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Joint Random Partition Models for Multivariate
Change Point Analysis∗

José J. Quinlan†, Garritt L. Page‡, and Luis M. Castro§,¶,‖

Abstract. Change point analyses are concerned with identifying positions of an
ordered stochastic process that undergo abrupt local changes of some underly-
ing distribution. When multiple processes are observed, it is often the case that
information regarding the change point positions is shared across the different
processes. This work describes a method that takes advantage of this type of infor-
mation. Since the number and position of change points can be described through
a partition with contiguous clusters, our approach develops a joint model for these
types of partitions. We describe computational strategies associated with our ap-
proach and illustrate improved performance in detecting change points through
a small simulation study. We then apply our method to a financial data set of
emerging markets in Latin America and highlight interesting insights discovered
due to the correlation between change point locations among these economies.

Keywords: correlated random partitions, multiple change point analysis,
multivariate time series.

1 Introduction
Change point analyses identify times or positions of an ordered stochastic process that
undergo abrupt local changes. These abrupt changes are typically seen as shifts in
expectation, variability, or shape of an underlying distribution (or some combination of
the three). Methods that detect change points have been employed in a variety of fields,
including finance (Wood et al., 2021), climatology (Gupta et al., 2021), and ecology
(Jones et al., 2021) to name a few. Due to this, many change point methods have been
proposed in the statistical literature both in a univariate (see for example Arellano-Valle
et al., 2013) and a multivariate setting (see Truong et al., 2020, for a comprehensive
review).

The phenomenon that motivates our research is the so-called financial contagion or
simply contagion. This phenomenon can be understood as the spread of financial crises
from one country to another (see for example Lowell et al., 1998; Valdés, 2000; de P.
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Filleti et al., 2008, among others). To illustrate contagion consider the price and returns
of the five markets displayed in Figure 1. Note that the overall trend of the price in
the Latin American markets (Argentina, Brazil, Chile, and Mexico) seem to coincide.
However, the USA market (Dow Jones index) presents a different trend during the
same observation period (1995 to 2001). It is important to note that, in the second
half of 1998, Dow Jones suffered a slight crash (a change in volatility according to
Figure 1, left column) due to the Russian financial crisis and the Long Term Capital
Management episode. Consequently, we hypothesize that a change point in a mature
market such as the US could produce change points in emerging markets such as those
from Latin American, or simply, the financial contagion between the US market and
Latin American markets could increase the chance of change points occurring in the
later markets when they occur in the former. Consequently, the method we develop will
incorporate dependence between change point probabilities across multiple processes
which could potentially improve the ability of detecting a change point compared to an
independent model.

One commonly used approach in the statistical literature for detecting time-series
change points is based on product partition models (PPM). These models, which were
introduced by Barry and Hartigan (1992), assume that (a) the number and positions
of change points are random and, (b) observations within the same block are assumed
to follow the same distribution. Thus, the inferential problem reduces to identifying a
partition where each cluster is a collection of consecutive data points and then esti-
mate parameters associated with each cluster’s assumed data model. From a Bayesian
viewpoint, a prior distribution on the space of partitions, which are restricted to be
contiguous, is needed. Barry and Hartigan (1992) use a prior for which change point
probabilities are based on the so-called cohesion function studied in Yao (1984). Since
Barry and Hartigan (1992) many other PPM type approaches to change point analy-
sis have been developed (see, for example Loschi and Cruz, 2002; Loschi et al., 2003;
Loschi and Cruz, 2005; Loschi et al., 2005, 2010; Martínez and Mena, 2014; García and
Gutiérrez-Peña, 2019; Pedroso et al., 2021).

Most of the existing approaches based on PPMs for detecting change points in time
series treat the series independently. For example, the PPM-based proposal of Wang
and Emerson (2015) examines a class of change point problems on connected graphs,
assuming a regression model within each block of the partition of the graph. This
proposal is implemented in the bcp package (Erdman and Emerson, 2007) available
in software R (R Core Team, 2022). Another univariate approach based on the work
of Barry and Hartigan (1992) is proposed by Loschi and Cruz (2002). Their method
allows detecting multiple change points in a particular series using an easy-to-implement
Gibbs sampling scheme. This method is available in the R package ppmSuite (Page and
Quinlan, 2022).

However, in the presence of contagion, the information available from several series
could improve the accuracy of the change point detection mechanism compared to when
series are treated independently. In general, the strategies for detecting change points
in the multivariate context focus on detecting changes in the joint distribution of the
coordinates of a multivariate process across time. For example, Cheon and Kim (2010)
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Figure 1: Daily returns and price of stock market indexes of Argentina, Brazil, Chile,
Mexico and USA. Returns are calculated using Rt = (Pt−Pt−1)/Pt−1 for t ∈ {2, . . . , n},
where Pt is the price of day t.
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developed a Bayesian model for detecting changes in the mean and variance when data
follow a multivariate normal distribution. Their approach considers a latent vector that
identifies change point positions for partitioning the observations. Nyamundanda et al.
(2015) proposed an approach that combines a PPM with a probabilistic principal compo-
nent analysis. This approach identifies change points by imposing a partition structure
on parameters of interest, reducing the data dimension via the principal component
analysis. The cluster structure is incorporated at the level of the observations and the
latent variables used in the principal component setup. Therefore, the approach is called
a product partition latent variable model (PPLVM). The key feature of the PPLVM
is that it can be used to detect distributional changes in the mean and covariance of
the series, even in high-dimensional settings. Recently, Jin et al. (2022) considered a
Bayesian hierarchical model to detect mean shifts in multiple sequences by modeling
mean differences. The authors considered an exchangeable random order distribution
(Martínez and Mena, 2014) to construct the prior distribution for the set of change
points. Notably, they use a Pitman-Yor process (for more details see De Blasi et al.,
2015). This prior provides an exciting balance between being informative and noninfor-
mative about the number of clusters and, therefore, the number of change points (Lijoi
et al., 2007). The proposal of Jin et al. (2022) considers the use of nonlocal priors for
the mean difference which informs the detection error of change points.

