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Model-based Analysis of Concept Maps

Sam K. Hui∗, Yanliu Huang† and Edward I. George‡

Abstract. A concept map is a data collection tool developed in psychology and
education to obtain information about mental representations of concept asso-
ciations. This methodology has recently been introduced to marketing to study
consumers’ brand perceptions (John et al. (23); Joiner (24)) and attitudes towards
health risk (e.g., Huang et al. (21)). In conjunction with other more established
methods (e.g., Multidimensional scaling), concept maps provide an additional valu-
able tool for researchers to understand consumers’ structural knowledge about
different important marketing concepts.

Building on the introduction by John et al. (23), we propose a descriptive prob-
ability model of concept map formation, along with concept map analyses based on
parameter estimates. In particular, we demonstrate how to test hypotheses about
differences between two groups of maps, and how to aggregate across individual
concept maps to form a “consensus map.” To demonstrate our methodology, we
apply our model to a dataset that uses concept maps to study college students’
perceptions of Sexually Transmitted Diseases (STDs), an important topic of grow-
ing interest in health marketing (e.g., Hill (20); LaTour and Pitts (28); Raghubir
and Menon (40); Treise and Weigold (46)). Though parsimonious in nature, our
model adequately recovers map-level, concept-level, and link-level summary statis-
tics commonly considered by other researchers, yet rarely modeled directly.

Keywords: concept maps, network analysis, Bayesian hypothesis testing

1 Introduction

Concept maps are data collection tools developed in psychology to understand mental
representation (Anderson and Bower (3); Rumelhart et al. (41)) of topic knowledge by
revealing part of an individual’s thinking process (Stuart (43)). Since their introduction,
concept maps have widely been used in education as a tool to help learners process
information effectively (Anderson (2); Lindsay and Norman (30)), to access people’s
cognitive structures, and to gauge the effectiveness of interventions (Dansereau et al.
(13); Martin (36); Moore and Readence (38); Novak and Gowin (39)). Researchers
have also used concept maps in social psychology to study attitudes (Lord et al. (32)),
and more recently in marketing as a means to understand consumer brand associations
(John et al. (23); Joiner (24)) and health risk perceptions (e.g., Huang et al. (21)). In
conjunction with other more established methods (e.g., MDS), concept maps provide
a valuable tool for researchers to understand consumers’ structural knowledge about
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Figure 1: Example of a concept map.

various important marketing concepts (John et al. (23)).

In a typical “concept mapping” procedure in a marketing context (John et al. (23)),
a participant is presented with a “core concept” (e.g., Sexually Transmitted Diseases
(STD) as studied here in a health marketing context) and asked to systematically write
down all his/her thoughts related to the core concept in a structural manner. Specif-
ically, the participant links the core concept to other concepts (e.g., STD–HIV, STD–
Preventable), and subsequently links those concepts to other related concepts that come
to mind (e.g., HIV–Life-Threatening, Preventable–Condom). Thus, a concept map, as
defined in John et al. (23), is comprised of concepts and undirected links that represent
connections between different concepts.1 Figure 1 presents an example of a concept map
that we collected (discussed in Section 4), which describes a particular college student’s
perception of STDs.

While concept maps provide a valuable tool to study consumer knowledge representation
(John et al. (23); Joiner (24); Lord et al. (32)), data in the form such as Figure 1 pose
unique challenges for both behavioral and managerial researchers. The key challenge
is to extract information from such data to understand how participants organize rele-
vant concepts, and further, how cognitive representations influence people’s subsequent
attitudes and behaviors (Joiner (24); Lord et al. (32); Martin (36)). Towards this end,

1In psychology and education, the links in a concept map are sometimes directed, and sometimes
labeled with various qualifiers (e.g., Novak and Gowin (39)); in marketing, unlabelled and undirected
links are more common. In this paper, we restrict our attention to undirected maps, and return to
directed maps in Section 6.
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we here propose a probability model for concept maps that allows for the quantifica-
tion of variation and proper summarization of information across different maps. This
model allows us to tackle two particularly important issues. First, we are able to test
whether two groups of concept maps (perhaps generated under different experimental
conditions or different consumer segments) are different, and if so, in what ways. Sec-
ond, we are able to summarize information across a group of concept maps by forming
a “consensus map” (e.g., John et al. (23); Joiner (24)). Although a formal definition
has not been proposed in the literature, a consensus map roughly corresponds to an
“average” perception across a set of concept maps. Presumably, a consensus map will
provide researchers with a general picture of how consumers, on “average,” perceive a
brand/concept.

Previous literature have tended to analyze concept maps heuristically or algorithmically
(e.g., Chang et al. (11); John et al. (23); Joiner (24); Goldsmith et al. (19); Liu et al. (31);
Marshall et al. (35); Takeya et al. (44)), by first extracting a set of summary statistics
from the data, and then basing analyses on those statistics. Since different studies
generally use different summary statistics and heuristics, hypothesis testing results and
consensus maps often depend on the particular choice of heuristics and algorithms. To
the best of our knowledge, there has not been any attempt to unify these different
heuristics with a consistent statistical methodology that is reasonable with respect to
a well-defined probability model. The goal of this paper is to fill this important gap.
Specifically, we develop a rich yet parsimonious probability model that provides a unified
modeling framework for the analyses of concept maps (e.g., hypothesis testing and
consensus map construction).

Our model is based on an elaboration of the uniform graph model (Erdos and Renyi
(14)), common in computer science and statistics. Specifically, our model extends the
uniform graph model in two directions: (i) allows for non-uniform link-formation prob-
abilities and (ii) introduces a post-realization “pruning” step, discussed in more detail
in Section 2. For this model, we propose an estimation procedure, and show that the
summary statistics considered in the previous literature (e.g., frequencies of link oc-
currences) are neither sufficient nor unbiased for our model parameters. In contrast,
our parameter estimators adequately summarize the information contained in the data
and allow for the recovery of many of the ad hoc summary statistics that have been
previously considered. Indeed, analyses based on our model will be adequate to ensure
consistency across studies. Furthermore, we demonstrate how consensus maps can be
constructed based on model parameter estimates derived from concept map data. To
demonstrate our methodology in the marketing context, we apply our model to a dataset
that uses concept maps to study college students’ perceptions of Sexually Transmitted
Diseases (STDs), an important issue in the health marketing literature (e.g., Hill (20);
LaTour and Pitts (28); Raghubir and Menon (40); Treise and Weigold (46)). We focused
on college students’ STD perception because the prevalence of STD on college campuses
is steadily increasing (e.g., Mahoney et al. (34); MacDonald et al. (33)) and the data
on how college students perceive STD might help design effective educational programs
to improve the safe sex and decrease the STD risk. This is consistent with the general
goals of health marketing to create, communicate, and deliver health information and
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interventions to protect and promote the health of diverse populations, according to the
Centers for Disease Control and Prevention.

The remainder of this paper is organized as follows. In Section 2, we develop our
statistical model of concept maps and describe our proposed procedures for hypothesis
testing and consensus map formation. Section 3 describes a simulation experiment that
ensures that our estimation procedure is able to recover the model parameters. Section
4 outlines our data collection procedure and provides an overview of our dataset. In
Section 5 we apply our model to actual data, perform model validation, and present
parameter estimates. Finally, Section 6 concludes with directions for future research.

