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Bayesian Inference for the Weights in
Logarithmic Pooling

Luiz M. Carvalho∗, Daniel A. M. Villela†, Flavio C. Coelho∗, and Leonardo S. Bastos†

Abstract. Combining distributions is an important issue in decision theory and
Bayesian inference. Logarithmic pooling is a popular method to aggregate expert
opinions by using a set of weights that reflect the reliability of each informa-
tion source. However, the resulting pooled distribution depends heavily on set of
weights given to each opinion/prior and thus careful consideration must be given
to the choice of weights. In this paper we review and extend the statistical theory
of logarithmic pooling, focusing on the assignment of the weights using a hierar-
chical prior distribution. We explore several statistical applications, such as the
estimation of survival probabilities, meta-analysis and Bayesian melding of deter-
ministic models of population growth and epidemics. We show that it is possible
learn the weights from data, although identifiability issues may arise for some
configurations of priors and data. Furthermore, we show how the hierarchical ap-
proach leads to posterior distributions that are able to accommodate prior-data
conflict in complex models.

Keywords: logarithmic pooling, expert opinion, hierarchical modelling, Bayesian
melding.

MSC2020 subject classifications: Primary 60K35, 60K35; secondary 60K35.

1 Introduction

Combining probability distributions is a topic of general interest, both in the statis-
tical (West, 1984; Genest et al., 1986; Genest and Zidek, 1986) and decision theory
literatures (Genest et al., 1984; French, 1985; Pennock and Wellman, 1997; Guardoni,
2002). On the theoretical front, studying opinion pooling operators may give important
insights on consensus belief formation and group decision making (West, 1984; Genest
and Zidek, 1986; Guardoni, 2002). Among the various opinion pooling operators pro-
posed in the literature, logarithmic pooling has enjoyed much popularity, mainly due
to its many desirable properties such as relative propensity consistency (RPC) and ex-
ternal Bayesianity (EB) (Genest et al., 1986) – see Remark 2.1 below. In a practical
setting, logarithmic pooling finds use in a wide range of fields, from engineering (Lind
and Nowak, 1988; Savchuk and Martz, 1994) to wildlife conservation (Poole and Raftery,
2000) and infectious disease modelling (Coelho and Codeço, 2009).

A common situation of interest is combining expert opinions about a quantity of
interest θ ∈ Θ ⊆ R

p when these opinions can be represented as (proper) probability
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distributions. Combining these opinions using logarithmic pooling requires assigning

weights to each of the experts, which represent the (relative) reliability of each opin-

ion (Genest et al., 1984; French, 1985). This requirement naturally leads to the question

of how to choose the weights in a meaningful way, according to some well-accepted (op-

timality) criterion. There are a few proposals in the literature that build methods using

different approaches. One proposal is to maximise the entropy of the pooled distribu-

tion (Myung et al., 1996), whereas another one is to minimise Kullback-Leibler (KL)

divergence between the pooled distribution and the individual opinions (Abbas, 2009)

or between the pooled (prior) distribution and the posterior distribution (Rufo et al.,

2012a,b).

While moving away from the problem of arbitrarily assigning the weights, these ap-

proaches arrive at single point solutions, similar to point estimates in statistical theory.

While we acknowledge that these approaches have merit, we argue that in many settings

it would be desirable to incorporate information on the relative reliabilities of the ex-

perts into the pooling procedure while accommodating uncertainty about the weights.

Moreover, assigning a probability distribution over the weights allows one to obtain a

posterior distribution using a Bayesian procedure, which in turn enables learning about

the weights from data (Poole and Raftery, 2000). Therefore, it makes possible to se-

quentially update knowledge about the reliability of each expert/source in the face of

new data.

In this paper we discuss previous approaches for assigning the weights based on

optimality criteria and study the issue of assigning hierarchical priors to the weights in

order to learn about them from data. This paper is organised as follows: in Section 2

we introduce the necessary concepts and notation on logarithmic pooling, as well as

some of its key properties. We also prove a new result about log-concavity of the pooled

distribution when all distributions are log-concave. In Section 3 we present different

approaches to choosing the weights, two methods based on optimality criteria, namely

maximising the entropy of the pooled prior and minimising Kullback-Leibler divergence

between the pooled distribution and the expert distributions. In addition we also lay

out an approach hierarchical modelling of the weights. Section 4 contains applications of

logarithmic pooling to reliability analysis (Sections 4.1 and 4.2) and Bayesian melding

(Section 4.3). We conclude with a discussion of our results in light of the statistical

literature in Section 5.

2 Logarithmic pooling: properties and applications

In this section we introduce the necessary theory and notation and motivate the use of

the logarithmic pooling operator by presenting some of its desirable properties.

First let us define the logarithmic pooling (LP) operator. Let Fθ := {f0(θ), f1(θ), . . . ,
fK(θ)} be a set of (densities of) distributions representing the opinions of K+1 experts

and let α := {α0, α1, α2, . . . , αK} be the vector of weights, such that αi ≥ 0 ∀i and



L. M. Carvalho, D. A. M. Villela, F. C. Coelho, and L. S. Bastos 225

∑K
i=0 αi = 1. The log-pooled density is

LP(Fθ,α) := π(θ | α) = t(α)

K∏
i=0

fi(θ)
αi , (2.1)

where t(α) =
[∫

Θ

∏K
i=0 fi(θ)

αi dθ
]−1

.

Logarithmic pooling will only yield proper probability distributions if it is possible to
normalise the expression in (2.1). This condition is usually assumed implicitly, without
proof. While Poole and Raftery (2000) provide a proof for the case of two densities (see
Theorem 1 therein), Genest et al. (1986, p. 489) prove the result for a finite number of
densities:

Theorem 2.1 (Normalisation (Genest et al., 1986)). Let A be a (K + 1)-dimensional
open simplex on [0, 1]. For all α ∈ A there exists a constant t(α) such that

∫
Θ
π(θ |

α) dθ = 1.

We give a simple proof using Hölder’s inequality in Appendix A (Carvalho et al.,
2022). This result ensures any (finite) number of proper distributions can be combined
using the logarithmic pooling operator to yield a normalisable (proper) density. In
addition, log-linear pools enjoy the external Bayesianity property (Remark 2.1), which
guarantees that whether one combines the expert opinions before or after observing
evidence does not affect the resulting pooled distribution.

Remark 2.1 (External Bayesianity (Genest, 1984; Genest et al., 1984)). If the expert
opinions are given by densities fi(θ) and one observes data x such that one can specify
a likelihood l(x | θ), combining the set of posteriors pi(θ | x) ∝ l(x | θ)fi(θ) yields the
same distribution as combining the densities fi to obtain a prior π(θ) and then combine
it with l(x | θ) to obtain a posterior p(θ | x) ∝ l(x | θ)π(θ).

The proof of this fact is omitted here. Genest et al. (1984) show that the logarithmic
pooling operator in (2.1) is the only aggregation (pooling) operator that enjoys external
Bayesianity. Moreover, the logarithmic pooling operator has the relative propensity
consistency (RPC) property (Remark 2.2), whereby the pooled opinion preserves relative
judgments from the experts.

Remark 2.2 (Relative propensity consistency (Genest et al., 1984)). Taking FX as a
set of expert opinions with support on a space X , define ξ = {FX , a, b} for arbitrary
a, b ∈ X . Let T be a pooling operator and define two functions U and V such that

U(ξ) :=

(
f0(a)

f0(b)
,
f1(a)

f1(b)
, . . . ,

fK(a)

fK(b)

)
and V (ξ) :=

TFX
(a)

TFX
(b)

.

