational properties of standard Bayesian approaches are shown to
be inherited from their status as Bayes linear adjustments. The role of such foundational
considerations in the interpretation of the Bayes linear analysis for problems arising in
the study of large computer models is discussed in detail in Goldstein (2010) where
issues arising in the treatment of the Galform model are used as an illustration.

3.4 Emulation

We are interested in the behaviour of Galform over the whole of its specified input
space. The substantial run time and the high dimensional input space combine to make
direct exploration by model runs alone infeasible. We express our beliefs about Galform
outputs at all locations in the input space by constructing an emulator (see uncertainty
type [2] in section 3.1). An emulator is a stochastic belief specification for a determin-
istic function (Craig et al. (1996, 1997); O’Hagan (2006); Oakley and O’Hagan (2002);
Conti et al. (2009); Higdon et al. (2004), and for a cosmology application Heitmann
et al. (2009)). The emulator is much faster to evaluate than the simulator, so that we
may explore the input space using the emulator, while taking into account the extra
uncertainty that we have introduced by substituting emulator for simulator evaluations.

We construct our emulator for output ¢ of the function f(z) to have the form
fi(z) = Zﬁij gij (%) + ui(z), (5)
J

where B = {f3;;} are unknown scalars, g;; are known deterministic functions of z and
u(zx), uncorrelated with B, is a weakly stationary stochastic process with constant vari-
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ance. The regression term on the right hand side of equation (5) expresses the global
behaviour of the function while u(x) represents localised deviations from this global
behaviour near to z.

In the Bayes Linear approach, the emulator specification requires a mean vector and
a variance matrix for B and values for the mean, variance and correlation function of
u. A simple specification for u(x) is to suppose, for each x, that w;(x) has zero mean
with constant variance and where Corr(u;(x), u;(z")) is a function of ||z — /||

With high dimensional input spaces, it is common to find, for any output, f; say,
that a subset z(; of the inputs has the most influence in explaining the variation in the
value of f;(z), where x(;) varies with 7. We reform the emulator as

fi(z) = Zﬁij gij () + wi(wp)) + wi(w), (6)

where u;(2};)) has zero mean, and covariance structure given by Cov(u; (), u; (x’m)) =

oz, exp(—||zy — ] |2/62) (this is the commonly used Gaussian form, see section 4.3 for

more details). Here w;(x) is a “nugget term” with constant variance ‘7721)1- over T, zero

mean and Cov(w(z),w(z")) = 0 for x # 2’. The collection z; is often called the active
variables for f;, and w;(x) expresses all of the variation in f(x) which arises if we view
the emulator f(x) simply as a function of .

We can use the emulator to evaluate the expectation and variance of the function,
for any input x and the covariance between the values of f at any pair of points z, z’.
From (6), these are

pi(r) = E(fi(z)) = ZE(@‘J') Gij (x[i])v (7)

ki(z,2') = Cov(fi(z), fi(z')) (®)

= COV(Z Bij 9i5 (i), Z Bij 9ij(x())) + on exp(—||lzp — 1‘{1‘]”2/‘912) T
J J

where I, ,» = 1 if 2 = 2/, and zero otherwise. In the Bayes linear approach this is all
that is required to be able to update our beliefs in terms of expectation and variances,
about the model output f;(z) at a new, unevaluated input point x, given a set of model
evaluations, as we now describe.

Say we have performed n model evaluations over some space filling design. We write
the locations of the n runs in input space as ©®) with k = 1,..,n where each z*) rep-
resents the vector of inputs for the kth run. Similarly xfﬁ) is defined to be the vector of
Active Variable inputs for the kth run. We define D; = (fi(z™M), f;(2®), ..., f; (™) T,
that is the column vector of the n evaluation outputs for output 7, the prior expectation
of which (E(D;)) can be found using equation (7). Replacing the random quantity B in
the Bayes Linear update equation (3) with the unknown output f;(z) at input z, and
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replacing D with D;, gives the adjusted expectation Ep,[f;(x)] to be:

E(fi(z)) + Cov(fi(z), D;)Var(D;) ™" (D; — E(D;))
= Z E(Bi;) gij (zp) + t(z)" A~H(D; — E(Dy)), (9)

J

Ep, [fi(z)]

where, by equation (7), t(z) = (rk;(z, 2M), ki(z, 2P@)), .., ki(z, 2NT = Cov(f;(x), D;)T
is the column vector of covariances between the new and known points, and A is
the matrix of covariances between known points: an n X n matrix with elements
Aj = ki(x9), 2", The Adjusted Variance Varp, [fi(x)] can similarly be found from
equations (4) and (7) giving:

Varp,[fi(z)] = Var(fi(z)) — Cov(fi(x), D;)Var(D;)~ Cov(D;, fi(x)),
= Val"(z Bij 9ij (@) + on, + o, — t(x) T AT (). (10)

The adjusted expectation and variance, Ep,[f;(x)] and Varp,[f;(x)], represent our up-
dated beliefs about the output of the Galform function f(z) at input = given a set of n
model runs D;, and are used in the implausibility measures described in section 3.5.

There is some debate in the computer experiment literature as to whether it is
preferable to put a lot of effort into constructing the regression terms in the emulator
or whether it is better to construct a simple mean function and to place more weight on
the residual process u(x). We prefer, where possible, to put as much detail as is feasible
into the mean function, for the following reasons.

Firstly, many physical models, and Galform in particular, exhibit strong and physi-
cally interpretable monotonicities which are naturally expressed through the mean func-
tion. Secondly, it is easier for the expert to assess whether the emulator formulation
is consistent with informed scientific judgement about the behaviour of the function if
a large proportion of the variability is expressed through regression terms. Thirdly, if
much of the structure of the emulator is encoded in the regression function, then this
simplifies various of the calculations that we need to make when comparing the model
to observations and suggests very cheap approximations to calculations which would
otherwise be very expensive. Finally, in our experience, the form of local process, u(x),
can be difficult to assess, even with large numbers of function evaluations. Partly, this is
because there is a fundamental confounding between the location of the mean function,
the size of the residual variance (012“ + U?ui ), and the strength of the residual correlation,
parameterised by ;. Partly, also, this is because any form of correlation function that
we fit necessarily approximates the different degrees of smoothness of the function across
different areas of the input space, and many methods of estimating smoothness param-
eters are potentially non-robust when applied to processes which do not fit exactly to
the assumptions that are used to generate the fitting algorithms. Therefore, we prefer
to model as much of the variation in the function as we can by the regression form, to
reduce the residual variance as much as is feasible, and then to be fairly conservative in
choosing the length of correlation 6; that we shall impose.
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In general computer experiments, we choose our form for the emulator by a com-
bination of expert judgement based on physical intuition and experience with earlier
versions of the model and, where appropriate, by preliminary experiments with fast
approximate version of the simulator. In our case, we were able to make a collection of
evaluations of the simulator, based on a Latin Hypercube design, which was sufficiently
large to allow us to fit the emulator directly from our functional evaluations. Therefore
we proceeded as follows, for each output that we chose to emulate.

Firstly, we carried out statistical model fitting, given the collection of runs, to se-
lect the deterministic functions g;;, to assess the values of the coefficients B and to
assess the residual variance and covariance function, u(z) and, where appropriate, to
identify active subsets ;). We then used equations (9) and (10) to update our beliefs
about the function f(z), obtaining the adjusted expectation and variance Ep,[f;(z)]
and Varp,[fi(z)], for any input of interest z. We then checked that the form of the
emulator was physically meaningful. Finally, we carried out a diagnostic analysis on
our emulator. We will give details of these stages below.

3.5 History Matching

The aim of this study is to estimate the set of input values A* for which the evaluation
of f(z) gives an acceptable match to the observations z, and to obtain a substantial
collection of realised evaluations of the function which actually do yield acceptable
matches and which may then be used to explore the match between other aspects of
the Galform output and the corresponding observational information.

We refer to the process of identifying the collection X* as history matching. This
terminology is common in various applications (e.g. Raftery et al. (1995)), and in
particular in oil reservoir modelling (Craig et al. (1996, 1997); Cumming and Goldstein
(2009)), where it refers to the process of adjusting the inputs to a simulator of an oil
reservoir until the output closely reproduces features such as the historical oil production
and pressure profiles at all of the wells. The emphasis on identifying all of the possible
matches to observation is ours. (Pragmatically, reservoir engineers often stop when a
few matches, or even just one, have been obtained.)

History matching may be compared to model calibration in which we suppose there
is a single “true but unknown” value z* and our objective is to make probabilistic
statements as to this value, based on a prior specification for x*, the collection of
model evaluations and the observed history (Kennedy and O’Hagan (2001); Higdon
et al. (2008); Goldstein and Rougier (2006)). Calibration and history matching are
thematically related, but fundamentally different. For example, calibration will always
result in a proper posterior distribution over the input space, while history matching
might lead to the conclusion that the collection of acceptable matches was empty. It
would be of great interest to find that X* was empty in the Galform study, as that
might suggest possible defects in the general theory underlying the simulation process.
However, in this study, we do find a collection of good fits to the observations. Our
view is that history matching, as a form of model checking, is always of interest for
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assessing computer models and calibration sometimes is. Even when we wish to carry
out a model calibration, it is often good practice first to carry out a history match,
partly to see whether such a match is achievable, and partly to reduce the size of the
input space over which the calibration exercise will need to be performed.

Our approach to history matching is based on the assessment of certain implausibility
measures (Craig et al. (1996, 1997)). An implausibility measure is a function defined
over the input space which, when large, suggests that the match between model and
system would exceed our stated tolerance. We may build this up as follows, for a
single output f;(z), where i labels the output. For a given choice, z*, we would like
to assess whether the output f;(z*) differs from the system value y; by more than the
tolerance that we allow in terms of model discrepancy. Therefore, we would assess the
standardised distance

(yi — fi(z*))?