2 Model

We describe our model in detail in this section. Section 2.1 defines our notation. Section
2.2 begins with the simple uniform model of graph formation (Erdos and Renyi (14)),
and argues that it is inadequate for the description of concept maps; we then introduce
two elaborations to develop an adequate model of concept maps. Specifically, we allow
for non-uniform probabilities of edge formation between each pair of concepts, and
introduce a (latent) “pruning” step to ensure that our model generates maps that are
fully connected, consistent with the connectedness property of concept maps. Section
2.3 describes an empirical Bayes estimation procedure (Carlin and Louis (8)), Section 2.4
extends this to empirical Bayes hypothesis testing, and Section 2.5 proposes a method
of aggregation across concept maps to form a “consensus map” using the estimated
model parameters.

2.1 Definitions and notations

The two hypothetical concept maps shown on the left in Figure 2 illustrate our defi-
nitions and notation. As seen in the figure, a concept map is comprised of two inter-
related components: concepts (labeled by the oval shapes), and links between concept
pairs (denoted by lines connecting the two corresponding ovals). The concept at the
center (concept 1 in Figure 2) denotes the “core concept” from which the entire map is
generated. The existence of a link between a concept pair indicates a conceptual linkage
between them in the mind of the respondent.

Formally, a concept map that is used in marketing, as defined by John et al. (23), is
an undirected and connected mathematical graph.2 Its undirected links indicate which
concept pairs are connected, but do not inform us about the direction of such linkages.3

It is connected because there exists a path (a series of consecutive links) that connects it

2In general, a concept map used in psychology/education does not have to be fully connected; the
ones collected in marketing are fully connected due to the mechanism of the data collection (participants
are asked to think in terms of associations (i.e., links) from the core concept, thus every concept has
to be connected in some way to the core concept).

3While some extensions of the concept map methodology are available (e.g., Joiner (24)) that record
the order in which concepts are formed, we focus on undirected concept maps as defined in John et al.
(23) throughout this paper.
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Figure 2: Examples of concept maps to illustrate our notations.

back to the core concept. Thus, no concept can be disconnected from the core concept.

Throughout this paper, we use i (i = 1, 2, . . . , I) to index people, and j and k (j =
1, 2, . . . , N ; k = 1, 2, . . . , N) to index concepts. We use I for the total number of people,
and N for the total number of observed (unique) concepts.4 We define Xij as an
indicator that equals 1 if concept j appears in the i-th person’s concept map, and 0
otherwise. In addition, we define yijk as an indicator that equals 1 if there is a link
between concept j and k in the i-th person’s map, and 0 otherwise. Since concept maps
are undirected (based on our definition), yijk is symmetric, i.e., yijk = yikj . Clearly,
any graph (with N nodes) can be represented by an N × N matrix of 0-1 entries
which identify the presence/absence of links (Bollobas (7)). Thus, our representation
of a concept map through yijk (and Xij) is completely general. As an example of our
notational representation, the tables on the right in Figure 2 identify the two concept
maps on the left.

2.2 A probability model of concept map

Our goal in this research is to develop a descriptive probability model of concept map
that is parsimonious, yet able to recover key summary statistics that describe the data

4In this paper, we assume that N is fixed, and is equal to the total number of unique concepts that
appear in the dataset. Alternatively, one could think of N as a random variable and infer it from the
data. We leave this issue for future research.
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Figure 3: Illustration of the uniform graph model (Erdos and Renyi (14)).

(as shown in Section 3). To this end, we start with the uniform graph model (Erdos and
Renyi (14)), a parsimonious model of graph formation, and introduce two elaborations
that account for the unique characteristics of concept maps, which lead to our proposed
G̃(N,Θ) model.

The uniform graph model

The uniform graph model has been widely applied in the theory of random graphs
(Bollobas (7)). Due to its simplicity, the application of the uniform graph model is
usually not on providing a flexible description of graph. Rather, it has typically been
used to derive the null distributions of graphical characteristics of special interest (e.g.,
degree distribution, clustering coefficient, average path length; see, for instance, Albert
and Barabasi (1)), or as a “test bed” for specialized graph algorithms (e.g., Levy et al.
(29)).

Formally, the uniform graph model is denoted G(N, p), where N denotes the number of
nodes (concepts) and p denotes the probability of edge (link) presence. It corresponds to
the following two-step stochastic process governing the generation of graphs (Bollobas
(7)), as depicted graphically in Figure 3 (the corresponding concept map terminology
is placed in parentheses):

Step 1 Start with N nodes (concepts) and position them on an observed graph Yi.

Step 2 On Yi, add edges (links) between pairs of nodes (links) at random. Each possible
edge (link) is included independently with probability p.

The above stochastic process gives rise to the following likelihood function of the i-th
map Yi (with links denoted by yijk):

f(Yi|p,N) = p
∑

j<k
yijk (1 − p)

N(N−1)
2 −∑

j<k
yijk (1)
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The uniform graph model, as defined by the likelihood function in Equation [1], is
an inadequate descriptive model of concept maps for three reasons. First, the equal
probability assumption for link occurrence (in Step 2) between any concept pair is too
restrictive because links will typically occur with very different frequencies, for example
in the data we discuss in Section 4. Second, in the concept map setting, Step 1 assumes
that all concepts appear in every map, which will generally not be true. Typically,
a person mentions only a small subset of all the possible concept, as is illustrated in
our data. Third, the graph generated under G(N, p) may have nodes (concepts) that
are disconnected from the designated core concept, i.e., not reachable from the core
concepts by following the links, as shown in the right panel of Figure 3. This violates
the connectedness property of concept maps.

Proposed model: the G̃(N,Θ) model

Our proposed G̃(N,Θ) model is a three-stage, partially observed stochastic process that
addresses all of the three issues above. Our overall approach, as shown graphically in
Figure 4, can be summarized as follows:

Step 1’ Start with N nodes (concepts) and position them on a latent graph Zi.

Step 2’ On the latent graph Zi, add edges (links) between pairs of nodes (links) at
random. The edge (link) between concept j and concept k is included with prob-
ability θjk.

Step 3’ Finally, the latent graph Zi is “pruned” (defined in Equation [3] later) to arrive
at the observed map Yi. That is, any concepts in Zi not connected in some way
to the core concept are removed to obtain Yi.

Note that the stochastic process that underlies our model is only partially observed.
That is, in contrast to the uniform graph model, we assume that the first two steps
in our model (Step 1’ and Step 2’) take place in latent space, which then induce an
observed map Yi in Step 3’.

The first step (Step 1’) of our model is the same as that of the uniform graph model,
where the only difference is that we begin by creating a latent graph Zi. In Step 2’, we
extend the uniform graph model by allowing each link to have a different occurrence
probability, therefore replacing the parameter p by a (symmetric) matrix ΘN×N , where
θjk denotes the probability that a link is present between concepts j and k.5 Since
concept maps are undirected and no concept is linked to itself, ΘN×N will be symmetric
(θjk = θkj for all j and k) with diagonal entries equal to zero. Formally, we have:

P (zijk = 1) = θjk (2)

5While it is possible to make ΘN×N an individual specific parameter, we stay with population-level
parameters due to identification issues which we discuss later. The possibility of specifying individual-
level parameters are discussed in more detail in Section 6.
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Figure 4: Illustration of our proposed model of concept map.
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where zijk is an indicator variable that represents the presence/absence of an edge
between concepts j and k in the latent map Zi.

