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Evolutionary Stochastic Search for Bayesian
Model Exploration

Leonard Bottolo∗, and Sylvia Richardson†

Abstract. Implementing Bayesian variable selection for linear Gaussian regression
models for analysing high dimensional data sets is of current interest in many fields.
In order to make such analysis operational, we propose a new sampling algorithm
based upon Evolutionary Monte Carlo and designed to work under the “large p,
small n” paradigm, thus making fully Bayesian multivariate analysis feasible, for
example, in genetics/genomics experiments. Two real data examples in genomics
are presented, demonstrating the performance of the algorithm in a space of up to
10, 000 covariates. Finally the methodology is compared with a recently proposed
search algorithms in an extensive simulation study.

Keywords: Evolutionary Monte Carlo, Fast Scan Metropolis-Hastings scheme, lin-
ear Gaussian regression models, variable selection

1 Introduction

This paper is a contribution to the methodology of Bayesian variable selection for linear
Gaussian regression models, an important problem which has been much discussed
both from a theoretical and a practical perspective (see Chipman et al. 2001; Clyde and
George 2004; O’Hara and Sillanpää 2009 for literature reviews). Recent advances have
been made in two directions, unravelling the theoretical properties of different choices of
prior structure for the regression coefficients (Fernández et al. 2001; Liang et al. 2008)
and proposing algorithms that can explore the huge model space consisting of all the
possible subsets when there are a large number of covariates, using either MCMC or
other search algorithms (Kohn et al. 2001; Dellaportas et al. 2002; Hans et al. 2007).

In this paper, we propose a new sampling algorithm for implementing the variable
selection model, based on tailoring ideas from Evolutionary Monte Carlo (Liang and
Wong 2000; Jasra et al. 2007; Wilson et al. 2009) in order to overcome the known
difficulties that MCMC samplers face in a high dimension multimodal model space:
enumerating the model space becomes rapidly unfeasible even for a moderate number
of covariates. For a Bayesian approach to be operational, it needs to be accompanied by
an algorithm that samples the indicators of the selected subsets of covariates, together
with any other parameters that have not been integrated out. Our new algorithm for
searching through the model space has many generic features that are of interest per se
and can be easily coupled with any prior formulation for the variance-covariance of the
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regression coefficients. We illustrate this by implementing g-priors for the regression
coefficients as well as independent priors: in both cases the formulation we adopt is
general and allows the specification of a further level of hierarchy on the priors for the
regression coefficients, if so desired.

The paper is structured as follows. In Section 2, we present the background of
Bayesian variable selection, reviewing briefly alternative prior specifications for the re-
gression coefficients, namely g-priors and independent priors. Section 3 is devoted to
the description of our MCMC sampler which uses a wide portfolio of moves, includ-
ing two proposed new ones. Section 4 demonstrates the good performance of our new
MCMC algorithm in a variety of real and simulated examples with different structures
on the predictors. In Section 4.2 we complement the results of the simulation study by
comparing our algorithm with the recent Shotgun Stochastic Search algorithm of Hans
et al. (2007). Finally Section 5 contains some concluding remarks.

2 Background

2.1 Variable selection

Let y = (y1, . . . , yn)T be a sequence of n observed responses and xi = (xi1, . . . , xip)
T

a vector of predictors for yi, i = 1, . . . , n, of dimension p × 1. Moreover let X be the
n× p design matrix with ith row xT

i . A Gaussian linear model can be described by the
equation

y = α1n + Xβ + ε,

where α is an unknown constant, 1n is a column vector of ones, β = (β1, . . . , βp)
T is a

p× 1 vector of unknown parameters and ε ∼ N
(
0, σ2In

)
.

Suppose one wants to model the relationship between y and a subset of x1, . . . , xp,
but there is uncertainty about which subset to use. Following the usual convention
of only considering models that have the intercept α, this problem, known as variable
selection or subset selection, is particularly interesting when p is large and parsimonious
models containing only a few predictors are sought to gain interpretability. From a
Bayesian perspective the problem is tackled by placing a constant prior density on α
and a prior on β which depends on a latent binary vector γ = (γ1, . . . , γp)

T , where
γj = 1 if βj 6= 0 and γj = 0 if βj = 0, j = 1, . . . , p. The overall number of possible
models, defined through γ, grows exponentially with p and selecting the best model
that predicts y is equivalent to find one over the 2p subsets that form the model space.

Given the latent variable γ, a Gaussian linear model can therefore be written as

y = α1n + Xγβγ + ε, (1)

where βγ is the non-zero vector of coefficients extracted from β, Xγ is the design matrix
of dimension n×pγ , pγ ≡ γT 1p, with columns corresponding to γj = 1. We will assume
that, apart from the intercept α, x1, . . . , xp contains no variables that would be included
in every possible model and that the columns of the design matrix have all been centred
with mean 0.
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It is recommended to treat the intercept separately and assign it a constant prior:
p (α) ∝ 1, Fernández et al. (2001). When coupled with the latent variable γ, the
conjugate prior structure of

(
βγ , σ2

)
follows a normal-inverse-gamma distribution

p
(
βγ

∣∣γ, σ2
)

= N
(
mγ , σ2Σγ

)
(2)

p
(
σ2 |γ )

= p
(
σ2

)
= InvGa (aσ, bσ) (3)

with aσ, bσ > 0. Some guidelines on how to fix the value of the hyperparameters aσ

and bσ are provided in Kohn et al. (2001). Taking into account (1), (2), (3) and the
prior specification for α, the joint distribution of all the variables (based on further
conditional independence conditions) can be written as

p
(
y, γ, α, βγ , σ2

)
= p

(
y

∣∣γ, α, βγ , σ2
)
p (α) p

(
βγ

∣∣γ, σ2
)
p

(
σ2

)
p (γ) . (4)

The main advantage of the conjugate structure (2) and (3) is the analytical tractabil-
ity of the marginal likelihood whatever the specification of the prior covariance matrix
Σγ :

∫
p

(
y

∣∣γ, α, βγ , σ2
)
p (α) p

(
βγ

∣∣γ, σ2
)
p

(
σ2

)
dαdβγdσ2

∝ ∣∣XT
γ Xγ + Σ−1

γ

∣∣−1/2 |Σγ |−1/2 (2bσ + S (γ))−(2aσ+n−1)/2
, (5)

where S (γ) = C−MT K−1
γ M , C = (y − ȳn)T (y − ȳn)+mT

γ Σ−1
γ mγ , M = XT

γ (y − ȳn)+
Σ−1

γ mγ , Kγ = XT
γ Xγ + Σ−1

γ (Brown et al. 1998) with ȳn = 1n

∑n
i=1 yi/n.

While the mean of the prior (2) is usually set equal to zero, mγ = 0, a neutral choice
(Chipman et al. 2001; Clyde and George 2004), the specification of the prior covariance
Σγ matrix leads to at least two different classes of priors:

• When Σγ = gVγ , where g is a scalar and Vγ =
(
XT

γ Xγ

)−1, it replicates the
covariance structure of the likelihood giving rise to so called g-priors first proposed
by Zellner (1986).

• When Σγ = cVγ , but Vγ = Ipγ the components of βγ are conditionally independent
and the posterior covariance matrix is driven towards the independence case.

We will adopt the notation Σγ = τVγ as we want to cover both prior specification in a
unified manner. Thus in the g-prior case, Σγ = τ

(
XT

γ Xγ

)−1 while in the independent
case, Σγ = τIpγ . We will refer to τ as the variable selection coefficient for reasons that
will become clear in the next section.

To complete the prior specification in (4), p (γ) must be defined. A complete discus-
sion about alternative priors on the model space can be found in Chipman (1996) and
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Chipman et al. (2001). Here we adopt the beta-binomial prior illustrated in Kohn et al.
(2001)

p (γ) =
∫

p (γ |ω ) p (ω) dω =
B (pγ + aω, p− pγ + bω)

B (aω, bω)
(6)

with pγ ≡ γT 1p, where the choice p (γ |ω ) = ωpγ (1− ω)p−pγ implicitly induces a bino-
mial prior distribution over the model size and p (ω) = ωaω−1 (1− ω)bω−1

/B (aω, bω).
The hypercoefficients aω and bω can be chosen once E (pγ) and V (pγ) have been elicited.

2.2 Priors for the variable selection coefficient τ

g-priors

It is a known fact that g-priors have two attractive properties. Firstly they possess
an automatic scaling feature (Chipman et al. 2001; Kohn et al. 2001). The second
feature that makes g-priors particularly appealing is the simple structure of the marginal
likelihood (5) with respect to the constant τ which becomes

∝ (1 + τ)−pγ/2 (2bσ + S (γ))−(2aσ+n−1)/2
, (7)

where, if mγ = 0, S (γ) = (y − ȳn)T (y − ȳn)− τ
1+τ (y − ȳn)T

Xγ

(
XT

γ Xγ

)−1
XT

γ (y − ȳn).
Despite the simplicity of (7), the choice of the constant τ for g-priors is complex, see
Fernández et al. (2001), Cui and George (2008) and Liang et al. (2008).

Historically, the first attempt to build a comprehensive Bayesian analysis where
the degree of shrinkage adapts to different scenarios dates back to Zellner and Siow
(1980) who proposed to place a prior distribution on τ . Zellner-Siow priors, Z-S
hereafter, can be thought as a mixture of g-priors and an inverse-gamma prior on τ ,
τ ∼ InvGa(1/2, n/2), leading to

p
(
βγ

∣∣γ, σ2
) ∝

∫
N

(
0, σ2τ

(
XT

γ Xγ

)−1
)

p (τ) dτ. (8)

For alternative priors, see also Cui and George (2008), Liang et al. (2008) and Maruyama
and George (2008).

Independent priors

When all the variables are defined on the same scale, independent priors represent
an attractive alternative to g-priors. The likelihood marginalised over α, βγ and σ2

becomes

p (y |γ ) ∝ τ−pγ/2
∣∣XT

γ Xγ + τIpγ

∣∣−1/2
(2bσ + S (γ))−(2aσ+n−1)/2

. (9)

If mγ = 0, S (γ) = (y − ȳn)T (y − ȳn) − (y − ȳn)T
Xγ

(
XT

γ Xγ + τIpγ

)−1
XT

γ (y − ȳn).
Note that (9) is computationally more demanding than (7) due to the extra determinant
operator.
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It is common practice to standardise the predictor variables, taking τ = 1 in order
to place appropriate prior mass on reasonable values of the regression coefficients (Hans
et al. 2007). Another approach, illustrated in Bae and Mallick (2004), places a prior
distribution on τj without standardising the predictors.