Var(emd:i)
In practice, we cannot observe y; and so we must compare f;(z*) with the observation
z, introducing measurement error, with corresponding standardised distance

(zi — fi(z"))?
Va“r<€mdii) + Var(eobs:i) (11)

However, for most values of x, we are not able to evaluate f(z) so we use the emulator
and compare z; with E(f;(x)). Therefore, the implausibility function is defined as

B -z _ (B () — 2)° )
Var(E(f;(z)) —2z;)  Var(fi(z)) + Var(emna:i) + Var(€eops::)

When I(;)(z) is large, this suggests that, even given all the uncertainties present in
the problem, we would be unlikely to view as acceptable the match between model
output and observed data were we to run the model at input x. Therefore, we consider
that choices of x for which I(;)(x) is large can be discarded as potential members of
the set X*. We discard regions of the input space by imposing suitable cutoffs on the
implausibility function in that we discard z unless I(;(z) < c¢. The choice of cutoff ¢
comes from consideration of the fraction of space removed, and from general unimodality
arguments, as follows. Regarding the individual univariate Implausibility Measures
I(;)(x), if we consider that for fixed = the appropriate distribution of (E(f;j(z*)) — 2;) is
both unimodal and continuous, then we can use the 3¢ rule (Pukelsheim 1994) which
implies quite generally that if 2 = 2, then I(;)(x) < 3 with a probability of greater than
0.95. This result applies even, for example, for highly skew or heavy tailed distributions.
Values higher than 3 would suggest that the point x could be discarded.

1(21') ()

In our comparisons, we have a separate implausibility function, given by equation
(12), for each output that we use for history matching. We may choose to make some
intuitive combination of the individual implausibility functions as a basis of eliminating
portions of the input space. The simplest of these is obtained by maximising I(;y(x)
over the considered outputs and we hence define the Maximum Implausibility Measure

Ing(x) = mlaxl(i) (x). (13)
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This measure is used in later waves of our analysis and it represents a major part of the
definition of an acceptable match. It is, however, sensitive to problems concerning the
inaccuracies of individual emulators, and so we define the Second and Third Maximum
Implausibility Measures Iops(x) and I3y (z) as:

Dg(w) = max( {Ty ()} \ Tui () ), (14)
Ton(w) = max( {T ()} \ {Tus (@), Foas ()} ), (15)

that is defining Iops(z) and Isp () to be the second and third highest value out of the
set of univariate measures I(;)(z) respectively. These were used in the first wave as they
were considered relatively safe measures in that they were less sensitive to the possibility
that one of the emulators was inaccurate. We also construct the natural multivariate
analogue of the implausibility, for later waves, which takes the form:

I(z) = (= = E(f(2)))" (Var(z — E(f(2))) " (z = E(f(2))) (16)

The multivariate form is more effective for screening the input space, but it does require
careful consideration of the covariance structure for the various quantities.

History matching is an iterative process. We begin by emulating Galform over the
whole input space. We evaluate our implausibility measures over the whole space and
remove from the space all input choices for which the implausibility measure is large. We
then re-sample within the remaining input space, denoted X7, and re-emulate Galform
within this reduced space. This is termed refocusing, and we proceed to employ this
process iteratively as represented by the following algorithm. At each iteration or Wave:

1. A design for a set of runs over the current non-implausible volume & is created,
using a latin hypercube design with a rejection strategy based on each of the
preceding implausibility measures.

2. These runs are used to construct a more accurate emulator defined only over the
current non-implausible volume AX;.

3. The implausibility measures are then recalculated over &;, using the new emulator.

4. Cutoffs are imposed on the Implausibility measures and this defines a new, smaller
non-implausible volume X;;; which should satisfy X* C X;1 C &;.

5. Unless the emulator variance is now small in comparison to the other sources of
uncertainty, or unless computational resources are exhausted, return to step 1.

6. Generate a large number of acceptable runs from the final non-implausible volume.

The reasons that we may hope to further reduce the acceptable space at each iteration
are firstly that we produce a higher relative density of runs at each stage, so that emu-
lation is more effective, secondly that we may expect the function to become smoother
and so easier to emulate as we reduce the area of the input space, and thirdly because,
when we have accounted for much of the uncertainty related to the most important
active variables, then variables which did not account for much of the variability in
the original emulation may take on larger importance and therefore allow us to resolve
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more of the uncertainty of the function. In this study, we refocused four times, and
then carried out a fifth set of evaluations which produced a large number of runs which
gave good matches to observations. This continued refocusing is very useful, but it also
brings its own complications, as the only way in which we can determine whether an
input value lies within our retained collection of potential history matches is by ap-
plying each implausibility function in turn and seeing whether each such evaluation is
small enough for the input choice to be retained. This raises practical computational
issues, which makes it important to have fast approximate methods to screen the input
space, and also raises basic questions about practical visualisation methods to help us
to represent and interpret the shape of the input space which we have retained.

All of these complications reflect the enormous difficulty of carrying out a fully
Bayesian history matching exercise over a corresponding number of waves to that of our
study. Rather than constructing the full probabilistic edifice, we have identified certain
key aspects of the subjective judgements relating to the function, the model discrepancy
and the observational error and used these to construct an event with low subjective
probability for z € X* and much higher, though not explicitly evaluated, probability
otherwise, which we have used to progressively filter the input space. The successes of
this method, for example in this study we do identify a rich space of acceptable fits,
suggests that we are indeed exploiting the probabilistic judgments in a meaningful way,
but this does raise the basic question as to whether there is some tractable intermediary
between our version of history matching and the full Bayesian solution that would be
even more effective in achieving our goals.

4 First Wave Analysis

4.1 General Designs for Computer Model Experiments

We have to explore the high-dimensional input space of the Galform model, which takes
a significant amount of time to run. Therefore the design for the set of inputs where
models will be evaluated is very important: (Currin et al. 1991; Sacks et al. 1989;
Santner et al. 2003). The design should be space-filling (to maximise coverage of the
space), and approximately orthogonal (where possible) as we will be fitting polynomials
to the outputs when constructing the emulator. Various designs have been discussed in
the Computer Model literature (Santner et al. 2003), with a popular choice being the
Maximin Latin hypercube design. An n point Latin Hypercube design is constructed
by dividing the range of each of the input variables into n equal intervals. Points are
placed so that one point will occupy each of the n intervals, for each input variable.
Maximin Latin Hypercube designs are constructed by generating many Latin Hypercube
designs and selecting the one that has the maximum ‘minimum distance’ between points.
They are approximately orthogonal designs and suffer no projection issues as any lower
dimensional projection remains a Latin Hypercube.
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4.2 The Wave 1 Design

The first stage in the collaboration concerned History Matching using a smaller number
of input variables than were present in the full Galform model, in order to demonstrate
the methodology in a simplified version of the problem. As the collaboration progressed
we extended our aims to include an analysis of the full model with all 17 input param-
eters. This evolution in priorities has had an impact on the general structure of the
analysis, as will be noticeable from the initial design choices described here.

When considering the initial design, expert judgements were used to identify a subset
of the 17 inputs which would have either significant effects on the bj and K luminosity
function outputs, or be of physical interest to the cosmologists (expert judgements
in this study were made by Richard Bower). These 6 inputs are shown in the ‘Initial
Variables’ column of table 1. When the Galform project began, it was impossible to run
the model while varying more than 11 input parameters simultaneously due to technical
issues with the code. Therefore, we constructed two maximin Latin Hypercube designs:
the first over the 6 inputs identified as important, and the second over the 11 inputs
thought to be less significant. An initial analysis of the first set of runs, suggested
that acceptable matches could, most likely, only be found for extremely low values of
the 5th input parameter epsilonStar, with the Galform function decreasing rapidly at
such values. This made intuitive sense as the relevant physical process is dependent
upon the inverse of epsilonStar (see appendix B). We therefore reparameterised this
input as epsilonStar—! for all subsequent analysis. Comparison of the variance of the
outputs in each data set implied that one parameter (alphahot) out of the 11 initially
discarded inputs, had a clearly significant effect on the luminosity functions, and after
careful consultation, this input was promoted into the active group. At this point, the
cosmologists requested that the parameter “yield” also be promoted, as recent physical
evidence had suggested that the value assigned to this parameter in previous analyses
(0.02) was too low, and hence the cosmologists were interested in finding acceptable
matches with a higher yield value. This meant that for the Wave 1 analysis the inputs
were now divided into a group of 8 possibly active and 9 inactive variables respectively,
as is shown in table 1.

Next, we constructed two 1000 point Latin Hypercube designs: the first over the
8 possibly active variables, and the second over the 9 inactive variables. The first of
these was used to construct the Wave 1 emulator (see the next section), and the second
was required to assess the uncertainty due to the set of 9 inactive parameters (see
section 5.1). Due to runs crashing (for computational reasons), only 993 of the first
batch of runs were completed, while all 1000 of the second batch finished successfully.
For illustration, Figure 2 shows the main effects plots for the bj outputs at luminosity
17, for the first batch of 993 runs against the 8 possibly active input parameters. Note
the clear effect of inputs vhotdisk and alphahot (one of the promoted inputs): these
along with epsilonStar, alphareheat and vhotburst were eventually chosen as the active
variables for this output (see section 4.3).

To perform a History Match for Galform, we do not need to analyse every output of
the model. At each stage, we remove parts of the parameter space if the outputs fail to
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Figure 2: Main effects plots found by plotting the 993 bj outputs (corresponding to
luminosity = 17, i.e. the first vertical line in the bj luminosity plot of figure 1) obtained
from the Wave 1 runs, against the 993 values of each of the 8 possibly active inputs.
Note the clear effect of inputs vhotdisk and alphahot.

match a carefully chosen subset of the observations. At the final stage, we will need to
check that our acceptable matches are also in adequate agreement with those features of
the output which haven’t been used to achieve the history match. Therefore, we chose
a subset of 7 of the outputs that are straightforward to emulate at a sufficient accuracy,
are informative regarding the inputs in that they can be used to discard large regions of
the input space, and that captured the main features of the luminosity function. These
are shown as vertical lines in figure 1 along with the full bj and K luminosity outputs
from the first batch of 993 runs over the 8 active parameters. The specific luminosity
values of each of the 7 outputs are given in the top row of table 2. In later waves more
outputs were used.

4.3 The Wave 1 Emulator

We now describe the construction of the 7 univariate emulators corresponding to the
7 luminosity outputs identified in the previous section. As we have many runs, we
construct our emulators using a combination of data analytic techniques, checked against
physical intuition, and using the Bayes linear update discussed in section 3.3.