We then say that T enjoys relative propensity consistency (RPC) if and only if

U(ξ1) ≥ U(ξ2) =⇒ V (ξ1) ≥ V (ξ2),

for all ξ1, ξ2, with inequalities taken element-wise where necessary.



226 Hierarchical Logarithmic Pooling

We refer the reader to Genest et al. (1984) for a proof. Informally, this property says
that if all experts consider a particular event A more probable than another event B,
then the pooled opinion should be consistent with these relative judgments. Genest et al.
(1984) show that for mild conditions on X , namely |X | ≥ 3, the logarithmic pooling
operator is the only pooling operator with RPC (see also Lemma A.1 in Appendix A
(Carvalho et al., 2022)).

Another desirable property of the logarithmic pooling operator is log-concavity. Log-
concavity of the pooled prior may be important to consider in order to guarantee uni-
modality and certain conditions on tail behaviour – see Bagnoli and Bergstrom (2005).
Certain algorithms, such as slice sampling (Neal, 2003), also rely on log-concavity of the
target distribution. See Saumard and Wellner (2014) for a review of the applicability of
log-concavity in Statistics.

These considerations motivate the following theorem, which is, to the best of our
knowledge, a new result:

Theorem 2.2 (Log-concavity). Under the mild regularity conditions mentioned in Re-
mark 2.2, if Fθ is a set of log-concave distributions, then π(θ | α) is also log-concave.
Moreover, logarithmic pooling is the only pooling operator that will always produce a
log-concave density when all the elements of Fθ are log-concave.

Proof. See Appendix A (Carvalho et al., 2022).

Theorem 2.2 tells us that logarithmic pooling is the only aggregation method to
universally preserve log-concavity, for any configuration of the weights (α). This uni-
versality result is important because it holds for any set of log-concave distributions,
Fθ. In contrast, a linear pool of K + 1 Gaussian distributions with common mean,
πlinear(θ) =

∑K
i=0 αifi(θ), would produce a log-concave pooled distribution for any α,

but this would potentially fail if the means were different.

2.1 Exponential family

The exponential family of probability distributions finds widespread use in the modelling
of empirical phenomena (DasGupta, 2011). In this section we give expressions for the
entropy and Kullback-Leibler divergence for the pooled distributions. These will be
useful in applications presented later in the paper.

Suppose we are interested in a random quantity θ whose distribution belongs to
the exponential family with parameter ψ and probability density function (pdf) given
by (Robert, 2007, p. 115):

f(θ|ψ) = h(θ)eψθ−s(ψ). (2.2)

Let Fθ be a set of densities on θ of the form in (2.2), fi(θ|ψi), i = 0, 1, . . . ,K. The
combined (log-pooled) distribution also belongs to the exponential family:

π(θ|α) = t(α)h∗(θ)eψ
∗y−s∗(ψ), (2.3)
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where ψ := {ψ0, ψ1, . . . , ψK}, h∗(θ) =
∏K

i=0 hi(θ)
αi , ψ∗ =

∑K
i=0 αiψi and s∗(ψ) =∑K

i=0 αisi(ψi).

The entropy function of the log-pooled distribution is

Hπ(θ;α) := −Eπ [− log π(θ|α)] = − log t(α) + s∗(ψ)− Eπ[log h
∗(θ)]− ψ∗

Eπ[θ], (2.4)

where Eπ [g(θ)] is the expectation of a π-measurable function g(·) with respect to π(θ|α),
when the integral exists.

The Kullback-Leibler divergence between the pooled distribution (2.3) and each
distribution in Fy can be written as:

KL(π||fi) = −Hπ(θ;α)− Eπ[log hi(θ)]− θiEπ[θ] + si(ψi).

These expressions allow for easy computation of information measures for a broad
class of distributions, which will be useful in the remainder of this paper (see also
Appendix E, Carvalho et al., 2022).

Conjugate priors to the exponential family

Here we can see f(θ | ψ) as a “likelihood” and this motivates thinking about conjugate
prior measures for ψ as a means of specifying hierarchical priors on all quantities of
interest. A conjugate prior family for f(θ | ψ) (2.2), has the following form (Diaconis
and Ylvisaker, 1979):

g(ψ|a, b) = C(a, b)eψa−bs(ψ), (2.5)

where C(a, b) is a normalising constant. Similar to the above, let Gψ be a set of log-
conjugate prior distributions representing the opinions of K + 1 experts, and gi(ψ) =
g(ψ|ai, bi) from equation (2.5).

The log-pooled prior is also a conjugate prior for f(θ | ψ) with hyperparameters given
by a weighted mean of the experts’s hyperparameters, i.e., π(ψ | α) = g(ψ | a∗, b∗),
where a∗ =

∑K
i=0 αiai and b∗ =

∑K
i=0 αibi.

The entropy function of the log-pooled prior (2.5) is given by

Hπ(ψ;α) = − log(C(a∗, b∗))− a∗Eπ[ψ] + b∗Eπ[s(ψ)]. (2.6)

And the Kullback-Leibler divergence, KL(π||gi), is the following

KL(π||gi) = −Hπ(ψ;α)− log(C(ai, bi))− aiEπ[ψ] + biEπ[s(ψ)]. (2.7)

2.2 Known limitations

Despite its many attractive properties, the logarithmic pool also presents limitations
that might hinder its application in practice. In this section we briefly review these
limitations in order to prepare the reader for how they manifest later in the paper.
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We begin with a known quirk of logarithmic pools: The support of the pooled dis-
tribution is supp(π) = ∩K

i=0 supp(fi), i.e., the pooled distribution will have the smallest
support amongst the distributions being combined. This means a single expert can make
large portions of the sample space impossible under the pooled distribution. In the ex-
treme case where one of the opinions is a point-mass, the pool will also be a point-mass,
not matter the weights and the Again, however, the analyst can use external consid-
erations to exclude an expert whose probability density has too narrow a support. As
we will see later on, this property manifests subtly in related situation which is when
one of the experts elicits a very concentrated probability distribution, encoding a very
precise opinion.

Logarithmic pools are also hard to compute exactly for arbitrary collections of opin-
ions F θ because the exponential dependence on the weights leads to difficulties com-
puting the normalising constant t(α). In situations where α is random (see Section 3.2)
one cannot bypass computing the normalising constant (Neuenschwander et al., 2009)
and this adds a layer of computational complexity – see Discussion.

3 Assigning the weights in logarithmic pooling

The weights (α) play a key role on the logarithmic pooling and hence their choice is
critical. Building on work by Poole and Raftery (2000); Rufo et al. (2012a,b) and Ab-
bas (2009), we now move on to study three approaches to assigning the weights in
logarithmic pooling. The first two approaches are based on optimality criteria and a
third method proposes assigning a (hyper)prior to the weights.

3.1 Choosing weights based on optimality criteria

The first set of approaches we will consider attempt to assign the weights by achieving
an optimality condition using only information contained in the expert distributions
themselves, without reference to any external information such as observed data.

Maximising entropy

In a context of near complete uncertainty about the relative reliabilities of the experts
(information sources) it may be desirable to combine the prior distributions such that
π(θ) is maximally diffuse. According to its proponents, such an approach would ensure
that, given the constraints imposed by Fθ, the pooled distribution is the one which best
represents the current state of knowledge (Jaynes, 1957; Savchuk and Martz, 1994). In
order to choose α so as to maximise prior diffuseness, one can maximise the entropy of
the log-pooled prior, i.e.