3 MCMC sampler

In this section we propose a new sampling algorithm that overcomes the known difficul-
ties faced by MCMC schemes when attempting to sample a high dimension multimodal
space. We discuss in a unified manner the general case where a hyperprior on the vari-
able selection coefficient τ is specified. This encompasses the g-prior and independent
prior structure as well as the case of fixed τ if a point mass prior is used.

The multimodality of the model space is a known issue in variable selection and
several ways to tackle this problem have been proposed in the past few years. Liang
and Wong (2000) suggest an extension of parallel tempering called Evolutionary Monte
Carlo, EMC hereafter, Nott and Green (2004) introduce a sampling scheme inspired by
the Swendsen-Wang algorithm while Jasra et al. (2007) extend EMC methods to varying
dimension algorithms. Finally Hans et al. (2007) propose, when p > n, a new stochastic
search algorithm, Shotgun Stochastic Search, SSS hereafter, to explore models that are
in the same neighbourhood in order to quickly find the best combination of predictors.

We propose to solve the issue related to the multimodality of model space (and the
dependence between γ and τ) along the lines of EMC, applying some suitable parallel
tempering strategies directly on p (y, γ |τ ). The basic idea of parallel tempering, PT
hereafter, is to weaken the dependence of a function from its parameters by adding
an extra one called “temperature”. Multiple Markov chains, called “population” of
chains, are run in parallel, where a different temperature is attached to each chain,
their state is tentatively swapped at every sweep by a probabilistic mechanism and the
latent binary vector γ of the non-heated chain is recorded. The different temperatures
have the effect of flatting the likelihood. This ensures that the posterior distribution is
not trapped in any local mode and that the algorithm mixes efficiently, since every chain
constantly tries to transmit information about its state to the others. EMC extents this
idea, encompassing the positive features of PT and genetic algorithms inside a MCMC
scheme. In the following, we first define the expanded state-space of EMC, which is
common with PT, and then we describe the specific MCMC moves that characterise
EMC.

Since β and σ2 are integrated out, only two parameters need to be sampled from the
joint distribution p (τ)

∏L
l=1 [p (y |γl, τ ) p (γl)]

1/tl , namely the latent binary vector and
the variable selection coefficient. In this set-up the full conditionals to be considered
are

[p (γl |· · · )]1/tl ∝ [p (y |γl, τ )]1/tl [p (γl)]
1/tl (10)

p (τ |· · · ) ∝ p (τ)
∏L

l=1
[p (y |γl, τ )]1/tl , (11)
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where L is the number of chains in the the population and tl, 1 = t1 < t2 < · · · < tL, is
the temperature attached to the lth chain while the population γ corresponds to a set
of chains that are retained simultaneously.

At each sweep of our algorithm, first the population γ in (10) is updated using a
variety of moves inspired by genetic algorithms: “local moves”, the ordinary Metropolis-
Hastings or Gibbs update on every chain, and “global moves” that include: i) crossover
operator, i.e. partial swap of the current state between different chains (selected on the
base of some probabilistic measures of distance between them); ii) exchange operator,
full state swap between chains. Both local and global moves are important although
global moves are crucial because they allow the algorithm to jump from one local mode
to another. At the end of the update of γ, τ is then sampled using (11). Conditions
for convergence of EMC algorithms are well understood and illustrated for instance in
Jasra et al. (2007).

The implementation of EMC that we propose in this paper includes several novel
aspects: the use of a wide range of moves including two new ones, a local move, based on
the Fast Scan Metropolis-Hastings sampler, particularly suitable when p is large and a
bold global move that exploits the pattern of correlation of the predictors. Moreover, we
developed an efficient scheme for tuning the temperature placement that capitalises the
effective interchange between the chains. Another new feature is to use a Metropolis-
within-Gibbs with adaptive proposal for updating τ , as the full conditional (11) is not
available in closed form.

3.1 EMC sampler for γ

In what follows, we will only sketch the rationale behind all the moves that we found
useful to implement and discuss further the benefits of the new specific moves in Section
4.1. For the “large p, small n” paradigm and complex predictor spaces, we believe that
using a wide portfolio of moves is needed and offers better guarantee of mixing.

From a notational point of view, we will use the double indexing γl,j , l = 1, . . . , L
and j = 1, . . . , p to denote the jth latent binary indicator in the lth chain. Moreover we
indicate by γl = (γl,1, . . . , γl,p)

T the vector of binary indicators that characterises the
state of the lth chain of the population γ = (γ1, . . . , γL).

Local moves and Fast Scan Metropolis Hastings sampler

Given τ , we first tried the simple MC3 idea of Madigan and York (1995), also used by
Brown et al. (1998) where add/delete and swap moves are used to update the latent
binary vector γl. For an add/delete move, one of the p variables is selected at random
and if the latent binary value is 0 the proposed new value is 1 or vice versa. However,
when p À pγl

, where pγl
is the size of the current model for the lth chain, the number

of sweeps required to select by chance a binary indicator with a value of 1 follows a
geometric distribution with probability pγl

/p which is much smaller than 1 − pγl
/p to

select a binary indicator with a value of 0. Hence, the algorithm spends most of the time
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trying to add rather than delete a variable. Note that this problem also affects RJ-type
algorithms (Dellaportas et al. 2002). On the other hand, Gibbs sampling (George and
McCulloch 1993) is not affected by this issue since the state of the lth chain is updated
by sampling from

[
p

(
γl,j = 1

∣∣y, γl,\j , τ
)]1/tl ∝ exp

{(
log p

(
y

∣∣∣γ(1)
l,j , τ

)
+ log p

(
γl,j = 1

∣∣γl,\j
))

/tl

}
,

(12)
where γl,\j indicates for the lth chain all the variables, but the jth, j = 1, . . . , p and
γ

(1)
l,j = (γl,1, . . . , γl,j−1, γl,j = 1, γl,j+1, . . . , γl,p)

T . The main problem related to Gibbs
sampling is the large number of models it evaluates if a full Gibbs cycle or any per-
mutation of the indices is implemented at each sweep. Each model requires the direct
evaluation, or at least the update, of the time consuming quantity S (γ), equation (7)
or (9), making practically impossible to rely solely on the Gibbs sampler when p is very
large. However, as sharply noticed by Kohn et al. (2001), it is wasteful to evaluate all
the p updates in a cycle because if pγl

is much smaller than p and given γl,j = 0, it is
likely that the sampled value of γl,j is again 0.

When p is large, we thus consider instead of the standard MC3 add/delete, swap
moves, a novel Fast Scan Metropolis-Hastings scheme, FSMH hereafter, specialised for
EMC/PT. The idea behind the FSMH move is to use an additional acceptance/rejection
step (which is very fast to evaluate) to choose the number of indices where to perform
the Gibbs-like step: the novelty of our FSMH sampler is that the additional probabil-
ity used in the acceptance/rejection step is based not only on the current chain model
size pγl

, but also on the temperature tl attached to the lth chain. To find an alter-
native scheme to a full Gibbs sampler and to save computational time, our strategy
is to evaluate the time consuming marginal likelihood (5) in no more than approx-
imately

⌊
θ̃
(1)
l,• (1/tl) (p− pγ) + θ̃

(0)
l,• (1/tl) pγ

⌋
times per cycle in the lth chain (assum-

ing convergence is reached), where θ̃
(1)
l,• (1/tl) is the averaged probability (over the set

{j : j ∈ γl,j = 0}) to select a variable to be added in the acceptance/rejection step which
is function of the temperature tl and similarly for θ̃

(0)
l,• (1/tl), the averaged probability

(over the set {j : j ∈ γl,j = 1}) of selecting a variable to be deleted (b·c indicates the in-
teger part). Since for chains attached to lower temperatures θ̃

(0)
l,• (1/tl) À θ̃

(1)
l,• (1/tl), the

algorithm proposes to update almost all binary indicators with value 1, while it selects
at random a group of approximately

⌊
θ̃
(1)
l,• (1/tl) (p− pγ)

⌋
binary indicators with value

0 to be updated. At higher temperatures since θ̃
(0)
l,• and θ̃

(1)
l,• become more similar, the

number of models evaluated in a cycle increases because much more binary indicators
with value 0 are updated. It turns out that our FSMH sampler is computationally less
demanding than a full Gibbs sampling on all γl,j and does not suffer from the problem
highlighted before for MC3 and RJ-type algorithms when p À pγl

. Full details of the
FSMH scheme are given in the Appendix A.1.1, while evaluation of it and comparison
with MC3 embedded in EMC are presented in Section 4.1.
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Global moves

Global moves are conceived to allow the algorithm to escape from local modes. To do
so they need to reach the right compromise between the boldness of the moves (distance
of the chains) and the efficiency (acceptance rate of the moves). Hence all the global
moves start with a carefully designed selection of the chains where the global operator
is applied.

Crossover operator

The crossover operator is aimed at swapping partial state of two different chains. The
first step of crossover move (selection step) consists of selecting the pair of chains (l, r) to
be operated on. We use renormalised Boltzmann weights to increase the chance that the
two selected chains will give rise, after the crossover, to a new configuration of the pop-
ulation with higher posterior probability. To be precise, we compute a probability equal
to the weight of the “Boltzmann probability”, pt (γl |τ ) = exp {f (γl |τ ) /t} /Ft, where
f (γl |τ ) = log p (y |γl, τ ) + log p (γl) is the log transformation of the full conditional
(10) assuming tl = 1 ∀l, l = 1, . . . , L, and Ft =

∑L
l=1 exp {f (γl |τ ) /t} for some specific

temperature t, and then rank all the chains according to this. Among the population of
chains, we identify a group L̃, 1 ≤ L̃ ≤ L, of chains with high Boltzmann weights. We
then overweight this subpopulation by assigning a positive but small probability to the
chains that do not belong to this group, and renormalise all the probabilities. Finally,
using these probabilities, we select at random without replacement from all chains, the
two chains where the crossover operator will be performed.

Suppose that two new latent binary vectors are then generated from the selected
chains according to some crossover operators described in the next paragraph. The
new proposed population of chains γ′ = (γ1, . . . , γ

′
l , . . . , γ

′
r, . . . , γL) is accepted with

probability

α (γ → γ′) = min
{

1,
exp {f (γ′l |τ ) /tl + f (γ′r |τ ) /tr}
exp {f (γl |τ ) /tl + f (γr |τ ) /tr}

Qt (γ′ → γ |τ )
Qt (γ → γ′ |τ )

}
, (13)

where Qt (γ → γ′ |τ ) is the proposal density which is defined as the product of the se-
lection probability and the crossover operator probability (see Liang and Wong (2000)).