After Step 1’ and 2’, the latent map Zi may not be fully connected. To ensure con-
sistency with the connectedness property of concept maps (as we defined earlier), we
introduce Step 3’, a latent “pruning” step where any concepts in Zi that are not con-
nected in some way to the core concept are removed, to arrive at the observed map Yi.
Figure 4 illustrates our pruning process with an example. The structure of the (latent)
graph Zi before pruning is shown in the upper right panel of Figure 4. Since concepts
3 and 4 are not connected to the core concept (i.e., it is impossible to reach them from
the core concept), they are removed (“pruned”) from the latent graph, thus resulting
in the pruned graph (which correspond to the observed concept map Yi) in the lower
panel. Although concepts 3 and 4 are connected among themselves, they are not related
to the core concept; thus, when asked to elicit her preference, the participant may not
put concepts 3 and 4 on her concept map, resulting in the observed concept map in the
lower panel of Figure 4. Mathematically, we denote the process pruning by fprune(·) ,
a (deterministic) function that operates on latent map Zi to get the observed concept
map Yi. That is,

Yi = fprune(Zi) (3)

where the jk-th element of Yi, namely yijk, equals 1 if both zijk = 1 and concept j or
concept k are connected to the core concept in map i; otherwise, yijk = 0.

Together, our model, which we refer to as G̃(N,Θ) (where Θ represents the distinct link-
age probabilities and the tilda (∼) indicates pruning), leads to the following likelihood
function for map Yi:

f(Yi|Θ, N) =
(∏

j<k

θ
yijk

jk (1 − θjk)
1−yijk

)
Hi (4)

where Hi is an indicator variable which takes value 1 if Yi is fully connected, and 0
otherwise.

Before moving on to describe our inferential procedures, we note three potential limita-
tions of our model G̃(N,Θ) . First, each participant’s map is assumed to be drawn from
the same set of population-level parameters Θ, so that heterogeneity across individual
parameters is not accommodated. Since each person produces only a single map, mod-
eling such parameter heterogeneity across participants would require individual-level
covariate information, an issue that we return to in Section 6. Second, G̃(N,Θ) is a
model of the final concept map, rather than a sequential model which describes the pro-
cess of concept map formation. As we mentioned earlier, most concept map applications
collect data in the form of undirected graphs such as in Figure 1, where the direction
of links is not specified. Our model is perhaps better suited for such data, whereas a
model for the process of map formation would require directed link data. Third, our
model treats all link formations as mutually independent, conditional on Θ. Although
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one could extend our model by introducing more parameters to allow for dependence
between link formations, our framework provides a surprisingly adequate description of
concept maps, allowing for the recovery of many summary statistics, as will be seen in
Section 5. Future directions for incorporating correlations into our model may include
approaches developed in testlet theory (Wainer et al. (47)).

2.3 Estimation of ΘN×N

If the latent map Zi is observed, making inference about ΘN×N should be straightfor-
ward. However, in reality, inference about our model parameters ΘN×N is complicated
by the fact that we only observe Yi, a pruned version of the (latent) map Zi; some
of the links present in Zi may be unobserved in Yi because of pruning, essentially a
form of censoring. Thus, inference based on Yi must contend with such censoring, a
common issue in other observational studies, particularly survival analysis (Klein and
Moeschberger (27)). Adjustments similar to those made when estimating models based
on censored data must be made when estimating ΘN×N .

Previous analyses of concept maps have been typically based on ad hoc summary statis-
tics, such as the percentage of times a link occurs across all maps. In particular, a key
summary statistic previous researchers (e.g., Joiner (24)) have relied on is

θ̃jk =
mjk

I
=

1

I

I∑

i=I

yijk (5)

where mjk denotes the total number of concept maps containing a link between concept
j and k, I is the total number of people in the sample.

Statistical inference based on the θ̃jk in Equation [5] seems undesirable for two reasons.

First, θ̃jk is a biased estimator which tends to underestimate θjk , i.e., E(θ̃jk) < θjk
because Equation [5] does not compensate for censoring; see the Appendix for an outline
of a proof with ideas similar to those in Klein and Moeschberger (27). Second, and
perhaps more importantly, θ̃jk is not a sufficient statistic (Fisher (15)) under our model.

Thus, any statistical procedure based solely on θ̃jk will typically be inadmissible in a
statistical decision theory context (Berger (4)). In Section 5, we show that when our
model is properly calibrated, the statistic θ̃jk and others like it (described later) can be
recovered from a realization from our model. Indeed, our model parameter estimates
incorporate the information contained in those summary statistics and more.

As opposed to θ̃jk , the Maximum Likelihood Estimate (MLE) θMLE
jk under our model

adjusts for the pruning or censoring step. This MLE can be written as

θMLE
jk =

mjk

nj|k
=

∑I
i=1 yijk∑I

i=1 1(Xij=1 OR Xik=1)

(6)

where nj|k denotes the number of times that either concept j or concept k is observed
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(see the Appendix for a derivation). Note that the MLE is based on the ratio quantities
mjk

nj|k
instead of the ratio quantities

mjk

I in Equation [5]. Looking at nj|k rather than

I is similar in spirit to the adjustments made in the analysis of right-censored data in
survival analysis (e.g., Klein and Moeschberger (27)), which focuses only on the number
of observed cases.

Beyond this MLE, inference about ΘN×N can be further enhanced by treating the ele-
ments of ΘN×N as realizations from a hyperdistribution, in effect embedding G̃(N,Θ)
within a hierarchical model. This elaboration allows us to conveniently borrow strength
across the links by using empirical Bayes estimation (Carlin and Louis (8)). In par-
ticular, we consider the simple case where the parameters θjk are assumed to be i.i.d.
draws from a common Beta hyperdistribution, i.e.,

θjk ∼ Beta(a, b) (j = 1, 2, . . . , N ; k > j) (7)

In this empirical Bayes framework, the hyperparameters a and b are assumed to be
unknown fixed constants that we estimate by maximizing the marginal likelihood of a
and b based on the data. Since the probability of observing mjk (conditional on θjk)
is Binomial(nj|k, θjk), the marginal distribution of the data is Beta-Binomial. Thus, a
and b can be easily estimated using routine non-linear maximization methods. 6 Once
we have estimated a and b, the posterior distribution of θjk (given the data and the
hyperparameters) is given by:

θjk |data, â, b̂ ∼ Beta(mjk + â, nj|k −mjk + b̂) (8)

where â and b̂ denote the maximum marginal likelihood estimates of the hyperparame-
ters a and b, respectively. Thus, the posterior mean (i.e., the empirical Bayes estimator)
for θjk is given by

θ̂jk =
mjk + â

nj|k + â+ b̂
=

∑
i yijk + â

∑
i 1(Xij=1 OR Xik=1) + â+ b̂

(9)

and the corresponding (1-α)% posterior interval estimate 7 is given by

(
B(

α

2
;mjk + â, nj|k −mjk + b̂), B(1 − α

2
;mjk + â, nj|k −mjk + b̂)

)
(10)

6We note that in some cases, the MLE for a and b may not exist or may be spurious (Takeya and
Young (45)). Thus, we recommend that researchers first examine a 3D-plot of the likelihood function
before applying non-linear maximization methods.