Hπ(θ;α) = Eπ [− log π(θ)] = −
∫
Θ

π(θ) log π(θ) dθ,

= − log t(α)−
K∑
i=0

αiEπ[log fi]. (3.1)
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Formally, we want to find α̂ such that

α̂ := argmax
α

Hπ(θ;α). (3.2)

This approach, however, does not result in a convex optimisation problem, therefore
one is not guaranteed to find a unique solution – see Remark 3.1 for intuition as to why.
A possible resolution to the non-uniqueness of the maximum entropy solution would be
to add further constraints, for instance requiring that Eπ[θ] = m. It is however unclear
which set of constraints would ensure uniqueness.

Minimising KL divergence to a reference measure

Let y denote observed data and πJ denote the Jeffreys’s prior for θ. This is seen as a
non-informative or ‘objective’ choice of prior distribution, and leads to a posterior distri-
bution, pJ(θ | y), which is set to be dominated by the likelihood (Berger, 2006). Based
on initial work by Bousquet (2008), Rufo et al. (2012a) propose assigning the weights
in such a way that the Kullback-Leibler divergence between the Jeffreys’s posterior and
the logarithmic pool is minimised:

LR(α,y) = KL(pJ (· | y)||π), (3.3)

= −HpJ −
K∑
i=0

αiEpJ [log fi] .

The main idea is to pick the weights so as to minimise prior-data conflict. However,
the expression in (3.3) depends on observed data. Thus, Rufo et al. (2012a) propose
computing the expected loss with respect to the marginal distribution of the data,
m(y) :=

∫
Θ
L(y | θ)πJ (θ) dθ, LR(α) = Em [LR(α,y)]. Now one can solve the optimisa-

tion problem

α̂R := argmin
α

LR(α),

= argmax
α

{
log t(α) +

K∑
i=0

αiEm

[
EpJ [log fi]

]}
, (3.4)

which Rufo et al. (2012a) show to lead to a unique pooled distribution under mild
conditions – see below. Notice, however, that there could exist two vectors α1 and
α2 such that π(θ | α1) ≡ π(θ | α2) up to a set of null measure. Hence, the pooled
distribution is unique, but the optimal weights might not be.

Minimising KL divergence between each opinion and the pool

One could also wish to choose the pooling weights so as to minimise the total Kullback-
Leibler divergence between the pooled distribution, π, and each distribution in Fθ. We
can define a loss function L(α) =

∑K
i=0 KL(fi||π) such that

L(α) = −(K + 1) log t(α)− (K + 1)
K∑
i=0

αiEi[log fi] +
K∑
i=0

Ei [log fi] , (3.5)
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and we want to find
α̂ := argmin

α
L(α). (3.6)

Fortunately, this set up leads to a unique pooled distribution, a result we summarise in
Remark 3.1.

Remark 3.1 (Uniqueness of the minimum KL solution). The distribution obtained fol-
lowing (3.6) is unique, i.e., there is only one aggregated prior π(θ | α) that minimizes
L(α).

Proof. See Appendix A (Carvalho et al., 2022).

By contrast, the problem in (3.2) requires one to minimise ln t(α), hence lacking
a sufficient condition for the existence of a unique solution. Likewise, using the loss
function L′(α) =

∑K
i=0 KL(π||fi) would not lead to a unique solution. See commentary

about (3.4) above and Appendix B (Carvalho et al., 2022) for implementation details.
The choice of summing the KL divergences is ultimately arbitrary, but has the advantage
of preserving the convexity of the optimisation problem and allowing efficient algorithms
to be employed.

3.2 Hierarchical modelling of the weights

As discussed by Poole and Raftery (2000) and others (Zhong et al., 2015; Li et al.,
2017), estimating the weights would be of interest since this would allow one to assess
the reliability of each source of information (expert). Li et al. (2017) explore the idea of
computing the pooled distribution for several values of the weights. Whilst informative,
this approach has two issues: (a) it does not scale well with increasing the number K
of distributions being combined, and; (b) it fails to account for any (posterior) depen-
dence between model parameters and the weights. In this section we propose placing a
hierarchical prior on the weights, allowing for standard Bayesian inference about these
quantities.

A natural choice for a prior distribution for α is the (K + 1)-dimensional Dirichlet
distribution

πA(α) =
1

B(X)

K∏
i=0

αxi−1
i , (3.7)

where X = {x0, x1, . . . , xK} is the vector of hyperparameters for the Dirichlet prior and
B(·) is the multinomial Beta function. The Dirichlet offers a simple, albeit potentially
inflexible prior.

A more flexible prior for α is the logistic-normal distribution (Aitchison and Shen,
1980):

πA(α | μ,Σ) =
1

|2πΣ| 12
1∏K

i=0 αi

exp

((
log

(
α−K

αK

)
− μ

)�
Σ−1

(
log

(
α−K

αK

)
− μ

))
,

(3.8)
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whereα−K represents the vectorα without theK-th element, μ is aK-size mean vector,
and Σ is a K ×K covariance matrix. (Aitchison and Shen, 1980) propose choosing μ
and Σ minimizing the KL divergence between the Dirichlet (3.7) and the logistic-normal
(3.8) distributions, i.e.

μi = ψ(xi)− ψ(xK), i = 0, 1, . . . ,K − 1,

Σii = ψ′(xi) + ψ′(xK), i = 0, 1, . . . ,K − 1,

Σij = ψ′(xK),

where ψ(·) is the digamma function, and ψ′(·) is the trigamma function.

The marginal prior for θ,

π̃(θ) =

∫
A
π(θ | α)πA(α)dα, (3.9)

can also be efficiently approximated through Monte Carlo sampling when π can be
written in closed-form. Even when it cannot be expressed analytically, it is still possible
to sample from the marginal prior by using quadrature-based methods for computing
t(α) when θ is unidimensional (see Discussion).

Concerning posterior inference, the marginal posterior for θ can be obtained through
standard methods and shall not be discussed further. The next object to consider is the
marginal posterior for the weights, p(α | y), which can be obtained through

p(α | y) =
∫
Θ

p(α, θ | y) dθ,

=
πA(α)

c(y)

∫
Θ

L(y | θ)π(θ | α) dθ,

∝ πA(α)κ(α,y),

where c(y) :=
∫
A
∫
Θ
p(α, θ | y) dθ dα.

In some situations, in particular the conjugate situation discussed in Section 2.1 and
exemplified in the Applications section below, it is possible to write down κ(α,y) in
closed-form. This is very convenient because the posterior expectation of the weights,
Ep[α | y], becomes EπA

[ακ(α,y)], i.e., the expectation of a known function with respect
to the prior on the weights. This expectation can be easily and accurately approximated
with simple Monte Carlo techniques rather than MCMC – see Section 4.2 for example
applications.

4 Applications

In this section we shall present a wide range of applications for logarithmic pooling,
from prior elicitation to meta-analysis to Bayesian melding. Computational details,
along with instructions to get reproducible code, are given in Appendix B (Carvalho
et al., 2022).
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4.1 Elicitation: combining expert priors on survival probabilities

The first example we consider is combining expert opinions about probabilities and
proportions. We analyse an example proposed by Savchuk and Martz (1994) (also
discussed in Rufo et al., 2012b) in which four experts are required to supply prior
information about the survival probability θ of a certain unit. The experts express
their opinion as prior means for the survival probability, which Savchuk and Martz
(1994) then use to construct prior distributions with maximum entropy given the re-
striction on the means. From the vector of prior means m = {m0 = 0.95,m1 =
0.80,m2 = 0.90,m3 = 0.70}, the authors obtain the parameters of the Beta distri-
butions for each expert, a = {a0 = 18.10, a1 = 3.44, a2 = 8.32, a3 = 1.98} and
b = {b0 = 0.955, b1 = 0.860, b2 = 0.924, b3 = 0.848}. Furthermore, an experiment
is conducted and y = 9 successes out of n = 10 trials are observed. Thus, in this
application we are able to estimate the posterior distribution for the survival prob-
ability and also, with the hierarchical modelling approach, the posterior distribution
for the weights in face of the observed data. We consider two hierarchical priors: a
Dirichlet(1/10, 1/10, 1/10, 1/10) and a moment-matching logistic-normal prior (see Sec-
tion 4.2 for justification).

