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Bayesian Dynamic Density Estimation

Abel Rodriguez∗ and Enrique ter Horst†

Abstract. Empirical distributions in finance and economics might show heavy
tails, volatility clustering, varying mean returns and multimodality as part of their
features. However, most statistical models available in the literature assume some
kind of parametric form (clearly neglecting important characteristics of the data)
or focus on modeling extreme events (therefore, providing no information about
the rest of the distribution). In this paper we develop a Bayesian nonparamet-
ric prior for a collection of distributions evolving in discrete time. The prior is
constructed by defining the distribution at any time point as a Dirichlet process
mixture of Gaussian distributions, and inducing dependence through the atoms
of their stick-breaking decomposition. A general construction, which allows for
trends, periodicities and regressors is described. The resulting model is applied to
the estimation of the time-varying travel expense distribution of employees from
a major development bank comparable to the IDB, IMF and World Bank.

Keywords: Dependent Dirichlet process; Nonparametric Bayes; Random probabil-
ity measure; Travel Costs; Insurance Claim Distributions

1 Introduction

One of the main constraints associated with classical time series analysis is the para-
metric assumptions involved in the analysis. Even if the evolution process is modeled
in a flexible or non-parametric way, observational and evolution noise are typically as-
sumed to follow some parametric distribution. This means that inferences end up being
restricted to the moments of the assumed distributions, and changes not captured by
those moments are overlooked by the model. Besides, in many applications, the natural
measurement object is the distribution itself, which can potentially present skewness
and multimodality as part of its features. For example, in genetic epidemiology studies
the main object of interest is the evolution of the distribution of DNA damage across
time; in insurance and risk management applications, the focus is the distribution of
claims and how it changes in time.

As motivating example, consider the problem of estimating the distribution of the
claims submitted to an insurance company during one month. These distributions can
be very non-normal, and getting accurate density estimates for the distribution of claims
is relevant for a number of reasons. On one hand, accurate estimation of the tails of the
distribution is important since they determine the size of the reserves for contingencies.
Since reserves must be maintained in very liquid but low-yield instruments, large reserves
can reduce profits; however, small reserves can create liquidity crisis that can lead
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to bankruptcy. On the other hand, density estimates can be used to reconstruct the
distribution of any functional of interest, like the size of the largest claim to be processed
in a typical month.

In the context of actuarial science applications, Bayesian parametric and nonpara-
metric methods have proven useful in modeling insurance claim distributions
(Reiss and Thomas 1999; Smyth and Jorgensen 2002; Fellingham and Kottas 2007). In
the analysis of credit rating scores, Huang et al. (2004) compared credit rating predic-
tion performance between backpropagation neural network (BNN) and support vector
machines (SVM), obtaining around 80% of accuracy for both methods in the context
of corporate credit rating analysis. In the context of corporate bond credit rating,
Chaveesuk et al. (1999) explore three of the most well known supervised neural network
paradigms-backpropagation, radial basis function and learning vector quantization-for
the task of rating US corporate bonds.

In this paper we develop statistical methods appropriate to estimate and predict
densities that evolve in discrete time. We are particularly interested in models where
computationally efficient algorithms can be developed. Our models use countably infi-
nite mixtures of Gaussian distributions to represent the unknown density at each time
point. These methods can be conceived as an extension of the Dirichlet process Mixture
model (Lo 1984; Escobar and West 1995) to collections of distributions that evolve in
discrete time. Dependence is built into the mixing distribution by allowing the atoms
to evolve dynamically as linear state-space models. Indeed, the models we present can
also be regarded as an extension of the Gaussian Dynamic Linear Models (DLMs) of
West and Harrison (1997), which are Bayesian versions of the popular Kalman Filter
(Kalman 1960). Gaussian DLMs are very flexible models with well-known properties,
which have been successfully applied on a number of different areas, including economet-
rics, engineering and climatology (Kim 1994; Pesaran et al. 1995; West 1995; III et al.
1998; West et al. 1999). Dynamic linear models with more general error structures have
been recently considered by Caron et al. (2008), who also use DPM priors to provide a
nonparametric specification for the distribution of both the observational and evolution
errors. However, unlike the models we present this paper, Caron et al. (2008) assume
that such error distributions are constant in time and allow only for evolution in the
mean of the process.

There is an extensive literature on Bayesian density estimation and clustering based
on discrete mixtures (either finite or infinite), particularly using Gaussian distributions
(Escobar and West 1995; Richardson and Green 1997; Green and Richardson 2001). The
Dirichlet process (DP) (Ferguson 1973, 1974; Antoniak 1974) has become the tool of
choice in Bayesian nonparametric analysis due to its flexibility, elegance and simplic-
ity. Some examples of recent applications of the Dirichlet processes include finance,
econometrics, epidemiology, genetics and survival analysis among others (Müller et al.
2004; Kacperczyk et al. 2004; Chib and Hamilton 2002; Hirano 2002; Dunson 2005;
Medvedovic and Sivaganesan 2002; Dunson et al. 2007a; Kottas et al. 2002) as well as
(Bigelow and Dunson 2005; Laws and O’Hagan 2002; Dunson and Park 2008; Griffin
2007; Pennell and Dunson 2008).
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Most of the classical literature on the Dirichlet process focuses on exchangeable sam-
ples. However, recent work has started to develop methods for dependent distributions,
either by forming convex combinations of independent processes (Müller et al. 2004;
Dunson et al. 2007b; Griffin and Steel 2007; Dunson 2006) or by introducing dependence
in the elements of the stick-breaking representation of the distribution (MacEachern
1999; DeIorio et al. 2004; Gelfand et al. 2005; Griffin and Steel 2006; Rodriguez et al.
2008). Particularly relevant for this paper are the works of Griffin and Steel (2006),
who induce dependency through random permutations of the atoms; Griffin and Steel
(2007), who construct the mixing distribution at a new time point as a linear com-
bination of the mixing distributions at the previous time points plus an innovation;
and Tang and Ghosal (2007), who are concerned with estimating the conditional dis-
tribution of a general autoregressive process. Our approach, while sharing some of
the characteristics of Griffin and Steel (2006), induces dependency in the location of
the mixture components. This formulation simplifies the implementation of the model
since it allows us to use any of the computational tools available for the regular Dirichlet
process. It also allows us to construct models with seasonal behavior and high-order
autoregressive behavior, which are hard to obtain in other settings. Finally, it provides
a more intuitive interpretation of the process, as well as a direct extension of widely
used models for time series analysis.