7One can also report HPD intervals and/or make adjustments for the uncertainty of the hyperparam-
eters (a,b), e.g., using methods described in Carlin and Louis (8). We find that the intervals generated
using Equation [10], the HPD intervals, and the fully Bayes intervals are very similar. Details are
available upon request.
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where B(α; r1, r2) denotes the α quantile of a Beta(r1, r2) distribution. In Section 3,
we further demonstrate the performance of our estimation procedure by conducting a
simulation experiment.

It should be mentioned that these empirical Bayes estimates may be regarded as an
approximation to a fully Bayes analysis. For example, we also considered a fully-Bayes
analysis by putting noninfluential diffuse priors on the hyperparameters a and b (e.g.,
log(a) ∼ N(0, 10002) and log(b) ∼ N(0, 10002),8 and then using MCMC sampling to
compute posterior quantities of interest. Such a fully Bayes approach may be preferable
because it properly accounts for hyperparameter uncertainty, for example by yielding
slightly larger posterior interval estimates. However, the fully Bayes results we obtained
were very similar to the empirical Bayes results presented here. Furthermore, the em-
pirical Bayes closed-form solutions above will allow other researchers to use our method
within their studies more easily.

Once our model is calibrated, concept map analyses can be based completely on the
parameter estimates. Use of the same unifying model in this way ensures that all such
analyses will be conceptually consistent. In the two subsections below, we demonstrate
how to test for differences between groups of concept maps based on our model, and
how to generate consensus maps that summarize information across individual concept
maps.

2.4 Hypothesis testing

In some cases, researchers may want to test for differences between two groups of par-
ticipants with different demographic characteristics (e.g., gender, age group) or whose
maps were constructed under different experimental conditions. Under our Bayesian
framework, we do so by comparing the hypothesis H0 that there is no difference be-
tween the groups, with the hypothesis H1 that the groups are different. Formally, we
specify the two hypotheses as:

H0 : θ
(A)
jk = θ

(B)
jk = θjk ∀j, k

H1 : θ
(A)
jk 6= θ

(B)
jk for some j, k

where A and B denote each of the two groups, respectively.

The relevant Bayesian post-data quantity for comparing H0 and H1 is the posterior

odds P (H1|data)
P (H0|data) which by Bayes rule is the product of the Bayes Factor

BFH1:H0 =
P (data|H1)

P (data|H0)
(11)

8Alternatively, one can put a reference prior on φ = a

a+b
and ω = a+b, where p(φ,ω) is proportional

to φ(−0.5)(1 − φ)(−0.5)ω(−0.5)(1 + ω)(−1) .
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and the prior odds P (H1)
P (H0) . Thus, the Bayes factor BFH1:H0 is the ratio of the posterior

odds to the prior odds, and is usually interpreted as the evidence given by the data
in favor of H1 over H0. When BFH1:H0 > 1, the data indicate some support for H1 ;
and when BFH1:H0 < 1, the data indicate some support for H0. When BFH1:H0 > 3,
Jeffreys (22) suggested we conclude that the data offer “substantial” support for H1 over
H0. Note that when the two hypotheses are deemed to be a priori equally probable, i.e.,

the prior odds P (H1)
P (H0) = 1, the Bayes factor BFH1:H0 is equal to the posterior odds. As

a result, Bayesian testing of H1 versus H0 is typically carried out by simply reporting
BFH1:H0 .

From Equation [11], we can compute the Bayes factor BFH1:H0 in our setting as simply
the ratio of the marginal densities of the data under the two hypotheses. Since our
model uses conjugate Beta priors (Equation [7]), we can calculate the Bayes factor in

closed form as follows (m(A) denotes the whole collection of m
(A)
jk ):

P (data|H1) =
( ∫

f(m(A)|θ(A))π(θ(A))dθ(A)
)( ∫

f(m(B)|θ(B))π(θ(B))dθ(B)
)

(12)

=
∏

j<k

BetaBinom(m
(A)
jk |n(A)

j|k , â
(A), b̂(A))BetaBinom(m

(B)
jk |n(B)

j|k , â
(B), b̂(B)) (13)

P (data|H0) =

∫
f(m(A),m(B)|θ)π(θ)dθ (14)

=

∫
f(m(B)|θ)f(m(A)|θ)π(θ)dθ (15)

=

∫
f(m(B)|θ)f(θ|m(A))dθ (16)

=
∏

j<k

BetaBinom(m
(B)
jk |n(B)

j|k , â+m
(A)
jk , b̂+ n

(A)
j|k −m

(A)
jk ) (17)

Note that to go from [14] to [15], we use the property that m(A) and m(B) are condition-
ally independent given θ. Also, we note that Equation [15] is symmetric with respect
to m(A) and m(B) ; i.e., we can also flip the order of m(A) and m(B) in [15] and hence
write [16] as

∫
f(m(A)|θ)f(θ|m(B))dθ.

Using Equation [13] and [17], the Bayes factor is given by:

BFH1 :H0 =

∏
j<k BetaBinom(m

(A)
jk |n(A)

j|k , â
(A), b̂(A))BetaBinom(m

(B)
jk |n(B)

j|k , â
(B), b̂(B))

∏
j<k BetaBinom(m

(B)
jk |n(B)

j|k , â+m
(A)
jk , b̂+ n

(A)
j|k −m

(A)
jk )

(18)
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We can also take a step further and assess the difference in the parameters governing
the formation of each link between group A and B, i.e., to evaluate the following pair
of hypotheses for each pair of concepts j and k:

H0(j, k) : θ
(A)
jk = θ

(B)
jk

H1(j, k) : θ
(A)
jk 6= θ

(B)
jk

Similar to the derivation of [18], the corresponding Bayes factor (of H1(j, k) over
H0(j, k)) can be written as:

BFH1 :H0(j, k) =
BetaBinom(m

(A)
jk |n(A)

j|k , â
(A), b̂(A))BetaBinom(m

(B)
jk |n(B)

j|k , â
(B), b̂(B))

BetaBinom(m
(B)
jk |n(B)

j|k , â+m
(A)
jk , b̂+ n

(A)
j|k −m

(A)
jk )

(19)

2.5 Consensus map generation

The aggregation of individual concept maps to form a “consensus map” is an important
open issue (John et al. (23); Joiner (24)). As briefly mentioned in the introduction,
an aggregate consensus map represents (roughly) the “average” perception among the
participants. Intuitively, links with higher probabilities of occurrence should be included
in the consensus map, while those with lower probabilities of occurrence should be
excluded. We formalize this idea with the following procedure. First, we specify a
“cutoff” value c, to be used as the criterion to determine whether the posterior mean
θ̂jk is “large enough” to be included in the consensus map. Second, we define a (latent)

intermediate consensus map Z∗ , where z∗jk = 1 if θ̂jk > c, and 0 otherwise. Finally, Z∗

is pruned to obtain the final consensus map, Y ∗ , i.e., Y ∗ = fprune(Z
∗).

Note that here c is a tuning parameter to be set by the researcher. A larger value of c will
lead to a smaller consensus map with stronger linkages between concepts, while a smaller
value of c will lead to a more complicated consensus map. Ideally, the researcher can
vary c and observe how the resulting consensus map evolves as c is gradually decreased.
Alternatively, the automatic selection of c is briefly discussed in Section 6 as a future
research direction.