In contrast to the approaches described above, there are models that do not intro-
duce explicitly a distribution for partitions of contiguous clusters. For example, Killick
et al. (2012) considered a procedure for detecting change points by minimizing a cost
function, which detects the optimal number and location of change points with a linear
computational complexity under mild conditions. Tveten et al. (2022) also minimize a
cost function when searching for change points in cross-correlated processes. Matteson
and James (2014) proposed a robust nonparametric method using a divergence measure
based on Euclidean distances. With this method, the authors showed that it is possible
to detect any distributional change within an independent sequence of random variables
without making any distributional assumption beyond the existence of the α-th abso-
lute moment, for some α ∈ (0, 2). Padilla et al. (2021) proposed a novel change point
detection algorithm based on the Kolmogorov–Smirnov statistic and showed that it is
nearly minimax rate optimal under suitable conditions.

Other approaches for detecting changes in a multivariate process that is more inline
with what we propose assume that each process has its own change point structure.
Harlé et al. (2016) introduce a set of independent binary vectors whose entries indicate
which coordinate of the multivariate process changes. They do this using a composite
marginal likelihood based on Wilcoxon’s rank-sum test and a suitable prior for the bi-
nary vectors. Their approach incorporates dependence among change points between
different coordinates. Moreover, Fan and Mackey (2017) introduce a set of change point
indicator variables for each coordinate and time such that the prior change point prob-
abilities for all coordinates at a fixed time are the same but change through time.

Our approach, which is motivated by the contagion phenomena, considers simultane-
ous changes in all parameters associated with a particular process dealing with multiple
univariate time series (not all of which are necessarily the same type of response). Thus,
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each series has its change point structure where the change points between them may
or may not coincide in time. It is important to stress that several approaches for de-
tecting change points in the context of contagion and financial data are proposed in the
literature. For example, Zhu et al. (2013) propose a change point detection approach
based on copula for detecting a financial contagion phenomena in Chinese banking. In
this setup, the detection strategy is focused on the analysis of the dependence structure
of the data, defining a change point where the dependence structure changes. Zhu et al.
(2015) applied the same strategy for detecting change points for the subprime crisis in
American banking. More recently, Song and Kang (2021a) propose the use of general-
ized autoregressive conditional heteroscedasticity of order (1,1), namely, GARCH (1,1)
model for detecting change points combined with a hypothesis test proposed by Song
and Kang (2021b). The approach is used for studying the price of Bitcoin from January
2013 to December 2020. Finally, we note that the works of R. Loschi (see for example
Loschi and Cruz, 2002; Loschi et al., 2003; Loschi and Cruz, 2005, among others) are
devoted to identifying change points sequences in Latin American emerging markets
using PPM. They considered a contagion effect that occurs from the mature markets
(markets belonging to developing countries) to the emerging ones.

We base our approach on elements from the method described in Fan and Mackey
(2017) combined with a novel multivariate extension of the PPM approach of Barry and
Hartigan (1992). The resulting method takes advantage of the existing correlation in
change point locations between series. This strategy requires specifying a joint prior dis-
tribution for a collection of partitions. Constructing these types of dependent partition
models over a series of partitions has only very recently been considered in the literature
by, for instance, Zanini et al. (2019); Page et al. (2022). The method we present is the
first work that we are aware of that considers jointly modeling contiguous partitions.

The remainder of the article is organized as follows. Section 2 provides notation
and background to the change point PPM. In Section 3 we describe our approach of
incorporating dependence between change point probabilities, provide some theoretical
properties and details with regards to computation. Section 4 describes a numerical
experiment designed to study our method’s ability to detect change points, and in
Section 5 we apply our approach to the finance data concerning stock market returns
of five countries. We close the paper with some concluding remarks in Section 6.

2 Background and Preliminaries
To make the paper self-contained, we start this section with some background related
to PPMs and introduce some notation we will use throughout the paper.

2.1 Partition Definition and Notation
Without loss of generality, consider i = 1, . . . , L > 1 time series yi = (yi,1, . . . , yi,n)�,
each of length n > 2. Change points occur when the behavior of yi undergoes sudden
changes at unknown times. These times of sudden changes partition {1, . . . , n} into ki
contiguous sets, say ρi = {Si,1, . . . , Si,ki}, for some ki ∈ {1, . . . , n}. Here, Si,j is the jth
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block of the ith series and ki is the number of blocks in ρi. The space of these types
of partitions will be denoted by Cn. If we let the set τi = {τi,1 + 1, . . . , τi,ki−1 + 1}
denotes the locations at which change points in yi occur, with τi,0 = 0, then Si,j =
{τi,j−1 + 1, . . . , τi,j}.

An alternative way to denote a partition of contiguous clusters that will facilitate
model description is based on a set of change point indicators ci = (ci,1, . . . , ci,n−1)�,
such that ci,t = 1 if time t + 1 is a change point in yi, and ci,t = 0 otherwise. The
number of change points can be identified using ci by noticing that ki = 1 +

∑n−1
t=1 ci,t.

In what follows, we will use ρi and ci interchangeably. With the necessary notation
introduced, we next describe the change point PPM.

2.2 Change Point Product Partition Models

For the i-th sequence, the PPM is a discrete distribution on space Cn such that

P(ρi = {Si,1, . . . , Si,ki}) =
∏ki

j=1 c(Si,j)∑
ρi∈Cn

∏ki

j=1 c(Si,j)
,

where c(Si,j) is referred to as a cohesion function and measures the a priori belief that
elements in Si,j co-cluster. The change point PPM as described in Barry and Hartigan
(1992), Loschi et al. (2003), and others, uses Yao (1984)’s cohesion function to assign
probabilities to each element in Cn. Yao (1984)’s cohesion function applied to contiguous
Si,j results in

c(Si,j ; pi) =
{

pi(1 − pi)τi,j−τi,j−1−1, if τi,j < n
(1 − pi)τi,j−τi,j−1−1, if τi,j = n

, (1)

for some pi ∈ [0, 1] such that pi = P(ci,t = 1 | pi). Based on this cohesion we have that

∑
ρi∈Cn

ki∏
j=1

c(Si,j ; pi) = 1.

