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Finite Mixtures of ERGMs for Modeling
Ensembles of Networks∗

Fan Yin†, Weining Shen‡, and Carter T. Butts†,§,¶

Abstract. Ensembles of networks arise in many scientific fields, but there are
relatively few statistical tools for inferring their generative processes, particularly
in the presence of both dyadic dependence and cross-graph heterogeneity. To ad-
dress this gap, we propose characterizing network ensembles via finite mixtures of
exponential family random graph models (ERGMs), a class of parametric statisti-
cal models that has been successful in explicitly modeling the complex stochastic
processes that govern the structure of edges in a network. Our proposed model-
ing framework can also be used for applications such as model-based clustering
of ensembles of networks and density estimation for complex graph distributions.
We develop a joint approach to estimate the number of mixture components and
identify cluster-specific parameters simultaneously as well as to obtain an identi-
fied model under the Bayesian paradigm. Specifically, we develop a Metropolis-
within-Gibbs algorithm to perform Bayesian inference, and estimate the number
of mixture components using a strategy of deliberate overfitting with sparse priors
that removes excess components during MCMC. As the true ERGM likelihood is
generally intractable for model specifications with dyadic dependence terms, we
consider two tractable approximations (pseudolikelihood and adjusted pseudo-
likelihood) to facilitate efficient statistical inference. We run simulation studies to
compare the performance of these two approximations with respect to multiple
metrics, showing conditions under which both are useful. We demonstrate the
utility of the proposed approach using an ensemble of political co-voting networks
among U.S. Senators and an ensemble of brain functional connectivity networks.

Keywords: exponential-family random graph models (ERGMs), Bayesian
mixture model, MCMC, adjusted pseudolikelihood, political co-voting networks,
brain functional connectivity networks.

1 Introduction

Data involving ensembles of networks – that is, multiple independent networks – arise
in various scientific fields, including sociology (Slaughter and Koehly, 2016; Stewart
et al., 2019), neuroscience (Simpson et al., 2011; Obando and De Vico Fallani, 2017),
molecular biology (Unhelkar et al., 2017; Grazioli et al., 2019), and political science
(Moody and Mucha, 2013) among others. Typically, ensembles of networks represent
the action of multiple generative processes, with different processes being prominent
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in different settings. A reasonable starting point for analysis of such data is to posit
that this variation can be represented in terms of a discrete set of subpopulations, such
that the networks drawn from any given subpopulation tend to be produced by similar
generative processes. Given a set of potential generative models, one would then like to
identify the subsets of networks drawn from a particular subpopulation, or a probabilis-
tic mixture of multiple subpopulations. It is natural to view this as a hierarchical finite
mixture problem, with the base distributions being parametric distributions on graphs.
As a plausible approximation to the underlying data generating process, the hierarchical
finite mixture framework provides a flexible approach for predictive modeling of ensem-
ble of networks. If one seeks to predict graph structures drawn from a heterogeneous
(super)population learned from observed data, one needs to average over the possible
generative processes that might end up producing the observation that one wants to
predict. Such a view is similar in spirit to model averaging techniques (Hoeting et al.,
1999; Hjort and Claeskens, 2003), especially if interpreted in terms of a hierarchical
problem in which we seek to predict an outcome of interest (e.g., co-voting prevalence
among U.S. senators) by first predicting network structure and then predicting the be-
havior of a process on that network. In that setting, if it turned out that there were
K types of possible network formation processes and we did not know which one ours
happened to be, we would certainly want to average across the types.

There is a growing body of literature on the analysis of ensembles of networks.
This includes work on discriminative analysis of networks via distance or similarity
measures (e.g. Banks and Carley, 1994; Butts and Carley, 2005; Fitzhugh et al., 2015),
which can be broadly viewed as mapping the ensemble of interest into some high-
dimensional space (e.g., the Hamming space of graphs), and then employing standard
multivariate analysis techniques (e.g., hierarchical clustering, multidimensional scaling)
to seek an informative low-dimensional approximation. Other approaches work with
user-selected graph statistics, either directly (e.g. Pržulj, 2007; Sweet et al., 2019) or
by e.g., modeling quantiles of the observed statistics relative to a reference distribution
to control for size and density effects (Butts, 2011). As such, these approaches do not
attempt to provide generative models for the networks within the ensemble, though they
may in some cases provide generative models for summary statistics (e.g., predicting
the conditional uniform graph quantile for the transitivity of a new graph drawn from
the same ensemble). Another relevant work is Durante et al. (2017), where the authors
propose a Bayesian nonparametric approach for modeling the population-level network
based on a mixture model framework on the joint distribution of the edges through a
latent space model representation.

In the category of generative models for complex networks, a common approach is to
employ multilevel models with exponential random graph models (ERGMs, a general
family of parametric models for networks (see, e.g. Schweinberger et al., 2020, for a
review)), as base distributions. Faust and Skvoretz (2002) introduced both multivariate
meta-analysis of ERGM parameters from a common model family (fit to an ensemble
of graphs) and predicted conditional edge probabilities from the generative base mod-
els as tools for leveraging ERGMs to compare networks. More elaborate meta-analytic
procedures and hierarchical models for population of networks were subsequently devel-
oped by, among others, Zijlstra et al. (2006); Slaughter and Koehly (2016); McFarland
et al. (2014); Butts (2017), and Stewart et al. (2019). In general, those methods have
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either not posited a generative model for the parameters of the base distribution, as
in descriptive meta-analytic approaches (which can be problematic when model inter-
pretation and simulation from the resulting model are of interest), or not suitable for
identifying subpopulations from heterogeneous data (as in hierarchical models without
mixture structure). Although work such as that of Lehmann et al. (2021) enables the
modeling of heterogeneity in brain functional connectivity networks, it requires that
subpopulation labels be observed (which is often not the case). Therefore, joint model-
ing of population-level and network-level parameters where subpopulation memberships
are unknown, or where the true generative process otherwise involves a mixture of graph
distributions, has remained an open problem to date in the ERGM context.