The paper is organized as follows: Section 2 reviews the basic properties of the
Dirichlet process. Section 3 defines our dynamic dependent Dirichlet process and dis-
cusses its main properties, while section 4 describes efficient computational tools to fit
the model. Section 5 discusses some specific examples of models that fall into the class
of dynamic dependent Dirichlet processes, including distributional autoregressive mod-
els and periodic distributional models. Finally section 6 shows an application of our
methodology which estimates the time-varying travel expense distribution of employees
from a major development bank, and Section 7 contains a discussion and conclusion.

2 The Dirichlet process

Let (X ,B) be a complete and separable metric space (typically X = R
n and B are

the Borel sets on X ) with associated probability distribution K. A Dirichlet process
(Ferguson 1973, 1974) with baseline measure K0 and precision α defines a distribu-
tion on the space of probability measures K 3 K, such that (K(B1), . . . ,K(BL)) ∼
Dir(αK0(B1), . . . , αK0(BL)) for any partition B1, . . . , BL of X . If K ∼ DP(αK0) then
for any set B ∈ B

E(K(B)) = K0(B) V(K(B)) =
K0(B)(1 −K0(B))

α+ 1

which justifies the interpretation of K0 and α as mean and precision parameters. Let
ηi ∼ K for i = 1, . . . , n and K ∼ DP(αK0). Blackwell and MacQueen (1973) showed
that, by integrating out the random distribution K, the predictive rule for a new ob-
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servation ηn given the previous observations η1, . . . ,ηn−1 is

ηn ∼ α

α+ n− 1
K0 +

∑

l<n

1

α+ n− 1
δηl

Sethuraman (1994) proved that K ∼ DP(αK0) admits a stick breaking representa-
tion:

K(·) =
∞∑

l=1

w∗
l δη∗

l
(·)

where {η∗
l }∞l=1 are iid draws fromK0 and w∗

l = z∗l
∏l−1

k=1(1−z∗k) with {z∗l }∞l=1 iid samples
from a Beta(1, α). This readily shows that the Dirichlet process places probability
one on the subspace of discrete distributions. Since this is typically not a reasonable
observational model, the DP is used as the mixing measure over the parameters of some
continuous distribution ψ(·|η), leading to the well known Dirichlet process Mixture
models (Escobar 1994; Antoniak 1974). After integrating out the baseline measure, the
predictive distribution for a future observation is therefore equal to:

y ∼ H =

∫
ψ(y|η)K(dη) K ∼ DP(αK0)

A common choice is ψ(·|η) = N(·|η = (µ, σ2)), yielding a model that, under mild
conditions, is dense in the space of absolutely continuous distributions (Lo 1984).
DPM models can be implemented by exploiting the Pòlya urn scheme described above.
Indeed, since observations are exchangeable, the predictive rule also yields the full
conditional distributions necessary to implement Gibbs samplers (Escobar and West
1995; MacEachern 1994; Bush and MacEachern 1996; MacEachern and Müller 1998;
Neal 2000). The resulting algorithm is particularly simple and efficient when the dis-
tribution associated with the baseline measure K0 is a conjugate prior for the mixed
distribution ψ.

3 Dependent Dirichlet processes in discrete time

Given a set S, consider replacing the distribution underlying Sethuraman’s stick-breaking
construction with a stochastic process {η(t) : t ∈ S} and define

Kt(·) =

∞∑

l=1

w∗
l (t)δη∗

l
(t)(·) (1)

where η
∗
l (t), for l = 1, . . ., are independent and identically distributed sample paths

from a stochastic process η(t) (which plays a role akin to the baseline measure K0) and

w∗
l (t) = z∗l (t)

∏l−1
s=1(1 − z∗s (t)) with z∗l (t) also iid sample paths from another stochastic

process z(t) such that z(t) ∼ Beta(1, α(t)) for all t ∈ D. The resulting stochastic pro-
cess is called a dependent Dirichlet process (DDP) (MacEachern 1999) and defines a
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distribution on the collection of random distributions indexed by the set S, such that
every Kt is marginally a Dirichlet process. In the sequel, we consider mixtures of Gaus-
sian distributions by a discrete-time DDP. Therefore, we take S = N and assume our
underlying stochastic process to be a general random walk. For computational reasons,
we focus on “single p” DDP models where z∗l (t) = z∗l ∼ Beta(1, α), independently of t.
More specifically, letting yit be the i-th observation obtained at time t = 1, . . . , T , our
model reduces to:

yit|Kt ∼
∫

N(yit|F′
itθt, σ

2)Kt(dθt, dσ
2) Kt =

∞∑

l=1

w∗
l δ(θ∗

lt
,σ∗2

l
)

w∗
l = z∗l

l−1∏

s=1

(1 − z∗s ) z∗l ∼ Beta(1, α)

θ
∗
lt|θ∗

l,t−1, σ
∗2
l ∼ N(Gtθ

∗
l,t−1, σ

∗2
l Wt) θ

∗
0l|σ∗2

l ∼ N(m0, σ
∗2
l C0)

σ∗2
l ∼ IG(s0, s0S0)

(2)

where N(µ, σ2) denotes a Gaussian distribution with mean µ and variance σ2, while
IG(s0, s0S0) denotes an inverse-gamma distribution with mean s0S0/(s0 − 1) and s0
degrees of freedom (see Appendix 1).