In the following we will assume that four different crossover operators are selected at
random at every EMC sweep: 1-point crossover, uniform crossover, adaptive crossover
(Liang and Wong 2000) and a novel block crossover. Of these four moves, the uniform
crossover which “shuffles” the binary indicators along all the selected chains is expected
to have a low acceptance, but to be able to genuinely traverse regions of low posterior
probability. The block crossover essentially tries to swap a group of variables that are
highly correlated and can be seen as a multi-points crossover whose crossover points are
not random but defined from the correlation structure of the covariates. In practice the
block crossover is defined as follows: one variable is selected at random with probability
1/p, then the pairwise correlation ρ (Xj , Xj′) between the jth selected predictor and
each of the remaining covariates, j′ = 1, . . . , p, j′ 6= j, is calculated. We then retain for
the block crossover all the covariates with positive (negative) pairwise correlation with
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Xj such that |ρ (Xj , Xj′)| ≥ ρ0. The threshold ρ0 is chosen with consideration to the
specific problem, but we fixed it at 0.25. Evaluation of block crossover and comparisons
with other crossover operators are presented on a real data example in Section 4.1.

Exchange operator

The exchange operator can be seen as an extreme case of crossover operator, where
the first proposed chain receives the whole second chain state γ′l = γr, and vice versa.
In order to achieve a good acceptance rate, the exchange operator is usually applied
on adjacent chains in the temperature ladder, which limits its capacity for mixing. To
obtain better mixing, we implemented two different variations: the first one is based on
Jasra et al. (2007) and the related idea of delayed rejection (Green and Mira 2001); the
second, a bolder “all-exchange” move, is based on a precalculation of all the L (L− 1) /2
exchange acceptance rates between all chains pairs (Calvo 2005). Full relevant details
are presented in Appendix A.1.1. Both of these bold moves perform well in the real data
applications (see Section 4.1) and simulated examples (see Section 4.2) thus contributing
to the efficiency of the algorithm.

Temperature placement

As noted by Goswami and Liu (2007), the placement of the temperature ladder is
the most important ingredient in population based MCMC methods. We propose a
procedure for the temperature placement which has the advantage of simplicity while
preserving good accuracy. First of all, we fix the size L of the population. In doing this,
we are guided by several considerations: the complexity of the problem, i.e. E (pγ), the
size of the data and computational limits. We have experimented and we recommend to
fix L ≥ 3. Even though some of the simulated examples had pγ ' 20 (Section 4.2), we
found that L = 5 was sufficient to obtain good results. In our real data examples (Section
4.1), we used L = 4 guided by some prior knowledge on E (pγ). Secondly, we fix at an
initial stage, a temperature ladder according to a geometric scale such that tl+1/tl = b,
b > 1, l = 1, . . . , L with b relatively large, for instance b = 4. To subsequently tune
the temperature ladder, we then adopt a strategy based on monitoring the acceptance
rate of the delayed rejection exchange operator towards a target of 0.5 (Liu 2001; Jasra
et al. 2007) during a fixed burn-in period. After the burn-in the temperature ladder
stays fixed. Details of the implementation are reported in Appendix A.1.1

3.2 Adaptive Metropolis-within-Gibbs for τ

Various strategies can be used to avoid having to sample from the posterior distribution
of the variable selection coefficient τ . The easiest way is to integrate it out through
a Laplace approximation (Tierney and Kadane 1986) or using a numerical integration
such as quadrature on an infinite interval. We do not pursue these strategies and the
reasons can be summarised as follows. If the Laplace approximation is performed in
order to integrate out τ , it is required that every chain has its own value of the variable
selection coefficient τl. In this set-up, equilibrium in the product space is difficult to
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reach because the posterior distribution of γl depends, through the marginal likelihood
obtained using the Laplace approximation, on the chain specific value of the posterior
mode for τl, τ̂γl

. Since the strength of Xγl
to predict the response is weakened for chains

attached to high temperatures, it turns out that for these chains, τ̂γl
is likely to be close

to zero. When the variable selection coefficient is very small, the marginal likelihood
dependence on Xγl

decreases even further, see for instance (7), and chains attached to
high temperatures will experience a very unstable behaviour, making the convergence
in the product space hard to reach.

In this paper the convergence is reached in the product space p (τ)
∏L

l=1 [p (γl |y, τ )]1/tl ,
i.e. the whole population is conditioned on a value of τ common to all chains. This
strategy will alleviate the problems highlighted before allowing for faster convergence
and better mixing among the chains. The procedure just described comes with an ex-
tra cost, i.e. sampling the value of τ . However, this step is inexpensive in relation to
the cost required to sample γl, l = 1, . . . , L. There are several strategies that can be
used to sample τ from (11). We found useful to apply the idea of adaptive Metropolis-
within-Gibbs described in Roberts and Rosenthal (2009). Conditions for the asymptotic
convergence and ergodicity are guaranteed as we enforce the diminishing adaptive con-
dition, i.e. the transition kernel stabilises as the number of sweeps goes to infinity and
the bounded convergence condition, i.e. the convergence time of the kernel is bounded
in probability. In our set-up using an adaptive proposal to sample τ has several benefits;
amongst others it avoids the known problems faced by the Gibbs sampler when the prior
is proper, but relatively flat (Natarajan and McCulloch 1998) as can happen for Z-S
priors when n is large or for the independent case considered by Bae and Mallick (2004).
Moreover, given an upper limit on the number of sweeps, the adaptation guarantees a
better exploration of the tails of p (τ |y ) than with a fixed proposal. For details of the
implementation and discussion of conditions for convergence, see Appendix A.1.2.

3.3 ESS algorithm

In the following, we refer to our proposed algorithm, Evolutionary Stochastic Search
as ESS. If g-priors are chosen the algorithm is denoted as ESSg, while we use ESSi
if independent priors are selected (the same notation is used when τ is fixed or given
a prior distribution). Without loss of generality, we assume that the response vector
and the design matrix have both been centred and, in the case of independent priors,
given the lack of any autoscaling feature, we also assume that the design matrix is
rescaled. Based on the two full conditionals (10) and (11) and the local and global
moves introduced earlier, our ESS algorithm can be summarised as follows.

• Given τ , sample the population’s states γ from the two steps:

(i) With probability 0.5 perform local move and with probability 0.5 apply at ran-
dom one of the four crossover operators: 1-point, uniform, block and adaptive
crossover. If local move is selected, use FSMH sampling scheme independently
for each chain. Moreover every 100 sweeps apply on the first chain a complete
scan by a Gibbs sampler.
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(ii) Perform the delayed rejection exchange operator or the all-exchange operator
with equal probability. During the burn-in, only select the delayed rejection
exchange operator.

• When τ is not fixed but has a prior p (τ), given the latent configuration γ =
(γ1, . . . , γL), sample τ from an adaptive Metropolis-within-Gibbs sampling (Sec-
tion 3.2).

From a computational point of view, we used the same fast form for updating S (γ)
as Brown et al. (1998), based on the QR–decomposition. Besides its numerical benefits,
QR– decomposition can deal with the case pγ ≥ n. This avoids having to restrict the
search to models with pγ < n, and helps mixing during the burn-in phase.

4 Performance of ESS

4.1 Real data examples

Regulation of gene expression

The first real data example is an application of linear regression to investigate ge-
netic regulation. To discover the genetic causes of variation in the expression (i.e.
transcription) of genes, gene expression data are treated as a quantitative phenotype
while genotype data (SNPs) are used as predictors, a type of analysis known as ex-
pression Quantitative Trait Loci (eQTL). In this context it is important to distinguish
cis-eQTLs, where the genetic control points (SNPs) are located close to the location
of the transcribed gene, from trans-acting eQTLs which lie on a different chromosome.
The latter are a more complex form of regulation which is of major interest, but rather
hard to detect. Besides SNPs that are located close to the transcript, we only expect
a few additional control points associated with the variation of gene expression for a
particular transcript (Hübner et al. 2005). Given this prior biological knowledge on the
genetic regulation, in this example we assume E (pγ) = 4 and V (pγ) = 2.

Here we focus on the ability of ESS to find a parsimonious set of predictors in an
animal data set (Hübner et al. 2005), where the number of observations, n = 29, is small
with respect to the number of covariates p = 1, 421. This situation, where n ¿ p, is quite
common in animal experiments since environmental sources of variation are controlled
as well as the biological diversity of the sample. For illustration, we report the analysis
of one gene expression response, DEXH58, a negative regulator of host innate immune
defense against viruses located in chromosome 17. We apply ESSg with and without the
hyperprior on τ , see Table 1– eQTL. In the former case, thanks to the adaptive proposal,
the Markov chain for τ mixes very well reaching an overall acceptance rate which is close
to the target value 0.44 as discussed in Roberts and Rosenthal (2009). Convergence is
not a problem since the trace of the proposal’s standard deviation stabilises quickly and
well inside the bounded conditions.

In both cases a good mixing among the L = 4 chains is obtained (Figure 1, top
panels, ESSg with τ = 29). Although in the case depicted in Figure 1 with fixed τ ,
the convergence is reached in the product space

∏L
l=1 [p (γl |y )]1/tl , by visual inspection
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we see that each chain marginally reaches its equilibrium with respect to the others;
moreover, thanks to the automatic tuning of the temperature placement during the
burn-in, the distributions of the chains log posterior probabilities (assuming tl = 1
∀l, l = 1, . . . , L) overlap nicely, allowing effective exchange of information between the
chains. Table 1–eQTL, confirms that the automatic temperature selection works well
(with and without the hyperprior on τ) reaching an acceptance rate for the monitored
exchange (delayed rejection) operator close to the selected target of 0.50 which is in
agreement with the recommendation of Iba (2001). The all-exchange operator shows a
higher acceptance rate, while, in contrast to Jasra et al. (2007), the overall crossover
acceptance rate is reasonably high: in our experience the good performance of the
crossover operator is both related to the selection step (Section 3.1) and the new block
crossover which shows an acceptance rate far higher than the others. Finally the com-
putational time on the same desktop computer (see details in Appendix A.2.3) is rather
similar with or without the hyperprior τ , 28 and 30 minutes respectively for 25, 000
sweeps with 5, 000 as burn-in.

Looking at the output of ESS with variable τ , the best model visited has two eQTLs,
but there seems to be support also for three eQTLs (see Figure 2 (c)). Interestingly the
best model visited is a bigenic model with two trans-eQTLs in chromosome 15 which
are within 5 cM apart. The same area on chromosome 15 is also known to control
IRF7 gene which is the central hub of an inflammatory gene network. The presence
of additional visited polygenic models that point besides chromosome 15 locus, to loci
on chromosome 8 and 20 suggests a potential interaction of DEXH58 gene with other
genes involved in the innate immune inflammatory response.