The collection of 17 input parameters was split into a group of 8 possibly active
parameters (xp in table 1) and a group of 9 inactive parameters (zpc). 993 runs for
each of the first 40 sub-volumes were completed from a Latin Hypercube design over
the group xp, and these were used to construct the wave 1 emulators. The quantity
of interest is the mean output over the first 40 sub-volumes (see section 2.2). Writing
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f(j )(x) as the 7th output from the jth sub-volume, we define:

7

140

fit) = 52 1@, (17)

Jj=1

We emulate f;(x) using only the zp inputs. We add the uncertainty due to sampling
only 40 sub-volumes, and the uncertainty due to the remaining 9 parameters xp. in
section 5.1. We use the following form for the emulator of each f;(zp) similar to that
of equation (6),

filzp) = Z Bij 9ij(T(a,)) + ui(2(a,) + wi(Tp), (18)

where the active variables x|4,] are a subset of x5, and as in section 3.4, u; and w; have
zero prior expectation, Cov(u;(x(a,)) ui(],,)) = oo exp(—|lxpa,) — JZ‘EAi]HQ/HZ-Q)’ while
Var(w;(zp)) = 02, and Cov(w(zp),w(az’z)) =0 for & # 2’

The selection of the set of active variables x4, for each output i is described in
detail in appendix C.1, and the results are shown in table 2. It was found that 5 active
variables could explain sufficient amounts of the variance of each f;(x). In appendix C.1
we also describe the remaining technical procedures involved in emulator construction:
choosing the functions g;;, assessing the regression coefficients 3;; and the Gaussian
process parameters o, o, and 6;. Table 2 shows the adjusted R? corresponding to
the polynomial part of the emulator which gives a good indication of the amount of
variance of f;(x) that is explained. Note that at this stage, we only require a relatively
simple emulator in order to make an initial reduction of the input space, while leaving
the construction of more detailed emulators to subsequent waves of the analysis.

Output bj 17 | bj 21 | bj 22.25 | K21 | K 22.25 | K 24.75 | K 25.75
vhotdisk X X X X X X X
aReheat X X X X X X X
alphacool X X X X
vhotburst X X X X X X X
epsilonStar X X X

stabledisk X X X X
alphahot X X X

yield

Adj R? 0.92 0.59 0.70 0.87 0.75 0.72 0.80

Table 2: Wave 1 Active variables and adjusted R? for the bj and K luminosity emulators.

Once the above emulator covariance specifications have been made, we can use the
993 wave 1 model runs to update our beliefs, in terms of expectations and variances,
about the value of the Galform function f;(x) at a new input point x using the Bayes
linear update equations (9), (10), as is described in section 3.4. This gives the adjusted
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expectation and variance Ep,[f;(z)] and Varp,[f;(x)] which are used in all subsequent
implausibility measures.

Emulator construction should be performed in conjunction with physical considera-
tions of the model in question. The emulator should reproduce, to a reasonable degree
of accuracy, the outputs of the model, and should therefore share the physical features
of the model. Careful expert assessment regarding the choice of the active variables and
the form of the polynomial fit for each output was made to ensure that the emulators
were consistent with insight into the physical interpretation of the model. For example,
the polynomial for the first bj output has large (negative) contributions from terms in-
volving vhotdisk and alphahot including a strong interaction between them. Both these
parameters are used in the SNe feedback module of the Galform model (see table 1 and
appendix B), and increasing either will decrease the luminosity function at the faint
end. They are known to interact in the model, and therefore the form of the terms in
the polynomial that they feature in makes physical sense.

4.4 Emulator Diagnostics

When constructing an emulator, it is essential to perform diagnostics to ascertain
whether the emulator is sufficiently accurate for the desired task (Bastos and O’Hagan
2008). At each wave of the analysis, and for each emulator, we performed several types
of diagnostic test including: examining the residuals from the polynomial fits; evaluating
200 diagnostic runs of the model (at each wave) and analysing the emulator’s predictive
diagnostics for these runs; and examining the implausibility measure diagnostics (as
shown in figure 5 and discussed in section 6.1). At each wave the emulators were found
to be sufficiently accurate to allow substantial reduction of the input space.

5 Quantification of Uncertainty

We now discuss the assessment of all of the remaining uncertainties relevant to linking
the Galform Model to the real Universe. These uncertainties can be divided into two
classes. The first corresponds to the Model Discrepancy which describes the possible
deficiencies of the model, and the second to observational errors.

5.1 Model Discrepancy

As with most complex models of physical systems, modelling assumptions and approx-
imate solutions to known physical equations imply that Galform’s output will only be
an approximation to what would occur in the real Universe. Further, Galform does not
model specific galaxies that exist within our Universe: instead it simulates around a
million galaxies from a ‘possible’ universe that should share statistical properties with
our own. These statistical properties will also suffer from approximations inherent in
the Galform modelling process. The model discrepancy e,,q links the system y to the
model output evaluated at the actual system properties f* = f(z*) via the equation
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Figure 3: Left panel: the bj luminosity outputs from a sample of 500 runs of the model
where only the 9 inactive parameters have been varied. Green and black lines represent
the model output when tdisk is off or on respectively. It can be seen that varying the
inactive parameters causes a small variance in the model output compared to the 8
active parameters (the effects of which are shown in figure 1). Right panel: The bj
luminosity function output of the first 40 sub-volumes of the Dark Matter simulation,
for two (blue and red) Wave 1 runs. This source of uncertainty was treated as a model
discrepancy term, judged to have constant variance across all runs.

y = f* 4+ €mq. We decompose €,,4 into three uncorrelated contributions:
€md = ®ra + ®py + Pg. (19)

where ®; 4 represents the discrepancy due to the nine inactive parameters, ®pjs is the
discrepancy due to the unknown Dark Matter configuration of the real Universe and
®r summarises the structural deficiencies of the full Galform model itself. The first
two contributions can be assessed using additional runs of the model, while the third
requires expert assessment as we describe in the next three sections.

Uncertainty Due to Inactive Variables: ®;4

As we were unable to run the Galform model while varying all 17 inputs simultaneously,
we did not model the effect of the remaining 9 inactive variables in detail (a problem that
was resolved before Wave 4 occurred). Therefore, we treat the effect of the 9 variables
as initially contributing an extra term ®;4 to the model discrepancy; a term which is
dropped in the Wave 4 analysis. For the first three waves, we are essentially running
a reduced model (using only 8 inputs), and therefore must use ®;4 to account for the
fact that the Galform model output may not match the observed data due to incorrect
settings used for the remaining 9 inputs. For waves 1 to 3 these 9 inputs were set to
their default values in the Galform code: values that were deemed physically reasonable
by the cosmologists.

Quantification of ®;4 was performed as follows. We judged that there was no overall
a priori bias due to the extra 9 inputs and set E(®74) = 0. (These variables have already
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been screened for main effects, in section 4.2.) As we had 1000 runs across the 9 inactive
variables (with the original 8 inputs set at their default values) over the first 40 sub-
volumes, we took the mean of the first 40 sub-volumes for each of these runs, and set
the Var(®;4) to be equal to the sample variance of the collection of 1000 means. We are
treating as negligible any interactions between the 9 inactive variables and the choice
of subvolume, and with the 8 original variables. In figure 3 (left panel), we show the
first 500 out of the set of 1000 runs performed across these 9 inputs, with the 8 active
variables set at the default value (which corresponds to the cosmologists’ best match: a
run which is borderline acceptable according to our matching criteria). Figure 4 (bottom
panel) compares the standard deviation of all uncertainties discussed in this section, at
every point on the bj luminosity function graph given in figure 1, and shows 1/ Var(®;4)
as a light blue line (the K luminosity function has similar uncertainties which we do not
show here). The three bj points that were chosen for emulation are given by the black
dashed lines.

Note the similarity between the nugget term, w;(x ), in equation (18), and the model
discrepancy term given by ®;4. Both are treated as independent of x, have expectation
zero and constant variance. This greatly simplifies subsequent calculations and allows
a straightforward reduction of the input space in the first wave. In subsequent waves,
we model these effects in more detail.

Dark Matter Uncertainty: ®p),

We now assess the uncertainty due to the unknown Dark Matter configuration of the
real Universe. The Millennium Simulation provides 512 possible forcing functions, each
representing a possible configuration of dark matter to be used by the Galform model.
We perform runs using only the first 40 sub-volumes out of the 512, to facilitate com-
parison with previous studies. While using more sub-volumes would be more accurate,
the extra run time would allow fewer model evaluations. We have therefore emulated
the mean of the function output over these 40 sub-volumes given by f;(z) (equation 17).
Figure 3 (right panel) shows the luminosity output from the first 40 sub-volumes for
two runs of the model (given by the collection of red and blue lines).

The processing of the observational data and associated errors has effectively elevated
the data to represent the density of galaxies as measured over a much larger volume of
the Universe than is defined by the 512 sub-volumes of the Galform model. We take this
volume to be effectively infinite and represent the uncertainty due to analysing the mean
of only 40 sub-volumes as the model discrepancy term ®p,s. We assessed ®ppy by first
judging that there was no overall bias a priori and setting E(®ppr) = 0. We then used
the outputs fi(J )(x) for each of the 40 sub-volumes for the 993 runs performed in Wave
1 to derive an approximate value for the variance of ®pj; as follows. For each of the
993 runs we calculated the standard error of the mean output over 40 sub-volumes, and
averaged this over all 993 runs. This was done for each of the 7 outputs. While this is a
relatively straightforward assessment, given the important simplifying judgement that
®pyy is independent of x, it was felt that this captured the main source of uncertainty
without going into detail that would be unwarranted at this stage of the analysis. A
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more careful treatment would model the outputs of the sub-volumes individually, as has
been performed in House et al. (2009), using exchangeable computer model techniques.
To check that the first 40 sub-volumes are representative of the full set of 512, we ran
a design of 100 runs at the same x input locations as the first 100 runs of the original
Wave 1 design, but choosing 40 random sub-volumes out of the set of 512 instead of
the first 40. We found that the variance across the random 40 sub-volumes was not
significantly different from the original 40 and so did not alter the assessment for the
Var(®pys) described above. The size of ®pys for all bj luminosity outputs is shown
as the dark blue line in figure 4 (bottom panel). Note that the relative size of ®py; is
small compared to other sources of uncertainty, so that it was considered unnecessary
to model its effect in more detail at this stage.