Our model assumes that the distribution for any observation yit at time t can be
written as a mixture of normal components with means F′

itθlt and variance σ2
l , for some

known matrix Fit. The parameters defining the means of these distributions are allowed
to move, with the evolution matrix Gt and the innovation variance Wt controlling the
direction and magnitude of the change at time t. This formulation is rather general,
and by appropriately choosing the sets of matrices {Ft}, {Gt} and {Wt} our model
can easily accommodate patterns like trends, periodicities and dynamic regressions,
or even autoregressive or moving average models for densities. The variances of the
mixture components are assumed to be constant in time, but allowed to change across
component; and the weights associated with each distribution are also estimated from
the data, and assumed to be constant in time. Therefore, the estimates of the model can
be interpreted as kernel density estimates with adaptive bandwidths and time varying
kernels.

The choice of a constant weights model not only simplifies computation (MacEachern
1999), but it allows for a natural interpretation of the model as a multiprocess type
II model (West and Harrison 1997). In this multiprocess interpretation, an infinite
number of DLM models with the same evolutionary structure but a different set of
state parameters are available at every point in time. These components represent
different evolutionary paths consistent with a common underlying regime described by
{Gt} and {Wt}, and where each observation is allocated to one of these components
with constant probability. Therefore, predictions using expected posterior means can
be interpreted in this model as weighted averages of the predictions obtained under an
infinite number of DLMs.

As argued by MacEachern (1999), the model in (2) can be reexpressed as a Mixture
of Dirichlet processes
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yit ∼
∫

N(yit|F′
itθt, σ

2)K(dΘ, dσ2) K ∼ DP (αK0) (3)

where Θ = (θ′
1, . . . ,θ

′
T )′ and K0 is the joint distribution of (Θ, σ2) induced by the

evolution equations described above, which reduces to a multivariate normal-inverse
gamma where

E(θt|σ2) =

[
t∏

r=1

Gt−r+1

]
m0

V(θt|σ2) = σ2

[
t∏

r=1

Gt−r+1

]
C0

[
t∏

r=1

Gt−r+1

]′
+

σ2
t−1∑

r=1

[
t−r∏

s=1

Gt−s+1

]
Wr

[
t−r∏

s=1

Gt−s+1

]′
+ σ2Wt

Cov(θt+k,θt|σ2) =

[
k∏

r=1

Gt+k−r+1

]
V(θt)

E(σ2) =
s0

(s0 − 1)
S0

V(σ2) =
s20

(s0 − 1)2(s0 − 2)
S0.

(4)

This representation as a DP mixture will be exploited in section 4 to develop efficient
and simple computational strategies to fit these models. However, we would like to stress
that our strategy does not require the explicit computation of the moments in (4), but
instead exploits forward filtering and backward sampling ideas (Carter and Kohn 1994;
Fruehwirth-Schnatter 1994) to efficiently integrate out unknown parameters. Although
the constant weights in (2) suggest a rather restrictive model where the same number of
components is used to represent every distribution (in principle, at least the largest one
needed at any time point), the model is indeed flexible. Note that a good approximation
to a lower number of components can be achieved at any time point by assigning different
components similar values of their parameters. Indeed, if (θit, σi) ≈ (θjt, σj) then
witδ(θit,σi) + wjtδ(θjt ,σj) ≈ (wit + wjt)δ(θit,σi). Therefore, by having components with
similar parameters but that are not allocated to any observation at certain time points,
we can approximate variable weights. Therefore, the price to pay for the constant-weight
assumption is, in general, a slightly larger number of atoms being used.

Besides the technical advantages already mentioned, a DDP with constant weights
can provide a realistic model for the data-generation process in many circumstances.
For example, in a financial applications where returns from multiple companies are
being modeled, we can think of the components in the mixture as representing different
industries. Therefore, the weights correspond the proportion of companies in each group
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(which will typically be roughly constant) and the atoms of the mixture correspond to
the industry-specific return level, which will tend to vary over time

It is also worthwhile to note that our dynamic DDP encompasses a number of other
models as limiting cases. On one side by letting Wt = 0 for all t we have θt = θ0 for all
t and thus Kt = Kr for all t, r, which is the set up of Escobar and West (1995). On the
other hand, by letting α→ 0, we revert to the class of parametric DLMs with replicates
as discussed in West and Harrison (1997). Note, however, that although increasing the
value of Wt reduces the dependence among distributions, letting Wt → ∞ ∀ t does not
yield independent density estimates at each time point, but an improper distribution
for θt at all times t ≥ 1. Indeed, it is known that obtaining independent distributions
from a single p DDP is not possible (MacEachern 1999).

Conditional on the mixing distribution Kt it is easy to obtain the moments of the
time varying distributions,

E(yit|Kt) = F′
it

[
∞∑

l=1

w∗
l θ

∗
lt

]

V(yit|Kt) = F′
it

[
∞∑

l=1

w∗
l θ

∗
ltθ

∗′

lt −
{

∞∑

l=1

w∗
l θ

∗
lt

}{
∞∑

l=1

w∗
l θ

∗′

lt

}]
Fit +

∞∑

l=1

w∗
l σ

∗2
l

Cov(yit, yi′,t+k|Kt) = F′
it

[
∞∑

l=1

w∗
l θ

∗
ltθ

∗′

l,t+k −
{

∞∑

l=1

w∗
l θ

∗
lt

}{
∞∑

l=1

w∗
l θ

∗′

l,t+k

}]
Fi′,t+k

i 6= i′. These expressions show that the process is in general nonstationary; in particular,
both the mean and the variance of the estimated distributions evolve in time. It is also
possible to integrate out the unknown distribution Kt under the Dirichlet process prior,
which yields (see appendix 2)

E(yit) = FtE(θt) (5)

V(yit) =
1

1 + α
F′

itV(θt)Fit + E(σ2) (6)

Cov(yit, yi′,t+k) =
1

1 + α
F′

it

[
k∏

s=1

Gt+k−s+1

]
V(θt)Fi′ ,t+k , i 6= i′ (7)

where V(θt) and E(σ2) can be obtained from (4). This shows that if the evolution
process is stationary and Fit is constant for every i and t, the resulting model for
the distributions is a priori centered around a stationary process. Other quantities of
interest, like the correlation between the probabilities of sets under the prior, can be
seen in appendix 3.