3 Simulation experiment

Before applying our model to actual data, we conduct a simulation experiment to assess
whether our estimation procedure is able to recover the “true” parameter values. Setting
N , the total number of concepts to be 5, we simulated the “true” parameters in ΘN×N
using a Beta(a=1, b=1) distribution; the “true” value of each θjk simulated is shown in

Table 1. With these parameters, we simulated I = 20 concept maps under the G̃(N,Θ)
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model that we specified through Step [1’], [2’], and [3’] in Section 2. The simulated
maps are shown in Figure 5.

(20 simulated maps) (200 simulated maps)
Post. 95% Post. Post. 95% Post.

Parameter “True value” mean interval mean interval
θ12 0.522 0.680 (0.474, 0.856) 0.529 (0.459, 0.596)
θ13 0.308 0.262 (0.104, 0.462) 0.351 (0.286, 0.417)
θ14 0.884 0.911 (0.764, 0.989) 0.899 (0.855, 0.937)
θ15 0.271 0.262 (0.104, 0.462) 0.261 (0.203, 0.324)
θ23 0.044 0.035 (0.000, 0.151) 0.032 (0.012, 0.062)
θ24 0.140 0.080 (0.007, 0.227) 0.152 (0.106, 0.206)
θ25 0.517 0.442 (0.236, 0.660) 0.550 (0.476, 0.622)
θ34 0.472 0.421 (0.222, 0.634) 0.435 (0.366, 0.505)
θ35 0.748 0.885 (0.699, 0.986) 0.751 (0.684, 0.813)
θ45 0.042 0.129 (0.025, 0.300) 0.041 (0.018, 0.072)

Table 1: Parameter recovery in the simulation experiment.

We then applied our estimation procedure to the simulated data. As can be seen in Table
1, all of our point estimates (posterior means) were close to their corresponding true
values, and all of our 95% posterior intervals covered the true values of the corresponding
parameters. Thus, our estimation procedure is able to adequately recover the model
parameters, even when the sample size is reasonably small. We then repeated the above
experiment by simulating a much larger dataset of I = 200 maps. As can be seen in
Table 1, as we would expect, the mean estimates became closer to the true values and
the posterior intervals became narrower for this larger I .

4 Data

4.1 Data overview

To demonstrate our approach, we collected concept maps describing perceptions of
Sexually Transmitted Diseases (STDs) from a total of 223 undergraduate students at a
large northeastern university. The study of how people perceive different diseases (e.g.,
Chandran and Menon (10); Keller et al. (26); Menon et al. (37);
Raghubir and Menon (40)) is an important issue in health marketing, a growing research
area that has recently attracted a huge amount of interest among marketing researchers
(e.g., Block and Keller (5), Block and Keller (6); Huang et al. (21); Keller (25); LaTour
and Pitts (28); Treise and Weigold (46)). Although we focus here on STDs, we should
emphasize that our framework and model is completely general and can be applied to
a wide variety of settings in marketing, e.g., consumers’ perception of other important
health-related concepts, people’s reactions to marketing communication, or consumer
brand associations as studied in John et al. (23) and Joiner (24).
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Figure 5: Twenty simulated concept maps generated in the simulation experiment. The
core concept is labeled as concept 1.
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Participants were told that we wanted to understand their thoughts and how they
organize information when they consider the concept of STD. They were given a concept
map example and were asked to construct their own maps starting with the core concept
(i.e., STD), using a procedure similar to that in John et al. (23). Participants were
given as much time as they needed to draw this concept map. Along with the concept
map, we also asked each participant to record his/her gender (although we find no
significant difference between the genders later in Section 5.3). In our sample, 47% of
the participants are male.

After collecting the data, we compiled a list of all the unique concepts listed in any of
the individual concept maps. This resulted in a total of 29 unique concepts,9 listed in
Table 2.10 Interestingly, this number of unique concepts was roughly the same size as
that reported in other concept map studies, e.g., John et al. (2006) reported 25 unique
concepts when studying brand associations of Mayo Clinic using concept maps.

Concept Occurence Concept Occurence
STD(core concept) 100.0% Sex 21.5%
AIDS/HIV 54.3% Fear 20.2%
Different kinds of STDs 54.3% Social stigma 19.3%
Condoms 46.2% Everyone can get it 18.8%
Safe sex 39.5% Disgusting 17.9%
Life-threatening 38.1% Medical treatment 14.3%
Dangerous 36.3% Education 14.3%
Physical symptoms 31.8% Sexual partner 11.2%
Undersirable consequences 30.9% Prevalent 11.2%
Preventable 27.8% Bacterial/viral/parasitic 11.2%
Risky lifestyle 26.9% Get tested 9.9%
Trasmittable 23.8% Not for me 7.6%
Permanent 23.3% Disease 5.8%
Unsafe sex 22.4% Health cost 5.4%
Global problem 22.0%

Table 2: A list of 29 unique concepts along with their % occurence in decreasing order
of occurence (concept-level summary statistics).

9Similar to the approach in John et al. (23), concepts that are very similar in meaning, e.g.,
gross/disgusting, are combined. While this process admittedly involve some subjective human judg-
ment, similar procedures are involved in most studies where researchers elicit verbal/textual responses
from participants (e.g., Chattopadhyay and Alba (12); Lord et al. (32); Shavitt and Brock (42)).

10A very few of our participants included an inappropriately offensive epithet and/or inappropriate
personal information with their concepts. We decided that it would be best to simply exclude these
epithets from our analysis. Because of their rarity, their inclusion in our analysis would not have had
any noticeable effect on our model’s performance and results.
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4.2 Summary statistics

We extracted three sets of summary statistics from our data: map-level, concept-level,
and link-level summary statistics that are also primary measures considered by other
concept maps researchers (e.g., John et al. (23); Joiner (24)). In Section 5, we demon-
strate that these three sets of summary statistics can be adequately recovered using our
model.

Map-level summary statistics

We extract the following map-level summary statistics from each map.

(i) Total number of unique concepts:
∑

j Xij , where Xij , as defined earlier, is an indi-
cator variable that equals 1 if i-th map contains the j-th concept, and 0 otherwise.

(ii) Total number of links:
∑
k>j yijk.

(iii) Number of first order links: A first order link is defined as a link that is directly
connected to the core concept. Thus, the number of first order links (for the i-th
map) is

∑
k yi1k.

(iv) Number of second (and above) order links: This measures the number of links that
are at least two links away from the core concept.

These summary statistics are shown in Table 3. The average number of concepts per map
is around 7.66, while the median is 8.00. Across the data, the average number of links
per map is about 7.54. The median number of links is 7.00, while the median number
of first order links and second (and above) order links is 5.00 and 2.00, respectively.

Mean Median S.D. Min Max
Total number of concepts 7.66 8.00 2.03 2.00 14.00
Total number of links 7.54 7.00 2.45 1.00 15.00
Number of 1st order links 4.59 5.00 1.43 1.00 9.00
Number of 2nd and higher order links 2.74 2.00 2.14 0.00 11.00

Table 3: Map-level summary statistics.

Concept-level summary statistics

We record the number of times each concept is present across our data. The % occur-
rence of each concept, sorted in decreasing order, is shown in Table 2. The concepts
mentioned most frequently are “STD” (the core concept that must appear by default),
“AIDS/HIV,” “Different kinds of STDs,” and “Condoms.” These concepts appear in
more than 40% of the concept maps in our data.
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Link-level summary statistics

Finally, we record the percentage of times each link occurred across all the maps.
The top 20 links that are observed most frequently in the data are shown in Table
4. While this list is, unsurprisingly, dominated by first order links, some second-level
links are also frequently observed (e.g., AID/HIV–Different kinds of STDs, AIDS/HIV–
Life-threatening).