Full Galform Model Discrepancy: ¢

The model discrepancy term ®p is a 7 vector, the components of which need to be
assessed from expert judgements. In the first wave of our analysis we perform only a
univariate analysis of each of the 7 outputs, hence we required a univariate assessment
of each component. In waves 3 and 4, multivariate analyses were performed and hence a
more detailed assessment was required. We describe here the full multivariate elicitation.

As we are employing a Bayes Linear analysis, we only require specification of expec-
tations, variances and covariances over all quantities of interest. Subjective assessment
of E(®g) and Var(®g) is still a difficult task. Expert assessment for beliefs regard-
ing deficiencies of the model was that discrepancy judgements were symmetric in that
E(®g) = 0. For the multivariate case, assessment of Var(®g) was required which is
now a 7x7 matrix. The structure of this matrix came from Richard’s opinion as to the
deficiencies of the model as follows.

For Galform, there are two major physical defects that can be identified. The first
is the possibility that the model has too much (or too little) mass in the simulated
universe, possibly due to incorrect choices for the cosmological parameters used in the
Millennium simulation (see section 2.2). This would lead to the 7 luminosity outputs all
being too high (or too low), and would lead to positive correlation between all outputs in
the Var(®g) matrix. The second possible defect is that the model incorrectly calculates
the colour of the galaxies, due to inaccurate modelling of stellar populations or dust.
This would lead to an apparent increase/decrease in the number of red galaxies and
decrease/increase in the number of blue galaxies. This is represented as contributing a
smaller negative correlation between the bj and K luminosity outputs. To respect the
symmetries of these possible defects, the multivariate Model Discrepancy was parame-
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terised in the following (34+4)x(3+4) block form:
b

Var(®p) = a? (20)

O 0 0O 06 S
O 0 0 0 o
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T =TT OO0
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where now a? is the univariate variance of the model discrepancy; b is the correlation
between outputs of the same luminosity graph (either bj or K luminosity) and ¢ is the
cross graph correlation. While Richard was satisfied with the form of the parameterisa-
tion of Var(®g) as given by equation (20), he was cautious about specifying values for
a, b and c. He was, however, willing to provide the following ranges:

376 %1072 <a<752%x1072, 04<b<0.8, 02<c<b. (21)

This assessment involved examining the difference between Galform and a competing
model of similar complexity, consideration of the above possible physical defects to
the model, and from his previous years of experience coding and running such galaxy
formation models. The maximum value of a = 7.52 x 10~2 is shown as the black line in

figure 4 (bottom panel), where \/Var(€émq.;) = a, for each i.

After the initial assessment we constructed an elicitation tool in order for Richard
to confirm that his specification agreed with his intuition regarding the outputs of the
luminosity function. A picture of this elicitation tool is shown in figure 4 (top panel),
and it possesses the following features. The top two panels of the tool show the bj and K
luminosity functions, with observational data points in black, error bars representing all
uncertainties, dotted lines giving the 11 outputs of interest (additional outputs were used
in later waves), and constructed (or fictitious) luminosity model output given by the red
lines. This elicitation tool allows the user to experiment with various possible luminosity
functions and see the corresponding values for the two implausibility functions Ips(x)
and I(z) (see section 3.5 for definitions of these measures). Most importantly, the
values of the multivariate model discrepancy parameters a, b and ¢ can be adjusted.
This allowed Richard to experiment with different specifications of a, b and ¢ and to see
the response of the implausibility measures. This is useful for the expert to get a feel for
the behaviour of a multivariate implausibility measure, understand the ramifications of
the structure of Var(®g) and also to check that intuitively acceptable runs would not
be ruled out by the current specification.

Obviously it is possible to build in far more structure into Var(®g) if required. The
aim here was to account for the main sources of model discrepancy, while maintaining
a relatively simple structure of the Var(®g), as the more detailed the structure, the
more difficult eliciting expert information becomes. As we have ranges for a, b and c,
we will incorporate this into our analysis by performing a sensitivity analysis, and rule
out parts of the input space only if they fail certain implausibility cutoffs for all values
of a, b and ¢ within the above ranges.
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Figure 4: Top panel: the Elicitation Tool used to confirm the multivariate model dis-
crepancy assessment represented by equations (20) and (21). It allows the expert to
construct and adjust fictitious luminosity functions, and to explore the response of the
implausibility measures to changes in a, b and ¢ (see section 7.3). Bottom panel: the sd
of each contribution from the various sources of uncertainty for the full range of the bj
luminosity function (the x-axis is the same as figure 1). The vertical lines represent the
three bj outputs chosen for emulation in Wave 1. The green line represents the total
uncertainty due to all contributions, and it is this value that is used in all bj luminosity
plots such as figure 1. The K luminosity results are similar.

5.2 Observational Errors

The generation of the observational data shown as the black points in figure 1, is an ex-
tremely intricate task. It involves data from several sky surveys, which is processed using
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both information from various simulations and additional theoretical and experimental
knowledge related to the evolution of the Universe. Due to this, the observational errors
€obs defined in equation (1) are complex. Due to space limitations we only summarise
the four contributions to Var(eyps) here; see Cole et al. (2001) for more details.

The Luminosity Zero Point Error - this is derived from the difficulty of defining
the Luminosity Zero Point: that is the point on the x-axis of the luminosity graph (see
figure 1) corresponding to a galaxy of ‘zero’ brightness. This results in a correlated
error on every output point (grey line in figure 4 (bottom panel)).

The k+te error - a perfectly correlated error on all output points due to necessary
corrections for two effects (i) Galaxies being so far away it takes light billions of years
to reach us and (ii) Galaxies moving away from us so quickly their light is redshifted
(purple line in figure 4 (bottom panel)).

The Normalisation Error - The data on galaxies comes from measurements made
in our local vicinity and it is possible that we live in a relatively under/over populated
part of the Universe. This error attempts to account for this using theoretical knowledge
about variation in mass density in the Universe on large scales (yellow line in figure 4
(bottom panel)).

Galaxy Production Error - Bright/faint galaxies can be measured up to relatively
large/short distances from our Milky Way. This error represents the uncertainty due to
this effect and uses assumptions as to the shape of the mean luminosity function (red
line in figure 4 (bottom panel)).

It is clear that significant contributions to the observational errors come from un-
certainties related to the processing of the data (i.e. the k + e, Normalisation and
Production Errors). These are distinct from measurement errors and are derived from
complex theoretical and modelling uncertainties, and hence could be referred to as
model discrepancy terms as opposed to observational errors. However, the calculations
involved in determining these errors are intricate and rely upon specialist knowledge of
Astronomy. Although it would be desirable to disentangle some of these errors, due to
time constraints it was felt that this was impractical at the current stage.

6 First Wave History Match
6.1 History Matching via Implausibility

History Matching is the process of identifying X'* by iteratively discarding values of =z,
by the application of cutoffs to the Implausibility Measures. In Wave 1, we used the
measures Iop(x) and Isps () to discard values of  that do not satisfy both:

Dy(z) < Iewe and Isp(x) < Lows, (22)

where I.uo and I3 are the corresponding implausibility cutoffs. The choices made
for the individual cutoffs come from a combination of examination of diagnostics (such
as shown in figure 5), consideration of the amount of space cut out, and unimodality



I Vernon, M. Goldstein and R. G. Bower 647

Data I_M(x)
6
1
£
1
oo
Data I_M(x)
6

Figure 5: Implausibility diagnostics for the Wave 1 univariate emulators. Plots show
the maximum data implausibility 1¢4'¢(z) calculated using actual runs, against the im-
plausibility measures Iaps () (left panel) and Isps () (right panel) which are calculated
using the emulator. The vertical lines show the cutoffs imposed at this Wave, with the
red points belonging to parts of the input space deemed implausible.

arguments based on Pukelsheim’s 3-sigma rule as discussed in section 3.5. While the
unimodal argument suggests using cutoffs of 3 or higher (depending on the correlation
between outputs), consideration of figure 5 shows that this might be unnecessarily con-
servative. In response to this we choose cutoffs of I.,;2 = 2.7 and I3 = 2.3 (shown as
vertical lines in figure 5), recognising the fact that we want to balance a conservative
cutoff with the amount of space that can be removed at Wave 1. These cutoffs resulted
in approximately 85.1 percent of the input space being ruled out due to the Wave 1
analysis. Note that, as discussed at the end of section 5.1 and also in section 7.3, we
effectively perform a sensitivity analysis on @ by only ruling out inputs that do not
satisfy the cutoffs for all values of a, b and ¢ within the ranges given in equation (21).
For the univariate cases discussed here, this is equivalent to setting a to its maximum
value as I(;)(x) is monotonically decreasing with increasing a.

Figure 5 shows diagnostic plots regarding the choice of cutoffs I, and I.y3. It
shows the maximum data implausibility Ij‘\l/‘}t‘l(x) (that is the implausibility evaluated
at a known run, given by equation (11)) across the 7 outputs for a latin hypercube of
200 diagnostic runs (y-axis), against Iops(z) (left panel) and Isps(z) (right panel). The
vertical lines are the cutoffs that will be imposed, implying that the red points would
be discarded. Note that most points are some distance above the diagonal y = z line,
suggesting that 1§9¢¢(z) will generally be higher than Ioy(z) and I3pr(7) as expected.
Also note that the discarded points do indeed have high 1{¢*¢(z) (significantly higher
than the 2.7 cutoff shown as a horizontal line), and hence suggest the space cutout
in Wave 1 does not contain any inputs of interest. We test the sensitivity of such
diagnostics and of the fraction of space cut out, to different values of cutoffs, before
definite choices are made.