Note the similarity of (7) with the replicated Gaussian DLM model where the covari-

ance reduces to F′
t+k

[∏k
s=1 Gt+k−s+1

]
E
[
V(θt|σ2)

]
Ft, implying that the covariance

under the discrete time DDP is strictly smaller. This might seem counterintuitive at
first sight, but it is simply a consequence of the added uncertainty in the model spec-
ification. Indeed, the use of a nonparametric mixture opens the door for observations
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to come from different sample paths (atoms), in which case they are independent. This
reduces the overall dependence with respect to the standard Gaussian DLM, where all
observations arise from a unique sample path.

4 Inference

Inferences on the dynamic DDP can be performed using the same computational tech-
niques employed for DP mixtures models (see, for example,
MacEachern (1994); Bush and MacEachern (1996); MacEachern and Müller (1998); Neal
(2000); Ishwaran and James (2001)). In what follows, we describe an extension of the al-
gorithm in MacEachern (1994) that uses ideas underlying Forward-Filtering-Backward-
Sampling (FFBS) algorithms (Carter and Kohn 1994; Fruehwirth-Schnatter 1994) to
efficiently compute the predictive distributions necessary to
implement the algorithm.

The algorithm uses the following reparametrization of the model: let L be the current
number of components that have observations allocated to them, n∗

lt be the number of
observations in time t assigned to group l, nl =

∑
t nlt, {Θ∗

1, . . . ,Θ
∗
L} be the current

estimated values for those paths and ξit = l iff Θit = Θ∗
lt. Given values for the structural

matrices Fit, Git and Wit and after initialization of the parameters, the MCMC sampler
alternates through the following steps:

1. Generate Θ∗
l , σ

∗2
l |{y|ξit = k, } · · · using the FFBS algorithm

(a) Forward filter using the recursions

mlt =

{
alt + Altelt if nlt > 0

alt if nlt = 0

Clt =

{
Rlt −AltQltA

′
lt if nlt > 0

Rlt if nlt = 0

slt = sl,t−1 + nlt

sltSlt =

{
sl,t−1Sl,t−1 + e′ltQ

−1
lt elt if nlt > 0

sl,t−1Sl,t−1 if nlt = 0

Alt = RltF
∗
ltQ

−1
lt

elt = ylt − flt

flt = F∗′

lt alt

Qlt = F∗′

lt RltF
∗
lt + I

alt = Gltml,t−1

Rlt = GltCl,t−1G
′
lt + Wlt



Abel Rodriguez and Enrique ter Horst 347

where ylt is made of all observations assigned to group l at time t, F∗
lt is a

matrix whose columns are the corresponding Fit vectors and I is the identity
matrix.

(b) Sample σ∗2
l |yl, · · · from IG(slT /2, slTSlT /2).

(c) Sample θ
∗
lT |σ∗2

l ,yl, · · · from N(mlT ,ClT ).
Then recursively sample θ

∗
lt|θ∗

l,t+1, σ
∗2
l ,yl from N(dlt,Dlt) where

dlt = mlt + Blt (θl,t+1 − al,t+1)

Dlt = Clt −BltRl,t+1B
′
lt

Blt = CltGt+1R
−1
l,t+1

2. Sample ξit|y, ξ−, · · · from a multinomial distribution with probabilities:

ql = n−
l p(yit|y−, ξ−)

= n−
l Ts−

lT

(
yit|F′

ith
−
lt , S

−
lT (1 + F′

itH
−
ltFit)

)

q0 = αp(yit|S0)

= αTs0
(yit|F′

ith0t, S0(1 + F′
itH0tFit))

where the superindex indicates removal of observation (i, t) from the sample, ql for
l = 1, . . . , L− is the probability of allocating observation (i, t) to cluster l, q0 is the
probability of allocating the observation to a new cluster, hlT = mlT , HlT = ClT

and

hlt = mlt + Blt (hl,t+1 − al,t+1)

Hlt = Clt −Blt(Hl,t+1 − Rl,t+1)B
′
lt

Both h0t and H0t can be calculated using the same recursions with n0t = 0 for
all t.

The filtering and smoothing relations described above are generalizations of those
found in Carter and Kohn (1994), Fruehwirth-Schnatter (1994) and West and Harrison
(1997), intended to deal with missing data or multiple observations. Note that Step 2
can be computationally expensive since it implies running Forward-Filtering/Backward-
Smoothing (FFBS) steps for each observation in the sample. A careful implementation
requires at least one and at most two such steps for each observation: one to recalculate
the parameters for the group to which the observation currently belongs and possibly
another one to calculate those of the group were it is to be assigned.

Typically, the matrices Gt and Wt governing the evolution of the system might be
unknown. However, since Wt and Gt define the moments of the baseline measure, in-
ference on these quantities can be performed as discussed in Escobar and West (1998).
Therefore, inferences on structural parameters like periodic components or autoregres-
sive coefficients can be accommodated very easily. Details on some specific examples
are discussed in section 5.
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4.1 Smoothing and predicting density estimates

The original goal of our analysis is to obtain density estimates that borrow information
across different periods and predict the shape of the density at future periods. Given
DT , which stands for all the information up to time T , the optimal estimator for the
density at time t < T under squared error loss corresponds to the posterior predictive
distribution,

ĥt(·|DT ) = E

[∫
N(·|F′

tθt, σ
2)Kt(dθt, dσ

2)
∣∣∣DT

]
=

∫
N(·|F′

tθt, σ
2)E

[
Kt(dθt, dσ

2)
∣∣DT

]
.

(8)

We call this a filtered density estimate. In the specific case of the nonparametric
DLM models discussed above, equation (8) reduces to

ĥt(y|DT ) =

∫ [ L∑

l=1

1

α+ L
N(y|F′

tθ
∗
lt, σ

∗2
l ) +

α

α+ L
Ts0

(y|F′
th0t, S0[1 + F′

tH0tFt])

]

p(Θ∗
1, . . . ,Θ

∗
L, σ

∗2
1 , . . . , σ∗2

L |DT )

dΘ∗
1, . . . dΘ

∗
Ldσ

∗2
1 . . . dσ∗2

L

(9)

Given a sample from the posterior distribution of {Θ∗
1, . . . ,Θ

∗
L} and {σ∗2

1 , . . . , σ∗2
L },

the integral in (9) can be easily evaluated for any value of y using Monte-Carlo integra-

tion. Also, k-step ahead density predictions, f̂t+k(·|Dt), can be obtained in a similar
way.