In this paper, we propose using mixtures of ERGMs to model the generative process
of ensembles of networks in which the subpopulation labels are not available, under the
general framework of finite mixture models (McLachlan and Basford, 1988; Fraley and
Raftery, 2002; Bouveyron et al., 2019). Such a formulation provides a useful probabilis-
tic interpretation of the results and allows for convenient statistical inference; we note in
particular that related approaches have proven to be efficacious for modeling structure
within networks (e.g. Salter-Townshend and Murphy, 2015; Schweinberger and Hand-
cock, 2015; Snijders and Nowicki, 1997). Recent work on using mixtures of network
models with conditionally independent dyads (e.g., a priori stochastic blockmodels, the
p1 model) for modeling multiple network observations (Signorelli and Wit, 2020) can en-
counter difficulties when the observed networks exhibit strong dyadic dependence, which
is often the case for real-world networks. We develop a joint approach to simultaneously
estimate the number of mixture components and identify cluster-specific parameters, as
well as to obtain an identified model under the Bayesian paradigm. Specifically, we pro-
pose a Metropolis-within-Gibbs algorithm to perform Bayesian inference, and estimate
the number of mixture components using the method of Malsiner-Walli et al. (2016)
that employs a deliberately overfitting model with sparsity-inducing priors over a large
number of mixture components, with the excess components being “emptied” during
MCMC. We also adapt the Bayesian information criterion and Deviance information
criterion to enable the comparison of different specifications of ERGMs.

The remainder of this paper is structured as follows. In Section 2, we briefly intro-
duce the exponential-family random graph models (ERGMs) and common estimation
techniques. Section 3 describes the idea of finite mixtures of ERGMs, along with the
estimation algorithm and the method for selecting the number of mixture components.
Section 4 presents simulation studies showing that the proposed method can accurately
recover the true subpopulation assignments and model parameters. Sections 5 and 6
show the results of our method applied to a political co-voting data and brain func-
tional connectivity networks, respectively. Section 7 concludes with a discussion.

2 Exponential-Family Random Graph Models (ERGMs)

In recent years, ERGMs have found applications in empirical research in a wide range
of scientific fields. Recent examples include the study of large friendship networks
(Goodreau, 2007), genetic and metabolic networks (Saul and Filkov, 2007), disease
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transmission networks (Groendyke et al., 2012), conflict networks in the international
system (Cranmer and Desmarais, 2011), the structure of ancient networks in various of
archaeological settings (Amati et al., 2019), the structural comparison of protein struc-
ture networks (Grazioli et al., 2019), the effects of functional integration and functional
segregation in brain functional connectivity networks (Simpson et al., 2011; Sinke et al.,
2016; Obando and De Vico Fallani, 2017), and the impact of endogenous network effects
on the formation of interhospital patient referral networks (Caimo et al., 2017). While
addressing very different problems in different empirical settings, what these studies have
in common is a clear methodological commitment to modeling network mechanisms di-
rectly via parametric effects, rather than just attempting to “control for” unspecified
dependence among the observations (e.g., via latent structure). The ability to provide
generative and interpretable models of complex network structure is an important asset
of this approach, which we leverage here in the context of graph ensembles.

2.1 Definition and Estimation

Exponential-family random graph models (ERGMs) (Holland and Leinhardt, 1981;
Frank and Strauss, 1986; Snijders et al., 2006; Hunter and Handcock, 2006), also known
as p-star models (Wasserman and Pattison, 1996), are a family of parametric statistical
models developed for explicitly modeling the complex stochastic processes that govern
the formation of edges among pairs of nodes in a network. We introduce them first in
the single-network case. Consider the set of nodes in the network of interest, V , and let
|V | = n be its cardinality, i.e. the number of nodes in the network. We represent the
network’s structure via an order-n random adjacency matrix Y, in which each element
takes 1 or 0 representing the presence or absence of a tie between incident nodes. Letting
Yn be the set of all possible network configurations on n nodes, we write the probability
mass function (pmf) of Y taking a particular configuration Y in the form of a discrete
exponential family as

Pg,h,η(Y = y|X;θ) =
exp

(
η(θ)�g(y;X)

)
h(y)

zg,h,η,X,Yn(θ)
, y ∈ Yn, (1)

where θ = (θ1, · · · , θq) ∈ R
q is a vector of (curved) model parameters, mapped to the

natural parameters by η(θ) = (η1(θ), · · · , ηp(θ)) ∈ R
p. The natural parameters η may

depend on the sizes of the networks and may be non-linear functions of a parameter
vector θ. The user-defined sufficient statistics g : Yn → R

p may incorporate fixed and
known covariates X that are measured on the nodes or dyads. The sufficient statistics
incorporate network features of interest that are believed to be crucial to the mechanisms
giving rise to the graph set (see, e.g., Morris et al., 2008). Here, h defines the reference
measure for the model family; often chosen to be the counting measure h(y) ≡ 1, ∀y ∈
Yn for unvalued graphs with fixed n, other reference measures can make more sense in
different settings (see e.g. Schweinberger et al., 2020). Finally, the normalizing factor
zg,h,η,X,Yn(θ) =

∑
y′∈Yn

exp
{
η(θ)�g(y′;X)

}
h(y′) ensures that (1) sums to 1 over

the support Yn. Relatedly, normalizability requires that θ only take values for which
zg,h,η,X,Yn(θ) is finite.
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Exact maximum likelihood estimation (MLE) for ERGM parameters requires di-
rect evaluation of the normalizing factor, which involves integrating an extremely rough

(i.e., high variance) function over all possible network configurations (2(
n
2) non-negative

terms for an undirected network of size n). This cannot be done by brute force ex-
cept for trivially small graphs (n � 7), and the roughness of the underlying function
precludes simple Monte Carlo strategies; thus, alternative approaches that approxi-
mate or avoid this calculation are of substantial interest. To date, the most frequently
used approaches include: maximum pseudo-likelihood estimation (MPLE; Besag (1974))
adapted by Strauss and Ikeda (1990); Markov Chain Monte Carlo MLE (MCMC MLE;
Geyer and Thompson (1992)) by Handcock (2003); Hunter and Handcock (2006); ap-
proximate MLE based on Stochastic approximation (SA; Robbins and Monro (1951);
Pflug (1996)) by Snijders (2002); fully Bayesian inference based on exchange algorithm
(Caimo and Friel, 2011); approximate Bayesian inference based on adjusted pseudolikeli-
hood (Bouranis et al., 2017); and variational Bayesian inference based on fully adjusted
pseudolikelihood (Tan and Friel, 2020). As simulation-based MLE-finding algorithms
(e.g., MCMC MLE, SA) rely on good initial parameter configuration to seed their simu-
lations, there are also some work on this aspect, including the partial stepping technique
(Hummel et al., 2012) and the contrastive divergence (CD, Hinton (2002))-based tech-
niques adapted to ERGMs by Krivitsky (2017). Despite the computational challenges,
these and related strategies have made ERGM inference practical for well-posed model
families (see Schweinberger et al., 2020, for a recent review).