In figure 6 we show various 2-dimensional projections (top 3 panels) of values of the
Implausibility Measures, with red areas representing high implausibility and green areas
low, which were constructed as follows. For each plot we evaluated the emulator at a set
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Figure 6: The top three panels give Wave 1 minimised implausibility projection plots:
the red region indicates high implausibility for all values of the remaining inputs: here
input points will be discarded. The bottom three panels give the ‘optical depth’ plots:
these show the fraction of the hidden 5 dimensional volume (spanned by the remaining
active variables) that satisfies the implausibility cutoff, at that grid-point.

of inputs specifically designed to produce a 2-dimensional projection in the appropriate
input plane. For example, in the top left panel the projection is in the vhotdisk -
alphareheat plane, and the emulator was evaluated on a (2d grid)x(5d latin hypercube)
design, where the 2d grid was over the vhotdisk - alphareheat plane (and of size 152)
while the latin hypercube was defined over the remaining 5 active inputs at Wave 1
(and was of size 1500). For each point on the grid, we then minimised the implausibility
over the corresponding 1500 points at that grid location, the results of which provide
the plots shown. This allows the following interpretation: a red area in one of these
implausibility projection plots implies that even given all relevant uncertainties, and all
possible choices for the other input parameters, it is highly unlikely that an acceptable
match will be found at this point in the vhotdisk - alphareheat plane (for example).
Such plots present serious computational complications as a large number of emulator
evaluations are required for each projection. To generate these plots we have used novel
Bayes Linear calculations that exploit both the cross-product symmetry of the emulator
design, and similar symmetries that occur in the emulator update equations (9) and (10)
due to the covariance structure of equation (24). These calculations greatly improve
efficiency, and we will report on these techniques in detail elsewhere.

The bottom 3 panels of figure 6 show depth projection plots: these are constructed by
calculating at each grid point, the fraction of the corresponding 1500 points of the latin
hypercube that survive the implausibility cutoffs, given by equation (22). This gives
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information as to the ‘optical depth’ of the 7 dimensional non-implausible volume when
observed in a direction perpendicular to the vhotdisk - alphareheat plane (for example).
They provide complimentary information to the implausibility projections. Consider
the middle top and bottom panels of figure 6, where the implausibility projection (top
panel) shows that non-implausible choices of alphareheat and alphacool exist over much
of the alphareheat-alphacool plane. The depth plot demonstrates that the majority of
the non-implausible volume is found at low values of alphareheat. These images give
physical insights into the nature of the Galform model: in the top right panel of figure 6
we see that simultaneously low values of both vhotdisk and alphahot are ruled out, and
that high values of both these parameters are possibly preferred. These parameters
are involved in the same Galform module: that of Feedback from Supernovae (see
equation (23) and appendix B), and increasing their size should increase the amount of
material expelled from certain galaxies as opposed to being used to form stars. This
will reduce the luminosity function at the faint end, and, as most of the Wave 1 runs
are higher than the observed data, it makes physical sense that parameter choices that
lower the luminosity function will be preferred. These physical features are also seen in
the polynomial terms for the outputs bj 17 and K 21 (which are at the faint end of the
luminosity function), specifically we find large and negative coeflicients for the vhotdisk,
alphahot and their interaction terms. The Wave 1 emulators are quite approximate, so
there is a limit as to the physical insight they, and the corresponding implausibility
measures, can provide.

Equation (22) defines a volume of input space X; that we refer to as non-implausible
after Wave 1, projections of which are shown in figure 5. We now refocus by running
the Galform model within this volume, and repeat the above process of emulation,
constructing implausibility measures and imposing cutoffs. We have gone through four
iterations or waves, as described below.

7 Analysis of Waves 2 - 4

7.1 Wave 2 to 4: Design, New Outputs and Emulation

We apply the refocussing technique iteratively, and here we describe the designs and
emulators used in waves 2 to 4. The design for the set of Wave 2 model evaluations
was derived as follows. We first constructed a large maximin Latin Hypercube design
containing 9500 points defined over the 8 dimensional input space corresponding to the
8 input variables explored in Wave 1. We then used the Wave 1 emulator and Implau-
sibility measures to evaluate the implausibility of each proposed point in the design.
Any points that did not satisfy the implausibility cutoffs, as given by equation (22),
were discarded from further analysis. This left a design of 1414 points which were then
evaluated using the Galform model, the results of which were used to construct the
Wave 2 emulator. The Wave 3 design of 1620 points was constructed in a similar man-
ner. Between Waves 3 and 4, the problems preventing simultaneous varying of all 17
parameters in the Galform model were resolved. Hence, the Wave 4 design came from
a large latin hypercube defined over the full 17 dimensional input space. Again, only
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Wave | Runs | Act | Iny Ioar Isye Ingv | % Space
1 993 5 - 2.7 2.3 - 14.9 %
2 1414 8 - 2.7 2.3 - 5.9 %
3 1620 8 - 2.7 2.3  26.75 1.6 %
4 2011 10 3.2 2.7 2.3  26.75 0.26 %

Table 3: The fraction of parameter space deemed non-implausible after each wave of
emulation. Column 1: the wave; Column 2: the number of model runs used to construct
the emulator; Column 3: the number of Active Variables; Column 4-7: the implausibility
thresholds; Column 8: the fraction of the parameter space deemed non-implausible.

points that satisfied all of the previous 3 wave’s implausibility cutoffs remained in the
design, leaving a total of 2011 points. The number of design points was deliberately
increased at each wave in anticipation of fitting more complex polynomials.

As the input space has been reduced after the Wave 1 analysis, it became easier
to emulate model outputs. Therefore more outputs become informative regarding the
input space, and warrant inclusion in the analysis. Consideration of the 1414 Wave 2
runs led to 4 additional outputs being included, the bj outputs with luminosity 18.75, 20
and 21.75, and the K output with luminosity 23.5. These are shown in figures 12 and 13
along with the original 7 outputs, as the dotted vertical lines. For each wave, emulation
proceeded in a similar manner to Wave 1, with univariate emulators being used in all
waves, and multivariate emulators used in waves 3 and 4. The details of the construction
of these emulators are given in appendices C.2 and C.3. Table 3 summarises the number
of runs used at each wave, number of active variables required and space remaining. At
each wave, cluster analysis was performed to check that the non-implausible volume was
simply connected (which was found to be the case), as separate emulators would have
been required for unconnected volumes.

7.2 Comparing Emulators

At each wave, emulator accuracy increases. It is instructive to compare the emulators,
to understand which features lead to this improvement. Asthe Wave 4 emulator involves
all 17 input parameters, we leave discussion of it until section 8.1.

Figure 7 (left panel) shows the estimated value of the residual standard deviation
oy, for each of the first three waves, for all 11 emulated outputs (for completeness we
show all 11 outputs for Wave 1 even though 4 of these were not considered at that
stage). There are significant drops in o,,; from Wave 1 to 2 across all outputs, with even
more substantial drops from Wave 2 to Wave 3, especially for the K luminosity outputs
(outputs 7 to 11). The right panel of figure 7 shows the adjusted R? for each of the 11
emulators, for each of the 3 waves. It shows the improvement in percentage of output
variance explained in Waves 2 and 3 compared to that of Wave 1. Note that although
the Wave 3 adjusted R? is sometimes below that of Wave 2, this is to be expected:
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Figure 7: Plots showing the residual standard deviation o for waves 1 to 3 (left panel)
and the Adjusted R? for wave 1 to 3 (right panel). In each panel, the first 6 connected
points correspond to the bj outputs chosen for emulation, the later 5 connected points

are the K outputs (shown as vertical lines in figures 12 and 13 respectively).
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Figure 8: Left panel gives a plot showing the R? (open points) and adjusted R? (solid
points) of the Wave 2 polynomial when used to predict the outputs of the Wave 3
runs (in red). Also shown are the corresponding Wave 3 polynomial R? (open points)
and adjusted R? (solid points) in green. Note the large difference between red and
green points. Right panel: shows the fairer comparison of the R? of the Wave 2 and 3
polynomials when used to predict 204 Wave 3 diagnostic runs. First 6 connected points:
the bj outputs, last five: the K outputs, as in figure 7.

as the variance of the Wave 3 run outputs is less than that of the Wave 2 runs, the
Wave 3 emulators may not be able to explain more of this variance than their Wave 2
counterparts, even though they are more accurate.

Further confirmation of the difference between the Wave 2 and 3 polynomials is
given by figure 8. As the Wave 2 and 3 polynomials have been fitted using highly
non-orthogonal designs of input points, it is not trivial to compare their polynomial
coefficients directly, in order to determine any differences between them. In figure 8
(left panel) we show the R? and adjusted R? of the Wave 2 polynomial calculated
using the Wave 3 runs (in red). Also shown are the R? and adjusted R? of the Wave
3 polynomial calculated with the same Wave 3 runs (in green). Note the dramatic
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difference in variance explained between the red and green points. This demonstrates
that the two sets of polynomials are substantially different. While this comparison is not
strictly fair (as the Wave 3 points were used to fit the Wave 3 polynomial), equivalent
polynomials would be expected to have much smaller differences in their R? values.
To highlight this point, figure 8 (right panel) shows the R? of the Wave 2 and Wave
3 polynomials calculated using a set of 204 Wave 3 diagnostic runs. Again a clear
difference between the explanatory power of the two polynomials can be seen. This
suggests that the emulators are picking up new features of the model at each wave
through improved polynomial fits: a natural feature as we build more structure into the
mean function, as opposed to the Gaussian process residual.

7.3 Implausibility Measures and Space Reduction

Table 3 summarises which of the four implausibility measures Ip/(x), Iop(x), Ispr(x)
and I(z) were used in each of the four Waves, along with the implausibility cutoffs that
were imposed. Note that the multivariate cutoff Iy, employed at Wave 3, was chosen
to be equal to 26.75, the critical value of 0.995 from a chi squared distribution with 11
degrees of freedom. This cutoff was employed in a conservative manner as follows. The
expert asserted ranges on a, b and ¢ which parameterise Var(®g) ((20),(21)). Therefore,
inputs x were only discarded due to the multivariate measure I(z) if I(x) > Iy for all
values of a, b and ¢ within their specified ranges (see Vernon and Goldstein (2009)).

Figure 9 shows the progression of implausibility and optical depth plots, in the
vhotdisk and alphacool plane, for Waves 1 to 3. Note that the size of the non-implausible
region decreases with each wave as expected, occupying a volume of 14.9%, 5.9% and
1.6% respectively. Even though the non-implausible volume occupies a small part of
the input space, it still covers a large part of the two dimensional projection.