5 Examples

This section discusses some specific implementations of the modeling framework dis-
cussed so far. We focus mainly on distribution autoregressive models and periodic den-
sity processes, but distributional trends and mixtures of dynamic regression models, as
well as more complicated models constructed as superpositions of all these, are straight-
forward. We also use the DAR(1) model to extend the discussion about computational
strategies for structural parameters in Section 4.

5.1 First Order Distribution Autoregressive Models

Autoregressive (AR) models are one of the most popular tools in finance and econo-
metrics, both because of their flexibility and interpretability. For example, as noted
by a number of authors (Box and Jenkins 1974; West 1997; Aguilar et al. 1999), high
order stationary AR processes can be seen as approximations to Moving Average (MA)
processes. Even more, Wold’s decomposition ensures that high order AR processes are
good approximations to any stationary process.

AR models have been used to model not only the mean structure of the time series,
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but also to understand other aspects of the distributions of interest. For example, ARCH
models (Engle 1982) use an AR process to model the volatility of the process. The goal
of this section is to push the idea of AR processes beyond that of a model for the
moments of distributions and get an equivalent formulation for the whole distribution.
For simplicity, we start our discussion with the first-order, distribution autoregressive
process (DAR(1)), which takes the form

yit ∼ N(µit, σ
2
it) (µit, σ

2
it) ∼ Kt

Kt =

∞∑

l=1

w∗
l δ(µ∗

lt
,σ∗2

l
) µ∗

lt ∼ N(φµ∗
l,t−1, σ

∗2
l U)

The name DAR(1) comes from the fact that the stochastic process defining the
location of the Gaussian distributions used to represent the unknown density is an
autoregressive process with autocorrelation φ. This is a special case of the general
model described in section 3 where Ft = 1, Gt = φ and Wt = U . Therefore, the
correlation a priori induced on the observations is

Cor(yi,t, yi′,t+k) =
φk

1 + α

This formulation extends the latent AR process models (West and Harrison 1997)
to infinite mixtures. As in the latent AR process, and unlike the typical Gaussian
AR(1) process, φ = 0 implies uncorrelated but dependent observations. Indeed, the
case φ = 0 generates identifiability issues since it is not possible to separate the noise
of the underlying process from the observational noise.

The model is completed by placing priors on φ, U , µ0 and α. For computational
simplicity a conditionally conjugate distribution for the variance of the autoregressive
process can be used, U ∼ IG(aU , bU ). Also, in order to ensure that the model is centered
around a stationary process, we set

φ ∼ N
(
0, τ2

)
1(−1,1) µ∗

l0 ∼ N

(
0,

σ∗2
l U

1 − φ2

)
∀ l

where N(a, b)1Ω denotes the normal distribution with mean a, variance b and restricted
to the set Ω. Finally, the DP precision factor α is given a G(aα, bα), which is condition-
ally conjugate.

Implementation of this model is a straightforward extension of that in section 4.
Conditional on φ, U and α, the model is a discrete-time DDP. On the other hand,
conditional on the allocation indicators, the sample paths {(µ∗

l , σ
∗2
l )}L

l=1 are iid samples
from the baseline measure. Therefore, samples from φ and U can be easily obtained
using the following full-conditional distributions.

• The variance of the autoregressive process can be obtained by sampling U from
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its full conditional distribution,

U | · · · ∼ IG

(
aU +

T

2
, bU +

∑

l

[
(1 − φ2)µ∗

l0

σ∗2
l

+

T∑

t=1

(µ∗
lt − µ∗

l,t−1)

σ∗2
l

])

• The full conditional distribution for the autocorrelation coefficient takes the form

p(φ| · · · ) ∝ (1 − φ2)−L/2 exp

{
−1− φ2

2U

L∑

l=1

µ∗2
l0

σ∗2
l

}

exp

{
−1

2

[
b

U
+

1

τ2

] [
φ− d

(
b

U
+

1

τ2

)−1
]}

where

b =

T∑

t=1

L∑

l=1

µ∗2
l,t−1

σ∗2
l

d =

T∑

t=1

L∑

l=1

µ∗
l,tµ

∗
l,t−1

σ∗2
l

Note that this expression does not correspond to any known distribution. However,
we recognize the third term (which happens to contain most of the information pro-
vided by the observations) as a normal kernel. Therefore an efficient independent-
proposal Metropolis step can be devised to sample from this full-conditional dis-
tribution. Given the current value of the autoregression parameter φ(c) in the

previous iteration, propose φ(p) ∼ N

(
d
(

b
U + 1

τ2

)−1
,
(

b
U + 1

τ2

)−1
)
1(−1,1). Then,

accept this proposal with probability

min



1,

(
1 − φ2

(p)

1 − φ2
(c)

)−L/2

exp

{
−
φ2

(c) − φ2
(p)

2U

L∑

l=1

µ∗2
l0

σ∗2
l

}


Otherwise retain the previous value φ(c).

5.2 General Distribution Autoregressive Models

Extending the previous ideas to a DAR(p) is straightforward. The model takes the form

yit ∼ N(µit, σ
2
it) (µit, σ

2
it) ∼ Kt

Kt =

∞∑

l=1

w∗
l δ(µ∗

lt
,σ∗2

l
) µ∗

lt ∼ N

(
p∑

r=1

φrµ
∗
l,t−r, σ

∗2
l U

)

In terms of inference, the DAR(p) requires a slight adaptation of the FFBS algorithm
described in section 4 due to the fact that Wt is a singular matrix. This modification is
described in West and Harrison (1997), Chapter 15.3.2 for the Gaussian AR(p) model.
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5.3 Periodic density processes

Annual, monthly and daily patterns are usually found in economic and financial time
series, and developing models that can account for these patterns is critical in many
applications. We can easily include seasonal behavior in our models by borrowing from
the DLM literature. For example, consider a form-free p seasonal distributional model
such that

Ft =




1
0
0
...
0




= F Gt =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0




= G

where F is a p×1 vector and G is a p×p matrix. Note that G is a permutation matrix,
such that Gp = I, and the i-th entry θlt describes the behavior of the i-th periodic term
of the l-th mixture component of the model. For example, if modeling annual effects
present on monthly data we would take p = 12 and θ1lt would represent the estimated
location of the l-th mixture component in January, estimated at period t. Unlike DAR
models, this structure enforces strong similarities only between distributions separated
by p times periods.