2.2 Size-Adjusted Parameterizations

It is worth noting that the behavior of (1) across n is highly dependent on the choice
of reference measure, h. In particular, the counting measure – while a mathematically
convenient choice – implicitly sets the base distribution of the network to be the uniform
distribution on Yn, and has the side effect of generating graphs whose densities are
ceteris paribus constant in n. When network size varies, this is not always realistic:
in many networks, mean degree is approximately constant in n, implying that density
must scale as n−1. To correct for this, Krivitsky et al. (2011) propose the reference
measure h(y) = n−M(y), where M is the edge count. This is equivalent to adding a size-
dependent offset of − log n to the natural parameter associated with the edge count, i.e.,
η1(θ) = θ1 − log n, where θ1 ∈ R is a parameter that does not depend on the network
size. In the present work, we employ the Krivitsky reference measure as above for the
networks of varying sizes, though other size-adjusted parameterizations are also possible
(e.g., Butts and Almquist, 2015; Kolaczyk and Krivitsky, 2015).

3 Finite Mixtures of ERGMs

We assume a population of networks (Y(1),V (1),X(1)), . . . , (Y(m),V (m),X(m)), where
Y(i) is a graph structure on vertex set V (i) with covariate set X(i). Our interest is in
modeling Y =

(
Y(1), · · · ,Y(m)

)
given (V (1),X(1)), · · · , (V (m),X(m)), where it will be

assumed that the respective graph structures are conditionally independent given the
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respective subpopulation membership, vertex sets, and covariates. To simplify notation,
V is implicitly absorbed into X for the remainder of this paper.

We formulate the data generating mechanism as a hierarchical model and we note
that Bayesian inference is a natural choice here, since (1) it is more robust to initializa-
tion and less prone to converge to local minima than maximum likelihood; (2) interval
estimation is straightforward and does not rely on the assumption of approximate nor-
mality; and (3) it provides principled answers in fixed-n,m settings.

With a prespecified upper bound for the number of subpopulations (or equivalently,
mixture components) K, we have the following hierarchical representation of the model
(see Figure 1 for a graphical representation)

τ = (τ1, . . . , τK) ∼ DirK(α, . . . , α),

P (Zi = j) = τj for every i = 1, . . . ,m, and j = 1, . . . ,K, given τ ,

θ1, . . . ,θK ∼ Np(μ,Ψ) independently given μ,Ψ,

Y (i) ∼ Pg,h,η(·|Xi;θZi) independently for i = 1, . . . ,m,

given θ1, . . . ,θK , Z1, . . . , Zm, and X1, . . . ,Xm, (2)

where Zi, . . . , Zm are indicator variables taking values in {1, . . . ,K} for Yi, . . . , Ym, and
μ,Ψ are hyper-parameters in the multivariate normal prior distributions for θ1, . . . ,θK .
Without the Krivitsky reference measure, a multivariate normal prior with mean 0 for
all elements reflects the prior belief that the graph density is around 0.5, which exceeds
the density for most known real-world graphs. Therefore we let μ = (−1, 0, . . . , 0︸ ︷︷ ︸

p−1

) and

Ψ = 25×Ip to specify a flat multivariate normal prior for θk’s, which is a standard choice
in the ERGM literature (Caimo and Friel, 2014; Bouranis et al., 2018) to reflect our
belief that the real-world graph is more likely to have a density smaller than 0.5. Other
mean values can be used if there is additional prior knowledge about the graph density.
With the Krivitsky reference measure, a multivariate normal prior with mean 0 for all
elements reflects the prior belief that expected baseline mean degree (i.e., discounting
other effects) is around 1, which is more reasonable for typical sparse networks. Again,
other mean values can be used if there is additional prior knowledge about the mean
degree of the graphs of interests. To identify the number of mixture components, we
deliberately choose a large value for K and a small value for α (e.g., 0.01 or 0.001, as
demonstrated in Malsiner-Walli et al. (2016)), so that the superfluous components can
be eliminated during MCMC, and hence a straightforward estimator for the true number
of components is given by the most frequent number of non-empty components visited.
In our numerical examples, we choose α from a set of pre-specified small values that
achieves the most accurate estimate of the cluster number. It is of interest to develop
efficient marginal likelihood computing methods for our proposed method in a future
work and use them to guide the choice of α using an empirical Bayesian approach.

From this point onward, we focus on ERGM model specifications in canonical form
(i.e., η(θ) ≡ θ) as it is a rich model family comprising most commonly-used model
specifications and known to be computationally stable. For networks of equal sizes, it
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Figure 1: Structure of the graph mixture model. Random quantities are depicted within
circles, fixed quantities within rectangles; observables are shaded.

is natural to use counting measure h(y) ≡ 1, therefore (1) becomes

P(Y = y|X;θ) =
exp

(
θ�g(y;X)

)
z(θ)

, y ∈ Yn, (3)

where z(θ) =
∑

y′∈Yn
exp

(
θ�g(y′;X)

)
. And for networks of varying sizes, with Kriv-

itsky reference measure, (1) becomes

P(Y = y|X;θ) =
exp

(
θ�g(y;X)− log(n)

∑
i,j yij

)
zn(θ)

, y ∈ Yn, (4)

where the normalizing factor zn(θ) =
∑

y′∈Yn
exp

(
θ�g(y′;X)− log(n)

∑
i,j y

′
ij

)
.