Concept 1 Concept 2 Occurrence
STD (core concept) Different kinds of STDs 45.7%
STD (core concept) AIDS/HIV 34.1%
STD (core concept) Dangerous 30.0%
STD (core concept) Condoms 25.1%
STD (core concept) Preventable 23.3%
STD (core concept) Sex 21.5%
STD (core concept) Safe Sex 20.6%
STD (core concept) Life-threatening 19.7%
STD (core concept) Physical symptoms 19.3%
STD (core concept) Risky life style 18.8%
STD (core concept) Undesirable consequences 18.4%
STD (core concept) Fear 17.9%
STD (core concept) Social stigma 16.6%
STD (core concept) Unsafe sex 15.7%
STD (core concept) Disgusting 15.2%
STD (core concept) Everyone can get it 15.2%
AIDS/HIV Different kinds of STDs 14.3%
STD (core concept) Permanent 14.3%
STD (core concept) Global problem 13.9%
AIDS/HIV Life-threatening 11.2%

Table 4: Link-level summary statistics: Top 20 links that occur most frequently are
listed.

5 Application

We apply our model to our dataset on STDs. In Section 5.1, we assess our model’s
performance by recovering the key map-level, concept-level, and link-level summary
statistics considered in Section 3. In Section 5.2, we interpret our parameter estimates.
In Section 5.3, we test whether the concept maps are significantly different across the
two genders. In Section 5.4, we demonstrate how to generate a consensus map from our
dataset using our model.
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5.1 Model validation

We estimated the model parameters with the procedure proposed in Section 2.3. Using
the estimated parameters, we simulated 100 datasets, each containing 223 concept maps
(which replicates the size of our actual data) from the model. We then computed,
for each simulated dataset, all the map-level, concept-level, and link-level summary
statistics considered in Section 3, and compared them with the summary statistics from
the actual dataset. This procedure is similar to the posterior predictive checks proposed
in Gelman et al. (16). If our model provides an adequate description of the data, the
summary statistics from the simulated datasets should look similar to the observed
summary statistics. In contrast, if the observed summary statistics look very different
from those of the simulated datasets, inadequate model fit is suggested. By comparing
observed and simulated summary statistics, we can validate our model performance and
gain a deeper understanding of the limitations of our model.

Figure 6 shows the comparisons between the map-level summary statistics from the
observed data and the simulated datasets. In each of the panels, the solid lines represent
the observed data summary statistics, while the histograms represent the distribution of
corresponding summary statistics calculated from the 100 simulated datasets (simulated
using our model and the estimated parameters). As can be seen, each of the solid lines
is located around the center of the corresponding distribution, suggesting that the map-
level summary statistics considered are recovered very well by our model.

Figure 7 allows us to assess our model’s performance in recovering concept-level and
link-level summary statistics. The left panel of Figure 7 compares the % occurrence of
each concept in the observed dataset (x-axis) and the mean across the 100 simulated
datasets (y-axis). Similarly, the right panel of Figure 7 plots the observed % occurrence
of each link (x-axis) vs. the mean % occurrence of each link across the 100 simulated
datasets (y-axis). From the figure, we see that our model provides a fairly adequate
fit to both concept-level and link-level summary statistics; we should note, however,
that the simulated % occurrences are somewhat higher than the observed ones over the
lower half of the range of observed values (and vice versa for the upper half). This
suggests that the model here generates maps that are somewhat “more uniform” than
the observed maps, and that it may be worth here considering elaborations of our model
that allow for slightly more heterogeneity of concepts and links.

5.2 Parameter estimates and posterior intervals

We now look at the estimated model parameters more closely. Figure 8 shows a his-
togram and Table 5 shows the largest 20 of the posterior means θ̂jk estimates. To a
large extent, this list mirrors that of the observed % occurrences in Table 4. There are,
however, a number of exceptions, particularly for the links between non-core concepts
(i.e., second- or above order links). For instance, the link between the concepts “Con-

dom” and “Safe Sex” occurs in only 11.2% of the maps, but the estimated θ̂jk between
them is 0.16; likewise, the link between “Condom” and “Preventable” occurs in 9.0%
of the maps, while the estimated θ̂jk between them is around 0.14. As we discussed
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Figure 6: Comparison of map-level summary statistics between the observed and simu-
lated datasets. The solid line denotes the summary statistics from the observed dataset,
while the histograms show the corresponding distribution of the corresponding summary
statistics generated from the 100 simulated datasets.
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Figure 7: Comparison of concept-level (left panel) and link-level (right panel) summary
statistics between the observed and simulated datasets. In each panel, the observed
% occurrence of a concept/link is plotted on the x-axis, while the corresponding %
occurrence of the concept/link across the 100 simulated datasets is plotted on the y-
axis.

earlier in Section 2.3, the observed proportion of occurrences of links between concepts
j and k underestimates θjk under our model (when neither j and k is the core concept),
because the issue of censoring/pruning is not accounted for. Thus, focusing only on the
observed occurrences without adjusting for censoring tends to overstate the importance
of first-order links and understate the importance of the second (and above) order links.

Many other analyses can be performed based on the estimates of our model parameters
ΘN×N . For instance, the row sums of ΘN×N roughly correspond to how interrelated
each concept is to all the other concepts, and is similar to the notation of “centrality,” a
key measure in social network analysis (e.g., Wasserman and Faust (48)). Since ΘN×N
is symmetric by definition, the row sums and the column sums are equivalent. The
centralities of each of the concepts, which we define as the row sums

∑
k θjk for the

j-th concept, are listed in Table 6 (sorted in decreasing centrality) along with their
corresponding 95% posterior intervals, calculated using the posterior distributions of
θjk ’s. By design, the core concept “STD” has the highest centrality (4.38). The concepts
with the next highest centralities are “AIDS/HIV” (1.18), “Different kinds of STDs”
(1.15), and “Condoms” (0.89). Thus, our model not only allows researchers to introduce
tools/measures from network analysis to study concept maps, but also to generate
interval estimates through the posterior distribution of our model parameters.

5.3 Hypothesis testing

Using the procedure described in Section 2.4, we assess whether there are any differences
between the concept maps produced by male and female participants. Formally, we com-
pare the following two hypothesis, which correspond to an omnibus test of homogeneity
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Figure 8: Histogram of posterior means θ̂jk . The vertical lines marks the cutoff values
of c used (0.15, 0.20, 0.25) when generating consensus maps in Figure 9.

95% Post.