6 Illustrations

6.1 Simulation study

This section presents a simulation study where we compare the performance of our
dynamic density estimation model against regular kernel density estimators. The true
model we use to simulate the data corresponds to a sequence of thirteen distributions,
{ht(·)}13

t=1, each being a mixture of two constant normal distributions with fixed loca-
tions and scales but time varying weights. Specifically,

ht(y) = εtN(y| − 1.5, 1) + (1 − εt)N(y|1.5, 1)

where εt = 0.15 + 0.05t for t = 1, . . . , 13. Note that this is a particularly complex
situation for our model as the data generation mechanism is not in the class of models
defined in the paper. Indeed, this is one case where we could reasonably expect that
independent estimators (like those obtained using regular kernel density estimation)
can have a better performance. For each simulation, we generate 20 observations from
each one of these distributions, for a total sample size of 260 observations. The small
sample sizes introduce an additional complication to the density estimation process, and
allow us to demonstrate 1) the advantages of borrowing information across time and 2)
that kernel density estimators can be highly unreliable for small sample sizes. This last
point is particularly relevant to understand the results from the real-life application we
present in the following section.
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We ran a total of 15 simulations, each one using an independent data set generated
as described above. For each of these data sets we fitted a DDP model that uses a
simple random walk to describe the evolution of the atoms, i.e.,

θt = θt Ft =Gt = 1 Wt = U

This is a reasonable model in this situation as it centers the prior for the distribution
around the posterior for the previous period, and it is the same model we use in the
next section for our real-life application. Results are based on 20,000 iterations of the
Gibbs sampler described in section 4, obtained after a burn-in period of 5,000 samples.

We obtained filtered density estimators ĥt(y|D13) at each time point t as described
in Section 4.1, and computed the L1 distance between the corresponding estimate and
the true distribution generating the data,

dDDP
t =

∫ ∞

−∞

|ht(y) − ĥt(y|D13)|dy.

The above integral was approximated numerically using cubic quadrature over a
grid of 200 equally-spaced points in the interval [−8, 8]. Simultaneously, we computed
kernel density estimates independently for each time point, along with the corresponding
L1 distance dKDE

t . Bandwidths were obtained through crossvalidation (see Silverman
(1986) for more details). Figure 1 shows boxplots of the differences dDDP

t −dKDE
t across

all 15 simulations.

Figure 1 reveals that, in spite of the fact that the data generation mechanism is not
a member of the class of models being fitted, the density estimates obtained form our
model are typically closer to the true densities than regular kernel density estimates.
In a typical simulation, kernel density estimates improve over the filtered estimates in
no more than 3 out of 13 periods, and in around half of the simulations the filtered
estimates are uniformly better.

In order to provide some additional insight into the behavior of the model we present
in Figure 2 four filtered density estimates obtained in one of our simulations, along with
the true distribution and kernel density estimates. The filtered distributions at t = 5
and t = 9 are clearly closer to the true distributions than the kernel density estimates.
At t = 1 and t = 13 the advantage is not so clear cut, however, we can see that the
filtered distributions tend to be less bumpy and better identify the location of the modes.
In any case, the differences with respect to the true distribution seem to be driven by
the small sample size and the results from the dynamic DDP do not appear to be worse
than regular kernel density estimates. As we discussed in Section 3, the price to pay for
using a constant-weight model in this setting is a relatively larger number of components
in the mixture than otherwise expected; in this specific example, the dynamic DDP uses
uses between 5 and 9 components to represent the sequence of distributions.

Finally, we present in Figure 3 the one-step-ahead density prediction for period 13
based on the information up to time 12, h13(y|D12), for the same data set as Figure
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Figure 1: Differences in L1 distances with respect to the rue distribution between the
DDP model and a regular kernel density estimate for our 15 simulations. Each boxplot
corresponds to one of the thirteen time points used in the study. The dynamic density
estimation models typically yield more accurate density estimates, even though the data
generation mechanism is not a member of the class.

2. This prediction can also be interpreted as the mean of the prior distribution on
densities for t = 13. Although the point estimate (given by the blue (dark grey) line)
differs significantly from the true distribution, the set of posterior samples (grey lines)
seem to overlap with the true distribution (red (light grey) line).

6.2 Time-Varying travel expense distributions

Travel costs of employees for business trips can be an important source of cost for an
organization. Assessing and mitigating them can have a major impact in reducing costs,
and knowing during what periods of the year does the organization spend overall more
than in other months. Knowing the travel distribution costs might help to determine
what are the months where one should use internet phone (IP) instead of traveling if one
has to reduce costs. The costs include from the airplane ticket fare itself to the hotel,
transportation as well as meals all expressed in US dollars. The analysis performed here
can of course be carried out to other problems such as estimating the claim distribution
of insurance companies which is a loss to them. In what follows, we concentrate on the
travel costs of employees from a major development bank between January 2005 and
May 2007, applied to a total of 29 months.

Figure 4 shows the value of claims (in US dollars) in each period. Note that the
distributions are right-skewed, with most of the claims being small (under $1,000) but
some reaching over $20,000. Also the number of claims per month varies significantly,
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Figure 2: Examples of density estimates obtained in one representative simulation.
We also present plots of the true distribution and kernel density estimates to enable
comparisons.

from 3 (in January 2006) to 59 (in December 2006). Figure 5 shows kernel density
estimates for the log-value of claims at six different months spanning the whole period.
As before, crossvalidation was used to select the bandwidth. Clearly, distributions are
multimodal and heavy-tailed even after transformations, although variances seem to be
roughly constant. Also, the plots do not reveal any evident periodicity in the shape of
the distributions.