3.1 Bayesian Estimation

As noted, we perform posterior inference via MCMC. Our algorithm iterates over the

model parameters (θ1, . . . ,θK , τ ) = (θ, τ ) with the priors given above, and the la-

tent variables Z = (Z1, · · · , Zm). Where possible, we sample from the full conditional

posterior distributions; otherwise we use Metropolis-Hastings steps.

The proposal distribution q(·|θ) in the Metropolis step is set by the user to achieve

good performance of the algorithm. Following literature on Bayesian ERGMs (Caimo

and Friel, 2011; Bouranis et al., 2017), we use a symmetric multivariate Gaussian pro-

posal for updating θk, k = 1, 2, . . . ,K. As suggested by Frühwirth-Schnatter (2001),

an additional permutation step is added to randomly permute the current labeling of

the components at the end of each MCMC iteration, which ensures that the sampler

explores all K! modes of the full posterior distribution and prevents the sampler from

being trapped around a single posterior mode (Geweke, 2007).



1160 Finite Mixtures of ERGMs for Modeling Ensembles of Networks

Algorithm 1 Metropolis-within-Gibbs sampler for the ERGM mixture model.

1: Initialization: Set τ 0, θ0 and Z0 to random initial values.
2: for t = 1, 2, · · · , T do
3: Generate Zt

i (i = 1, · · · ,m, k = 1, · · · ,K) from
P(Zt

i = k|ηt−1
k ,θt−1

k ,y(i)) ∝ ηt−1
k P(y(i)|X(i);θt−1

k )
4: Compute νtk =

∑m
i=1 1Zt

i=k; k = 1, · · · ,K
5: Generate τ t from Dirichlet(α1 + νt1, · · · , αK + νtK)
6: for k = 1, · · · ,K do
7: Propose θ

′

k ∼ q(·|θt−1
k )

8: Accept θ
′

k as θt
k with probability equal to

π(θ
′
k)

∏
Zt
i
=k P(y(i)|X(i);θ

′
k)q(θ

t−1
k |θ′

k)

π(θt−1
k )

∏
Zt
i
=k P(y(i)|X(i);θt−1

k )q(θ
′
k|θ

t−1
k )

9: end for
10: Random permutation of the labeling: select randomly one permutation ρ of K!

possible permutations of {1, . . . ,K} and substitute

τ t = τ t
ρ(1,...,K),

θt = θt
ρ(1,...,K),

Zt = ρ(Zt). (5)

11: end for

3.2 Approximations to Intractable Likelihoods

The likelihood P(y(i)|X(i);θ) is intractable for general ERGMs with dyadic dependent
terms, which poses two challenges to the proposed Algorithm – (1) updating θk’s via
Metropolis-Hastings ratio (8) is a doubly-intractable problem (Murray et al., 2006); (2)
updating latent indicator variables Zi requires a tractable likelihood. Although the ex-
change algorithm (Caimo and Friel, 2011) can be used to tackle the former challenge by
cancelling out the intractable normalizing factors based on auxiliary variables, it falls
short of the latter due to its inability to provide an approximation to the ERGM likeli-
hood. Importance-sampling based approximation (Koskinen, 2004, 2008) appears to be
a straightforward solution, but it can be too expensive to be practical when the cost of
simulating from ERGMs is considerable, as such simulations are needed for each net-
work observation at each MCMC iteration. Therefore, we propose to consider tractable
approximations to the true ERGM likelihood (1) when fitting the proposed model.

Pseudolikelihood

The pseudolikelihood approximates the true ERGM likelihood by a product of full con-
ditional distributions of edge variables

fPL(y|X;θ) =
∏

(i,j)∈D
P(yij |y−ij ;X;θ) =

∏
(i,j)∈D

1

1 + exp {−θ�Δi,jg(y;X)} , (6)
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where Δi,jg(y;X) = g(y+ij ;X)− g(y−ij ;X) are the so-called change statistics associated
with the dyad (i, j), representing the change in sufficient statistics when yij is toggled
from 0 (y−ij) to 1 (y+ij) with the rest of the network remaining unchanged; D denotes the
set of all pairs of dyads. For directed networks, D = {(i, j)|i, j ∈ N , i 	= j}, while for
undirected networks, D = {(i, j)|i, j ∈ N , i < j}. In the frequentist paradigm, maximiz-
ing (6) gives the so-called MPLE, which is relatively fast, algorithmically convenient,
and able to provide approximate parameter estimates for even badly-specified models.

While empirical observations show that MPLE can cause bias and underestimate
standard errors (Van Duijn et al., 2009) for models with strong dyadic dependence, it
has been the default choice for initialization of MCMC-MLE algorithms. There is also
promising work on using bootstrapped MPLE to construct confidence intervals (Schmid
and Desmarais, 2017) for large and sparse networks, as the MPLE is usually close to
the MLE in such cases (Desmarais and Cranmer, 2010). Similar logic has motivated the
use of Bayesian bootstrap estimation based on “pseudo maximum a posteriori (MAP)”
estimates using the PL approximation to the likelihood (Grazioli et al., 2019).

As the full conditionals of edge variables are tractable (see (6)), sampling from
ERGMs can be implemented through a Gibbs sampling procedure. To improve the
mixing in the typical case of ERGMs that concentrate probability mass on sparse graphs,
the default simulation algorithm in statnet implements a “tie no tie”(TNT) sampler,
in which the dyad is randomly selected with equal probability from the set of dyads
with ties or the dyads without ties.

Adjusted Pseudolikelihood

Bouranis et al. (2018) proposed an adjusted pseudolikelihood for correcting the mode,
curvature and magnitude of the pseudolikelihood, and their simulation studies show
that the adjusted pseudolikelihood can provide an accurate approximation to the true
likelihood in the presence of strong dyadic dependence (where pseudolikelihood falls
short). Building upon adjusted pseudolikelihood approximation, Tan and Friel (2020)
developed a variety of variational methods for Gaussian approximation of the posterior
density and model selection, which is shown to yield comparable performance to that
of the exchange algorithm. The adjusted pseudolikelihood is defined as follows,

f̃(y|X;θ) = C · fPL(y|X;φ(θ)), (7)

where the constant C > 0 adjusts the magnitude and φ : Rp → R
p is an invertible

affine transformation that adjusts the mode and curvature to match the true ERGM
likelihood.