Thus, the change point PPM takes on the following form

P(ρi = {Si,1, . . . , Si,ki} | pi) =
ki∏
j=1

c(Si,j ; pi) = pki−1
i (1 − pi)n−ki . (2)

Once the partition model has been specified, the key idea behind change point mod-
eling from a partition perspective is that observations within the same block are assumed
to follow a common distribution, whereas different distributions are assumed between
blocks. Following Barry and Hartigan (1992)’s approach, given ρi, the joint density of
yi is written as a product of ki data factors, also known as marginal likelihoods, which
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measure the similarity of observations within each block. More precisely,

f(yi | ρi, ξi) =
ki∏
j=1

Fi(yi,j | ξi),

Fi(yi,j | ξi) =
∫
Θi

Li(yi,j | θi, ξi)dGi(θi | ξi),
(3)

where yi,j = (yi,t : t ∈ Si,j)� and Li( · | θi, ξi) is a likelihood function indexed by
the set of parameters θi ∈ Θi which are block-specific, and ξi ∈ Ξi a collection of
parameters that are common to all blocks. Further, Gi( · | ξi) is a suitable prior for
θi. The data generating mechanism (3) along with prior distributions for ρi and ξi (if
applicable) completely specify the Bayesian change point PPM.

It is common to select Li( · | θi, ξi) and Gi( · | ξi) such that they form a conjugate
pair which results in Fi(yi,j | ξi) being available in closed form. That said, the choices
for Li( · | θi, ξi) and Gi( · | ξi) in (3) can be quite general, depending on the nature of
yi and θi. Examples of this are data that follow an Ornstein-Uhlenbeck process with a
Normal-Gamma prior for mean-precision parameters (Martínez and Mena, 2014) (here,
ξi is a case dependency parameter with a Uniform(0, 1) prior) and independent data
belonging to the exponential family with a conjugate prior for the natural parameters
(Loschi and Cruz, 2005) (in this case, there is no ξi). The types of marginal likelihoods
just described (and others not listed) are easily applied using our method. Even so, in
what follows, we will focus on the following specification (which is suitable for changes
in mean and variance for data supported on R). Let θi = (μi, σ

2
i )� ∈ Θi = R× (0,+∞)

and

Li(yi,j | θi) =
∏

t∈Si,j

Normal(yi,t | μi, σ
2
i ),

Gi(θi) = Normal(μi | μi,0, (κi,0)−1σ2
i )Inv-Gamma(σ2

i | αi,0, βi,0).
(4)

Here, μi,0 ∈ R and κi,0, αi,0, βi,0 > 0 are fixed hyperparameters, Normal( · | μ, σ2)
denotes a normal density with mean μ ∈ R and variance σ2 > 0, and Inv-Gamma( · |
α, β) denotes an inverse Gamma density with shape α > 0 and scale β > 0. It is well
known that the jth data factor induced by (4) is given by

Fi(yi,j) = tni,j (yi,j | 2αi,0, μi,01ni,j , (αi,0)−1βi,0{Ini,j + (κi,0)−1Jni,j}), (5)

where ni,j is the cardinality of Si,j , 1p ∈ R
p is the vector with entries equal 1, Ip ∈ R

p×p

is the identity matrix and Jp ∈ R
p×p is the matrix with all entries equal 1. Also,

tp( · | ν,μ,Σ) is the p-dimensional Student’s t-density with degrees of freedom ν > 0,
location vector μ ∈ R

p and scale matrix Σ ∈ S
p×p, where S

p×p denotes the space of
positive-definite matrices.

The set of hyperparameters (μi,0, κi,0, αi,0, βi,0)� play a crucial role in determining
what constitutes a change point. For example, setting αi,0 close to one will result in (5)
having thick tails so that a change point would necessarily need to be far from the
center. Conversely, with a large value of αi,0 (5) approximates a normal distribution and
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points not far from the center can still be change points. Consequently, thought must
be dedicated to assigning values to the marginal likelihood parameters. In Section 3.2
we discuss an empirical Bayes method that produces reasonable values for them in the
absence of prior information.

3 The Joint Prior Distribution on a Collection of
Partitions

We now describe our approach of formulating a joint model for a sequence of partitions.
As mentioned, the partition ρi for the i-th time series yi has a one-to-one correspondence
with ci. Thus, any prior distribution for C = (c1, . . . , cL), say π(C), uniquely determines
a prior for ρ = (ρ1, . . . , ρL). We start by describing our joint model as an extension of
the change point PPM and then we connect it to π(C), which is what we ultimately
use in our approach as it facilitates computation.

In our setup, rather than consider a single probability parameter pi for the i-th
series, we define p̃i = (pi,1, . . . , pi,n−1)� with pi,t ∈ [0, 1] and extend the cohesion in (1)
to

c�(Si,j ; p̃i) =
{

pi,τi,j
∏τi,j−1

t=τi,j−1+1(1 − pi,t), if τi,j < n,∏τi,j−1
t=τi,j−1+1(1 − pi,t), if τi,j = n.

(6)

Using the cohesion (6) for contiguous partitions still results in
∑

ρi∈Cn

∏ki

j=1 c
�(Si,j ;

p̃i) = 1. Therefore, the partition probabilities become

P(ρi = {Si,1, . . . , Si,ki} | p̃i) =
ki∏
j=1

c�(Si,j ; p̃i) =
∏
t∈Ti

pi,t
∏
t/∈Ti

(1 − pi,t),

where Ti = {τi,1, . . . , τi,ki−1}. Including all L partitions, the joint partition model be-
comes

P(ρi = {Si,1, . . . , Si,ki} : i = 1, . . . , L | p̃1, . . . , p̃L) =
∏L

i=1 P(ρi = {Si,1, . . . , Si,ki} | p̃i)
=

∏L
i=1

{∏
t∈Ti

pi,t
∏

t/∈Ti
(1 − pi,t)

}
.