In the sequel, we consider models on the logarithm of the value of the claims. Since
no periodicity is evident from the density estimates, we employ again a simple random
walk process for the evolution of the atoms. We assume m0 ∼ N(µ, κ2) where µ = 6.0
and κ2 = 4.0. This choice reflects approximately the location and dispersion of the
logarithm of the data. However, density estimates were similar under our sensitivity
analysis, which included values of µ between 0.0 and 12.0 and values of κ2 between 1
and 25. Prior parameters for σ2 were chosen as s0 = 1.0 and S0 = 1.0, while U and α
were assigned priors IG(2.0, 1.0) and G(1.0, 1.0) respectively. Again, results were robust
to moderate changes in these prior parameters.

A variant of the MCMC sampler described in Section 4 was used to fit this model. All
results are based on 20,000 iterations obtained after a burn-in period of 5,000 samples.
No convergence problems were evident from inspection of trace plots.

The main features present in Figures 6 and 7 are those of multimodality, skewness
and fat tails of the distribution of logarithm of claim amounts. The most interesting
feature is when and how the mode of the travel costs during the month of December
has shifted from a value of 7 to a value of 5. The opposite has happened for the month
of May, where one sees that the probability mass has shifted from a low value of 4 to
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Figure 3: One step ahead predictive distribution h13(y|D12) corresponding to the same
data set as in Figure 2 compared against the true density at time t = 13. Grey lines
correspond to 1000 randomly chosen samples from the posterior distribution.

around a higher value of 7. This behavior for both the months of December and May
throughout the years 2005 until 2007 could be due to the effective implementation of a
new telecommunication technology (IP) during the year 2006. The shifting of the modes
is clearly not only more evident in figure 6 than in figure 5, but also the peakedness of
such modes.

The simulation study in Section 6.1 comes in handy to understand the marked differ-
ences between the dynamic density estimates and the simple kernel density estimates.
Indeed, in the simulation we noted that, by borrowing information across time, the
filtered estimates from our model are able to better capture the location of the different
modes even if just the weights of the components are changing. This leads to the more
noticeable peaks in the filtered density estimates. This is specially important because,
for small sample sizes like the ones available in this study, estimates of the bandwidths
for regular kernel density estimation (which affect the “peakedness” of the distribution)
is very unreliable.

Figure 7 also depicts one-step-ahead predictive distributions for the last 5 months in
our data set. They correspond to the best guess for the distribution on period t given
the information at period t− 1, as well as the mean of the prior on the distribution at
time t. As expected, the peaks of the distributions on the right column are less marked
than the peaks on the left column. Also, one-step-ahead predictive distributions tend
to have larger variables than filtered distributions.

In general, understanding the influence of the dynamic prior on the density estimates
is important . In particular, we need to make sure that the model is not overfitting the
data. When a simulation analysis is not available, we can use “hold-out” data for this
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Figure 4: Claim amounts ($) as a function of time. Distributions are very skewed, and
there is some evidence of multimodality.

purpose; by dividing the data in two groups, an analysis can be carried out on one of the
groups and the other one can be used to asses fit. However, some care must exercised
for small sample sizes like the ones in this example, as little information is available on
the tails of the distribution at each time point. An alternative to this procedure consists
on comparing one-step-ahead predictive distributions (which are based on information
up to period t − 1) with the actual observations obtained at time t. This is done in
the left column of Figure 7, showing that the data is indeed consistent with the model
assumptions.

7 Discussion

In this paper we discuss a class of models for dynamic density estimation in discrete
time that allows us to borrow information across adjacent observations and obtain robust
inferences. The main advantages of our method over similar approaches are simplicity, as
the MCMC sampler required for implementation is an extension of well known methods,
and flexibility, as including seasonal, high order autoregressive or regression terms to
explain the evolution of the distribution is straightforward. We provide details for
the most general location-and-scale mixture models, with the development for location
mixtures constituting a straightforward simplification.

The illustration in this paper focuses on the distribution of travel reimbursement
claims, but it can be immediately adapted to the estimation and prediction of insur-
ance claim probability distributions together with their associated risk measures such
as Value-at-Risk (VaR). Other applications include stochastic volatility models, risk
management, actuarial science, credit analysis and FX options, as well as epidemiology,
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Figure 5: Kernel density estimates for distribution of the logarithm of claim amounts
(log $) at six different periods. Distributions are multimodal, but variances appear
roughly constant. There is no evidence of periodicities in the shape of the distribution.

climatology and engineering, some of which are the focus of current research. However,
despite their generality, it is important to emphasize that the models described in this
paper induce dependence in the distributions themselves and assume that observations
are exchangeable within every time point given that distribution. Therefore, our model
is not suitable for the analysis of longitudinal studies where the same experimental unit
is followed at different times points.

The sampler we have described in this paper marginalizes over the collection of
unknown distributions and samples the paths of the different components in the mixture.
However, there is ample literature on MCMC techniques for Dirichlet processes that
can be exploited to obtain alternative exact or approximate samplers. Some attractive
options that can be readily implemented are truncation approximations or variational
methods, with the latter being specially appealing for very large sample samples. In all
these alternatives, the use of FFBS schemes is still key to obtain efficient algorithms.

Another important feature of the model is that, although only the means of the
mixtures components are allowed to vary in time, the model is rich enough to allow for
the variance of the resulting distributions to vary in time. This might seem surprising
at first sight, but it is a simple consequence of the mixture structure.

There are two main drawbacks with our model formulation. As discussed by
MacEachern (1999), DDPs with constant weights do not posses the intuitive asymptotic
behavior expected as Wt → ∞. Indeed, it is impossible to generate a collection of
independent distributions within this framework. However, this is hardly a limitation
(at least in the context of financial application) since in most cases the existence of
dependence is not in question and it is rarely the case that dependence tests are required.
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Figure 6: Retrospective dynamic density estimates for the distribution of the logarithm
of claim amounts (log $) p(yt|DT ) at six different periods. Differences with Figure 5 are
due not only to adaptive smoothing features of the method, but also to the information
borrowed across time.