Concept 1 Concept 2 θ̂jk interval Occurrence
STD (core concept) Different kinds of STDs 0.43 (0.37, 0.50) 45.7%
STD (core concept) AIDS/HIV 0.32 (0.27, 0.38) 34.1%
STD (core concept) Dangerous 0.29 (0.23, 0.34) 30.0%
STD (core concept) Condoms 0.24 (0.19, 0.30) 25.1%
STD (core concept) Preventable 0.22 (0.17, 0.28) 23.3%
STD (core concept) Sex 0.21 (0.16, 0.26) 21.5%
AIDS/HIV Different kinds of STDs 0.20 (0.14, 0.27) 14.3%
STD (core concept) Safe sex 0.20 (0.15, 0.25) 20.6%
STD (core concept) Life-threatening 0.19 (0.14, 0.24) 19.7%
STD (core concept) Transmittable 0.18 (0.14, 0.24) 19.3%
STD (core concept) Physical symptoms 0.18 (0.13, 0.23) 18.8%
STD (core concept) Risky life style 0.18 (0.13, 0.23) 18.4%
STD (core concept) Undesirable consequences 0.17 (0.13, 0.22) 17.9%
Condoms Safe sex 0.16 (0.11, 0.22) 11.2%
STD (core concept) Fear 0.16 (0.11, 0.21) 16.6%
STD (core concept) Social stigma 0.15 (0.10, 0.20) 15.7%
AID/HIV Life-threatening 0.15 (0.10, 0.19) 11.2%
STD (core concept) Unsafe sex 0.15 (0.10, 0.19) 15.2%
STD (core concept) Disgusing 0.15 (0.10, 0.20) 15.2%
Condoms Preventable 0.14 (0.09, 0.20) 9.0%

Table 5: The 20 largest θ̂jk estimates.
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Concept Estimated centrality 95% Posterior interval
STD 4.38 (4.15, 4.63)
AID/HIV 1.18 (1.03, 1.33)
Different kinds of STDs 1.15 (1.01, 1.29)
Condoms 0.89 (0.76, 1.03)
Undesirable consequences 0.87 (0.74, 1.01)
Disease 0.76 (0.63, 0.90)
Life-threatening 0.75 (0.62, 0.88)
Dangerous 0.73 (0.60, 0.89)
Medical treatment 0.73 (0.59, 0.88)
Get tested 0.70 (0.58, 0.84)
Fear 0.64 (0.52, 0.79)
Everyone can get it 0.64 (0.52, 0.78)
Transmittable 0.63 (0.51, 0.77)
Sex 0.60 (0.47, 0.74)
Social stigma 0.60 (0.47, 0.75)
Unsafe sex 0.54 (0.43, 0.68)
Not for me 0.49 (0.38, 0.62)
Sexual partner 0.48 (0.35, 0.62)
Preventable 0.47 (0.36, 0.61)
Bacteria/viral/parasitic 0.45 (0.32, 0.61)
Safe sex 0.45 (0.31, 0.60)
Permanent 0.45 (0.34, 0.58)
Risky life style 0.44 (0.33, 0.56)
Health cost 0.40 (0.27, 0.56)
Global problem 0.39 (0.28, 0.51)
Disgusting 0.38 (0.28, 0.51)
Physical symptoms 0.36 (0.25, 0.49)
Education 0.30 (0.19, 0.44)
Prevalent 0.29 (0.18, 0.44)

Table 6: Estimated “centrality” (i.e.,
∑

k θ̂jk) of each concept and their 95% posterior
intervals.
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across genders:

H0 : θ
(male)
jk = θ

(female)
jk ∀j, k

H1 : θ
(male)
jk 6= θ

(female)
jk for some j, k

The Bayes factor BFH1:H0 , computed using Equation [18], is smaller than 0.001, indi-
cating that the data strongly supports H0, i.e., the model in which male and female
participants are pooled (Jeffreys 1961).

We also separately compute the Bayes factors which compare whether male and female
participants are different with respect to each particular link. That is, we evaluate the
following pairs of hypothesis for each pair of links between the concepts j and k:

H0(j, k) : θ
(male)
jk = θ

(female)
jk

H1(j, k) : θ
(male)
jk 6= θ

(female)
jk

Most Bayes factors (H1(j, k) over H0(j, k)) are smaller than 1, suggesting that there is
no difference between male and female participants with respect to most of the links.
For some links, however, we obtain Bayes factors larger than 1, suggesting some specific
differences between male and female participants. The links with Bayes factors larger
than 2 (i.e., in favor of H1(j, k)) are listed in Table 7. As can be seen, the two largest
observed Bayes factors are around 6.11 (for the link “Dangerous”–“Physical symptoms”)
and 4.09 (for the link “Life-threatening”–“Disease”), which offers some evidence that
male and female participants tend to have different strengths of association on those
links. In particular, the data suggest that male participants are more likely to exhibit
the above two links in their concept maps than female participants.

Bayes Factor (in

Concept Concept θ̂malejk θ̂femalejk favor of H1(j, k))

Dangerous Physical symptoms 0.064 0.004 6.11
Life-threatening Disease 0.073 0.005 4.09
Transmittable Permanent 0.061 0.005 2.93
Fear Safe sex 0.052 0.004 2.89
AIDS/HIV Unsafe sex 0.042 0.003 2.34
Life-threatening Undesirable consequences 0.044 0.004 2.16

Table 7: Testing for difference between male and female participants using Bayes Factor.

5.4 Consensus map

As another application of our modeling framework, we demonstrate how a consensus
map can be constructed based solely on our model parameters by using the procedure
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outlined in Section 2.4. The male and female participants are pooled to form a single
consensus map for the data. Figure 9 shows the consensus map generated with c = 0.25
(top panel), 0.20 (middle panel), 0.15 (bottom panel). These values of c are marked by
the vertical lines in Figure 8. Note that we have chosen these cutoff values to illustrate
our approach; it may be interesting to treat the selection of c by a data-driven approach.
We return to this issue in the conclusion.

As shown in the figure, as the value of c decreases, the consensus map becomes more
complex with more concepts and links between concepts. In the top panel (with c =
0.25), only three first-order links are present. The middle panel (c = 0.20) has 7 links;
it also comprises predominantly first-order links, with the second order link between
“AIDS/HIV” and “Different kinds of STDs” also present. The bottom panel (with c =
0.15) shows a very complicated concept map structure with a total of 19 links. Since the
mean number of links across our dataset is 7.54 (see Table 3), we feel that the middle
panel (with c = 0.20) seems to represent the best compromise; a more formal approach,
as we discuss later, is to select the value of c through a data-driven approach and then
generate the consensus map that corresponds to the chosen value of c.

Note that in the previous literature, the inclusion of a link in a consensus map has been
typically based on the number of times a link is observed, i.e., Equation [5]. In such
cases, the decision of whether to include a link in a consensus map has been based on the
ranking of observed link occurrence (Table 4). Holding the total number of links to be
the same as that of Figure 8, the map in the middle panel contains no second level links,
and the bottom panel map contains only one second-level link (see Table 4). Thus, the
importance of the second-level (and above) links tends to be de-emphasized. Although
we do not claim that consensus maps generated by our procedure are “superior” (because
there is no formal definition a consensus map), we want to highlight again the fact that
the consensus maps we generate are based entirely on sufficient statistics, an important
criterion for sound statistical procedures from the viewpoint of statistical decision theory
(Berger (4)).

6 Conclusion and future research

In this paper, we build on the introduction of concept maps into marketing by John
et al. (23) and developed the methodological framework for performing statistical anal-
yses on concept maps. Specifically, we have developed a descriptive probability model
of concept maps by extending the uniform graph model in two directions: (i) allowing
for non-uniform probabilities of link presence, and (ii) introducing a pruning proce-
dure. We developed useful estimation and hypothesis testing procedures, and proposed
a methodology to create consensus maps using a model-based framework. We then
calibrated our model on a dataset that studies college students’ perceptions of STDs,
an important issue in the health marketing literature that could help design effective
educational programs to “market” the healthy beliefs about the safe sex and decrease
the STD risk on college campuses.