Next we induce correlation in the sequence ρ1, . . . , ρL by jointly modeling the L-
dimensional vector of probabilities pt = (p1,t, . . . , pL,t)� (which are supported on the
space (0, 1)L). To specify a multivariate distribution for pt, we consider the bijective
transformation logit(pt) =

(
log

( p1,t
1−p1,t

)
, . . . , log

( pL,t

1−pL,t

))� which is defined on the Eu-
clidean space R

L, and model it with a multivariate Student’s-t distribution. The reason
for selecting a Student’s-t distribution instead of, for example, a multivariate normal
distribution is that extreme probabilities (near 0 or 1) are more achievable due to the
thicker tails of the Student’s-t. In summary, the proposed model for partitions ρ can be
formulated using the following hierarchical structure:

ci,t | pi,t ind∼ p
ci,t
i,t (1 − pi,t)1−ci,t ,

logit(pt)
iid∼ tL(ν0,μ0,Σ0),

(7)
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with μ0 = (μ0
1, . . . , μ

0
L)�, Σ0 = (σ0

l1,l2
: l1, l2 ∈ {1, . . . , L}). Note that, specifying

adequate values for ν0, μ0 and Σ0 in (7) must be done with caution as pi,t are not
invariant to their selection. In the absence of information regarding these parameters,
we provide an empirical-based approach for selecting them in Section 3.2. The full
likelihood of our extension to the change point PPM is simply the product of (4) across
the L series. In other words, we are assuming conditional independence between series
given all the partition structures. In what follows, we will refer to the model comprised
of the full likelihood, (6), and (7) as the correlated change point product partition model
or simply, CCP-PPM.

A correlated change point PPM based on (2) is available from our construction
if pi,t = pi for all t ∈ Ti and the “global” (p1, . . . , pL) are modeled as in (7). We
consider this special case of our approach (which we denote as CCP-PPM0) in the
simulation study of Section 4. In addition, the properties listed in Section 3.1 hold for
the CCP-PPM0 as well as the CCP-PPM. This is because the propositions in Section 3.1
correspond to functionals of ci,t that have been averaged over change point probabilities
and also because logit(pt) in (7) are assumed to follow an iid model. It is important
to stress however, that our extension (i.e., introducing pi,t) provides more flexibility
for modeling simultaneous change point configurations ρ by allowing us to correlate
probabilities of a change point at each time point. As a consequence, the change point
indicators ci,t are assumed conditionally independent with their own probability pi,t ∈
(0, 1) of detecting a change (ci,t = 1). This added flexibility permits borrowing of
strength when estimating the pt vectors. The benefits of doing this are highlighted in
the simulation study of Section 4. We next discuss some properties that hold for both
the CCP-PPM and the CCP-PPM0.

3.1 Properties of the Joint Model on Partitions

In this section, we provide some interesting properties that are consequences of modeling
the change point indicators with (7). The proofs of all propositions are provided in the
online supplementary material (Quinlan et al., 2022).

Proposition 1. Under the assumptions in (7), each of the ci, i = 1, . . . , L, follows a
change point PPM based on Yao’s cohesion with probability parameter

φi =
∫
R

{
exp(z)

1 + exp(z)

}
t1(z | ν0, μ

0
i , σ

0
i,i)dz. (8)

A consequence of Proposition 1 is that the correlation in the change point probabil-
ities from our model only exists across the L series for a fixed t. Within a series, the
probability of a change point at time t1 is independent of time t2. The next proposition
provides an interesting result regarding the number of expected change points based on
the CCP-PPM.

Proposition 2. Under the assumptions in (7), the number of change points (ki − 1)
for the ith series satisfies (ki − 1) ∼ Binomial(n − 1, φi), where φi is given by (8).
Additionally, for series i and s, the distribution for (ki − 1, ks − 1)� is a mixture of a



30 Bayesian Multivariate Change Point Analysis

product of two Poisson-Binomial distributions (Wang, 1993) with Cov(ki − 1, ks − 1) =
(n− 1)(ϕi,s − φiφs), where

ϕi,s =
∫
R2

[
exp(zi) exp(zs)

{1 + exp(zi)}{1 + exp(zs)}

]
t2(zA | ν0,μA,0,ΣA,0)dzA. (9)

Here, zA = (zi, zs)�, μA,0 = (μ0
i , μ

0
s)� and ΣA,0 = (σ0

l1,l2
: l1, l2 ∈ {i, s}).

Note that E(ki − 1) = (n − 1)φi easily follows from Proposition 2. In the top plot
of Figure 2 we display corr(ki − 1, ks − 1) by numerically approximating ϕi,s and using
μ0
i ∈ {−10,−7,−4} and σ0

i,i ∈ {0.5, 1, 2}. As expected the number of change points in
two series with high correlation between logit(pi,t) and logit(ps,t) will be similar. For
the values of μ0

i and σ0
i,i, used in Figure 2, the expected number of change points in

each series ranges between 6.19 and 12.29 a priori.

The last proposition derives the conditional probabilities of change point indicators.
These are of particular interest as they illustrate how the probability of a change point
across series varies as one series experiences a change point.

Proposition 3. Under the assumptions in (7), the probability of a change point oc-
curring at time t in the ith series given that one occurred at time t in the sth series
is

P(ci,t = 1 | cs,t = 1) = ϕi,s

φs
. (10)

Here φs and ϕi,s are given by (8) and (9), respectively.

The bottom row of Figure 2 provides values for P(ci,t = 1 | cs,t = 1). The integral in
P(ci,t = 1 | cs,t = 1) was approximated using the statistical software R (R Core Team
2022). As expected, the higher the correlation between logit(pi,t) and logit(ps,t) the
higher the conditional probabilities a priori, for the values of μ0

i and σ0
i,i considered.

3.2 Selection of Tuning Parameters
Like most change point methods, the posterior probability of classifying a point as a
change point can be sensitive to “tuning” parameters. For the CCP-PPM these corre-
spond to the marginal likelihood and prior distribution parameters. In some cases, the
practitioner can inform the procedure regarding a change point, which guides tuning
parameter selection. Without this information, it is appealing to have a procedure that
produces default values for the tuning parameters. Therefore, we describe an empirical
Bayes approach to selecting values for (μi,0, κi,0, αi,0, βi,0)� of the marginal likelihood
and (ν0, μ0, Σ0) of the prior. The approach we describe is geared towards situations
in which the magnitudes of change points are relatively small and is based on moment
matching.

First note that from (5) we have

0 ≤ Corr(yi,r, yi,s) ≤
1

1 + κi,0
,
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Figure 2: The top row displays Corr(ki − 1, ks − 1) for the a small collection of values
for μ0

i , σ0
i , and increasing sequence of correlations between logit(pi,t) and logit(ps,t).