Finally, identifiability can be an issue with single-observation time series. Indeed,
it is uncommon in finance and econometric applications to have replicates at any given
time. It is hard for constant weight constructions to differentiate between variability at
the observational level, variability in the evolution of the parameters, and multimodality
unless replicates are available. The intuition in the context of discrete-time DDPs
is straightforward: are observed changes in the process due to a unimodal process
with fairly large observational/evolution variance or to an almost constant multimodal
distribution? Work is in progress on this specific topic.
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Figure 7: Dynamic density estimates ht(y|DT ) (left column) and one-step ahead pre-
dictive distributions, ht(y|Dt−1) (right column) for claims in 2007. Dots correspond to
actual observations.

1 Appendix 1: Notation

This appendix establishes the notation and parametrizations we used in the paper.

1.1 Gamma distribution

We denote X ∼ G(a, b) if

p(x|a, b) =
ba

Γ(a)
xa−1 exp {−bx}

1.2 Inverse-Gamma distribution

We denote X ∼ IG(a, b) if

p(x|a, b) =
ba

Γ(a)

(
1

x

)a+1

exp

{
− b

x

}

1.3 T distribution

We denote X ∼ Tν(µ, σ2) if

p(x) =
Γ((ν + 1)/2)

Γ(ν/2)
√
πν

(
1 +

(x− µ)2

νσ2

)−(ν+1)/2
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2 Appendix 2: Covariance structure in the discrete-time

DDP

The result for the expectation is straightforward since

E [E(yit|Kt] = F′
itE [E(θt|Kt] = F′

it

∞∑

l=1

E(wl) [E(θ∗
lt] = F′

itE(θt)

∞∑

l=1

E(wl) = F′
itE(θt).

Next we show the result for the covariance. Computation for the variance follows an
almost identical procedure. Note that our model implies that yit|θit, σ

2
i = Ftθit + εit

with errors εit ∼ N(0, σ2
i ) independent for every pair (i, t). Then

Cov(yi,t, yi′,t+k) = Cov(Ftθit,Ft+kθi′,t+k) + Cov(εit,Ft+kθi′,t+k)

+ Cov(Ftθit, εi′,t+k) + Cov(εit, εi′,t+k)

where the last three terms are zero as long as either i 6= i′ or k 6= 0. Therefore

Cov(yi,t, yi′,t+k) = FtCov(θit,θi′,t+k)F′
t+k .

Now,

E(θitθi′,t+k) = E

(
∞∑

l=1

w∗
l δ(θ∗

lt
)

∞∑

l=1

w∗
l δ(θ∗

l,t+k
)

)

= E

(
∞∑

l=1

∞∑

r=1

w∗
l w

∗
rδ(θ∗

lt
)δ(θ∗

r,t+k
)

)

= E

(
∞∑

l=1

w∗2
l δ(θ∗

lt
)δ(θ∗

l,t+k
)

)
+ E




∞∑

l=1

∞∑

r=1,r 6=l

w∗
l w

∗
rδ(θ∗

lt
)δ(θ∗

r,t+k
)




=
1

1 + α
E(θtθt+k) +

α

1 + α
E(θt)E(θt+k).

Therefore

Cov(θit,θi′,t+k) = E(θitθi′,t+k) − E(θit)E(θi′,t+k)

=
1

1 + α
E(θtθt+k) − 1

1 + α
E(θt)E(θt+k)

=
1

1 + α
Cov(θt,θt+k).

Since the pair (θ∗
1t,θ

∗
1,t+k) is sampled from the baseline measure K0.
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3 Appendix 3: Covariance structure across probability

distributions

Dealing with the density-valued transition probability is clearly not a straightforward
matter. Instead, insight into the dependence at the random density level could be given
through second order moments such as Cov(Ht(A), Ht+k(A)). For simplicity, we assume
that Fit = Ft for all i. A priori, for any set A,

E(Ht(A)Ht+k(A)) = E

[
∞∑

l=1

∞∑

r=1

w∗
l w

∗
rΦ(A|F′

tθ
∗
lt, σ

∗2
l )Φ(A|F′

t+rθ
∗
r,t+k, σ

∗2
l )

]

=

∞∑

l=1

E(w∗2
l )E

(
Φ(A|F′

tθ
∗
lt, σ

∗2
l )Φ(A|F′

t+rθ
∗
l,t+k, σ

∗2
l )
)

+

∞∑

l=1

∞∑

r 6=l

E(w∗
l w

∗
r )E

(
Φ(A|F′

tθ
∗
lt, σ

∗2
l )
)

E
(
Φ(A|F′

t+rθ
∗
r,t+k, σ

∗2
r )
)

= E
(
Φ(A|F′

tθt, σ
2)Φ(A|F′

t+rθt+k, σ
2)
) ∞∑

l=1

E(w∗2
l )

+ E
(
Φ(A|F′

tθt, σ
2)
)

E
(
Φ(A|F′

t+kθt+k, σ
2)
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l=1

∞∑

r 6=l

E(w∗
l w

∗
r )

= E
(
Φ(A|F′

tθt, σ
2)Φ(A|F′

t+rθt+k, σ
2)
) 1

1 + α

+ E
(
Φ(A|F′

tθt, σ
2)
)

E
(
Φ(A|F′

t+kθt+k, σ
2)
) α

1 + α

where Φ(A|µ, τ2) =
∫

A
1√
2πτ

exp
{
− 1

2

(
x−µ

τ

)2}
dx. Therefore,

Cov(Ht(A), Ht+k(A)) = E
(
Φ(A|F′

tθt, σ
2)Φ(A|F′

t+rθt+k, σ
2)
) 1

1 + α

+ E
(
Φ(A|F′

tθt, σ
2)
)

E
(
Φ(A|F′

t+kθt+k, σ
2)
) α

1 + α

− E
(
Φ(A|F′

tθt, σ
2)
)

E
(
Φ(A|F′

t+kθt+k, σ
2)
)

=
1

1 + α

[
E
(
Φ(A|F′

tθt, σ
2)Φ(A|F′

t+rθt+k, σ
2)
)

−E
(
Φ(A|F′

tθt, σ
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)

E
(
Φ(A|F′
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.
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