Although our model is relatively parsimonious, it is able to recover considered map-
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c = 0.25

c = 0.20

c = 0.15

Figure 9: Consensus maps generated with c=0.25 (top panel), c=0.20 (middle panel),
c=0.15 (bottom panel).
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level, concept-level, and link-level summary statistics. We then explored the kinds of
analyses that can be done using our model parameters, tested for gender difference in
concept map formation, and generated consensus maps (for varying c) corresponding to
our dataset.

Our model represents a first step towards a unified model-based analysis of concept
maps in marketing. It can be applied in many different settings where data in the form
of concept maps are collected. In addition, our parsimonious model can be extended in
many directions when more information (both from the concept map and individual-
level covariates) is available. We explore some of these extensions and future research
directions below:

(i) Automatic selection of c: As we mentioned earlier, rather than choosing the value of
the cutoff c subjectively, one could also use a data-driven selection of c. This could be
done, for instance, using tools developed in Bayesian variable selection (e.g., George and
McCulloch (18)). For example, instead of the Beta prior that we used in Equation [7],
we could specify that the θjk ’s are drawn from a mixture distribution of a “high” Beta
distribution with parameters (aH , bH) and a “low” Beta distribution with parameters
(aL, bL), with the assumption that the links from the “high” distribution should be
incorporated in the consensus map, while those from the “low” distribution should be
excluded. We restrict the “high” distribution to have a larger mean than the “low”
distribution. Formally, let ζjk be an indicator variable that takes the value 1 if θjk
comes from the high distribution (and hence should appear in the consensus map), and
0 otherwise; we can then modify Equation [7] to the specification below:

θjk |ζjk = 1 ∼ Beta(aH , bH)

θjk|ζjk = 0 ∼ Beta(aL, bL)

P (ζjk = 1) = λ

This setup is similar in spirit to the framework in George and McCulloch (17), who
perform variable selection in the context of multiple linear regression. We sample the
posterior of the indicator variables ζjk , and chose the θjk’s with E(ζjk |data) > 0.5
to include into the consensus map. The above method, however, involves more com-
putational effort than our current methodology, where closed-form solutions can be
obtained.

(ii) Model-based clustering : Specifying a latent class structure for our model parameters
allows researchers to cluster a dataset of concept maps into different groups. These
cluster memberships can then be linked to particular outcome variables, e.g., attitude
towards safe sex, brand preference. These relationships may have important implications
on how intervention/advertising efforts should be allocated in the effective marketing
campaign.

(iii) Individual-level covariates : If individual-level variables of interest are available for
each participant, we can incorporate them into our model parameters to study the effect
of individual-level covariates. Formally, let Θi

N×N be the matrix of parameters for the
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i-th individual, ~xi be a vector of individual-level covariates for the i-th individual and let
φi be the vector of parameters by writing out all the parameters in the matrix Θi

N×N .
We can specify:

logit(φi) = φ̄+ Ψ~xi + ~ε (20)

where φ̄ is a vector of intercepts, and Ψ is a matrix of coefficients that describes how
model parameters can related to the individual-level characteristics in ~xi , and ~ε are the
errors terms.

(iv) Model extension: Finally, as we briefly mentioned earlier, some other forms of con-
cept maps record more information than the undirected graph version that we focus on
in this paper. In particular, some concept maps record not only the presence of links
between two concepts, but also the directionality of those links. This allows us to cap-
ture potential “asymmetries” of the relationship between concept, e.g., the probability
of generating concept A given concept B may not be the same as the probability of
generation concept B given concept A.11 For such maps, it may be more appropriate
to construct a dynamic model that captures the order in which concepts are generated,
instead of the “static” approach taken in this paper. More generally, we believe that it
would be a challenge and opportunity for us and other researchers to extend our model
to the specific situation when different forms of concept maps are collected. We hope
that this paper can serve as a useful guideline for future analyses of concept map data.

7 Appendix

In the following discussion, we outline a proof which shows that the estimator in Equa-
tion [6] is the MLE estimator, and that the estimator in Equation [5] is a biased estimator
of our model parameters. For illustrative purpose, we consider the following case which
resembles the “pruning” feature of our model. Let i be a person index that goes from
1, 2, . . . , I . Let ui1 and ui2 be latent Bernoulli random variables with parameters θ1 and
θ2, respectively. Thus:

P (ui1 = 1) = θ1; P (ui2 = 1) = θ2 (21)

In order to replicate the “pruning” feature in our model, we let observed random vari-
ables vi1 to be always equal to ui1, and let vi2 to be equal to ui2 if ui1 = 1, and vi2 = 0
otherwise. Formally,

vi1 = ui1; vi2 = ui21(ui1=1) (22)

Note again that only the variables vi1 and vi2, but not ui1 and ui2, are observed. Thus,
the structure of Equation [21] and Equation [22] corresponds to the pruning feature of

11We thank an anonymous referee for this suggestion
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our model. Under our model of concept map, even when a link between two concepts
may exist (i.e., in our analogy here, ui2 = 1), that link may not appear in the observed
map (i.e., vi2 = 0 in our analogy) if neither of the concepts is connected to the core
concept (i.e., the event vi2 = 0 in this analogy).

We will now show that the MLE estimator for θ2 is

θ̂MLE
2 =

∑I
i=1 vi1vi2∑I
i=1 vi1

(23)

which corresponds to the estimator we proposed in Equation [6]. We begin by writing
down the probability function of (vi1,vi2) by considering the three possible cases as
follows:

P (vi1 = 0, vi2 = 0) = P (ui1 = 0, ui2 = 0) + P (ui1 = 0, ui2 = 1) (24)

= (1 − θ1)(1 − θ2) + (1 − θ1)θ2 = 1 − θ1 (25)

P (vi1 = 1, vi2 = 0) = P (ui1 = 1, ui2 = 0) = θ1(1 − θ2) (26)

P (vi1 = 1, vi2 = 1) = P (ui1 = 1, ui2 = 1) = θ1θ2 (27)

Using the set of equations in [24-27], the likelihood function for (θ1,θ2) can be written
as:

l(θ1, θ2) = (1−θ1)
∑

i
1(vi1=0)(θ1(1−θ2))

∑
i
1(vi1=1 and vi2=0)(θ1θ2)

∑
i
1(vi1=1 and vi2=1) (28)

Taking logs,

L(θ1, θ2) =
∑

i

1(vi1=0)(log(1 − θ1)) +
∑

i

1(vi1=1 and vi2=0)(log(θ1) + log(1 − θ2))

+
∑

i

1(vi1=1 and vi2=1)(log(θ1) + log(θ2)) (29)

Finally, we maximize Equation [29] with respect to θ2 and consider the first-order con-
dition:

∑
i 1(vi1=0 and vi2=1)

θ2
−
∑
i 1(vi1=1 and vi2=0)

1 − θ2
= 0 (30)
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⇒ θ̂MLE
2 =

∑
i 1(vi1=1 and vi2=1)∑

i 1(vi1=1)
=

∑I
i=1 vi1vi2∑I
i=1 vi1

(31)

Since the estimator in Equation [31] is the MLE, it is efficient and (asymptotically)
unbiased (Casella and Berger (9)). It is also sufficient for θ2. In contrast, the estimator

in Equation [5] is a biased because
∑

I
i=1 vi1vi2

I ≤
∑

I
i=1 vi1vi2∑

I
i=1 vi1

(equality holds if and only

if vi1 = 1 ∀i).
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