The probability distribution of the survival probability for the i-th expert is a Beta
distribution with (hyper)parameters ai and bi. The log-pooled distribution for θ is then

π(θ) ∝
K∏
i=0

fi(θ; ai, bi)
αi ,

∝ θa
∗−1(1− θ)b

∗−1, (4.1)

with a∗ =
∑K

i=0 αiai and b∗ =
∑K

i=0 αibi. Note that (4.1) is the kernel of a Beta
distribution with parameters a∗ and b∗. Hence the entropy is the following

Hπ(θ) = logB(a∗, b∗)− (a∗ − 1)ψ(a∗)− (b∗ − 1)ψ(b∗) + (a∗ + b∗ − 2)ψ(a∗ + b∗). (4.2)

And the KL divergence between π(θ) and fi(θ) is

di = KL(fi||π) = ln

(
B(a∗, b∗)
B(ai, bi)

)
+ (ai − a∗)ψ(ai) + (bi − b∗)ψ(bi)

− (ai − a∗ + bi − b∗)ψ(ai + bi).

(4.3)

In this conjugate setting, the posteriors associated with each expert are also Beta dis-
tributions with parameters a′i = ai + y and b′i = bi + (n− y). This allows us to employ
the maximum entropy and minimum KL procedures to combine these posterior distri-
butions and thus make the weights comparable with the posterior means obtained with
the hierarchical priors.

Our analysis of this example is thus split into two: weights for the priors and for
the posteriors. Before observing any data, we can employ the optimisation procedures
discussed above to obtain weights only taking into account information encoded in the
expert priors themselves. To these optimisation procedures we add the technique of Rufo
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Method α0 α1 α2 α3

Prior
Maximum entropy 0.00 0.00 0.00 1.00
Minimum KL1 0.04 0.96 0.00 0.00

Rufo et al. (2012a) 0.00 0.00 0.00 1.00

Posterior

Maximum entropy 0.00 0.00 0.00 1.00
Minimum KL 0.17 0.83 0.00 0.00
Dirichlet2 0.26 0.24 0.27 0.23

Logistic-normal2 0.27 0.24 0.31 0.18
Marginal likelihoods (BMA) 0.27 0.24 0.30 0.19

Table 1:Weights obtained using different methods for the survival probability
example (Savchuk and Martz, 1994). 1 – Kullback-Leibler; 2 – Posterior mean
for α.

et al. (2012b) which seeks to minimise KL distance between the pooled prior and the
Jeffreys’s posterior. When data are available, we can then use maximum entropy and
minimum KL to obtain the weights in the same fashion as before, but now also estimate
the posterior distribution of weights using a hierarchical prior. Finally, for this exam-
ple we can also compute the integrated (marginal) likelihood of each expert, meaning
that we can, assuming one of the experts is correct, compute “model” probabilities by
normalising the marginal likelihoods (see Section 4.2, below).

In Table 1 we present weights obtained with the optimisation methods for the pri-
ors, including the solution found by Rufo et al. (2012b) (Section 5.2 therein). With
regard to the posteriors, we show maximum entropy, minimum KL along with poste-
rior means of the weights under two prior distributions (Dirichlet and logistic-normal).
Maximising the entropy of the pooled prior – and posterior – led to the degenerate
solution α = {0, 0, 0, 1}, which gives all the weight to the most diffuse prior distribution
– Beta(1.98, 0.848). Since t(α) is concave, we expect to find the maximum entropy given
by the boundary conditions, which may lead to points at the frontier of the simplex. Un-
surprisingly, the same solution was found by Rufo et al. (2012b), whose method tends to
favour more diffuse distributions. Minimising Kullback-Leibler divergence between the
pooled prior and each expert prior leads to a unique solution but in this case also sug-
gests to discard two of the opinions. The hierarchical priors gave very similar posterior
distributions for the weights, which assign the experts nearly equal weight, although the
logistic-normal prior led to results closer to Bayesian model averaging (BMA) weights,
based on the normalised marginal likelihoods of each expert. Please see Section 4.2
below for how relying only on the posterior means can be misleading, however.

Table 2 contains the prior and posterior mean and credibility intervals from each of
the methods and also the case in which we assign an equal weight (1/K) to each opinion.
The prior densities for each expert and pooling method are show in Figure S4. Assigning
equal weights actually gives a prior mean that is the same as the maximum likelihood
estimate of θ, θ̂ = 9/10. This explains why both hierarchical posteriors resemble equal
weights so closely. Finally, we use the integrated (marginal) likelihood (Raftery et al.,

2007, eq. 9), l(y, n) =
∫ 1

0
f(y|θ)π(θ) dθ, as a univariate summary to compare the priors.
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Method Prior Posterior
Equal weights 0.90 (0.64–1.00) 0.90 (0.73–0.99)

Maximum entropy 0.70 (0.17–0.99) 0.86 (0.63–0.98)
Minimum KL 0.82 (0.42–1.00) 0.87 (0.67–0.99)

Rufo et al. (2012b) 0.70 (0.17–0.99) 0.86 (0.63–0.98)
Dirichlet 0.86 (0.40–1.00) 0.89 (0.70–0.99)

Logistic-normal 0.88 (0.35–1.00) 0.89 (0.71–0.99)

Table 2: Prior and posterior mean and credibility intervals for each method
for assigning the weight, survival probability example (Savchuk and Martz,
1994). Values for the hierarchical priors are from the marginal prior of θ in (3.9).

Expert priors Pooled priors
Expert 0 0.237 Equal weights 0.254
Expert 1 0.211 Maximum entropy 0.163
Expert 2 0.256 Minimum KL 0.223
Expert 3 0.163 Hierarchical prior1 (Dirichlet/logistic-normal) 0.255

Table 3: Integrated likelihoods for the priors of each expert as well as the
combined priors, failure probability example. For the hierarchical priors we take
the posterior expectations of a� and b� as ai and bi, respectively.

1 – Calculated using
the posterior mean of α.

The marginal likelihood for the i-th expert is l(y, n | ai, bi) and its form is given in
any elementary textbook on Bayesian statistics. For the hierarchical priors we take the
posterior mean of (a�, b�) as (ai, bi). Results are given in Table 3 and show that, apart
from expert 3 – and hence the maximum entropy pooled prior –, all other pooled priors
and individual experts’ priors give similar marginal likelihoods.

The BMA weights are α′′ = {0.27, 0.24, 0.30, 0.19}, which are not very different from
equal weights. In Table 1 we see that the posterior distribution for the weights estimated
under both priors favours expert 2, the expert with the highest marginal likelihood. The
logistic-normal gives expert 2 a higher weight when compared with the Dirichlet. This
is connected to the increased flexibility of the logistic-normal (see Section 4.2).

We stress that the marginal likelihoods are not being used here as a means of select-
ing priors, but rather as a useful univariate summary which is informative about the
compatibility with the observed data and hence informative about prior-data conflict.
While in this example one can gain insight into prior-data conflict from just the prior
means and y/n, in other situations it might be harder to discern which expert gave the
best (prior) guess.

4.2 Posterior distribution of the weights: interpretability and prior
sensitivity

A few natural questions arising from the analyses presented in the previous section are:
how can one interpret the posterior distribution over α in light of data? How does the
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prior on the weights affect inferences? In this section we provide a few experiments to
elucidate these questions.