The main difference among the two implementations of ESSg with and without a
hyperprior on τ is related to the posterior model size: when τ is fixed at τ = 29
(Unit Information Prior, Fernández et al. 2001), there is more uncertainty and support
for larger models, see Figure 2 (a). The best model visited (and the corresponding
R2

γ = 1 − S(γ)/yT y) is the same for both version of ESSg, but, when a hyperprior
on τ is implemented, the “stability index” which indicates how much the algorithm
persists on the first chain top 1, 000 (not unique) visited models ranked by the posterior
probability (Appendix A.2.3), shows a higher stability, see Table 1– eQTL. In this case,
having a data-driven level of shrinkage helps the search algorithm to better discriminate
among competing models.

Metabolomics Quantitative Trait Loci

Our second example is related to the application of model (1) in another genomics
example: 10, 000 SNPs are linked to metabolomics data (Dumas et al. 2007), an example
of a so-called mQTL experiment. The predictors come from a genome-wide analysis of
a candidate gene study for ALAT enzyme elevation in liver (Kindmark et al. 2008) with
the Mass Spectography metabolomics data derived from the same sample (Andersson
et al. 2009). A suitable dimension reduction of the spectral data is performed to divide
the spectra in regions or bins and log10-transformation is applied in order to normalise
the signal.

We present the key findings on the performance of ESS with regards to a particular
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Mode(pγ |y ) E (τ |y ) R2
γ
∗

R2
γ
∗∗

Stability

eQTL
ESSg, τ = 29 2 − 0.716 0.704 0.257
ESSg with p (τ) 2 20.576 0.716 0.689 0.099

mQTL
ESSg, τ = 50 2 − 0.843 0.843 ≈ 0
ESSg with p (τ) 2 63.577 0.843 0.843 ≈ 0

Crossover DR Exch. ALL Exch. Acc. rate τ Time (min.)

eQTL
ESSg, τ = 29 0.214 0.534 0.671 − 28
ESSg with p (τ) 0.243 0.585 0.711 0.438 30

mQTL
ESSg, τ = 50 0.214 0.514 0.669 − 302
ESSg with p (τ) 0.226 0.571 0.717 0.434 309

Table 1: Performance of ESSg with and without the hyperprior on τ for the first real
data example, eQTL analysis, and second example, mQTL analysis. R2

γ
∗ and R2

γ

∗∗

correspond to “R2
γ : max p (γ |y )” and “R2

γ : 1, 000 largest p (γ |y )” respectively. The
former indicates the coefficient of determination for the (first chain) best model visited
according to the posterior probability p (γ |y ), while the latter shows the average R2

γ

for the (first chain) top 1, 000 (not unique) visited models ranked by the posterior
probability. “Stability” is defined as the standard deviation of R2

γ for the (first chain)
top 1, 000 (not unique) visited models (smaller values indicate better performance of
the algorithm). In the bottom part of the Table, acceptance rate for specific moves
are given. “DR Exch.” and “ALL Exch.” stands for “delayed rejection exchange” and
“all-exchange” move respectively.

metabolite bin that discriminates between the disease status of the clinical trial’s par-
ticipants, but the same comments can be extended to the analysis of the whole data
set, where we regressed every metabolites bin versus the genotype data (n = 50 and
p = 10, 000). In this very challenging “large p, small n” case, we still found an efficient
mixing of the chains (see Table 1–mQTL). Note that for this case the posterior mean of
τ , 63.6, is a little larger than the Unit Information Prior, τ = n, although the influence
of the hyperprior is less important than in the previous real data example, see Figure 2
(b).

As expected in view of the very large number of predictors, in the mQTL example
the computational time is quite large, around 5 hours for 20, 000 sweeps after a burn-
in of 5, 000, but as shown in Table 1 by the “stability index” (≈ 0), we believe that
the number of iterations chosen exceeds what is required in order to visit faithfully the
model space. For such large data analysis tasks, parallelisation of the code could provide
big gains of computer time and would be ideally suited to our multiple chains approach.

When analysing the output of ESSg (assuming a priori E (pγ) = 5 and V (pγ) = 3), it
emerges that two SNPs are alternatively associated with a set of other SNPs in a bigenic
or polygenic manner (see Figure 2 (d)), suggesting that these SNPs could act as “pivot”
markers in the regulation of the metabolite variation. These two SNPs are located inside
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COBLL1 gene, chromosome 2, and CORIN gene, chromosome 4, respectively, with the
latter indirectly associated in genetic literature with various effects on liver function.
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Figure 1: Top panels: (a) trace plot of the log posterior probability, log p (γ |y ), and
(b) model size, pγ , across sweeps for the first real data example, eQTL analysis, using
ESSg with τ = 29 and FSMH as local move. Vertical dashed lines indicate the end of
the burn-in. Bottom panels: (c) trace plot of the log posterior probability when MC3

is used as a local move; (d) kernel densities of log p (γ |y ) for the retained chain in the
25 replicates of the analysis when only FSMH and only MC3 are used as a local move
respectively. Plot restricted to regions of high posterior probability.
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Figure 2: (a) Posterior model size for the first real data example, eQTL analysis: black
solid line for ESSg with τ fixed at 29 and black dashed line for ESSg with Z-S prior.
(b) Posterior model size for mQTL analysis, second real data example, using ESSg with
fixed and random τ . (c) Back lines: marginal posterior probability of inclusion for each
SNP derived by ESSg with a hyperprior on g for the first real data example, eQTL
analysis. From top to bottom: triangles (with different colours) indicate SNPs in the
first (blue), second (red), third (green) and forth (cyan) best visited model with the fifth
model equals to the null model (no triangles). Insertion magnifies a region spanning
100 cM (2040 – 2140) which helps to distinguish the genetic control points for the first
and second best visited model, where the blue triangles pinpoint two closely located
markers at chromosome 15 and similarly for the red triangles. (d) Back lines: marginal
posterior probability of inclusion for each SNP derived by ESSg with a hyperprior on g
for the second real data example, mQTL analysis. From top to bottom triangles (with
different colours) indicate SNPs in the first (blue), second (red), third (green), forth
(cyan) and fifth (magenta) best visited model.

Benefits of FSMH, block crossover and hyperprior on τ
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In the regulation of gene expression example, we also evaluate the superiority of
our ESS algorithm, and in particular the FSMH scheme and the block crossover, with
respect to more traditional EMC implementations illustrated for instance in Liang and
Wong (2000). Albeit we believe that using a wide portfolio of different moves enables any
searching algorithm to better explore complicated model spaces, we compared: (i) ESSg
with only FSMH as local move vs ESS with only MC3 as local move; (ii) ESSg with only
block crossover vs ESSg with only 1-point, only uniform and only adaptive crossover
respectively; iii) ESSg with and without a hyperprior on τ . To avoid dependency of
the results on the initialisation of the algorithm, we replicated the analysis 25 times.
Moreover, to make the comparison fair, in experiment (i) we run the two versions of
ESSg for a different number of sweeps (25, 000 and 350, 000 with 5, 000 and 70, 000
as burn-in respectively), but matching the number of models evaluated. Results are
presented in Table 2. We report here the main findings:

(i) over the 25 runs, ESSg with FSMH reaches the same top visited model 68% (17/25)
while ESSg with MC3 the same top model only 28%, with a fixed τ , and 88% and 40%
respectively with Z-S prior. This ability is extended to the top models ranked by the
posterior probability, data not shown, providing indirect evidence that the proposed
new move helps the algorithm to increase its predictive power. The great superiority
when FSMH scheme is implemented can be explained by comparing subplot (a) and
(c) in Figure 1: the exchange of information between chains for ESSg with MC3 as
local move when p > n (and p À pγ) is rather poor, negating the purpose of EMC.
ESSg with MC3 has more difficulties to reach convergence in the product space and,
in contrast to ESSg with FSMH, the retained chain does not easily escape from local
modes. This later point can be seen looking at Figure 1 (d) which magnifies the right
hand tail of the kernel density of log p (γ |y ) for the recorded chain, pulling together
the 25 runs: interestingly ESSg with FSMH is less “bumpy”, showing a better ability
to escape from local modes and to explore more efficiently the right tail.

(ii) Regarding the second comparison ESSg with only block crossover overall beats con-
stantly the other crossover operators in terms of best model visited (Table 2) and
has higher acceptance rate (Table 3), showing also a great capacity to accumulate
posterior mass as illustrated in Figure 3.

(iii) Regarding the hyperprior on τ , there is a better mixing (Table 2) and a higher
acceptance rate of global moves when a random τ is implemented (see Table 1 and
Table 3). As a final comment we stress that besides improving mixing of the chains,
a hyperprior on τ helps the search algorithm to focus in well supported models, as
it is apparent in Figure 2 (a).
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Version of ESSg τ = 29 p (τ)

Experiment (i) ESSg with only FSMH 68% 88%
ESSg with only MC3 28% 40%

Experiment (ii)

ESSg with only 1-point crossover 64% 80%
ESSg with only block crossover 80% 84%
ESSg with only uniform crossover 60% 84%
ESSg with only adaptive crossover 60% 76%

Table 2: Proportion of times different versions of ESSg reach the same top visited
model in the eQTL real data set with or without a hyperprior on τ in 25 replicates of
the analysis.

Version of ESSg τ = 29 p (τ)

Experiment (ii)

ESSg with only 1-point crossover 0.303 0.335
ESSg with only block crossover 0.482 0.501
ESSg with only uniform crossover 0.026 0.042
ESSg with only adaptive crossover 0 0.013

Table 3: Average acceptance rate of the crossover operator for different versions of ESSg
in 25 replicates of the analysis of the first real data example, eQTL analysis, with or
without a hyperprior on τ .
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Figure 3: Accumulated posterior mass as a function of the models recorded. Plot gen-
erated using 25 replicates of the analysis of the first real data example, eQTL analysis,
and normalised by the total mass found by ESSg, τ = 29, with only block crossover
move (ρ0 = 0.25). 1-point and uniform crossover accumulate around 90% of the total
mass accumulated by ESSg with only block crossover, while adaptive crossover only
85%.