φ(θ) = θ̂PL +W (θ − θ̂ML). (8)

In (8), W is a p × p upper triangular matrix, θ̂ML = argmaxθ P(y|X;θ) is the

maximum likelihood estimate (MLE), and θ̂PL = argmaxθ fPL(y|X;φ(θ)) is the max-
imum pseudolikelihood estimate (MPLE). The estimation of matrix W and scaling
constant C require simulating from ERGMs at the MLE to approximate the Hessian of
logP(y|X;θ) and at a sequence of points (i.e., temperatures, using the terms for path
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sampling (Gelman and Meng, 1998)) from the coordinate origin to the MLE to approx-
imate the normalizing factor z(θ̂ML) (see supplementary material (Yin et al., 2021) for
more details).

3.3 Identifying the Number of Clusters

We derive the posterior distribution of the number of non-empty components, K0, from
the MCMC output following the approach of Ishwaran et al. (2001) and Nobile et al.

(2004). Letting N
(t)
k denote the number of observations allocated to component k at

iteration t = 1, 2, . . . , T̃ (after discarding the burn-in and thinning) and I(·) denote the
indicator function, we represent the number of non-empty components at iteration t as

K
(t)
0 = K −

∑K
k=1 I(N

(t)
k = 0), and therefore estimate the posterior P(K0 = h|y) for

h = 1, 2, . . . ,K by the respective relative frequency. A natural point estimator for the
number of clusters is then the posterior mode, K̂0 = argmaxh P(K0 = h|y), which is
optimal under a zero-one loss.

3.4 Post MCMC Inference

Identification of the finite mixture model requires handling the label switching problem
caused by the invariance of representation with respect to ordering the components. The
resulting multimodality and symmetry of the posterior distribution for symmetric priors
makes it difficult to conduct inference on component-specific parameters. Following
Malsiner-Walli et al. (2016), we perform K-centroids cluster analysis with Mahalanobis
distance (Leisch, 2006) on the point process representation of the MCMC draws to
post-process the MCMC output and obtain a unique labeling as follows

1. Estimate the number of mixture components (K̂0) based on the retained MCMC
iterations t = 1, 2, . . . , T̃ after discarding the burn-in and thinning using the

method described in Section 3.3, that is, K̂0 = mode(K
(t)
0 ), t = 1, 2, . . . , T̃ .

2. For T̃ retained MCMC iterations, extract only the subsequence T0(� T̃ ) where
the number of non-empty components is exactly equal to K̂0.

3. For all T0 iterations in the subsequence, remove the draws from empty components
and arrange the remaining draws of the different components in a matrix with
K̂0 × T0 rows and p columns.

4. Perform K-centroid cluster analysis based on the Mahalanobis distance on K̂0×T0

draws to group them into K̂0 clusters.

5. Examine the clustering results and only keep those draws where the resulting
cluster membership indicator vector forms a permutation of 1, 2, . . . , K̂0, which
gives a subsequence of T̃0(� T0) draws.

6. For the remaining T̃0 draws, a unique labeling is achieved by resorting the draws
according to the cluster membership from the K-centroid cluster analysis in step
4 and rescaling the elements by their sum in each τt such that they sum to 1.
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3.5 Choosing Between Competing Model Specifications

When multiple model specifications Mj , j = 1, . . . , J are under consideration, it is im-
portant to have a fast and convenient model selection index. In particular, we illustrate
two popular information criterion based choices here, the Bayesian information crite-
rion (BIC) (Schwarz, 1978) and a version of the observed deviance information criteria
(DIC) introduced by Celeux et al. (2006), which is an extension of the original DIC
(Spiegelhalter et al., 2002) to latent variable models. Consider the likelihood of network
Y(i) taking value y(i) under the mixture model

P(Y(i) = y(i)|X(i); τ ,θ) =

K∑
k=1

τkP(Y
(i) = y(i)|X;θk) (9)

therefore the BIC is defined as follows

BIC(Mj) = 2×
m∑
i=1

logP(Y(i) = y(i)|X(i); τ , θ̂Mj
)−

(
pMj K̂0(Mj)+ pMj − 1

)
log(m),

(10)

where θ̂Mj
, K̂0(Mj) and pMj corresponds to the posterior mode of θ, the estimated

number of mixture components, and the number of parameters in each ERGM com-
ponent, respectively. Following Celeux et al. (2006), given remaining posterior draws
τ t = (τ t1, . . . , τ

t
K̂0

),θt = (θt
1, . . . ,θ

t
K̂0

) and observed ensemble of networks y = (y(1), · · · ,
y(m)), we have observed DIC for model specification Mj as

DIC(Mj) = −4Eθ[logP(y|X;θ)|y] + 2 log P̂(y|X;θ), (11)

where

P̂(y|X;θ) =

m∏
i=1

P̂(y(i)|X(i);θ) =

m∏
i=1

(
1

T̃0

T̃0∑
t=1

P(Y(i) = y(i)|X(i); τ ,θ(t))

)
,

and

Eθ[logP(y|X;θ)|y] = 1

T̃0

T̃0∑
t=1

m∑
i=1

log
(
P(Y(i) = y(i)|X(i); τ ,θ)

)
.

3.6 Posterior Probability of Cluster Membership

We estimate the posterior marginal probability of individuals belonging to each cluster
(alternately: graphs having been generated by a particular process) via Monte Carlo:

P(Zi = k|y(i)) =

∫
τkP(y

(i)|X(i);θk)∑K
k=1 τkP(y

(i)|X(i);θk)
π(θ, τ |y)dθdτ , (12)

where π(θ, τ |y) is the posterior distribution of θ, τ . The integral (12) is computationally

intractable. Hence we use posterior samples θ1, · · · ,θL and τ 1, · · · , τL to obtain its
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Monte-Carlo approximation,

P̂(Zi = k|y(i)) =
1

L

L∑
l=1

τ lkP(y
(i)|X(i);θl

k)∑K
k=1 τ

l
kP(y

(i)|X(i);θl
k)

. (13)

It is also possible to obtain the joint probabilities for the partitions and use deci-
sion theoretic approaches (Fritsch and Ickstadt, 2009; Wade and Ghahramani, 2018)
to assign cluster memberships. These are promising future directions to pursue if fur-
ther enhancements of performance are needed. In our work, we focus on the marginal
probability method, as we have found it to perform well in practice.