Induced distribution on θ

We begin our investigation by studying the effect of the choice of πA(α) on the condi-
tional densities for the parameter of interest, π(θ | α), and also the marginal prior π̃
(3.9). In particular, we are interested in understanding how the expert opinion configu-
rations F θ interact with the prior on the weights. For concreteness, consider a situation
with K = 3 experts who all elicit Beta distributions about θ ∈ (0, 1). In particular,
we have a = {22.4, 12.0, 1.6} and b = {201.6, 12, 0.18} such that the prior expectations
according to each expert are 0.1, 0.5 and 0.9, respectively. Moreover, all distributions
have the same coefficient of variation,

√
Var(θ)/E[θ] = 0.2. Throughout we will con-

sider four prior distributions on α: a Dirichlet(1, 1, 1), written Dirichlet(1) for short and
its corresponding moment-matching logistic-Normal distribution; and a Dirichlet(1/10)
and its moment-matching logistic-Normal.

Now we can ask what shapes for π(θ | α) are induced by the prior on πA. Fig-
ure 1 shows the conditional pooled prior densities and we can see that the Dirichlet(1)
and Logistic-normal(1) priors lead to induced conditional priors that skew towards the
highest density expert (expert 0 here) and this leads to a marginal prior with larger
mass around 0.1 (see marginal prior in Figure S5). Moreover, the Logistic-normal prior
seems to be slightly more flexible in that it allows a few shapes away from expert 0.
The Dirichlet(1/10) and Logistic-normal(1/10) priors on α on the other hand lead to
conditional densities that encompass all three experts, and this manifests marginally as
a multimodal prior on θ. As we will see, these different behaviours will have implications
for the ability to learn and interpret the weights.

Generative modelling and calibration

One can now ask questions about the ability to learn the weights in the logarithmic
pool. We start by considering a generative approach: if one generates data according to
the hierarchical model implied by the prior structure discussed so far, is it possible to
recover the generating weights?

Consider the generative model:

α ∼ ΠA(X),

θ | α ∼ Π(· | α),

y | θ ∼ F (· | θ). (4.4)

One can use this model to generate data y and then compute p(θ,α | y) in order to assess
whether the model is well-calibrated in the sense of Talts et al. (2018). The main idea is
to sampleN times from the generative model, generatingN triples (α(n), θ(n),y(n)), n =
1, . . . , N . One can then draw L (possibly approximate) samples from p(θ,α | y(n)). If the
model is well-calibrated with respect to the sampling method, the ranks of (θ(n),α(n))
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Figure 1: Conditional induced prior densities under different choices of the
prior on the weights. We show the three expert opinions along with the induced
density π(θ | α) for 1000 simulations from the prior on the weights, πA, for various
choices of πA.

with respect to the posterior should be uniformly distributed on L+1. In particular, we
will run 1000 simulations from the generative model, draw approximate samples from
using Hamiltonian Monte Carlo (HMC, see Appendix B) and check whether the ranks
of the true simulated values are uniform.

In Figure 2 we present the empirical cumulative distribution function (ECDF) of the
observed ranks for all parameters in the model, including the weights (α), the success
probability (θ) and the induced Beta hyperparameters (a� and b�). The ECDFs of the
ranks are presented alongside 95% confidence intervals for the theoretical CDF. The
results show that ECDF falls within its theoretical uncertainty bounds (blue shaded
bands), indicating that the model is well-calibrated, and one can be confident that
the generative model in (4.4) leads to an inferentially tractable model, at least for the
particular choice of hyperparameters taken here.

While calibration is desirable, one might also want to study how the posterior dis-
tribution for α behaves as the evidence and its strength change. To make this concrete,
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Figure 2: Empirical cumulative distribution of ranks in simulation-based cali-
bration of the logarithmic pooling model. We show the empirical CDF (black line)
along with its 95% confidence band (blue). One can claim that the model and inference
apparatus are well-calibrated if the black line stays within the blue shaded area, i.e.,
within the confidence bands for all parameters. Here we have simulated 1000 data sets
from the generative model in (4.4) with X = (1/10, 1/10, 1/10) and n = 10 – see text
for the experts’s hyperparameters.

consider the situation where one has the same Beta distributions as described above,
with prior means 0.1, 0.5 and 0.9, respectively. Now one observes y = 4 successes in n
trials, leading to a summary statistic of ȳn = 0.5. We can then ask what the (marginal)
posterior for α would look like. What if we observed y = 400 in n = 1000 trials? Figure 3
shows the posterior mean and 95% credibility intervals for each component of α as both
ȳn and n vary, under the Dirichlet(1/10) and Logistic-normal(1/10) priors, along with
BMA weights.

We see that the posterior means resemble the BMA weights, but there is substantial
uncertainty regarding the weights even when n is very large. We also see that the
posterior means display a “shrinkage” effect whereby they never quite match the BMA
weights exactly, an effect even more salient when the Dirichlet(1) and Logistic-normal(1)
priors are employed – see Figure S6. These results are not surprising given those in
Figure 1: when the prior on the weights leads to conditional priors that do not span the
whole space of expert priors, one cannot hope to obtain appreciable posterior weight
for a given expert, even in the presence of overwhelming data.

In Figure 4 we show the full joint posterior of the weights (α) for a situation where
expert 1, whose posterior mean for θ is 0.5, should be favoured, i.e. the sample mean
is ȳn = 1/2. We see that when one employs the Dirichlet(1/10) prior, one can usually
achieve a posterior mean for the weights (solid circle) that is close to the BMA weights
(solid triangle). Also, while for n = 10 Figure 4b shows samples in all three corners
meaning that at least some posterior mass was concentrated on the corners, when n =
10, 000 Figure 4d shows that the posterior concentrates around expert 1 as expected,
albeit with substantial uncertainty as discussed above.
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Figure 3: Posterior distribution of the weights with varying strengths of ev-
idence. Here we show the posterior mean and 95% central BCIs for the weights in
the three-expert scenario (see text) with the Dirichlet(1/10, 1/10, 1/10) prior and its
moment-matching logistic-normal. We also show the Bayesian model averaging (BMA)
weights for comparison (black line). The sample mean varies in the x-axis and vertical
panels show different data set sizes.

4.3 Bayesian melding with varying weights

Another important application of logarithmic pooling is in the Bayesian melding method
of Poole and Raftery (2000). Deterministic simulation models are widespread in Science
and Engineering (see Poole and Raftery (2000) and references therein). One is often
interested in a deterministic modelM with inputs θ ∈ Θ ⊆ R

p and outputs φ ∈ Φ ⊆ R
q,

such that φ = M(θ). If one wants to learn about θ from data and a (prior) distribution
on φ is available, then one needs a method to combine the information between the
prior on θ and the prior induced on it through M , which is often non-invertible.

Bayesian melding seeks to draw inference by first employing logarithmic pooling to
construct a prior on φ of the form

q̃Φ(φ) ∝ q∗1(φ)
αq2(φ)

1−α, (4.5)

where q∗1() is the induced prior on the outputs and q2 is the prior on φ without con-
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Figure 4: Full joint posterior of the weights, Beta example. We show the full
posterior of α for a situation where the sample mean ȳn is 0.5, for n = 10 and n = 10,000
under different priors on the weights – see text for the expert hyperparameters. The
solid circle marks the posterior mean and the solid triangle marks the BMA weights.
Small red dots show the posterior samples and density contours are overlaid. Purple
shows the regions of low posterior density, while yellow regions depict higher density.
This figure was made with the Ternary package in R (Smith, 2017).

sidering the deterministic model, henceforth called the natural prior on φ. The prior
in (4.5) can then be inverted to obtain a coherised prior on θ, q̃Θ(θ). Poole and Raftery
(2000) give a way of obtaining q̃Θ even when M is non-invertible, which we will not
discuss further here – see Section 3.4 in Poole and Raftery (2000).
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Standard Bayesian inference may then follow, leading to the posterior

pΘ(θ) ∝ q̃Θ(θ)L1(θ)L2(M(θ)), (4.6)

which enjoys all the properties of usual posterior distributions. The method allows
standard Bayesian inference to be carried out about all quantities of interest in the
model, which makes it attractive to application in policy making (Alkema et al., 2008),
where proper acknowledgment of uncertainty is crucial.