4.2 Simulation study

We briefly report on a comprehensive study of the performance of ESS in a variety of
simulated examples as well as a comparison with SSS. To make comparison with SSS fair,
we use ESSi, the version of our algorithm which assumes independent priors, Σγ = τIpγ ,
with τ fixed at 1, the same prior setup specified in SSS for the regression coefficients.
Details of the simulated examples (6 set-ups) and how we conducted the simulation
experiment (25 replication of each set-up) are given in Appendix A.2. The rationale
behind the construction of the examples was to benchmark our algorithm against both
n > p and p > n cases, to use as building blocks intricate correlation structures that
had been used in previous comparisons by George and McCulloch (1993, 1997) and Nott
and Green (2004), as well as a realistic correlation structure derived from genetic data,
and to include elements of model uncertainty in some of the examples by using a range
of values of regression coefficients.

In our example we observe an effective exchange of information between the chains
(reported in Table 4) which shows good overall acceptance rates the global moves that we
have implemented. The dimension of the problem does not seem to affect the acceptance
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rates in Table 4, remarkably since values of p range from 60 to 1, 000 between the
examples. We also studied specifically the performance of the global moves (Table 5)
to scrutinise our temperature tuning and confirmed the good performance of ESSi with
good frequencies of swapping (not far from the case where adjacent chains are selected to
swap at random with equal probability) and good measures of overlap between chains.

In the same spirit of the real data example analysis, we also evaluate the superiority
of the FSMH scheme with respect to more traditional EMC implementations, i.e when
a MC3 local move is selected. While both versions of the search algorithm visit almost
the same top models ranked by the posterior probability, ESS persists more on the top
models.

All the examples were run in parallel with ESSi and SSS 2.0 (Hans et al. 2007) for
the same number of sweeps (22,000) and matching hyperparameters on the model size.
Comparison were made with respect to the marginal probability of inclusion as well as
the ability to reach models with high posterior probability and to persist in that region.
For a detailed discussion of all comparison, see Appendix A.2.3.

Overall the covariates with non-zero effects have high marginal posterior probability
of inclusion for ESSi in all the examples, see Figure 4. There is good agreement between
the two algorithms in general, with additional evidence on some examples (Figure 4 (c)
and (d)) that ESSi is able to explore more fully the model space and in particular
to find small effects, leading to a posterior model size that is close to the true one.
Measures of goodness of fit and stability, Table 6, are in good agreement between ESSi
and SSS. The comparison highlights that a key feature of SSS, its ability to move quickly
towards the right model and to persist on it, is accompanied by a drawback in having
difficulty to explore far apart models with competing explanatory power, in contrast to
ESSi (contaminated example set-up). Altogether ESSi shows a small improvement of
R2

γ , related to its ability to pick up some of the small effects that are missed by SSS.
Although it is difficult to compare the computational time between SSS and ESSi since
they are written in two different languages, it seems that ESSi is less influenced by the
number of simulated effects. To explore this point, we regressed the computational time
in the 6 set-ups with respect to p and pγ for both algorithms: while p has the same
effect in the computational time for SSS and ESSi, the effect of pγ in SSS is 30 times
bigger than in ESSi. Altogether our comparisons show that we have designed a fully
Bayesian MCMC-EMC sampler which is competitive with the effective search provided
by SSSi.
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Ex1 Ex2 Ex3 Ex4 Ex5 Ex6

n
p

120 300 120 120 200 120
60 30 60 300 1, 000 775

E (pγ) 5 10 20 5 5 5 5 5

Crossover 0.249 0.270 0.271 0.157 0.215 0.147 0.170 0.193
(0.021) (0.029) (0.036) (0.018) (0.022) (0.028) (0.023) (0.028)

DR Exch. 0.500 0.493 0.500 0.582 0.492 0.517 0.505 0.497
(0.040) (0.043) (0.040) (0.020) (0.071) (0.105) (0.013) (0.072)

Table 4: Mean and standard deviation in brackets of EMC acceptance rates across
replicates for ESSi with τ = 1. “DR Exch.” stands for “delayed rejection exchange”.

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6

n
p

120 300 120 120 200 120
60 30 60 300 1, 000 775

E (pγ) 5 10 20 5 5 5 5 5

Swap.

l = 1
l = 2
l = 3
l = 4
l = 5

0.157
0.250
0.220
0.240
0.142

0.137
0.232
0.220
0.252
0.160

0.110
0.204
0.223
0.280
0.182

0.065
0.185
0.255
0.293
0.201

0.160
0.271
0.245
0.215
0.110

0.180
0.276
0.223
0.206
0.112

0.201
0.300
0.231
0.182
0.083

0.214
0.316
0.231
0.167
0.070

Overlap.

l = 1, 2
l = 2, 3
l = 3, 4
l = 4, 5

1.360
1.570
1.400
1.100

1.600
1.570
1.290
0.992

2.101
1.600
1.050
0.690

2.680
0.870
0.600
1.251

1.350
1.430
2.111
4.131

0.733
1.021
1.329
1.503

0.569
0.913
1.491
2.304

0.526
0.893
1.696
2.499

Table 5: Swapping probability for ESSi with τ = 1 defined as the observed fre-
quency of successful swaps for each chain (including delayed rejection exchange and
all-exchange operators) averaged across replicates. Overlapping measure defined as
V (f (γl)) (1/tl+1 − 1/tl)

2, Liang and Wong (2000) with f (γl) = log p (y |γl )+log p (γl).
Target value for consecutive chains is O (1).
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Ex1 Ex2 Ex3 Ex4 Ex5 Ex6

n
p

120 300 120 120 200 120
60 30 60 300 1, 000 775

E (pγ) 5 10 20 5 5 5 5 5

ESSi,
τ=1

R2
γ
∗ 0.864 0.867 0.871 0.975 ≈ 1 0.962 0.703 0.997

(0.029) (0.027) (0.023) (0.003) (≈ 0) (0.011) (0.043) (0.005)

R2
γ

∗∗ 0.863 0.866 0.874 0.975 ≈ 1 0.957 0.689 0.997
(0.027) (0.026) (0.023) (0.003) (≈ 0) (0.014) (0.048) (0.003)

Stability 0.003 0.003 0.005 ≈ 0 (≈ 0) 0.005 0.015 0.002
(0.001) (0.002) (0.002) (≈ 0) (≈ 0) (0.004) (0.007) (0.002)

Time (min.) 6 6 7 16 18 166 338 202
(< 1) (< 1) (< 1) (< 1) (1) (32) (43) (40)

SSS

R2
γ
∗ 0.863 0.867 0.870 0.975 ≈ 1 0.956 0.577 0.997

(0.027) (0.025) (0.024) (0.003) (≈ 0) (0.016) (0.074) (0.004)

R2
γ

∗∗ 0.863 0.867 0.870 0.975 0.999 0.955 0.565 0.996
(0.027) (0.025) (0.024) (0.003) (≈ 0) (0.016) (0.078) (0.004)

Stability 0 0 ≈ 0 ≈ 0 ≈ 0 0.001 0.009 0.004
(0) (0) (≈ 0) (≈ 0) (≈ 0) (0.002) (0.015) (0.006)

Time (min.) 12 12 13 118 497 502 169 549
(1) (2) (2) (26) (75) (241) (81) (159)

Table 6: Comparison between ESSi with τ = 1 and SSS for the six simulated examples.
Standard deviation in brackets. R2

γ
∗ and R2

γ

∗∗
correspond to “R2

γ : max p (γ |y )” and
“R2

γ : 1, 000 largest p (γ |y )” respectively.

5 Discussion

The key idea in constructing an effective MCMC sampler for γ and τ is to add an
extra parameter, the temperature, that weakens the likelihood contribution and enables
escaping from local modes. Running parallel chains at different temperature is, on the
other hand, expensive and the added computational cost has to be balanced against the
gains arising from the various “exchanges” between the chains. This is why we focussed
on developing a good strategy for selecting the pairs of chains, using both marginal and
joint information between the chains, attempting bold and more conservative exchanges.
Combining this with an automatic tuning of the temperature ladder during burn-in is
one of the key element of our ESS algorithm. Using PT in this way has the potential
to be effective in a wide range of situations where the posterior space is multimodal.
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Figure 4: Median and interquartile range of the marginal posterior probability of in-
clusion (A.7) for Ex3, (a), Ex4, (b) and Ex5, (c), across replicates. Each graph is con-
structed as follows: bottom part, pairwise squared correlation ρ2 (Xj , Xj′), j = 1, . . . , p,
between predictors for one selected replicate, grey scale indicates different values of
squared correlation; blue left and red right triangles, median of p (γj = 1 |y ) across
replicates for ESSi with τ = 1 and SSS respectively; vertical blue solid lines and vertical
red dashed lines, interquartile range of p (γj = 1 |y ) across replicates for ESSi and SSS
respectively; upper and lower green triangles, simulated models. Selected replicate of
Ex6, (d), shows marginal posterior probability of inclusion (blue left and red right tri-
angles for ESSi τ = 1 and SSS respectively). Marginal posterior probability of inclusion
lower than 0.025 not shown.

When a model with a prior on the variable selection coefficient τ is preferred, the
updating of τ itself present no particular difficulties and is computationally inexpensive.
Moreover, using an adaptive sampler makes the algorithm self contained without any
time consuming tuning of the proposal variance. This latter strategy works perfectly
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well both in the g-prior and independent prior case as illustrated in Sections 4.1 and
4.2. Our current implementation does not make use of the output of the heated chains
for posterior inference once the temperature placement is fixed at the end of the burn-in
period. While it is not difficult to derive an overall marginal posterior probability of
inclusion as the convex combination of the chain specific marginal probabilities of inclu-
sion following the idea of Importance Tempering of Gramacy et al. (2010), investigating
the potential gains in variance reduction that could be achieved is an area for further
exploration, which is beyond the scope of the present work.

In summary in order to achieve a faithful exploration of the posterior model space
in Bayesian variable selection, we recommend a parallel chain implementation with
an automatic tuning of the temperature placement, FSMH as a local move and the
all-exchange operator along with the block crossover as global moves. Moreover a hy-
perprior on τ is advisable in order to improve the mixing and the acceptance rate of
the global moves as well as to discriminate among competing models.

Our approach has been applied so far to linear regression with univariate response
y. An interesting generalisation is that of a multidimensional n × q response Y and
the identification of regressors that jointly predict the Y Brown et al. (1998). Much
of our set-up and algorithm carries through without difficulties and we have already
implemented our algorithm in this framework in a challenging case study in genomics
with multidimensional outcomes (Petretto et al. 2010).

Appendix

A.1 Technical details of EMC implementation

In this section we will describe some technical details omitted from the main text and
related to the sampling schemes we used for the population of binary latent vectors γ
and the selection coefficient τ .