4 Simulation Studies

We conduct simulation studies to evaluate the performance of the proposed algorithm
with pseudolikelihood (PL) and adjusted pseudolikelihood (APL) on the following met-
rics: identification of mixture components; parameter estimation; and posterior predic-
tive distribution of key network characteristics. We also compare the proposed method
to K-means clustering in terms of their cluster membership recovery performance based
on (i) network sufficient statistics (SS), (ii) maximum likelihood estimates, and (iii)
maximum pseudolikelihood estimates. In all of the simulation studies, we consider en-
sembles of networks simulated from mixtures of ERGMs with three components of equal
sizes.

4.1 Performance Evaluation

The identification of mixture components consist of two aspects, namely, the identifi-
cation of true number of components and the recovery of true cluster memberships. To
examine if the proposed algorithm can consistently identify the true number of compo-
nents, we consider the proportion of times the true number of components is identified
across all replicates under each experiment setting. To evaluate how accurately the true
cluster memberships can be recovered, we calculate the average value of Rand index
(RI) (Rand, 1971) and the average value of variation of information (VI) (Meilă, 2007)
over 50 replicates. The RI measures the proportion of concordant pairs between two
data clusterings, taking value 1 when two clusterings are identical and 0 when two clus-
terings do not agree on any pair of points. The VI, a true metric on clusterings, yields
a value of 0 for identical clusterings with higher values indicating more disparate clus-
tering assignments. We also compare the summary statistics for post MCMC inference,
including T0, T̃0, 1− T0/T̃ , and 1− T̃0/T0 as defined in Section 3.4 (see supplementary
material for more details).

For parameter estimation, we compute the relative bias of posterior mean and fre-
quentist coverage rates of 95% posterior credible intervals. As it is possible that the
estimated number of clusters is different from the true number of components, we focus
on those runs in which the true number of components is successfully identified when
evaluating the parameter estimation accuracy.
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We examine the posterior predictive performance of the resulting mixture models by
checking the discrepancy between the distributions of several critical network summary
measures calculated on the observed networks and those of simulated networks.

As there is a computational overhead associated with the calculation of adjusted
pseudolikelihood, we also include a comparison of computation time.

4.2 Simulation Design

In this simulation study, we consider ensembles of networks simulated from mixtures of
ERGM distributions defined on three most commonly used network sufficient statistics

• g1(y) =
∑

i<j yij , total number of edges.

• g2(y) = eφ
∑n−2

k=1

{
1− (1− e−φ)k

}
EPk(y), geometrically weighted edgewise

shared partners (GWESP). Here EPk(y) is the number of connected pairs that
have exactly k common neighbors, which measures local clustering in a net-
work. The decay parameter φ controls the relative contribution of EPk(y) to
the GWESP statistic, and it is fixed at 0.25 in this case.

• g3(y;X) =
∑

i<j yij1{Xi=Xj}, the total number of edges with endpoints sharing
the same value on nodal covariate X, often known as a nodematch term.

We fix nodal covariate X to be a binary variable, and let one half of nodes take value
0, while the other half take value 1 on X. To examine the performance of the proposed
approach across a range of different conditions, we run a full-factorial experiment on
the following two treatments

• Network size: 40, 100.

• Cluster size: 10, 30.

We thus have a total of 4 experimental conditions, each of which is run under pseudo-
likelihood (PL) and adjusted pseudolikelihood (APL) (hence there is a total of 8(= 4×2)
simulation settings) for 50 repetitions. The true cluster-specific parameters are specified
as

θ40
true =

⎛
⎝−0.85 −0.10 −0.10
−3.45 0.75 2
−5.10 2.5 0.5

⎞
⎠ , θ100

true =

⎛
⎝−2.03 −0.10 −0.10
−4.15 0.75 2
−5.85 2.5 0.5

⎞
⎠

to ensure that the simulated networks (i) have similar mean degree (∼ 9.9, that is,
networks of size 100 have density ∼ 0.10) across different mixture components and
network sizes (Figure 2); and (ii) represent three common and intuitive patterns in
real-world networks. Parameter settings in the first row correspond to the case in which
there is a weak triadic closure effect (edge variables are nearly independent Bernoulli
draws), and parameter settings in the second row correspond to the case in which
there is a strong homophily effect but an intermediate triadic closure effect, while the
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Figure 2: Representative networks from clusters 1 (left), 2 (middle), and 3 (right).
Network size: 100. Color indicates nodal covariate value: 0 (black), 1 (red).

parameter settings in the third row correspond to the case in which there is a strong
triadic closure effect but an intermediate homophily effect. To maintain this pattern,
we fix the values of coefficients associated with GWESP and nodematch terms across
settings with different network sizes, and only modify the coefficient of edges term to
keep the mean degree value as desired.

We apply the proposed Algorithm 1 to analyze the synthetic data sets with the
initial number of clusters K = 6. All MCMC chains are run for 60000 iterations with
the first 60% of draws discarded as burn-in and a thinning interval of size 50 to ensure
convergence. We draw random values from a discrete uniform distribution taking values
in {1, . . . ,K} to initialize the latent membership indicators Z0

i , and draw random values
from the Dirichlet prior to initialize the value of τ 0. The initial values of θ are drawn
independently from a uniform distribution U(−0.1, 0.1). We fix α = 0.001 on the basis
of some experimentation (more details are available in the Supplementary Material).
All computations in this paper are implemented in R (R Core Team, 2019), and we
use software suite statnet (Handcock et al., 2008) to generate networks from ERGMs
where the burn-in for the first simulated network (network size: n) from each mixture
component under each replicate is set as 20n2 with a thinning interval of 4n2 iterations.