The integral in (9) was approximated numerically. The bottom row displays values of
P(ci,t = 1 | cs,t = 1) for the same values of μ0

i and σ0
i and correlations between logit(pi,t)

and logit(ps,t).

for all r, s ∈ {1, . . . , n} and r �= s. Under the scenario of no change points, Corr(yi,r, yi,s)
is equal to the upper bound (1+κi,0)−1, which is constant as a function of (r, s). Thus,
a reasonable value for κi,0 could be empirically selected using Corr(yi,r, yi,s). Since
(1 + κi,0)−1 is a constant function of (r, s) any estimated �-lag autocorrelation, say ĉi,�,
of yi that is positive could be used. We opt to use the smallest � ≥ 1 such that ĉi,� > 0.
Then set κi,0 = (ĉi,�)−1(1− ĉi,�). From there, moment estimators based on the first two
moments and Mardia’s kurtosis coefficient (Mardia, 1970) can be used to provide values
for μi,0, αi,0, and βi,0. To see this let (d,m, s)� denote Mardia’s kurtosis coefficient and
the first two moments. Next set d = 2αi,0, m = μi,0 and s = (αi,0κi,0)−1/2{βi,0(κi,0 +
1)}1/2. Then, we have that μi,0 = m̂i, αi,0 = 0.5d̂i and βi,0 = 0.5d̂i(1 − ĉi,�)ŝ2

i where
(d̂i, m̂i, ŝi)� denote the set of moment estimators of (d,m, s)�.

Now, we focus on (ν0,μ0,Σ0)�. Although E(pt) and Var(pt) do not exist in a closed
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form, a first-order Taylor expansion provides approximations to them. If ν0 > 2, then

E(pt) ≈
(

exp(μ0
1)

1 + exp(μ0
1)
, . . . ,

exp(μ0
L)

1 + exp(μ0
L)

)�
,

Var(pt) ≈
(

ν0

ν0 − 2

)
J(μ0)Σ0J(μ0),

J(μ0) = diag
(

exp(μ0
1)

{1 + exp(μ0
1)}2 , . . . ,

exp(μ0
L)

{1 + exp(μ0
L)}2

)
.

After choosing prior guesses for E(pt) and Var(pt), say m0 = (m0
1, . . . ,m

0
L)� and S0

respectively, we set

μ0 =
(

log
(

m0
1

1 −m0
1

)
, . . . , log

(
m0

L

1 −m0
L

))�
,

Σ0 =
(
ν0 − 2
ν0

)
D(m0)−1S0D(m0)−1,

D(m0)−1 = diag
(

1
m0

1(1 −m0
1)
, . . . ,

1
m0

L(1 −m0
L)

)
.

We recommend setting ν0 = 3, which is the least integer such that the approxima-
tions described above exist. In the case that no prior information is available to guide
specifying m0 and S0, the following empirical approach can be employed. Set m0

1 = · · · =
m0

L = n−1. For S0, a compound symmetry covariance matrix σ2
0{(1−r0)IL +r0JL} can

be used, where σ2
0 = m0

1(1 −m0
1)/n = n−3(n− 1) and r0 = 0.5.

3.3 Posterior Sampling
The joint posterior distribution of pt and C is not analytically tractable. Therefore we
resort to sampling from it using Markov Chain Monte Carlo (MCMC) methods. The
MCMC algorithm we construct is very straightforward to implement and is an extension
of the Gibbs sampler described in Loschi et al. (2003) with the main difference being
that we employ Metropolis steps to update the pi,t. This MCMC strategy is adopted
due to its simplicity. On the one hand, the method uses the change point indicators that
easily represent the partition structure observed in the data series. On the other hand,
we need to specify the data factors or marginal likelihoods. Note that, as we mentioned
earlier, the data factors can be obtained by specifying a probability distribution (a
likelihood) conditional on the parameters of interest within a particular block (block-
specific parameters) and prior distribution for these parameters. Although we generally
consider a conjugate pair of those distributions, this is not a restriction. The choices of
the likelihood function and the prior distribution can be general.

Before model fitting, we recommend scaling each series to have mean zero and stan-
dard deviation one. The full conditional distributions used in our algorithm are described
next. Notice that there is no updating step for θ as it has been analytically integrated
out of the likelihood.
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• For each i ∈ {1, . . . , L} and t ∈ {1, . . . , n − 1} update pi,t according to its full
conditional density π(pi,t | · · · ), which is proportional to

1
pi,t

(
pi,t

1−pi,t

)ci,t{
1+ (logit(pt) − μ0)′Σ−1

0 (logit(pt) − μ0)
ν0

}− ν0+L
2

1(pi,t ∈ (0, 1)).

Here, 1( · ∈ S) is the indicator function of the set S. To update pi,t, we employ a
random walk Metropolis step with a normal centered at the previous iteration’s
value as a candidate density. The standard deviation of the normal candidate
density is set to 0.005 which produces an acceptance rate in the general range of
0.2 and 0.5

• For each i ∈ {1, . . . , L}, t ∈ {1, . . . , n− 1} and a ∈ {0, 1}, define the set of change
point indicators c(a) = (c(a)

1 , . . . , c(a)
n−1)� such that

c(a)
s =

{
ci,s, if s �= t
a, if s = t.

Using c(a), we construct the corresponding set of cluster labels e(a) = (e(a)
1 , . . . ,

e(a)
n )�. Then, after computing

i,t = P(ci,t = 1 | · · · )
P(ci,t = 0 | · · · ) =

Fi(e(1)
t | ξi)Fi(e(1)

t+1 | ξi)
Fi(e(0)

t | ξi)

(
pi,t

1 − pi,t

)
,

where Fi(j | ξi) = Fi(yi,j | ξi), ci,t can be updated using a Bernoulli distribution
with probability parameter

P(ci,t = 1 | · · · ) = i,t

1 + i,t
.

Now, an MCMC algorithm can be obtained by cycling through each of the full con-
ditionals individually. If a model is proposed so that ξi is available, it is relatively
straightforward to update ξi in the Gibbs sampler using a Metropolis step. The update
is based on the following full conditional of ξi for each i ∈ {1, . . . , L}

π(ξi | · · · ) ∝

⎧⎨⎩
ki∏
j=1

Fi(yi,j | ξi)

⎫⎬⎭hi(ξi),

where hi is a prior density for ξi.