8 Results of Wave 4 and 5
8.1 Wave 4

The Wave 4 emulator gives an accurate description of the non-implausible region of
input parameter space X*. Visualising this region is a difficult task, as it is a com-
plicated object in a ten-dimensional space. We here confine our analysis to useful two
dimensional projections of the space. Figure 10 shows the minimised Implausibility pro-
jections (below the diagonal) and optical depth plots (above the diagonal) corresponding
to all possible pairs of active variables. The plots above the diagonal have been trans-
posed to have the same orientation as those below the diagonal for ease of comparison.
Figure 10 highlights many features of the Galform model, which are of great interest to
the cosmologists. It suggests that acceptable fits can be found over large ranges of the
input parameters. It also demonstrates clear relationships between certain parameters,
for example, the positive correlation between vhotdisk and alphareheat: if one input
is increased, then the second should be increased to compensate. This make physical
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Figure 9: The top three panels give Wave 1, 2 and 3 implausibility projection plots:
the red region indicates high implausibility where input points will be discarded. Note
that the yellow and green regions occupy only 15%, 5.9% and 1.6% of the input space
respectively (the non-implausible region), even though they take up much larger areas
of the 2-dimensional projection. The bottom three panels give the depth plots, showing
the fraction of the hidden 6-dimensional volume that satisfies the implausibility cutoff,
at that grid-point.

sense as both these parameters are involved with feedback from supernovae: vhotdisk
is related to the gas blown out of a galaxy due to supernovae while alphareheat reg-
ulates the time taken for this gas to return. Similarly, there exist a strong negative
correlation between vhotdisk and alphahot: another input related to supernovae feed-
back. Figure 10 also shows which parameters influence the luminosity functions, and are
therefore constrained, and which parameters do not. Inputs related to the Reionisation
and Galaxy Mergers modules of the Galform function (see table 1 and appendix B) are
all inactive save tau0mrg (fq¢), which only has a subtle impact. Therefore the physical
processes represented by these modules can be concluded to have little impact on the
luminosity function. There are many more physical interpretations that can be obtained
from this analysis. For example, by applying principal component analysis to a set of
points belonging to the non-implausible region, several approximate linear relationships
between groups of variables can be obtained (see Bower et al. (2010)).

8.2 Wave b

After the Wave 4 analysis, we ran a final batch of 2000 model evaluations within the
non-implausible region defined by the Wave 4 emulator. We refer to these as Wave 5
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Figure 10: All Wave 4 Implausibility (below diagonal) and Optical Depth (above diag-
onal) projections. Compare the Implausibility plots with the Wave 5 runs of figure 11.

runs. These runs were evaluated to see if we could determine whether the set X'* was
non-empty. and if so to check that a significant volume of the non-implausible region
did indeed correspond to acceptable runs (and therefore that another wave of analysis is
not required), and to generate a large set of realised acceptable runs for the cosmologists
to use to perform provisional explorations of other output data sets.

Figure 11 shows the two-dimensional projections of these Wave 5 runs, coloured
using the data implausibility (that is the implausibility without any emulator variance).
The colour scale is the same as that of figure 10 to allow direct comparison. It can be
seen that we do indeed find a large number of acceptable runs: 306 of the 2000 Wave
5 runs satisfied the implausibility cutoffs, with approximately 800 more runs within
10 percent of the cutoff boundary. This is expected as the surface area of a complex
10-dimensional object can be large compared to its volume. The acceptable runs do
span a large range in several of the inputs, as was suggested by the Wave 4 analysis:
a fact that was a surprise to the cosmologists. In general the Wave 5 runs are in good
agreement with the Wave 4 analysis, suggesting that the Wave 4 emulator is of sufficient
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Figure 11: The Wave 5 runs coloured by the data implausibility, consistent with fig 10.

accuracy. For this reason, and due to the large number of acceptable runs obtained,
we concluded that another wave of analysis was unnecessary. The acceptable runs were
used to perform provisional explorations of additional outputs of the Galform model, as
described in Bower et al. (2010).

To illustrate the improvement in the model runs from Wave 1 to Wave 5, figures 12
and 13 show the first 500 model runs bj and K outputs from Waves 1, 2, 3 and the
‘good’ runs from Wave 5, defined as those that satisfy Ips(z) < 2.5. It can be seen
that a large number of acceptable runs have been found, which are acceptable across
all outputs of interest, not just the 11 used for the emulation process.

9 Conclusion

In this Case Study we have presented the results of an uncertainty analysis of the galaxy
formation model known as Galform. The main aim was to identify the set of inputs
that would give rise to an acceptable match between model output and observed data,
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Figure 12: The bj Luminosity function output for the first 500 runs of Waves 1, 2 and
3 (top left, top right and bottom left panels respectively). The colours represent the
maximum implausibility Iy, (z) and are consistent with the colour scale of figures 10 and
11. Bottom right panel: the Wave 5 runs that satisfy In;(z) < 2.5. (Note the tighter
error bars compared to previous waves as ®r4 has been dropped).

taking into account all of the major uncertainties present in such a situation.

This analysis can be seen as a demonstration of the power of the iterative refocussing
technique in addressing a difficult and important problem: difficult in the sense that
Galform is a complex model with a significant run time, and with a large number of
active parameters many of which exhibit intricate interactions; important in that Gal-
form is a state-of-the-art model, and that the results we present provide insight into the
physics of galaxy formation for the cosmology community. At each iteration, improved
fits for the emulators are obtained, and new features of the model are seen (section 7.2).
This iterative strategy leads to a collection of emulators that are increasingly accurate
over regions of the input space of increasing interest. It is hard to see how such an
accurate description of the non-implausible region of input space could be obtained in
one step, without requiring an infeasibly large number of model evaluations. As the
non-implausible region is so small (less that 0.26% of the initial space), it is clearly
beneficial to perform a History Match before attempting any form of fully Bayesian
calibration.

What improvements could have been made to this project? We have had the benefit
of substantial computational resources, courtesy of the Galform group. This has allowed
relatively large numbers of runs to be performed at each wave of the analysis, when it
may have been possible to obtain broadly similar results using fewer evaluations. Also,
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Figure 13: The K luminosity version of figure 12. Note the disparity at luminosity <
19 for the Wave 5 runs (bottom right panel) is due to the limited resolution of the Dark
Matter simulation (see Bower et al. (2006)) and so is not considered to be of interest.

certain simplifying assumptions used when assessing the Model Discrepancy could have
been dropped. For example, the assumption that the effect of the Dark Matter forcing
function ®pjs was independent of z, has been addressed in House et al. (2009), where
Galform models with different Dark Matter configurations are treated as exchangeable
computer models. This is a particular aspect of a more general treatment of model
discrepancy known as Reification (Goldstein and Rougier (2009)).

The identification of the non-implausible region shown in figure 10 provides several
immediate physical insights into the Galform model, e.g. the relations between certain
inputs, the ranges of feasible values for the inputs, as well as identifying which inputs are
not restricted by the luminosity function, all of which are of significant scientific interest.
However, there may be several physical features that are hard to obtain from simple 2- or
even 3-dimensional projections, or from linear analyses such as PCA (Bower et al. 2010).
Visualising the complexities of the full 10-dimensional volume efficiently is a difficult
task (even using packages such as Ggobi (www.ggobi.org)), but must be addressed in
order to extract the full information provided by the emulators. This is made even more
difficult by the fact that although the emulators are very fast to evaluate, they are still
not fast enough to completely cover a (possibly complex) 10-dimensional object. We
have developed efficient emulator designs and calculation routines for high-dimensional
visualisation purposes and will report on these elsewhere.

The set of Wave 5 evaluations provided a large number of realised acceptable runs
for use by the cosmologists in provisionally exploring further Galform outputs. Several
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Figure 14: 5 new outputs of the Galform model describing galaxy disk sizes, TF relation,
gas metallicity, gas mass to Lp and BH mass. The cosmologists best fit is in red, with
a group of the best Wave 5 runs in green. Already we have found better simultaneous
fits to these additional data sets.

examples of such output datasets describing various galaxy properties (disk sizes, TF
relation, gas metallicity, gas mass to Lp and BH mass), along with corresponding ob-
served data (the black points) are shown in figure 14 (see Bower et al. (2010)). The
single red line represents the cosmologists’ single best run prior to this analysis, and the
green lines are ten of the best Wave 5 runs. We found many runs that were substantially
better fits to the luminosity functions than had ever been seen previously by the cos-
mologists, and as figure 14 shows, have already found several runs that are an improved
match to these other output data sets. The next step in this ongoing collaboration is to
apply the emulation and History Matching procedures outlined in this report to these
new output data sets, in order to understand their impact on the input space, and to
determine which regions of input space will provide acceptable matches to all possible
outputs.
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Appendix A: A Guide to Galaxy Formation

The aim of galaxy formation studies is to understand why the universe appears as it does.
We wish to explain the characteristic properties of galaxies, such as their distribution of
luminosities, colours and ages. As we will describe below, the present problem is not so
much to understand why galaxies form, but to understand why they are relatively few
and far between. By understanding this, we hope also to explain why galaxy formation
appears to proceed very differently to that expected in the simplest theories. The basic
ingredients have been in place for some time (the force of gravity and radiative cooling
of baryonic matter), but we are only now beginning to understand how the formation of
galaxies is regulated. The surprising result is that the black holes (the densest known
objects in the universe) appear to play a key role in this.

Galaxy Formation - a Beginners Guide

So how do galaxies form? Why is the universe filled with such objects? In principle,
it is a straightforward consequence of the dominance of the gravitational force. Since
all matter makes a positive contribution to the gravitational force, the clumping of the
universe’s mass is a runaway process. As the condensations of matter become denser,
they become more effective as attractors. These matter concentrations are referred to
as haloes. The observational evidence shows that most of this mass, however, is not
normal, “baryonic”, matter (that you and I are made from) and that the universe is
dominated by “Cold Dark Matter” (CDM): massive particles that interact very weakly.
The CDM particles may be associated with super-symmetric extensions of the standard
model of particle physics. Recent observations have also shown that a vacuum energy
contribution is required.

The CDM particles explain the collapse and growth of the gravitating dark matter
haloes, but to describe the formation of the luminous galaxies, we must turn to the
astrophysics of the baryonic matter. As the baryons are pulled together by the collapse of
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the dark matter halo, they heat up and start to resist further compression. The baryonic
gas (but not the collisionless dark matter) radiate this energy and cool leading to a
run-away contraction that is only stopped by the conservation of angular momentum.
The baryons form thin, cold spinning disks of gas. Further condensing leads to the
formation of stars, and empirical measurements show that the rate of formation of
stars is proportional to the surface density of gas (for current theoretical models, this
empirical calibration is entirely sufficient).