4.3 Identification of Mixture Components

To check the performance of the proposed inferential procedure at identifying the correct
number of mixture components, we first count the frequencies of K̂0 over 50 repetitions
across different experimental conditions and likelihood approximation methods. Table 1
shows the proportion of times the true number of mixture components is identified.
We observe that the performance of PL at identifying the true number of mixture
components appears to be slightly better than that of APL when the network size is
large (n = 100), but the performance of adjusted pseudolikelihood (APL) is more robust
across all 4 experimental conditions (accuracy > 70%) and it is apparently superior to
PL when the network size is small (n = 40).

With respect to the clustering performance measured by average RI and average VI,
we note that the proposed mixture model yields satisfactory performance at absolute
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Table 1: Estimation accuracy of K̂0, and average RI across 50 replicates for four experimental conditions (network size, cluster
size), under the proposed mixture model (bayesERGMmix), and K-means clustering on MPLE, MLE and sufficient statistics
(SS). The number of clusters in K-means clustering are based on the K̂0 estimated from bayesERGMmix (PL or APL, whichever
yields higher accuracy of K̂0 in the respective experimental condition).

Accuracy of K̂0 Average RI Average VI

bayesERGMmix bayesERGMmix Kmeans bayesERGMmix Kmeans

Condition PL APL PL APL MPLE MLE SS PL APL MPLE MLE SS

(40, 10) 0.70 0.78 0.975 0.961 0.909 0.923 0.828 0.115 0.123 0.467 0.360 0.956
(40, 30) 0.32 0.84 0.954 0.989 0.919 0.882 0.794 0.289 0.041 0.514 0.521 1.10

(100, 10) 0.86 0.80 0.983 0.954 0.982 0.954 0.969 0.060 0.133 0.064 0.133 0.145
(100, 30) 0.86 0.72 0.986 0.937 0.986 0.738 0.983 0.059 0.187 0.059 0.890 0.082
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scale (average RI > 95% for all settings except for APL under network size = 100,
cluster size = 30). For K-means clustering (the number of clusters in K-means is set
to the estimated number of mixture components from our mixture model in the cor-
responding replicate to facilitate a fair comparison), we find that K-means clustering
on the sufficient statistics is uniformly inferior to K-means clustering on the parameter
estimates (MPLE or MLE), and it is worth noting that the K-means clustering based
on MPLE is better than that of MLE when the network size is large but worse when the
network size is small. Our proposed mixture model has a clear advantage over K-means
when the network size is small (n = 40) and this advantage becomes less significant
as the sample size and network size increases. All these results confirm the numerical
advantage of our proposed mixture model and also suggest that K-means may provide
a useful initialization for our method.

4.4 Parameter Estimation

Figure 3 summarizes the relative bias of posterior mean estimate under different exper-
imental conditions and likelihood approximation methods (PL and APL). We observe
that the relative biases are small in general for both likelihood approximations, and
decrease as sample size increases given the same network size. We also note that the
relative biases are even smaller for large networks, which confirm the current under-
standing of PL as discussed in Section 3.2. Although it appears that the relative bias
for the parameters associated with GWESP term estimated from APL is quite substan-
tial at relative scale (about 20%) for the cluster “W” (i.e., cluster with weak dyadic
dependent effects), it is very small at absolute scale as the true parameter value is
−0.10.

Figure 4 shows the frequentist coverage of 95% posterior credible intervals under dif-
ferent experimental conditions and likelihood approximation methods. We notice that
the posterior intervals estimated from APL are superior to those estimated from PL in
terms of the coverage rates, especially for the parameters associated with the dyadic
dependent term (i.e., GWESP, in this context). Also, we observed a fairly general pat-
tern that the frequentist coverage of the posterior credible intervals yielded by APL
approaches 95% as the sample size (cluster size) increases regardless of the network
size. Therefore we have empirical evidence showing that the curvature correction step
for APL functions well to combat the over-confidence issue caused by PL for the inter-
val estimation of parameters associated with the dyadic dependent terms reported in
Van Duijn et al. (2009).

In sum, PL can lead to good performance in terms of the point estimation but is
lacking in the uncertainty quantification when the dyadic dependent effect is strong,
which can be substantially mitigated, if not fully taken care of, by the use of APL.

4.5 Posterior Predictive Assessments

We consider four widely used metrics that characterize different aspects of graph struc-
ture and compare the mean values of these metrics calculated from posterior predic-
tive distribution to those from the observed data. In practice, other metrics (such as
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Figure 3: Relative bias. Three clusters are represented by the strength of dyadic depen-
dent effects (S: Strong; I: Intermediate; W: Weak), which is GWESP with φ = 0.25 in
this case. The solid blue horizontal line corresponds to the target level: 0.

homophily and posterior predictive p-values) can also be used based on practitioner’s
domain knowledge and preference. A utility function (e.g. a weighted average of metrics)
may also be used to summarize the posterior predictive checks.

Specifically, our selected graph-level metrics are

• Mean eigenvector centrality: the eigenvector centrality (EC) is a node-level metric
that measures the degree of membership of a given node in the largest core/periph-
ery structure in the graph, and we take mean eigenvector centrality among all
nodes in the graph to convert it to a graph-level metric.1 The eigenvector centrality

1Except in very rare cases for which the graph adjacency matrix lacks a principal eigenvalue.
In such circumstances, eigenvector centrality is a signed indicator of membership in the two largest
core/periphery structures (positive versus negative).
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Figure 4: Frequentist coverage of 95% posterior credible intervals. Three clusters are
represented by the strength of dyadic dependent effects (S: Strong; I: Intermediate; W:
Weak), which is GWESP with φ = 0.25 in this case. The solid blue horizontal line
corresponds to the target level: 0.95.

is also the best one-dimensional approximation of the graph structure (in a least-
squares sense), and accuracy in reproducing it indicates the extent to which the
model is able to recover the broadest structural features of the graph.

• Transitivity: a standard measure of triadic closure in network analysis (Wasserman
and Faust, 1994), defined as the ratio of complete triangles to all potentially
complete triangles.