A.1.1 EMC sampler for γ

Local move: FSMH scheme

Let γl,j , l = 1, . . . , L and j = 1, . . . , p to denote the jth latent binary indicator in the lth
chain. As in Kohn et al. (2001), let γ

(1)
l,j = (γl,1, . . . , γl,j−1, γl,j = 1, γl,j+1, . . . , γl,p)

T and

γ
(0)
l,j = (γl,1, . . . , γl,j−1, γl,j = 0, γl,j+1, . . . , γl,p)

T . Furthermore let L
(1)
l,j ∝ p

(
y

∣∣∣γ(1)
l,j , τ

)

and L
(0)
l,j ∝ p

(
y

∣∣∣γ(0)
l,j , τ

)
and finally θ

(1)
l,j = p

(
γl,j = 1

∣∣γl,\j
)

and θ
(0)
l,j = 1− θ

(1)
l,j . From
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(6) it is easy to prove that

θ
(1)
l,j = p

(
γl,j = 1

∣∣γl,\j
)

=
pγl

+ aω − 1
p + aω + bω − 1

, (A.1)

where pγl
is the current model size for the lth chain. Using the above equation, for

γl,j = 1 the normalised version of (12) can be written as

[
p

(
γl,j = 1

∣∣y, γl,\j , τ
)]1/tl =

θ
(1)
l,j

1/tl

L
(1)
l,j

1/tl

Sl,j (1/tl)
, (A.2)

where Sl,j (1/tl) = θ
(1)
l,j

1/tl

L
(1)
l,j

1/tl

+ θ
(0)
l,j

1/tl

L
(0)
l,j

1/tl

with
[
p

(
γl,j = 0

∣∣y, γl,\j , τ
)]1/tl

defined similarly. Hence if θ
(1)
l,j

1/tl

is very small, then
[
p

(
γl,j = 1

∣∣y, γl,\j , τ
)]1/tl is

small as well. Therefore for the Gibbs sampler with a beta-binomial prior on the model

space, the posterior probability of γl,j = 1 depends crucially on θ
(1)
l,j

1/tl

.

In the following we derive a Fast Scan Metropolis-Hastings scheme specialised for
Evolutionary Monte Carlo or parallel tempering. We define
Ql,j (1 → 0) = Q

(
γ

(1)
l,j → γ

(0)
l,j

)
as the proposal probability to go from 1 to 0 and

Ql,j (0 → 1) the proposal probability to go from 0 to 1 for the jth variable in the
lth chain. Moreover using the notation introduced before, the Metropolis-within-Gibbs
version of (12) to go from 0 to 1 in the EMC local move is

αMwG
l,j (0 → 1) = min



1,

θ
(1)
l,j

1/tl

L
(1)
l,j

1/tl

θ
(0)
l,j

1/tl

L
(0)
l,j

1/tl

Ql,j (1 → 0)
Ql,j (0 → 1)



 (A.3)

with a similar expression for αMwG
l,j (1 → 0). We first introduce the following Proposition

which is useful for the calculation of the acceptance probability in the FSMH scheme
and to highlight the role of the prior density in (A.2). The proof is omitted since it is
easy to check.

Proposition 1. The following three conditions are equivalent: a) L
(1)
l,j

1/tl
/

L
(0)
l,j

1/tl ≥ 1 ;

b) L
(1)
l,j

1/tl
/

S̃l,j (1/tl) ≥ 1 where S̃l,j (1/tl) = θ̃
(1)
l,j (1/tl) L

(1)
l,j

1/tl

+ θ̃
(0)
l,j L

(0)
l,j

1/tl

is the

convex combination of the marginal likelihood L
(1)
l,j

1/tl

and L
(0)
l,j

1/tl

with weights

θ̃
(1)
l,j (1/tl) = θ

(1)
l,j

1/tl

/(
θ
(1)
l,j

1/tl

+ θ
(0)
l,j

1/tl

)
and

θ̃
(0)
l,j (1/tl) = 1− θ̃

(1)
l,j (1/tl); c)L

(0)
l,j

1/tl
/

S̃l,j (1/tl) < 1 .

The FSMH scheme can be seen as a random scan Metropolis-within-Gibbs algorithm
where the number of evaluations is linked to the prior/current model size and the
temperature attached to the chain. The computation requirement for the additional
acceptance/rejection step is very modest since the normalised tempered version of (A.1)
is used.
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Proposition 2. Let l = 1, . . . , L, j = 1, . . . , p (or any permutation of them),
QFSMH

l,j (0 → 1) = θ̃
(1)
l,j (1/tl) and QFSMH

l,j (1 → 0) = θ̃
(0)
l,j (1/tl) with θ̃

(0)
l,j (1/tl) = 1 −

θ̃
(1)
l,j (1/tl). The acceptance probabilities are

αFSMH
l,j (0 → 1) =





1 if L
(1)
l,j

1/tl

/
L

(0)
l,j

1/tl ≥ 1

L
(1)
l,j

1/tl

/
L

(0)
l,j

1/tl

if L
(1)
l,j

1/tl

/
L

(0)
l,j

1/tl

< 1
(A.4)

αFSMH
l,j (1 → 0) =





1 if L
(0)
l,j

1/tl

/
L

(1)
l,j

1/tl ≥ 1

L
(0)
l,j

1/tl

/
L

(1)
l,j

1/tl

if L
(0)
l,j

1/tl

/
L

(1)
l,j

1/tl

< 1
(A.5)

The above sampling scheme works as follows. Given the lth chain, if γlj = 0 (and
similarly for γlj = 1), it proposes the new value from a Bernoulli distribution with
probability θ̃

(1)
l,j (1/tl): if the proposed value is different from the current one, it evaluates

(A.4) (and similarly A.5) otherwise it selects a new covariate.

Finally it can be proved that the Gibbs sampler is more efficient than the FSMH
scheme, i.e. for a fixed number of iterations, Gibbs sampling MCMC standard error
is lower than for FSMH sampler. However the Gibbs sampler is computationally more
expensive so that, if p is very large, as described in Kohn et al. (2001), FSMH scheme
becomes more efficient per floating point operation.

Global move: exchange operator

The exchange operator can be seen as an extreme case of crossover operator, where
the first proposed chain receives the whole second chain state γ′l = γr, and the second
proposed chain receives the whole first state chain γ′r = γl, respectively.

In order to achieve a good acceptance rate, the exchange operator is usually applied
on adjacent chains in the temperature ladder, which limits its capacity for mixing. To
obtain better mixing, we implemented two different variations: the first one is based on
Jasra et al. (2007) and the related idea of delayed rejection (Green and Mira 2001); the
second one on Gibbs distribution over all possible chains pairs (Calvo 2005).

1. The delayed rejection exchange operator tries first to swap the state of the chains
that are usually far apart in the temperature ladder, but, once the proposed move
has been rejected, it performs a more traditional (uniform) adjacent pair selection,
increasing the overall mixing between chains on one hand without drastically reduc-
ing the acceptance rate on the other. However its flexibility comes at some extra
computational costs and in particular the additional evaluation of the pseudo move
necessary to maintain detailed balance (Green and Mira 2001). Details are reported
below.
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Suppose two chains are selected at random, l and r with l 6= r, in order to swap
their binary latent vector. Then, given that γ′l = γr, γ′r = γl and Qt (γ → γ′) =
Qt (γ′ → γ), (13) reduces to

α1 (γ → γ′) = min
{

1,
exp {f (γr |τ ) /tl + f (γl |τ ) /tr}
exp {f (γl |τ ) /tl + f (γr |τ ) /tr}

}
.

Since the two chains are selected at random, the above acceptance probability de-
creases exponentially with the difference |1/tl − 1/tr| and therefore most of the pro-
posed moves are rejected. If rejected, a delayed rejection-type move is applied be-
tween two random adjacent chains, with l the first one and s, |l − s| = 1, the second
one, giving rise to the new acceptance probability

α2 (γ → γ′′) = min
{

1,
exp {f (γs |τ ) /tl + f (γl |τ ) /ts}
exp {f (γl |τ ) /tl + f (γs |τ ) /ts}

1− α1 (γ′′ → γ∗)
1− α1 (γ → γ′)

}
,

where the pseudo move γ∗ is necessary in order to maintain the detailed balance
condition (Green and Mira 2001).

2. Alternatively, we attempt a bolder “all-exchange” operator. Swapping the state
of two chains that are far apart in the temperature ladder speeds up the con-
vergence of the simulation since it replaces several adjacent swaps with a single
move. However, this move can be seen as a rare event whose acceptance prob-
ability is low and unknown. Since the full set of possible exchange moves is fi-
nite and discrete, it is easy and computationally inexpensive to calculate all the
L (L− 1) /2 exchange acceptance rates between all chains pairs, inclusive the rare
ones, p̃l,r = exp {(f (γr |τ )− f (γl |τ )) (1/tl − 1/tr)}. To maintain detailed balance
condition, the possibility not to perform any exchange (rejection) must be added
with un-normalised probability one. Finally the chains whose states are swopped are
selected at random with probability equal to

ph =
p̃h∑1+L(L−1)/2

h=1 p̃h

, (A.6)

where in (A.6) each pair (l, r < l) is denoted by a single number h, p̃h = p̃l,r, including
the rejection move, h = 1.

Temperature placement

First we select the number L of chains close to the complexity of the problem, i.e.
E (pγ), although the size of the data and computational limits need to be taken into
account. Secondly, we fix a first stage temperature ladder according to a geometric scale
such that tl+1/tl = b, b > 1, l = 1, . . . , L with b relatively large, for instance b = 4.
Finally, we adopt a strategy similar to the one described in Roberts and Rosenthal
(2009), but restricted to the burn-in stage, monitoring only the acceptance rate of the
delayed rejection exchange operator. After the kth “batch” of EMC sweeps, to be
chosen but usually set equal to 100, we update bk, the value of the constant b up to
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the kth batch, by adding or subtracting an amount δb such that the acceptance rate of
the delayed rejection exchange operator is as close as possible to 0.50 (Liu 2001; Jasra
et al. 2007) bk+1 = 2log2 bk±δb . Specifically the value of δb is chosen such that at the
end of the burn-in period the value of b can be 1. To be precise, we fix the value of δb

as log2 (b1) /K̃, where b1 is the first value assigned to the geometric ratio and K̃ is the
total number of batches in the burn-in period.