In Poole and Raftery (2000) (Section 6.2 therein), the authors fix α = 1/2, justifying
their choice by the fact that while the weights should reflect the reliability of each
expert (information source), in the specific context of Bayesian melding one is combining
distributions based on different bodies of evidence, but assessed by the same expert.
Another option is to fix α = 1− ε, with ε small (Alkema et al., 2007). This can be useful
when the prior distribution on outputs is uniform, as it still enforces the constraint, but
keeps the prior information about the inputs. Here we relax the restriction of fixing the
weight, instead modelling α through a hyperprior.

We now turn our attention to applications of logarithmic pooling to the statisti-
cal analysis of deterministic models. In their seminal paper, Poole and Raftery (2000)
lay out Bayesian melding as a way to achieve full Bayesian inference for deterministic
models. In this section we explore two Bayesian melding applications and extend their
approach by accommodating uncertainty about the weight α.

Bowhead whale population growth

We begin with the analysis of a non-age-structured population deterministic model
(PDM) population model for bowhead whales originally carried out by Poole and
Raftery (2000). The model describes the annual population of bowhead whales in terms
of the annual number of whales killed, Ct, the maximum sustainable yield rate (MSYR)
and the initial bowhead population (P0) as:

Pt+1 = Pt − Ct ×MSYR× Pt

(
1− (Pt/P0)

2
)
. (4.7)

One of the quantities of interest in the model was P1993, due to 1993 being the last
year for which independent abundance measurements were available, allowing for model
calibration. Another important model quantity is the rate of population increase from
1978 to 1993, ROI, defined through

P1993 = P1978(1 + ROI)15.

We are then interested in the model outputs φ = {P1993,ROI}. The key idea is to
account for the influence of the priors on the inputs θ = {MSYR, P0} on P1993 through
the induced distribution. In particular, we aim at composing the prior distribution

q̃Φ(P1993) ∝ q∗1(P1993)
αq2(P1993)

1−α, (4.8)

where q∗1 is the induced distribution and q2 is the natural prior on P1993. The main
innovation we propose here is to place a probability distribution over α in order to relax
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the need to fix it to particular value. We choose a Beta(1, 1) prior as our πA. The target
posterior is then

pΘ,M (P0,MSYR, α | Ct) ∝ q̃Θ(P0,MSYR)L1(P0,MSYR)L2(P1993)πA(α), (4.9)

where q̃Θ is the suitably inverted distribution over the input space from the prior over
the output space, q̃Φ (see Poole and Raftery (2000), section 3.3.4). The subscript makes
reference to the fact that this is a posterior over the inputs θ ∈ Θ which are linked to
the outputs φ ∈ Φ by a deterministic model M , given by (4.7). Further details on priors
and likelihoods are given in Poole and Raftery (2000) and Appendix D (Carvalho et al.,
2022) of this paper. We note that when α is random, it is important to include all of the
normalising constants that depend on it (Neuenschwander et al., 2009), in particular
the normalising constant of the expression in (4.8).

Here we will consider two ways of approximating (4.9). First, we used the sampling
importance-resampling (SpIR) algorithm described in Appendix B. This method does
not rely on any parametric approximation to the induced distribution q∗1 , instead using
standard kernel methods to approximate the density at any point. We used k = l =
100, 000 iterations to produce a sample from pΘ,M . We also explored a Hamiltonian
Monte Carlo (HMC) implementation in Stan (Carpenter et al., 2017). However, for
this implementation we needed to approximate q∗1 by a parametric form. Since q2 is
a normal distribution, we approximate q∗1 by a normal distribution such that q̃Φ (4.8)
can be written in closed-form. We give further discussion on this choice in Appendix D
(Carvalho et al., 2022). Since pΘ,M is a challenging target distribution, we used four
independent chains of 10,000 iterations each. We observed a low percentage of divergent
iterations (<2%), likely caused by the very challenging posterior geometry induced by
high correlations between parameters.

In Figure 5 we show the marginal posteriors for various quantities of interest, ob-
tained with both algorithms and for fixed and varying α. As expected, SpIR are a bit
noisier, but distributions are largely the same as obtained by MCMC. For α in par-
ticular, despite the ruggedness of distribution obtained with SpIR, the mean and 95%
credibility intervals of both distributions match very closely: α̂SpIR = 0.39 (0.02–0.87)
and α̂MCMC = 0.40 (0.02–0.91). The high posterior uncertainty about α and the sub-
stantial overlap between distributions with fixed and varying α could be explained by
the lack of sensitivity of the posterior distribution to α. We confirm this is indeed the
case by running SpIR (original algorithm by Poole and Raftery (2000)) for a few values
of α (including the endpoints 0 and 1) and verifying very little difference in the resulting
posteriors (Figure S3, Carvalho et al., 2022).

Influenza in a boarding school

Another important class of deterministic models are the ordinary differential equation-
based models of disease transmission. Here we will consider such a deterministic epi-
demic model and how one can draw inference about a key epidemiological quantity, the
basic reproductive number, R0. In 1978, an anonymous source reported an influenza
H1N1 epidemic at a small boarding school in England (Anon., 1978). In total, 512 boys
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Figure 5: Marginal posterior distributions for various quantities of interest in
the bowhead population model. We show the posterior distributions obtained by
using sampling importance-resampling (SpIR) and Markov chain Monte Carlo (HMC-
MCMC), for fixed α = 1/2 and placing a prior πA on α (“varying”).

out of 763 became ill during the outbreak. Due to the population being isolated and hav-
ing high rates of contact, many of the assumptions of compartimental epidemic models
hold. In particular, the Susceptible-Infected-Removed (SIR) model is a good description
of disease spread. The model consists of the system of ordinary differential equations

dS

dt
= −βSI,

dI

dt
= βSI − γI,

dR

dt
= γI,

where S(t) + I(t) + R(t) = 1 ∀t, β is the transmission (infection) rate and γ is the
recovery rate. The basic reproductive number is R0 = β

γ and the goal is to draw inference
about β and γ, and consequently about R0, from data. Data on the number of infected
individuals per time (Y (t)) were obtained from the outbreaks package (Jombart et al.,
2019) and we choose to model the deviation from the ODE solution using log-normal
errors, i.e.,

L(Y (t) | β, γ, σ2
I ) = log-normal(μ = log(I(t)), σ2

I ), (4.10)

where I(t) is computed via an ODE solver. Here we will consider a situation where
one has priors on β and γ, which induce a prior q∗1 on R0, and also a prior q2 on R0

directly. This is the case when, for instance, one wants to make q2 informative so as to
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incorporate expert knowledge and/or evidence from previous study. For the priors on
β and α we choose commonly used, so-called “uninformative” log-normal priors with
parameters μβ = μγ = 0 and σ2

β = σ2
γ = 1, which induces a log-normal distribution

(q∗1) on R0 with parameters μ1 = μβ − μγ and σ2
1 = σ2

β + σ2
γ . Using the extensive

information gathered by Biggerstaff et al. (2014), we constructed an informative log-
normal prior (q2) with mean 1.5 and variance 0.252, which gives μ2 = 0.3917656 and
variance σ2

2 = 0.1655264. This leads to a prior credibility interval of (1.070–2.047),
which covers most of the estimates (and confidence intervals) of R0 for Influenza found
by Biggerstaff et al. (2014). The target posterior is then

p(β, γ, α | Y (t)) ∝ L(Y (t) | β, γ, σ2
I )q

∗
1(R0)

αq2(R0)
1−απA(α), (4.11)

where we again let πA be a Beta(1,1) distribution. This setup is convenient because
it leads to a closed-form expression for the combined prior on R0 (see Appendix E
(Carvalho et al., 2022)), while the log-normal priors are flexible and useful in practice.
We approximate the posterior in (4.11) using HMC as described in Appendix B.