4 Simulation Study
We conduct a numerical experiment to study the CCP-PPM’s ability to detect multi-
ple change points. The experiment is based on generating data sets containing change
points whose times are dependent across series, mimicking the contagion idea. We con-
sider change points that result from simultaneous changes in the mean and variance
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of a normal distribution. Data sets are generated using four scenarios, with each one
producing data sets containing L = 4 series of n = 100 observations. The scenarios are
detailed next.

The first scenario referred as data type 1 uses the CCP-PPM as a data generating
mechanism. We set ν0 = 3, μ0 = (−6,−6,−6,−6)�, and Σ0 to a compound symmetric
matrix with variance 10 and correlation 0.9. Based on these values, (7) is used to create
partitions. Once partitions are formed, we use a Normal((� − 1), 1) for � = 1, . . . , 4
to generate cluster specific means. Cluster specific variances were all generated using
an Inv-Gamma(10, 1) distribution. Once cluster specific parameters were generated,
observations were generated using a Normal(0, 1). An example of this type of data is
displayed in the top row of Figure 3.

The next two scenarios set change point locations at 25, 50, and 75 for each series.
As a result, the change points of the four series are highly dependent. Under this setting,
four clusters of 25 observations for each series are obtained. Given this type of partition,
we produce observations in two ways. The first one, which we refer to as data type 2,
generates observations using a normal distribution with the following cluster-specific
means and variances:

- μ�
1 = (−1, 0, 1, 2)� and σ�

1 = (0.1, 0.25, 0.5, 0.75)�,

- μ�
2 = (2, 1, 0,−2)� and σ�

2 = (0.1, 0.25, 0.5, 0.75)�.

- μ�
3 = (0, 1, 2, 3)� and σ�

3 = (0.75, 0.5, 0.25, 0.1)�.

- μ�
4 = (−2,−1, 0, 1)� and σ�

4 = (0.75, 0.5, 0.25, 0.1)�.

The second scenario, which we refer to as data type 3, generates observations using a
normal distribution and cluster-specific means and variances given by:

- μ�
1 = (−0.25, 0, 0.25, 0.5)� and σ�

1 = (0.1, 0.25, 1, 0.25)�,

- μ�
2 = (−0.25, 0, 0.25, 0.5)� and σ�

2 = (0.1, 2, 0.5, 1)�.

- μ�
3 = (0.25, 0,−0.25, 0.5)� and σ�

3 = (0.5, 0.1, 1, 0.75)�.

- μ�
4 = (0.25, 0,−0.25, 0.5)� and σ�

4 = (0.25, 2, 0.75, 1)�.

This scenario is included because it provides insight to how the CCP-PPM approach
performs for data similar to that which we consider in Section 5. Examples of synthetic
data sets created from these two scenarios are provided in the second and third rows
of Figure 3. It is important to note that in the scenario data type 2, the means are
the primary driver of change points, while in the scenario data type 3 the variances, or
volatility, is the primary driver of change points.

The last scenario which is referred to as data type 4 employs the same mean and
variance vectors as in data type 2, but change point locations for the second and third
series are at time points 20, 50, and 70 rather than 25, 50 and 75. As result, one change
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Figure 3: Example of the types of data sets used in the simulation study. Rows are
ordered by data type. Points that are labeled as 1 coming from the first series and
points labeled 2 come from the second, etc. The different colors identify the clusters
formed by change points.
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point is common across all four series while the other two change points are only shared
across two time series. An example of data from data type 4 can be found in the fourth
row of Figure 3.

We simulated one hundred data sets for each scenario. Then, we fit the CCP-PPM
by collecting 2000 MCMC iterates after discarding the initial 10,000 as burn-in and
thinning by 10. Values for the CCP-PPM tuning’s parameters were selected using the
procedure in Section 3.2. All computing was carried out using the ccp_ppm function
found in the ppmSuite (Page and Quinlan 2022) R package that is available on CRAN.
To illustrate the benefit of introducing pi,t in the model rather than pi, we also fit the
CPP-PPM0 using the same MCMC specifications as with the CCP-PPM. In addition,
tuning parameters for the CPP-PPM0 were selected in the same way and computing
was carried out using the cpp_ppm function.

We compare the CCP-PPM to other methods in two ways. First, in order to see
the utility of modeling the collection of partitions jointly rather than independently, for
each data set we fit the following methods to each of the L = 4 series independently.

• The PPM-based method of Wang and Emerson (2015). The bcp package (Erdman
and Emerson, 2007) found in the R statistical software (R Core Team, 2022) is
used to implement this method. Default prior parameter values were used. We
referred to this method as the Wang method.

• The method developed in Barry and Hartigan (1992) and Loschi and Cruz (2002).
This method is our most natural competitor and is implemented using the
ppmSuite R package. we use (μi,0, κi,0, αi,0, βi,0)� = (0, 1, 2, 1)� and
pi

iid∼ Beta(1, 20). This method is referred to as the Loschi method.

Second, to see how the CCP-PPM performs compared to methods developed to find
multivariate change points (i.e., change points in R

L) we compared the CCP-PPM to
four methods developed to detect change points in L-space. To identify change points
from the CPP-PPM in L-space, we classify each time point that exhibits a change in at
least one of the L = 4 time series as a “multivariate” change point. In Figure 5, we refer
to this procedure as “CCP-PPM_Mult”. We consider the following multivarate change
point methods in our numerical experiment:

• The method of Matteson and James (2014). This method is implemented using
the R package ecp (James et al., 2019). We referred to this method as the Matteson
method. Default tuning values are used.

• The method of Arlot et al. (2019). This method is implemented using the R package
kcpRS (Cabrieto and Meers 2019) and is based on the idea of kernel change point
detection on running statistics (multivariate). We refer to this method as the
kcpRS method and default tuning values are used.

• The method of Grundy et al. (2020). This method is implemented using the R
package geomcp (Grundy, 2020) and which finds multivariate change points via
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two geometric mappings. We refer to this method as the geomcp method and
default tuning parameters are used.

• The method of Jin et al. (2022). The R-code that accompanies Jin et al. (2022)
was used to fit the method. We refer to this method as the Jin method and default
tuning parameters are used.

After fitting the methods described above in each scenario, we classify any point
as a change if its posterior probability of being a change is greater than 0.5. Then,
we compute the overall misclassification rate, sensitivity (true positive rate), and area
under the curve (AUC). These metrics give us information on the accuracy of identifying
points as change points. In addition, we calculate the adjusted Rand index (Rand, 1971)
(ARI) between the estimated partition based on change points and the true partition.
This metric illustrates how well each method does at recovering the true partition of
contiguous clusters.