A.1.2 Adaptive Metropolis-within-Gibbs for τ

Since τ is defined on the real positive axis we propose the new value of τ on the logarithm
scale. In particular we use as proposal the normal distribution centred at the current
value of log (τ) in the g-prior and independent prior case. The variance of the proposal
distribution is controlled as illustrated in Roberts and Rosenthal (2009): every 100 EMC
sweeps, the same value of sweeps used in the temperature placement, we monitor the
acceptance rate of the Metropolis-within-Gibbs algorithm: if it is lower (higher) than
the optimal acceptance rate, i.e. 0.44, a constant δτ (k) is added (subtracted) to lsk, the
log standard deviation of the proposal distribution in the kth batch of EMC sweeps.
The value of the constant to be added or subtracted is rather arbitrary, but we found
useful to fix it as |ls1 − 5| /K̃, where K̃ is the total number of batches in the burn-in
period: during the burn-in the log standard deviation should be able to reach any values
at a distance ±5 in log scale from the initial value of ls1 usually set equal to zero. The
diminishing adaptive condition is obtained imposing δτ (k) = min{|ls1 − 5| /K̃, k−1/2},
where k is the current number of batches, including the burn-in. To ensure the bounded
convergence condition we follow Roberts and Rosenthal (2009), restricting each lsk to
be inside [M1,M2] and we fix them equal to M1 = −10 and M2 = 10 respectively. In
practice these bounds do not create any restriction since the sequence of the standard
deviations of the proposal distribution stabilises almost immediately, indicating that
the transition kernel converges in a bounded number of batches.

A.2 Performance of ESS: Simulation study

In this section we report in details on the performance of ESS in a variety of simulated
examples. Main conclusions are summarised in the Section 4.2.

Firstly we analyse the simulated examples with ESSi the version of our algorithm
which assumes independent priors, Σγ = τIpγ , so as to enable comparisons with SSS
which also implements an independent prior. Moreover, in order to make to comparison
with SSS fair, in the simulation study only the first step of the algorithm described in
Section 3.3 is performed, with τ fixed at 1. As in SSS, standardisation of the covariates
is done before running ESSi. We run ESSi and SSS 2.0 (Hans et al. 2007) for the same
number of sweeps (22,000) and with matching hyperparameters on the model size.

Secondly, to discuss the mixing properties of ESS when a prior p (τ) is defined on τ ,
we implement both the g-prior and independent prior set-up for a particular simulated
experiment. To be precise in the former case we will use the Zellner-Siow priors (8), and
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for the latter we will specify a proper but diffuse exponential distribution as suggested
by Bae and Mallick (2004).

A.2.1 Simulated experiments

We apply ESS with independent priors to an extensive and challenging range of simu-
lated examples with τ fixed at 1: the first three examples (Ex1-Ex3) consider the case
n > p while the remaining three (Ex4-Ex6) have p > n. Moreover in all examples,
except the last one, we simulate the design matrix, creating more and more intricated
correlation structures between the covariates in order to test the proposed algorithm
in different and increasingly more realistic scenarios. In the last example, we use, as
design matrix, a genetic region spanning 500-kb from the HapMap project (Altshuler
et al. 2005).

Simulated experiments Ex1-Ex5 share in common the way we build X. In order
to create moderate to strong correlation, we found useful referring to two simulated
examples in George and McCulloch (1993, 1997): throughout we call X1 (n × 60) and
X2 (n× 15) the design matrix obtained from these two examples. In particular the jth
column of X1, indicated as X(1)j , is simulated as X(1)j = X∗

j + Z, where X∗
1 , . . . , X∗

60

iid ∼ Nn (0, 1) independently form Z ∼ Nn (0, 1), inducing a pairwise correlation of
0.5. X2 is generated as follows: firstly we simulated Z1, . . . , Z15 iid ∼ Nn (0, 1) and
we set X(2)j = Zi + 2Zj for j = 1, 3, 5, 8, 9, 10, 12, 13, 14, 15 only. To induce strong
multicollinearity, we then set X(2)2 = X(2)1 + 0.15Z2, X(2)4 = X(2)3 + 0.15Z4, X(2)6 =
X(2)5 + 0.15Z6, X(2)7 = X(2)8 + X(2)9−X(2)10 + 0.15Z7 and X(2)11 = X(2)14 + X(2)15−
X(2)12 − X(2)13 + 0.15Z11. A pairwise correlation of about 0.998 between X(2)j and
X(2)j+1 for j = 1, 3, 5 is introduced and similarly strong linear relationship is present
within the sets

(
X(2)7, X(2)8, X(2)9, X(2)10

)
and

(
X(2)11, X(2)12, X(2)13, X(2)14, X(2)15

)
.

Then, as in Nott and Green (2004) Example 2, more complex structures are created
by placing side by side combinations of X1 and/or X2, with different sample size. We
will vary the number of samples n in X1 and X2 as we construct our examples. The
levels of β are taken from the simulation study of Fernández et al. (2001), while the
number of true effects, pγ , with the exception of Ex3, varies from 5 to 16. Finally the
simulated error variance ranges from 0.052 to 2.52 in order to vary the level of difficulty
for the search algorithm. Throughout we only list the non-zero βγ and assume that
β\γ = 0T . The six examples can be summarised as follows:

Ex1: X = X1 is a matrix of dimension 120 × 60, where the responses are simulated
from (1) using α = 0, γ = (21, 37, 46, 53, 54)T , βγ = (2.5, 0.5,−1, 1.5, 0.5)T , and
ε ∼ N

(
0, 22I120

)
. In the following we will not refer to the intercept α any more

since, as described in Section 3.3 in the paper, we consider y centred and hence
there is no difference in the results if the intercept is simulated or not. This is the
simplest of our example, although, as reported in George and McCulloch (1993)
the average pairwise correlation is about 0.5, making it already hard to analyse
by standard stepwise methods.
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Ex2: This example is taken directly from Nott and Green (2004), Example 2, who
first introduce the idea of combining simpler “building blocks” to create a new
matrix X: in their example X =

[
X

(1)
2 X

(2)
2

]
is a 300 × 30 matrix, where X

(1)
2

and X
(2)
2 are of dimension 300 × 15 and have each the same structure as X2.

Moreover γ = (1, 3, 5, 7, 8, 11, 12, 13)T , βγ = (1.5, 1.5, 1.5, 1.5,−1.5, 1.5, 1.5, 1.5)T

and ε ∼ N
(
0, 2.52I300

)
. We chose this example for two reasons: firstly, since the

correlation structure in X2 is very involved, we test the proposed algorithm under
strong and complicated correlations between the covariates; secondly, since y is
not simulated from the second “block”, we are interested to see if the proposed
algorithm does not select any variable that belongs to the second group.

Ex3: As in George and McCulloch (1993), Example 2, X = X1, is a 120 × 60 ma-
trix, β = (β1, . . . , β60)

T , (β1, . . . , β15) = (0, . . . , 0), (β16, . . . , β30) = (1, . . . , 1),
(β31, . . . , β45) = (2, . . . , 2), (β46, . . . , β60) = (3, . . . , 3) and ε ∼ N

(
0, 22I120

)
. The

motivation behind this example is to test the strength of the proposed algorithm
to select a subset of variables which is large with respect to p while preserving the
ability not to choose any of the first 15 variables.

Ex4: The design matrix X, 120× 300, is constructed as follows: firstly we create a new
120× 60 “building block”, X3, combining X2 and a smaller version of X1, X∗

1 , a
120 × 45 matrix simulated as X1, such that X3 = [X2X

∗
1 ] (dimension 120 × 60).

Secondly we place side by side five copies of X3, X =
[
X

(1)
3 X

(2)
3 X

(3)
3 X

(4)
3 X

(5)
3

]
:

the new design matrix alternates blocks of covariates of high and complicated cor-
relation, as in George and McCulloch (1997), with regions where the correlation is
moderate as in George and McCulloch (1993). We simulate the response selecting
16 variables from X,
γ = (1, 11, 30, 45, 61, 71, 90, 105, 121, 131, 150, 165, 181, 191, 210, 225)T such that
every pair belongs alternatively to X2 or X1. We simulate y using
βγ = (2,−1, 1.5, 1, 0.5, 2,−1, 1.5, 1, 0.5, 2,−1,−1, 1.5, 1, 0.5)T and
ε ∼ N

(
0, 2.52I120

)
. This example is challenging in view of the correlation struc-

ture, the number of covariates p > n and the different levels of the effects.

Ex5: This is the most challenging example and it is based on the idea of contaminated
models. The matrix X, 200× 1000, is
X =

[
X

(1)
3 X

(2)
3 X

(3)
3 X∗∗

1 X
(4)
3 X

(5)
3 X

(6)
3 X

(7)
3 X

(8)
3

]
, with X∗∗

1 , a 200 × 520 larger

version of X1. We partitioned the responses such that y = [yT
1 yT

2 ]T : y1 is simulated
from “model 1”
(γ1 = (701, 730, 745, 763, 790, 805, 825, 850, 865, 887) and
β1

γ = (2,−1, 1.5, 1, 0.5, 2,−1, 1.5, 2,−1)) while y2 is simulated from “model 2”
(γ2 = (1, 38, 63, 98, 125) and β2

γ = (2,−1, 1.5, 1, 0.5)). Finally, fixing
ε ∼ N

(
0, 0.052I200

)
and the sample size in the two models such that y1 and y2

are vectors of dimension 160 × 1 and 40 × 1 respectively, y is retained if, given
the sampling variability, we find R2

γ1 ≥ 0.6 and R2
γ1/8 ≤ R2

γ2 ≤ R2
γ1/10: in

this way we know that “model 1” accounts for most of the variability of y, but
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without a negligible effect for “model 2”. In this example, we measure the ability
of the proposed algorithm to recognise the most promising model and therefore
being robust to contaminations. However since ESS can easily jump between local
modes we are also interested to see if “model 2” is selected.

Ex6: The last simulated example is based on phased genotype data from HapMap
project (Altshuler et al. 2005), region ENm014, Yoruba population: the data
set originally contained 1,218 SNPs (Single Nucleotide Polymorphism) for 120
chromosomes, but after eliminating redundant variables, the design matrix re-
duced to 120 × 775. While in the previous examples a “block structure” of
correlated variables is artificially constructed, in this example blocks of link-
age disequilibrium (LD) derive naturally from genetic forces, with a slow de-
cay of the level of pairwise correlation between SNPs. Finally we chose γ =
(50, 75, 140, 200, 300, 400, 500, 650, 700, 770)T such that the effects are visually in-
side blo-cks of LD, with their size simulated from βγ ∼ N

(
0, 32I10

)
with ε ∼

N
(
0, 0.102I120

)
. Since the simulated effects can range roughly between (−6, 6),

this will allow us to test also the ability of ESSi to select small effects.