In Figure 6a we show the posterior distribution of the pooling weight α, which favours
high values with a mean and 95% credibility interval of 0.77 (0.21–0.99). The posterior
distribution for R0 obtained by letting α vary and also the resulting distributions of
fixing α = 1/2 or α = 1 are shown in Figure 6b. One can see that fixing α = 1
and hence excluding the informative prior leads to a higher estimate of R0 and fixing
α = 1/2 as per Poole and Raftery (2000) leads to the lowest estimates. The solution
proposed in this paper, namely assigning α a prior and estimating it from data, leads
to an intermediate solution. Fixing α = 1/2 also leads to underestimating the measured
incidence (Figure 6c), whilst setting α = 1 leads to mean predictions that are higher,
albeit still underestimating the measured incidence. Again, letting α vary leads to an
intermediate solution.

Our results agree partially with the estimate obtained by Murray (2002), who finds
ρ = N/R0 = 202 and hence R0 = 3.78, using purely numerical methods with no ac-
knowledgment of uncertainty. The highest estimates we obtained were for fixed α = 1,
R0 = 3.02 (2.27–3.83). This example showcases a desirable consequence of letting α
vary: when the “natural” prior q2 – which is normally informative – is incompatible
with the data, it will receive a lower weight (α closer to 1) and hence allow the induced
prior (q1), which is usually more diffuse, to dominate. In fact, as discussed by Biggerstaff
et al. (2014), the spread of the 1978 boarding school epidemic is unusually fast when
compared to regular seasonal Influenza and was likely caused by the lack of previous
exposure of the population to the causing strain, H1N1. The varying α approach makes
it possible to deal with such an outlier data set by lowering the influence of the infor-
mative prior constructed based on previous studies. This is similar in spirit to ensemble
forecasting (Leutbecher and Palmer, 2008), where by virtue of including many models
one is able to achieve better forecasts than each individual model alone could.

5 Discussion

In this paper we have provided an overview of statistical applications of logarithmic
pooling (LP), including a new approach based on assigning a prior measure to the
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Figure 6: Estimates of the pooling weight (α), the basic reproductive number
(R0) and predictions of the number of infected individuals. The posterior dis-
tribution for the pooling weight α is shown in panel (a), where the horizontal dashed
line shows the prior density, a Beta(1, 1). Panel (b) shows the posterior distribution
for R0 obtained with estimating α (“varying”) or fixing it to either 1/2 or 1. Vertical
line shows R0 = 3.78 (Murray, 2002), the dot-dashed line shows the informative prior
q2 and the longdash line shows the induced prior q∗1 . In panel (c) we show the posterior
mean and 95% credibility intervals for the proportion of infected individuals, again by
either letting α vary or fixing it to either 1/2 or 1.

weights. In what follows we discuss our findings in light of the rich literature on log-
pooling, as well as point out connections to other parts of the statistical literature on
model and forecast aggregation.

5.1 Objections to logarithmic pooling and their counter-arguments

West (1984) argues that LP is strictly theoretically justifiable only when the expert
opinions agree. Moreover, LP also violates basic coherence in other respects, for instance
when one considers marginalisation or other probability manipulations. Genest and
Zidek (1986, p. 124) explain, however, that these conclusions stem from the restrictive
assumption that the group utility is expressed as a function of the individual utilities.
In a statistical application context, the expert opinions are usually employed by an
independent decision maker, henceforth called the analyst, and she has her own utility
function which can be assumed to not depend on the individual utilities.

A consequence of encoding opinions as probability densities is that representations
of the same information might have different properties depending on the choice of dom-
inating measure. The results of the meta analysis application presented in Appendix C
(Carvalho et al., 2022) make this clear: choosing to represent the information brought
by the studies as Beta distribution or a Gaussian does not affect the numerical values of
means and probability intervals, but does seem to impact the optimality-based methods
for choosing the weights, in particular minimum KL (Table 5). On the other hand, as
shown by the agreement of the probability intervals in the bottom of Table 6, moving
away from optimality criteria and instead assigning a prior distribution to the weights
largely removes dependence on specific choices of probability densities by properly ac-
commodating uncertainty about the weights.
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One might worry about being able to learn the weights from data, since the weights
depend on the likelihood only indirectly. Indeed, as shown in Section 4.2, it might not
always be possible to identify the expert whose opinion is most consistent with the
observed data given the uncertainty in the posterior distribution of the weights. Our
experiments show that the posterior mean qualitatively resembles the Bayesian model
averaging weights, even if one needs to be careful with the specification of πA(α). As
show in Section 3.2, the posterior means can be easily obtained via a simple Monte
Carlo scheme in many situations, but we stress that it is important to take the whole
posterior distribution into account (see Figure 4).

One might also be concerned with the long-run (frequentist) properties of the poste-
rior for α. To understand what happens when the data set size grows, we ran a simple
two-expert experiment using normal priors and a normal likelihood with known variance.
Figure S7 shows that a Beta(1/10, 1/10) allows the posterior mean to concentrate on the
“correct” expert as n grows. These results are interesting inasmuch as one would expect
to lose the ability to learn the weights as the data size grows, owing to the fact that
the weights are related to the data only through the prior, which becomes increasingly
irrelevant to the posterior on the quantity of interest, θ. We posit that concentration
around the “correct” expert will happen whenever the model is (a) well-specified and
(b) regular. From (4.4) it is clear that one can think of a log-linear mixture as a hierar-
chical model. By being well-specified, we mean that the data are generated according to
such a model. By regular we mean that the true generating parameters (including the
weights) are in the interior of the support and other common regularity conditions. In
this case, reasoning about posterior concentration would proceed analogously to what
is done for hierarchical or “random effects” models – see Example 5 in Bochkina and
Green (2014). The question of which classes of priors allow for fast concentration (or
any concentration at all) is a very interesting avenue for further research.

As a final caveat, we note that if interest lies on a multivariate quantity θ ∈ R
d,

d � 1, obtaining the normalising constant t(α) will entail computing a high-dimensional
integral, which is infeasible to do via quadrature. Here, importance sampling techniques
can be leveraged to provide stable and accurate estimates of normalising constants (see
Future directions).

5.2 The case for (hierarchical) logarithmic pooling

We shall now argue that properties such as external Bayesianity, relative propensity
consistency and log-concavity make logarithmic pooling a powerful tool for the analyst.

Mainly due to the simplicity of their construction, linear mixtures are much more
popular in statistical applications (Frühwirth-Schnatter et al., 2019) than their log-
linear cousins. As we hope to have shown in this paper, however, log-linear mixtures
(logarithmic pooling) can be as useful or more. External Bayesianity means one does
not need to worry about combining the priors first and then obtaining the posterior;
one can simply take a set of posterior distributions computed with the same likelihood
and combine them.
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Moreover, LP preserves log-concavity, which might be crucial in computationally
demanding settings where slice sampling, variational inference or other algorithms that
assume log-concavity are employed. In summary, we argue that by employing logarith-
mic pooling to combine probability densities, the analyst is making the best use of the
available information by forming a coherent distribution, that preserves many of the
features encoded by the experts in their opinions.