In this scenario, small haloes are able to convert almost all their baryonic component
into stars, but this does not accurately reflect the universe we live in. In contrast to our
initial model, the fraction of the baryonic material that is observed to form into stars is
rather small, only about 10% of the total baryonic content of the universe. The origin
of this discrepancy is a key cosmological puzzle, and astronomers appeal to “feedback”
to resolve the discrepancy: somehow the formation of stars must inject energy that
prevents further gas cooling. One of the key aims of the GALFORM project is to
identify the feedback schemes that are needed to account for the observed universe.
In small galaxies, we believe that the primary regulation mechanism is supernovae:
the energetic explosions that massive stars undergo at the end of their life. In weak
gravitational potentials, these are capable of driving gas out of the galaxy.

The strength and importance of feedback is best assessed by comparing the observed
galaxy mass function (the numbers of galaxies in a given mass per unit volume) with the
halo mass function. If star formation were uniformly efficient, there would be a constant
offset between the two. However, a comparison shows that they differ dramatically in
shape: the dark matter mass function has far more small haloes than are observed
to host dwarf galaxies in the universe and lack a sharp cut-off at high masses. While
supernovae may solve the problem with faint galaxies, it cannot explain the sharp cutoff
at high masses. Of the solutions proposed, the current front runner is a form of feedback
associated with the accretion of gas on to black holes.

Black holes are tiny compared to galaxies, their size (measured as their Schwarzschild
radius or radius of their event horizon) is only 1.5 x 108 km. It is surprising that an
object so small can heat a volume with radius 10! times larger. Yet this is just what is
observed in clusters of galaxies. Clusters are gravitationally bound systems containing
1000s of galaxies and 10'® solar masses of (largely) dark matter. Gas at the centres of
these systems is dense enough that it should cool, promoting the formation of stars in
the central object. Yet, little cooling is observed. Instead these systems host a powerful
radio galaxy — a galaxy with a central black hole (or AGN) that is the source of a jet
of magnetised high energy plasma. Although the details are not yet clear, relativistic
particle jets from the black hole are capable of replacing the energy that is lost as cooling,
keeping the central gas hot and starving the central galaxy of fuel for star formation.
The frequency of the discovery of such objects is also remarkable - they seem to occur
everywhere the runaway cooling process would generate a problem. It is now widely
accepted that it provides an essential ingredient for models that explain the formation
of galaxies.
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Modelling Galaxy Formation

There are essentially two approaches to modelling the formation of galaxies. These are
usually referred to as “numerical simulation” and “semi-analytic modelling”.

The idea of “numerical simulation” is simple and direct. A powerful computer
is programmed with the fundamental physical equations that describe the growth of
fluctuations of dark matter, the hydrodynamical response of the intergalactic gas and
its loss of energy through key atomic cooling processes. However, the equations are
missing some key components of galaxy formation physics and massively over-produce
the abundance of stars. Unfortunately, such codes have no hope of directly following
the formation of stars or the winds they may generate at their death, and are many
more orders of magnitude from being able to track the formation of black holes or the
processes that generate the jets that regulate the formation of bright galaxies.

“Semi-analytic modelling” represents the alternative approach. Rather than tackling
the whole problem in a single numerical integration, we break it down into its separate
components. Of course, we must make some level of approximation by doing this, but we
hope to create a model that encompasses the main physical processes with a minimum
of complexity. For example, one component of the model is the growth and merging of
dark matter haloes. This can be computed through an analytic approximation or by
running a numerical calculation that only includes the force of gravity. In terms of the
behaviour of the dark matter, this approximation is extremely good. We must then add
components to describe such features as the collapse and cooling of gas; the formation
of stars; the growth of black holes; merging of galaxies; the feedback effect of supernova
explosions and jets from black holes, and then link them together through a network
of interactions. Adding further components complicates the model but may improve
its physical realism and ability to match the data. Each component is based on the
results of a targeted set of simulations - or, failing this, on physically plausible scaling
relations. In many cases, however, the physical process is not completely understood
or characterised: to cope with this we introduce a number of parameters to account for
this uncertainty. The result is a network of equations (or algorithms) whose behaviour
is driven by the underlying growth and merging of the dark matter haloes, and whose
response is governed by a number of adjustable input parameters. Because of the
intrinsic complexity of the galaxy formation problem, “semi-analytic models” currently
offer the best avenue for progress.

Appendix B: Galform - Physical Details

We now outline some relevant technical details of the GALFORM code. For an extended
description and discussion of the Galform implementation see Baugh (2006). In essence,
the model consists of a set of modules, each having associated input parameters.

1. Dark matter merger trees. These are extracted from the “Millennium” dark
matter simulation (Springel et al. (2005)). This is a full numerical simulation of the
growth of dark matter structures in the universe from cosmological initial conditions.
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The initial spectrum of density fluctuations is set to be consistent with the WMAP satel-
lite observations of the cosmic microwave background (Spergel et al. (2003)). The subse-
quent evolution involves solving the gravitational N-body problem for a collection of 10'°
particles. The computations took several months on state of the art super-computers at
the Max Planck Society’s Rechenzentrum in Munich, Germany. Fortunately, this part of
the model need only be solved once, and the main part of the GALFORM code can then
be applied to populate the dark matter haloes with galaxies. This approach improves
accuracy over previous analytic approximations to gravitational structure growth, but
means that we must fix the cosmological parameters for our model. In future, improved
analytic modelling of the merger trees will allow us to include the uncertainty in the
cosmological parameters. For now, cosmological parameters are fixed to the canonical
year 3 observations of WMAP in which €, = 0.045, Q; = 0.25, A = 0.75 and 05 = 0.9
at the present day. The model assumes Hy = 0.73, although we quote luminosities and
space densities in term of h = Hy/100kms~! so that this dependence is explicit.

2. Gas Accretion and Cooling. As dark matter haloes grow, the gas that they
contain cools and flows to the centre. This occurs at different rates depending on the
mass of the halo, and the rate at which the halo mass grows. The supply of gas is
determined by computing the mass of gas for which the cooling timescale is less than
the halo, and the mass of gas which has had sufficient time to cool and fall to the centre
(Cole et al. 2001; Baugh 2006). The newer version of the code (referred to as B06),
which is considered in this case study, made several important advances (Bower et al.
(2006)). One of these is to emphasise the distinction between haloes for which the gas
supply is limited by the rate of cooling (henceforth “hydrostatic” haloes) and those
haloes for which the free-fall timescale is the limiting factor (henceforth “rapid cooling”
haloes). In the B06 model, it is assumed that energy from the central black hole can
only offset the cooling in hydrostatic haloes. The parameter a0 determines the exact
ratio of timescales at which this distinction is made.

3. Star Formation. As the hot gas cools or is accreted by a halo, it builds up a
reservoir of cold gas in the central galaxy. This gas provides the fuel for the formation of
further stars. The code assumes that the star formation rate is related to the dynamical
timescale of the galaxy, and its mass of gas, giving

. — € Mcold ( Vdisk )"‘*
T\ Taisk /) \200kms—!

where 1, is the star formation rate, mcoq is the mass of cold gas, 7qisx is the disk
dynamical time and wvg;sx is the disk rotation speed. «, and €, are parameters that
control the rate of star formation and its dependence on galaxy mass. In B06, an
additional mode of star formation is also considered. If the disk becomes too massive, it
becomes susceptible to warps that grow, funnelling gas to the centre of the galaxy. Such
secular evolution may generate many of the bulges that are observed. In the model it
is assumed that instabilities occur if the disk’s gravity exceeds the stabilising gravity
of the halo. The threshold at which this occurs is set by the parameter fsap, at which
point the disk stars are added to the galaxy’s bulge and the disk gas is consumed in a
burst of star formation.
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4. Feedback - from supernovae. Soon after the most massive stars form, they
explode in powerful supernova explosions. These are thought to be responsible for
preventing the efficient formation of stars in small galaxies - as the stars form, gas is
driven out of the system by the supernovae. We model feedback from supernovae by
assuming that the ratio of material expelled from the galaxy into the halo to that formed
into stars is given by the ratio (3, where

B = (Vdisk/Vhot) """ (23)

where vnot and apey are poorly constrained parameters. We allow vyt to take different
values for quiescent and burst star formation which we denote as Viot burst and Viot disk-

The gas that is driven out of galaxies flows into the halo, but does not immediately
become available for cooling. The timescale on which the gas becomes available is
determined by the parameter ceneas. If this is unity, and cooling is efficient, ejected gas
will be allowed to fall back into the galaxy on the dynamical timescale.

5. Galaxy mergers. When dark haloes collide, the galaxies at their centres do
not immediately merge. Rather their relative motion slowly decays due to dynamical
friction. This process is discussed extensively in Cole et al. (2001). The merging time is
set by an overall normalisation parameter fgr. If the time since the halo was accreted is
less than the merging time, the galaxy from the “satellite” galaxy orbits inside the larger
one. Such satellite galaxies do not collect any gas from the halo, and so star formation
quickly subsides as the cold gas reservoir is exhausted. If the time since accretion
exceeds the merging timescale, the galaxy mergers with the central galaxy in the parent
halo. If the mass ratio of the galaxies exceeds feuip, this can cause disturbance to the
underlying galaxy, transforming it from a spiral type galaxy to an elliptical one. This
morphological transformation may be associated with a burst of star formation. If the
mass ratio exceeds fpust, there is no morphological transformation, but a burst of star
formation still occurs.