We conclude this section by reporting how we conducted the simulation experiment:
every example from Ex1 to Ex6 has been replicated 25 times and the results presented
for example Ex1 to Ex5 are averaged over the 25 replicates. For Ex6 the effects size
change so average across replicated is only done for the mixing properties. ESSi with
τ =1 was applied to each example/sample, recording the visited sequence of γ1 for
20, 000 sweeps after a burn-in of 2, 000 required for the automatic tuning of the tem-
perature placement, Section 3.1. We analysed all examples setting E (pγ) = 5 with
V (pγ) = E (pγ) (1− E (pγ) /p) which corresponds to a binomial prior over pγ . In order
to establish the sensitivity of the proposed algorithm to the choice of E (pγ) we also
analysed Ex1 fixing E (pγ) = 10 and 20. Moreover in all the examples we chose L = 5
with the starting value of γ chosen at random. The remaining two hyperparameters to
be fixed, namely aσ and bσ, are set equal to aσ = 10−10 and bσ = 10−3 as in Kohn et al.
(2001) which corresponds to a relative uninformative prior.

A.2.2 Mixing properties of ESSi

In this section we report some stylised facts about the performance of the ESSi with
τ fixed at 1. As expected, the chains attached to higher temperatures shows more
variability. Albeit the convergence is reached in the product space

∏L
l=1 [p (γl |y )]1/tl ,

by visual inspection of the trace of log(p (γl |y )) (tl = 1 ∀l, l = 1, . . . , L) each chain
marginally reaches its equilibrium with respect to the others; moreover, thanks to the
automatic tuning of the temperature placement during the burn-in, the distributions of
their log posterior probabilities overlap nicely, allowing effective exchange of information
between the chains.

This effective exchange of information is demonstrated in Table 4 which shows good
overall acceptance rates for the collection of moves that we have implemented. The
dimension of the problem does not seem to affect the acceptance rate of the (delayed
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rejection) exchange operator which stays very stable and close to the target: for instance
in Ex4 (p = 300) and Ex6 (p = 775) the mean and standard deviation of the acceptance
rate are 0.517 (0.105) and 0.497 (0.072) while in Ex5 (p = 1, 000) we have 0.505 (0.013):
the higher variability in Ex4 being related to the model size pγ . With regards to the
crossover operators, again we observe stability across all the examples. Moreover, in
contrast to Jasra et al. (2007), when p > n, the crossover average acceptance rate across
the five chains is quite stable between 0.147, Ex4, and 0.193, Ex6 (with the lower value
in Ex4 here again due to pγ): within our limited experiments, we believe that the good
performance of crossover operator is related to the selection operator and the new block
crossover, see Section 3.1.

Some finer tuning of the temperature ladder could still be performed as there seems
to be an indication that fewer global moves are accepted with the higher temperature
chain, see Table 5, where swapping probabilities for each chain are indicated. Note that
the observed frequency of successful swaps is not far from the case where adjacent chains
are selected to swap at random with equal probability. Other measures of overlapping
between chains (Liang and Wong 2000; Iba 2001), based on a suitable index of variation
of f (γl) = log p (y |γl )+ log p (γl) across sweeps, confirm the good performance of ESSi.
Again some instability is present in the high temperature chains, see in Table 5 the
overlapping index between chains 3, 4 and 4, 5 in Example 3 to 6.

In Ex1, we also investigate the influence of different values of the prior mean of the
model size. We found that the average (standard deviation in brackets) acceptance rate
across replicates for the delayed rejection exchange operator ranges from 0.493 (0.043)
to 0.500 (0.040) for different values of the prior mean on the model size, while the accep-
tance rate for the crossover operator ranges from 0.249 (0.021) to 0.271 (0.036). This
strong stability is not surprising because the automatic tuning modifies the temperature
ladder in order to compensate for E (pγ).

A.2.3 Performance of ESSi and comparison with SSS

Performance of ESSi

We conclude this section by discussing in details the overall performance of ESSi with
respect to the selection of the true simulated effects. As a first measure of performance,
we report for all the simulated examples the marginal posterior probability of inclusion
as described in George and McCulloch (1997) and Hans et al. (2007). In the following,
for ease of notation, we drop the chain subscript index and we exclusively refer to the
first chain. To be precise, we evaluate the marginal posterior probability of inclusion as

p (γj = 1 |y ) ' C−1
∑

t=1,...,T

1(
γ
(t)
j =1

) (γ) p
(
y

∣∣∣γ(t)
)

p
(
γ(t)

)
(A.7)

with C =
∑

t=1,...,T p
(
y

∣∣γ(t)
)
p

(
γ(t)

)
and T the number of sweeps after the burn-in.

The posterior model size is defined as
p (pγ |y ) ' C−1

∑
t=1,...,T 1(|γ(t)|=pγ) (γ) p

(
y

∣∣γ(t)
)
p

(
γ(t)

)
, with C as before. Besides
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plotting the marginal posterior inclusion probability (A.7) averaged across sweeps and
replicates for our simulated examples, we will also compute the interquartile range of
(A.7) across replicates as a measure of variability.

In order to thoroughly compare the proposed ESS algorithm to SSS (Hans et al.
2007), we present also some other measures of performance based on p (γ |y ) and R2

γ :
first we rank p (γ |y ) in decreasing order and record the indicator γ that corresponds to
the maximum and 1, 000 largest p (γ |y ) (after burn-in). Given the above set of latent
binary vectors, we then compute the corresponding R2

γ leading to “R2
γ : max p (γ |y )” as

well as the mean R2
γ over the 1, 000 largest p (γ |y ), “R2

γ : 1, 000 largest p (γ |y )”, both
quantities averaged across replicates. Moreover the actual ability of the algorithm to
reach regions of high posterior probability and persist on them is monitored: given the
sequence of the 1, 000 best γs (based on p (γ |y )), the standard deviation of the corre-
sponding R2

γs shows how stable is the searching strategy at least for the top ranked (not
unique) posterior probabilities: averaging over the replicates, it provides an heuristic
measures of “stability” of the algorithm. Finally we report the average computational
time (in minutes) across replicates of ESSi written in Matlab code and run on a 2MHz
CPU with 1.5 Gb RAM desktop computer and of SSS version 2.0 on the same computer.

Comparison with SSS

Figure 4 presents the marginal posterior probability of inclusion for ESSi with τ = 1
averaged across replicates and, as a measure of variability, the interquartile range, blue
left triangles and vertical blue solid line respectively. In general the covariates with non-
zero effects have high marginal posterior probability of inclusion in all the examples:
for example in Ex3, Figure 4 (a), the proposed ESSi algorithm, blue left triangle, is
able to perfectly select the last 45 covariates, while the first 15, which do not contribute
to y, receive small marginal posterior probability. It is interesting to note that this
group of covariates, (β1, . . . , β15) = (0, . . . , 0), although correctly recognised having no
influence on y, show some variability across replicates, vertical blue solid line: however,
this is not surprising since independent priors are less suitable in situations where all
the covariates are mildly-strongly correlated as in this simulated example. On the
other hand the second set of covariates with small effects, (β16, . . . , β30) = (1, . . . , 1),
are univocally detected. The ability of ESSi to select variables with small effects is
also evident in Ex6, Figure 4 (d), where the two smallest coefficients, β2 = 0.112 and
β10 = 0.950 (the second and last respectively from left to right), receive from high to
very high marginal posterior probability (and similarly for the other replicates, data not
shown). In some cases however, some covariates attached with small effects are missed
(e.g. Ex4, Figure 4 (b), the last simulated effect which is also the smallest, β16 = 0.5,
is not detected). In this situation however the vertical blue solid line indicates that for
some replicates, ESSi is able to assign small values of the marginal posterior probability
giving evidence that ESSi fully explore the whole space of models.

Superimposed on all pictures of Figure 5 are the median and interquartile range
across replicates of p (γj = 1 |y ), j = 1, . . . , p, for SSS, red right triangles and vertical
red dashed line respectively. We see that there is good agreement between the two
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algorithms in general, with in addition evidence that ESSi is able to explore more fully
the model space and in particular to find small effects, leading to a posterior model
size that is close to the true one. For instance in Ex3, Figure 4 (a), where the last
30 covariates accounts for most of R2

γ , SSS has difficulty to detect (β16, . . . , β30), while
in Ex6, it misses β2 = 0.112, the smallest effect, and surprisingly also β4 = −2.595
assigning a very small marginal posterior probability (and in general for the small effects
in most replicates, data not shown). However the most marked difference between ESSi
and SSS is present in Ex5: as for ESSi, SSS misses three effects of “model 1” but
in addition β4 = 1, β7 = −1 and β8 = 1.5 receive also very low marginal posterior
probability, red right triangle, with high variability across replicates, vertical red dashed
line. Moreover on the extreme left, as noted before, ESSi is able to capture the biggest
coefficient of “model 2” while SSS misses completely all contaminated effects. No
noticeable differences between ESSi and SSS are present in Ex1 and Ex2 for the marginal
posterior probability, while in Ex4, SSS shows more variability in p (γj = 1 |y ) (red
dashed vertical lines compared to blue solid vertical lines) for some covariates that do
receive the highest marginal posterior probability.

In contrast to the differences in the marginal posterior probability of inclusion, there
is general agreement between the two algorithms with respect to some measures of
goodness of fit and stability, see Table 6. Again, not surprisingly, the main difference is
seen in Ex5 where ESSi with τ = 1 reaches a better R2

γ both for the maximum and the
1, 000 largest p (γ |y ). SSS shows more stability in all examples, but the last: this was
somehow expected since one key features of SSS in its ability to move quickly towards
the right model and to persist on it (Hans et al. 2007), but a drawback of this is its
difficulty to explore far apart models with competing R2

γ as in Ex5. Note that ESSi
shows a small improvement of R2

γ in all the simulated examples. This is related to the
ability of ESSi to pick up some of the small effects that are missed by SSS, see Figure 4.
Finally ESSi seems to shows some superiority in terms of computational time (although
comparing algorithms written in two different languages is difficult) especially when the
simulated (and estimated) pγ is large (in other simulated examples, data not shown, we
found this is always true when pγ & 10): the explanation lies in the number of different
models SSS and ESSi evaluate at each sweep. Indeed, SSS evaluates p + pγ (p− pγ),
where pγ is the size of the current model, while ESSi theoretically analyses an equally
large number of models, pL, but, when p > n, the actual number of models evaluated
is drastically reduced thanks to our FSMH sampler. In only one case SSS beats ESSi
in term of computational time (Ex5), but in this instance SSS clearly underestimates
the simulated model and hence performs less evaluations than would be necessary to
explore faithfully the model space. In conclusion, we see that the rich porfolio of moves
and the use of parallel chains makes ESS robust for tackling complex covariate space as
well as competitive against a state of the art search algorithm.
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