After its theoretical properties, the strongest argument in favour of LP is by far is
its adaptability. The extra flexibility brought on by the hierarchical prior on the weights
might prove crucial in scientific applications where decision under uncertainty is a reg-
ular occurrence. For example, a main strength of Bayesian melding is downweighting
parameter values based on implausible model outputs. This strength is magnified by
using a hierarchical prior that allows the weight parameter to vary. Indeed, Poole and
Raftery (2000) (Section 5.2) argue that estimating α would be a fruitful path to explore
and our results corroborate that view. The result in Section 4.3 makes clear the poten-
tial of varying-weights Bayesian melding for resolving prior-data conflict. In particular,
for protecting the analyst from drawing strong conclusions when the “natural” prior on
the quantity of interest is in disagreement with the information brought by the data
under analysis.

When comparing the hierarchical prior approach to optimality-based procedures,
one might argue that excluding a few or even all experts but one is not problematic
since a few experts may, when suitably combined, summarise the information provided
by the whole group. Whilst the weights are not probabilities, we argue that it would
be preferable to have a solution that respects the so-called Cromwell’s rule (Lindley,
2013, p. 91), i.e., not assigning zero probability to events that are logically possible. Here
this means allowing for the possibility that the opinion of all experts receives non-zero
weight. Incidentally, this should also help alleviate some of the problems discussed in
the previous section.

5.3 Future directions

Future research will explore further applications of logarithmic pooling in statistical
learning such as combining several posterior predictive distributions from different mod-
els fitted to the same data. Techniques such as Bayesian predictive synthesis (BPS,
McAlinn et al., 2018, 2019; McAlinn and West, 2019) and stacking (Yao et al., 2018)
have focused on generalising linear pools to combine probabilistic predictions, and log-
arithmic pooling could be explored as possibility that preserves characteristics such as
log-concavity and relative propensity consistency. BPS can include logarithmic pooling
as a special case, but understanding the conditions under which this holds remains an
open question.

Another interesting avenue for the future is studying the interaction between vari-
able transformations and logarithmic pooling. An example is a situation where one has
distributions about a probability p but is interested in the log-odds, ω = log(p/(1− p)).
Should the experts be judged by how reasonable their distributions look in transformed
space? How to assign the weights in this situation?
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In a practical setting, one might have a collection of MCMC (approximate) samples
from different posterior distributions. The statistical question then becomes how to
sample from the pooled distribution by re-using these samples. Such task would likely
necessitate specially-designed MCMC methods, and would constitute a rich area of
future inquiry.

In such a setting, where both prior information and data are available, pooling
methods are not the only option for evidence aggregation. A conspicuous example is
Bayesian Evidence Synthesis (Jackson et al., 2015), a graphical model-based strategy
which employs directed acyclic graphs (DAGs) and Bayes’s rule to coherently update
the posterior distribution of parameters. A comparison between these approaches in a
specific applied example might constitute an interesting route of inquiry.

In closing, we hope this paper (i) showcases the usefulness – and potential pitfalls –
of logarithmic pooling as a way of combining probability distributions and (ii) entices
the statistical community to add it to their toolbox.

Supplementary Material

Supplementary Material of “Bayesian Inference for the Weights in Logarithmic Pooling”
(DOI: 10.1214/22-BA1311SUPP; .pdf). Supplementary Material contains:

Appendix A. Proofs.

Appendix B. Computational details: MCMC schema, sampling importance resam-
pling with varying weights.

Appendix C. Meta-analysis of HIV prevalence studies in Brazil using log-pooling.

Appendix D. Details on the analysis of the Bowhead population growth model.

Appendix E. Pooling of common distributions: Poisson, Gamma, Log-normal.

Appendix F. Supplementary figures.

References
Abbas, A. E. (2009). “A Kullback-Leibler view of linear and log-linear pools.” Decision
Analysis, 6(1): 25–37. 224, 228

Aitchison, J. and Shen, S. M. (1980). “Logistic-normal distributions: Some properties
and uses.” Biometrika, 67(2): 261–272. MR0581723. doi: https://doi.org/10.2307/
2335470. 230, 231

Alkema, L., Raftery, A. E., and Brown, T. (2008). “Bayesian melding for estimating
uncertainty in national HIV prevalence estimates.” Sexually Transmitted Infections,
84(Suppl 1): i11–i16. 240

https://doi.org/10.1214/22-BA1311SUPP
https://www.ams.org/mathscinet-getitem?mr=0581723
https://doi.org/10.2307/2335470
https://doi.org/10.2307/2335470


248 Hierarchical Logarithmic Pooling

Alkema, L., Raftery, A. E., Clark, S. J., et al. (2007). “Probabilistic projections of HIV
prevalence using Bayesian melding.” The Annals of Applied Statistics, 1(1): 229–248.
MR2393849. doi: https://doi.org/10.1214/07-AOAS111. 240

Anon. (1978). “Influenza in a Boarding School.” The British Medical Journal , 1: 587.
241

Bagnoli, M. and Bergstrom, T. (2005). “Log-concave probability and its applications.”
Economic Theory , 26(2): 445–469. MR2213177. doi: https://doi.org/10.1007/

s00199-004-0514-4. 226

Berger, J. (2006). “The case for objective Bayesian analysis.” Bayesian Analysis, 1(3):
385–402. MR2221271. doi: https://doi.org/10.1214/06-BA115. 229

Biggerstaff, M., Cauchemez, S., Reed, C., Gambhir, M., and Finelli, L. (2014). “Esti-
mates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a
systematic review of the literature.” BMC Infectious Diseases, 14(1): 480. 243

Bochkina, N. A. and Green, P. J. (2014). “The Bernstein–von Mises theorem and nonreg-
ular models.” The Annals of Statistics, 42(5): 1850–1878. MR3262470. doi: https://
doi.org/10.1214/14-AOS1239. 245

Bousquet, N. (2008). “Diagnostics of prior-data agreement in applied Bayesian analysis.”
Journal of Applied Statistics, 35(9): 1011–1029. MR2522125. doi: https://doi.org/
10.1080/02664760802192981. 229

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M., Guo, J., Li, P., and Riddell, A. (2017). “Stan: A probabilistic pro-
gramming language.” Journal of Statistical Software, 76(1). 241

Carvalho, L. M., Villela, D. A. M., Coelho, F. C., and Bastos, L. S. (2022). “Supple-
mentary Material of “Bayesian Inference for the Weights in Logarithmic Pooling”.”
Bayesian Analysis. doi: https://doi.org/10.1214/22-BA1311SUPP. 225, 226, 227,
230, 231, 241, 243, 244

Coelho, F. C. and Codeço, C. T. (2009). “Dynamic modeling of vaccinating behavior as
a function of individual beliefs.” PLoS Comput. Biol., 5(7): e1000425. MR2538901.
doi: https://doi.org/10.1371/journal.pcbi.1000425. 223

DasGupta, A. (2011). “The exponential family and statistical applications.” In
Probability for Statistics and Machine Learning , 583–612. Springer. MR2807365.
doi: https://doi.org/10.1007/978-1-4419-9634-3. 226

Diaconis, P. and Ylvisaker, D. (1979). “Conjugate priors for exponential families.” The
Annals of Statistics, 269–281. MR0520238. 227

French, S. (1985). “Group consensus probability distributions: A critical survey in
Bayesian statistics.” Bayesian Statistics, 2. MR0862490. 223, 224
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