The results of the simulation study are provided in Figures 4 and 5. From Figure 4
it appears that the CPP-PPM performs better than all other methods with regards to
AUC and ARI regardless of how data were generated. With regards to missclassification
rate and sensitivity, Loschi performs similarly to CPP-PPM for data type 1 and data
type 3. For data type 2 and data type 4 it seems that CPP-PPM has a slight advantage
over the competing methods. This suggests that when change point times are correlated,
using a model that incorporates this correlation is useful. In addition, since the CPP-
PPM performs at least as well as CPP-PPM0 for all metrics and all data scenarios,
it appears that the borrowing of strength when estimating pit provides some benefit
rather than considering a single pi for each time series.

Figure 5 tells a similar story with regards to ARI and AUC. Mainly, that the CPP-
PPM outperforms the other methods when it comes to estimating the partition and
detecting change points in L-space regardless of type of data. In addition, it appears
that the CPP-PPM has a lower misclassification rate and higher sensitivity compared
to all the other methods regardless of datatype. In summary, it appears that the CCP-
PPM overall performs the best at detecting the correct number and location of change
points.

5 Finance Data Application
We now turn our attention to the application that motivated our proposal. As is com-
monly done in financial applications, we analyze returns rather than prices. Returns are
defined as Rt = (Pt − Pt−1)/Pt−1 for t ∈ {2, . . . , n}, where Pt is the daily price. When
analyzing the data set, we consider contagion both between mature markets and emerg-
ing ones and also between emerging markets. In addition to the USA market (a mature
market), we include the most important Latin American markets (emerging markets),
namely Argentinean, Brazilian, Chilean and Mexican markets. Consequently, we fit the
CCP-PPM and the change point PPM of Loschi or simply Loschi method (which is
perhaps our method’s most natural competitor), treating each series independently.
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Figure 4: Results from the simulation study comparing CPP-PPM to methods that were
fit to each of the L = 4 series independently. Each boxplot displays the results for each
method based on the 100 data sets generated. For the adjusted Rand index, sensitivity
(true positive rate), and AUC (area under the curve) higher values indicate superior
performance.

We considered the return series of each countries main stock indexes, namely, the
MERVAL (Índice de Mercado de Valores de Buenos Aires) of Argentina, the IBOVESPA
(Índice da Bolsa de Valores do Estado de São Paulo) of Brazil, the IPSA (Índice de
Precios Selectivos de Acciones) of Chile, the IPyC (Índice de Precios y Cotizaciones) of
Mexico, and the Dow Jones (Dow Jones Industrial Average) of USA. The stock returns
were recorded daily from October 31, 1995 to October 31, 2000.
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Figure 5: Results from the simulation study comparing the CPP-PPM to methods that
find multivariate change points. Each boxplot displays the results for each method based
on the 100 data sets generated. For the adjusted Rand index, sensitivity (true positive
rate), and AUC (area under the curve) higher values indicate superior performance.

We employ the procedure described in Section 3.2 to produce values for the tuning
parameters in (5) and (7). This resulted in values for (μi,0, κi,0, αi,0, βi,0)� that are
listed in Table 1. These tuning parameter values were used for both the CCP-PPM and
that of Loschi method.

To specify values for μ0 and Σ0, we first set m0
1 = · · · = m0

5 = n−1 (in the application
n = 1309) and used a compound symmetry matrix for S0 with variance σ2

0 = m0
1(1 −

m0
1)/n = n−3(n − 1) and correlation 0.5. This resulted in μ0 = (−7.1762)15 and Σ0
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Series μi,0 κi,0 αi,0 βi,0

USA 0.009 188.924 2.212 1.233
Mexico −0.014 9.075 1.596 0.574
Argentina 0.009 10.186 1.328 0.402
Chile −0.022 2.533 1.864 0.656
Brazil 0.022 11.010 1.349 0.423

Table 1: Values of (μi,0, κi,0, αi,0, βi,0)� for each country’s series. The values are the
result of applying the empirical procedure described in 3.2 to each country’s returns.

being a compound symmetric matrix with variance 0.334 and correlation 0.5. We set
ν0 = 3. For the Loschi method pi ∼ Beta(a, b) and we set a = 1304.5 and b = 681209.9.
These values were selected based on setting the mean number of clusters a priori to 3.5
with a variance of 2.5. Both methods were fit by collecting 1000 MCMC samples after
discarding the first 10,000 as burn-in and thinning by 5 (i.e., 15,000 total samples were
collected). The CCP-PPM was fit using the ccp_ppm function while Loschi’s method
was fit using the icp_ppm function both of which are available in the ppmSuite-package
that can be found on CRAN.

There are two approaches that could used to estimate change points. The first clas-
sifies points as change points if their posterior probability of being a change point is
greater than some pre-specified value. The second classifies points as change points
based on a partition estimate. We report both as both require input from the user
(pre-specified probability cut-off for the first approach and a loss function in the second
approach).

We first explore the a posteriori dependence between partitions from the five mar-
kets. To do this, at each MCMC iteration we computed the ARI for all possible pairs
of partitions (which is 10 in this application). The CCP-PPM produced slightly more
similar partitions across countries than the Loschi method. The overall average pairwise
ARI for CCP-PPM turned out to be 0.51 compared to 0.48 from the Loschi method.

Next we explore the posterior change point probabilities which are displayed in
the first column of Figure 6. The black points correspond to the CCP-PPM and the
red to Loschi. For both, change point probabilities were estimated using the posterior
means of ci,t. It seems that there is a general agreement between the two methods
regarding the location of potential change points. However, the CCP-PPM seems to
produce probabilities that are closer to one for these points compared to the Loschi
method. In fact, the Loschi method never records a change point probability greater
than 0.75. Similarly, both methods agree on the general location of points that have
a small chance of being a change point, although the CCP-PPM seems to push these
probabilities closer to zero compared to the Loschi method.