6. Black holes and their feedback. The model assumes that black holes grow
through three distinct channels: (i) by black hole - black hole mergers when the parent
galaxies merge; (ii) by accretion of gas that is funnelled to the galaxy centre during
bursts of star formation (these being driven either by mergers or disk instabilities);
(iii) by diffuse gas accretion from hydrostatic haloes (i.e., as a result of “radio mode”
feedback). The star burst driven accretion results in luminous quasars, but the current
model assumes that these events do not contribute to the feedback. The parameter
Fyp controls the amount of gas that is accreted by the black hole in these events. The
feedback from “radio mode” accretion is, however, of key importance. The mass growth
of the black hole is determined from the energy output required to counter-balance
cooling of the halo, i.e. we implicitly assume that the mass accretion rate increases until
the net cooling rate decreases to zero. However, accretion onto black holes, although
an abundant source of energy has limits. We limit the maximum energy output to be
less than egqqLgqq where Lggq is the Eddington luminosity of the black hole and egqq
is an adjustable parameter. Current models for black hole accretion suggest that egqq
is of order 1%.
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7. Reionisation At very early times, the majority of gas in the universe is neu-
tral (and the universe is opaque to ultra-violet light). As stars and quasars form in
abundance, the universe quickly ionizes. This creates an additional form of heating
that may be extremely important in very low-mass galaxies. The details of this process
are very important for understanding the paucity of dwarf galaxies that orbit in the
milky-way halo. However, we are here concentrating on the properties of much more
massive systems where these effects are less significant and it is sufficient to parame-
terise this process by two parameters, zcys and veyt. Here, zey defines the redshift at
which re-ionisation occurs: at lower redshifts, gas cooling is prevented in haloes with
circular velocity below veyt-

Appendix C: Construction of the Wave 1-4 Emulators.

Univariate Emulation: Wave 1

In section 4.3 we discuss the construction of the wave 1 emulator (see equation 6), and
here we describe in detail the procedures involved in this process, namely, active variable
selection, choice of g;; functions, assessment of the regression coefficients 3;; and the
Gaussian process parameters o,,;, o,, and 6;.

In choosing the set of active variables x4, for each output i the aim is to explain
a large amount of the variance of f;(z) using as few variables as possible. For each of
the 7 outputs, we used the 993 wave 1 runs to initially reduce the set xp by backwards
stepwise elimination, starting with a model containing the 8 linear terms. At this stage
individual inputs were discarded in turn based upon the size of their main effect. Before
an input would be discarded, a third order polynomial was fitted to see the extent of
variance explained with the current set of active variables. It was found that 5 active
variables could explain satisfactory amounts of the variance of f;(x) for each output i
(see table 2), based on the adjusted R? of the polynomial fits. In each case, more than
5 variables yielded little extra benefit (compared to the increase in the size of the input
space), while less than 5 led to substantially worse fits.

Once the set of active variables x4, has been determined, the full set of regression
terms g;;(14,)) can be chosen. This was done by forward stepwise selection starting
with a model containing the linear terms in the active variables, and adding possible
terms from the full 3rd order polynomial in the active variables, using standard stepwise
routines in R, based on criteria such as AIC. When the regression terms have been chosen
for each output f;(z), estimates for the B = {;;} coefficients can be obtained using
Ordinary Least Squares, assuming uncorrelated errors. We have a sufficiently large
collection of model evaluations that such data analytic techniques will result in small
variances on the regression coefficients and generally acceptable results from OLS fitting.
Therefore, we would expect such results to overwhelm prior judgements. However, any
substantial contradictions between the data and the qualitative form of such judgements
requires further investigation.

As the u;(z(4,)) represent local deviations from the regression surface, there will
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be a correlation between u; at neighbouring values of x[4,), which we must specify.
Various choices are available, each of which involves parameters related to the width
and shape of the correlation function. Estimation of these parameters can be a difficult
task. However, these parameters are representations of our subjective assessment of the
smoothness of the function and precise assessment of them is not necessarily meaningful,
and nor is it required in order to construct an emulator of sufficient accuracy for our
needs. Here we choose the following Gaussian covariance structure:

°/67), (24)

Cov(ui(zia,), ui(2]a,)) = o exp(—||zpa,) — 214,

where (712“ is the point variance at any given x(4,], ; is the correlation length parameter
that controls the strength of correlation between two separated points in the input
space (for points a distance 6 apart, the correlation will be exactly exp(—1)), and
[| - || is the Euclidean norm. As w;(xzpg) represents all the remaining variation in the
inactive variables, it is often small and we treat it as uncorrelated random noise with
Var(w;(zp)) = o2.. We consider the point variances of these two processes to be
proportions of the overall residual variance of the computer model given the emulator
trend, o, and write 02 = (1 — w;)o7 and o2 = w;o; for some small w;. Various
techniques for estimating the correlation length and parameters 6; and w; from the data
are available (for example variograms (Cressie (1991)), REML (Santner et al. (2003));
however, these estimation procedures can often be non-robust as the output from a
computer model rarely behaves exactly like an actual Gaussian Process. An alternative
is to specify the ; parameters a priori (Craig et al. 1996) followed by an approximate
assessment of the nugget term w;, which is the approach we adopt here.

We may provide approximate order of magnitude values for the correlation length
parameters 6;, by appealing to the heuristic that the regression residuals may be viewed
as deriving from a polynomial of order one higher than the fitted polynomial, as they
correspond to the first order of terms which are neglected by the regression fit. Here
this implies that values of 6; should be chosen corresponding to the shape of a 4th order
polynomial. In such a case, we would not want the correlation length to be greater
than the average distance between roots of a 4th order polynomial: approximately
0.25 of the range of the input. Alternatively it can be argued that there should be
positive correlation between outputs at the turning points and the adjacent roots of
the polynomial, and that the correlation length must therefore be greater than this
distance: approximately 0.125 of the range of the input. This argument tends to give
more conservative (i.e. smaller) specifications for the correlation length compared to
maximum likelihood or variogram methods. As we have scaled all inputs to the range
[—1, 1], this argument suggests that a working estimate of §; might lie between 0.25 and
0.5, and therefore we selected the same value for all 8; of 0.35, checked by emulator
diagnostics discussed in section 4.4.

The value of the nugget parameter w; represents the proportion of residual variance
due to the inactive variables. We obtained a working assessment of w; by examining
the variance explained by the inactive variables for each of the seven outputs, and
comparing this to the residual variance from the active variable polynomial fit. These
considerations led to a conservative value of 0.2 for all w; acknowledging a reasonable
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contribution from the inactive variables at each output. Provided conservative choices
are made and are combined with analysis of the emulator diagnostics, such specifications
lead to emulators of sufficient accuracy for the task of providing a first stage reduction of
the input space, while avoiding the complex and often misleading problem of estimating
such parameters from the data alone. At this stage, we only require a relatively simple
emulator in order to make an initial reduction of the input space, while leaving the
construction of more detailed emulators to subsequent waves of the analysis.

Univariate Emulation: Waves 2 to 4

The Wave 2 to 4 univariate emulators were constructed using similar methods as were
used in Wave 1, as described in detail in section 4.3. Here we give a summary of their
construction, highlighting the differences with the Wave 1 case.

Recall that for Waves 1-3 we only explored 8 of the input parameters, which were
the set of proposed active variables described in section 4.2 and shown in table 1, with
the effect of the remaining 9 inputs being described by the model discrepancy term
@4 (see section 5.1). The selection of Wave 2 and 3 Active Variables proceeded as
for Wave 1, and it was found that all 8 input parameters were required as active in
these cases. Therefore, the only difference to the form of the Wave 1 emulator given by
equation (6), is that now there is no nugget term w;(xpg). The selection and fitting of
the polynomial terms was performed as in section 4.2 and appendix C.1, and a similar
Gaussian covariance function to equation (24) was assumed. In Wave 4, it was found
that improved polynomial fits could be obtained using 10 active variables, composed of
the 8 variables used in Wave 1-3 (and given in table 1) with the addition of the inputs
alphastar and tauOmrg. The remaining 7 inputs were found to have little impact on the
11 luminosity function outputs considered. As the effect of all 17 inputs are represented
by the Wave 4 emulator, the ®;4 model discrepancy term (representing the 9 previously
inactive variables) was dropped at this stage. Table 3 summarises the number of runs
used at each wave, along with the number of active variables required.

Multivariate Emulation: Waves 3 and 4

In Waves 1 and 2 univariate emulators were used, which allow only the use of univariate
implausibility measures to reduce the input space. Therefore, at Wave 3 we constructed
a multivariate emulator in order to develop the corresponding multivariate implausibility
measure I(x) introduced in section 3.5. I(z) will be of use as it measures different
aspects of the model output compared to the univariate implausibility measures, namely
it is sensitive to the shape of the luminosity functions.

Constructing a tractable multivariate emulator can be a challenging task. An emu-
lator that utilizes a weakly stationary process (such as u;(z) in equation (24)) suffers
from what is referred to as the (ng)® problem (Rougier (2008)), where n is the number
of model evaluations and ¢ is the number of outputs to be emulated. The process of up-
dating our beliefs about the emulator given the n model evaluations generally requires



I Vernon, M. Goldstein and R. G. Bower 669

the inverting of a matrix of size ng x ng, a computation that scales as (ng)3. At Wave
4 say we have n = 2011 and ¢ = 11, leading to a problematic matrix inversion of size
22121. However, by specifying covariance structures of suitably symmetric form this
problem can be avoided.

The wave 3 emulator has the same form as that of wave 2, where again we use all
8 inputs as Active Variables (that is x(4,) = zp), and we consider the same set of 11
outputs. Again the g;;(xp) and §;; terms were chosen by model selection techniques
and OLS fitting respectively: we compare these polynomials to those of previous waves
in section 7.2. We then assume the following separable multivariate covariance structure
for the process u;(xp):

Cov(ui(p),uj(@p)) = Zijexp(—llz — (gl*/0%), (25)

where the i and j indices denote each of the 11 outputs, X is an 11 x 11 covariance matrix
and note we have removed the 7 index on 6 as we have assumed the same correlation
length for each output. We assess the matrix X by taking the covariance matrix of the
11 sets of residuals from each of the polynomials. The separable form of equation (25)
allows the above problematic matrix to be written as a direct product, which greatly
simplifies the calculation of its inverse, as we can invert each component of the direct
product individually. See Rougier (2008) for further discussions regarding calculations
for multivariate emulators.

The construction of a multivariate emulator allows the use of a Multivariate Implau-
sibility measure which can be defined as (using equation (16)):

(z) = (E(f(x)) — 2)" (Var(f(z)) + Var(ema) + Var(eons)) " (E(f(2)) —2).  (26)

I(x) is a useful measure to consider as it captures the shape of the luminosity function
output. It will allow the discarding of inputs corresponding to runs that satisfy the
univariate matching criteria and hence are close to the data points, but that have an
unphysical shape in either the bj or K luminosity function.
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