Figure 6, second and third columns, shows the partition estimates under the CCP-
PPM (second column) and Loschi method (third column). Partition estimates were
obtained using the salso (Dahl et al., 2021) R package and the generalization of the
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Figure 6: The left plot displays the posterior probability of each point being a change
point with black points corresponding to the CCP-PPM method and red points to the
Loschi method. The middle plot displays the partition estimate of each series for the
CCP-PPM and the right plot that for Loschi. Both sets of partitions were estimated
using the salso package in R.

Variation of Information loss function (Meilǎ, 2007). Since in our case it seems natural to
penalize change point false positives more than false negatives, we set the false positive
penalty parameter of the salso function to a = 25 (see Dahl et al., 2022, for more
details). We note briefly that setting a = 25 was driven primarily by Loschi’s method.
If a > 25, then Loschi’s method tended to smooth over some change points and for
a < 25 it tended to produce more change points than what would be desired. However,
the CCP-PPM was reasonably robust to a’s value. This is a consequence of the change
point probabilities from the Loschi method being more central (i.e., closer to 0.5) than
those from the CCP-PPM.

Apparent differences between the estimated partitions exist, and they illustrate how
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the CCP-PPM takes into account the dependency between the index series or the con-
tagion phenomenon. For example, the CCP-PPM method identifies a shared partition
for Brazil, Chile, Mexico, and the USA at the end of 1997. It is important to stress
that in July 1997, the Thai government ran out of foreign currency, forcing it to float
the Thai baht which is a factor in starting the 1997 Asian financial crisis, or Asian Flu.
This crisis spread internationally, affecting some Asian stock markets such as Indonesia,
South Korea, Hong Kong, Laos, Malaysia, Philippines, Brunei, mainland China, Sin-
gapore, Taiwan, and Vietnam. According to Harrigan (2000), the Asian crises’ overall
effect on the United States were small. However, as mentioned by Stallings (1998), the
Asian Flu hit the Latin American markets in October 1997, when bond spreads widened
abruptly implying more risk. In the Argentinean market, our approach identified the
second cluster at the end of 1996. Note that, at the end of 1995, the (real) gross domes-
tic product (GDP) in this country fell by 2.5 percent. However, by the end of 1996, it
rebounded by 5.5 percent (International Monetary Found, 2003), possibly affecting the
performance of the MERVAL index.

Another cluster or change point our method identifies is related to the Russian crisis
or Russian Cold in August 1998. This crisis started when the Russian government and
the Russian Central Bank devalued the ruble and defaulted on its debt. It is important
to stress that although most countries experienced changes in their stock market returns
series at the end of 1998, the Argentinean market experienced a change in mid-1998.
Moreover, the IBOVESPA index (Brazil) experienced a change at the beginning of 1999,
just after the Russian crisis. This crisis was known as the Samba effect and was produced
when the Minas Gerais State Governor, Itamar Franco, stopped paying Minas Gerais
debt to other states, generating unleashing capital flights. Note that a small cluster
is detected by the CCP-PPM in the indexes of Argentina, Mexico, and USA towards
the end of 1998, but something the Loschi method misses. These clusters provide some
evidence that the contagion phenomena from a mature market to emerging ones is being
captured by the CCP-PPM, which includes dependency between partitions.

Finally, the CCP-PPM also detected a cluster after the year 2000. The corresponding
change point can be explained by the dot-com bubble, caused by excessive speculation
of some internet companies in the late 1990s. On January 14, 2000, the Dow Jones
Industrial Average reached its dot-com bubble peak. This cluster is observed in the
Argentinean, Chilean, Mexican, and USA markets. Possibly, the dot-com bubble may
have affected other economies over the Latin American region, evidencing some conta-
gion effect. In this case, Loschi method did not detect a change point at or near the
above-mentioned date.

As mentioned, the estimated partitions in Figure 6 depend on the value a = 25. To
show a more complete picture of both methods performance, we provide Figure 7. In
this figure, all points with a posterior probability of being a change point less than 0.4
are colored gray. The left column corresponds to the CCP-PPM fit while the right the
Loschi method. The CCP-PPM fit has more power in detecting change points compared
to Loschi method, without inflating the false-positive rate. The points highlighted by
the CCP-PPM fit are at least plausibly change points, and those associated with more
pronounced volatility generally have a larger probability of being a change point, which
is a desirable characteristic.
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Figure 7: Change point posterior probabilities. Gray points correspond to locations
whose posterior probability of being a change point was less than 0.4. The left column
displays results under the CCP-PPM and the right column under the Loschi method.
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6 Discussion
In this paper we developed a new change point detection model for L time series with
n observations in an arbitrary space, which undergo sudden changes in their distribu-
tional parameters. By making dependent the vector of latent change point probabilities
pt = (p1,t, . . . , pL,t)� at a specific time t ∈ {1, . . . , n−1}, the corresponding L partitions
with contiguous clusters are encouraged to be correlated. We provide some theoretical
results that help to better understand the main features of our model, a useful pro-
cedure to guide the specification of all parameters that are involved in, and simple
pseudo-code to perform posterior inference via MCMC methods. Through a small sim-
ulation study, we compared the ability of our model with other compelling approaches to
detect highly dependent changes under different scenarios, showing an improvement in
detecting change points. Additionally, we applied our method to the returns of emerging
Latin American and US markets, obtaining exciting results about possible contagion ef-
fect between the economies of these countries based on the dependence between change
point locations.

In terms of extending the proposed model with the aim of making it more flexi-
ble, several directions can be pursued. For instance, the assumption that the vectors
of change point probabilities pt = (p1,t, . . . , pL,t)� are independent and identically dis-
tributed through time t can be relaxed. One possible approach would be to model pt

with a stationary process in (0, 1)L. Another interesting direction would be to incorpo-
rate time-dependent covariates in the marginal likelihood function to describe abrupt
changes in a regression curve. A similar situation, but more complex, is to incorpo-
rate covariates in the distribution for contiguous partitions. Finally, the computational
cost involved in the MCMC algorithm for posterior inference increases rapidly as the
length and number of time series grow. It would be appealing to develop strategies that
mitigate the so-called “curse of dimensionality”. These are all topics of future research.

Supplementary Material
Supplementary Material: Joint Random Partition Models for Multivariate Change Point
Analysis
(DOI: 10.1214/22-BA1344SUPP; .pdf). The Supplementary Material contains all the
proofs for propositions detailed in Section 3.1.
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