• Standard deviation of degree distribution: a measure of the level of heterogeneity
in degree distribution.

• Mean of inverse path length: also known as the mean of geodesic distances, a
measure of the overall closeness between nodes in a graph.
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Figure 5: Mean absolute relative difference across 50 repetitions under each simulation
setting.

As the above-listed graph-level metric is defined for each graph, we construct an
ensemble-level metric out of each one of them by taking the mean, which yields a total
of four ensemble-level metrics. When doing posterior predictive simulations, we first
select 100 draws from the posterior samples and simulate an ensemble of networks that
is of the same size as the synthetic data for each selected draw, and then we compare
the posterior predictive data to the distribution giving rise to the synthetic data by
calculating the mean absolute relative difference for those four ensemble-level metrics
across 50 repetitions under each simulation setting (see Figure 5). We note that PL
and APL yield very similar posterior predictive performance when the network size
is small (n = 40) but their difference becomes considerable when the network size is
large (n = 100) where we note that the posterior samples estimated from APL have an
advantage in producing networks that are closer to the target distribution with respect
to mean eigenvector centrality and average inverse path length, whereas the posterior
samples estimated from PL have an advantage in producing networks that are closer
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Elapsed time

Condition Lik APL calculation MCMC Total Relative time

(40,10) PL 0 43.13 43.13 1
(40,10) APL 146.50 (5.48) 47.20 193.70 (52.68) 4.49 (1.22)

(40,30) PL 0 116.73 116.73 1
(40,30) APL 341.72 (4.75) 113.13 454.85 (117.88) 3.90 (1.01)

(100,10) PL 0 45.73 45.73 1
(100,10) APL 408.53 (16.23) 45.13 453.66 (61.36) 9.92 (1.34)

(100,30) PL 0 126.85 126.85 1
(100,30) APL 1082.412 (13.18) 119.28 1201.69 (132.46) 9.47 (1.04)

Table 2: Elapsed time for four experimental conditions (network size, cluster size) mea-
sured in minutes with PL and APL as approximations to true ERGM likelihoods. The
“Relative time” column shows the computation time relative to that of PL under the
same MCMC setting for the respective simulation setting. The numbers in parentheses
in the “APL calculation” column are maxi=1,...,m TAPL

i under the respective setting.
The numbers in the parentheses in the “Total” and “Relative time” columns are calcu-
lated assuming the APL calculation is run in parallel on a machine with m computing
cores.

to the target distribution with respect to transitivity and degree standard deviation.
More importantly, regardless of the likelihood approximation used, there is a clear trend
showing that the recovery of those ensemble-level metrics are becoming better as sample
size (i.e., cluster size) increases for each fixed network size.

4.6 Computation Time

Table 2 shows a comparison on the computation time for PL and APL under four differ-
ent experimental conditions with MCMC settings specified in Section 4.2 (60000 total
iterations, initial number of mixture components K = 6, random initial values) using
a single computing core (Intel Xeon E5-2699 v4 CPU @ 2.20GHz). As both PL and
APL provide tractable approximations to true ERGM likelihoods, they are compara-
ble in terms of the MCMC sampling time TAPL

MCMC ≈ TPL
MCMC under the same MCMC

settings. As the implementation of APL requires a computational overhead upfront as
detailed in Section 3.2, the overall computation time under APL can be substantially
larger than that under PL if only one computing core is available, but we note that
multi-core architectures can be easily exploited to reduce the overall computation time
under APL, as the calculations needed to obtain the values required for APL are inde-
pendent for all networks. Therefore, given the APL calculation time as TAPL

i for the i-th
network, i = 1, . . . ,m, and MCMC sampling time TAPL

MCMC , the total computation time
under APL can be reduced from

∑m
i=1 T

APL
i +TAPL

MCMC to maxi=1,...,m TAPL
i +TAPL

MCMC ,
if m computing cores are available. Therefore, the relative computation time can also be
greatly reduced (as shown by the numbers in parentheses in Table 2). If more comput-
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edges nodematch(“D-D”) nodemix(“D-R”) gwesp, φ = 0.25
M1 � � �
M2 � � � �, diff = F

Table 3: List of candidate model specifications (M1, M2) for co-voting networks. �
indicates the corresponding term is included in the respective model.

ing cores are available, we note that the computation time under APL can be further
reduced by exploiting the fact that network samples needed at different temperatures
(see Equation (1) in the supplementary material) can also be drawn in a completely
independent manner.

5 Application to Political Co-Voting Networks

We apply the proposed method to cluster the co-voting networks among U.S. Senators
from 1867 (start year of Congress 40) to 2014 (end year of Congress 113), which were first
analyzed by Moody and Mucha (2013) using modularity and role-based blockmodels.
The co-voting networks are constructed based on the roll call voting data from http://
voteview.com, which contains the voting decision of each Senator (yay, nay, or abstain)
for every bill brought to Congress.2

in the co-voting network represent Senators and an edge is placed between two nodes
if the corresponding Senators vote concurrently (both yay or both nay) on at least 75%
of the bills to which they were both present. Here we aim at identifying subgroups of
networks that appear to have similar generating characteristics within the group but
different characteristics across groups.

5.1 Model Specification and Estimation

Figure 6 shows that the co-voting networks vary in structure on different years, and
the party-affiliation appears to be a key factor affecting the co-voting patterns among
Senators. Therefore we consider two competing ERGM specifications in Table 3, where
the statistic nodemix(“D-R”) counts the total number of edges between Democrats and
Republicans

∑
i<j yij1{Xi=R,Xj=D}. We note that the interpretation of nodematch(“D-

D”) and nodemix(“D-R”) should be relative to the baseline propensity of forming edges
between Republicans under our model specifications.

We note that these networks vary in size (range: 69–1123) and thus include an
offset term to adjust for network size, e.g., the Krivitsky reference measure discussed in
Section 2.2, which provides a parameterization with constant baseline expected degree.
We run long MCMC chains (150000 iterations with first 60% draw discarded as burn-
in and a thinning interval of size 50) with K = 6 and random initial values using

2The data is publicly available online in the R package VCERRGM, https://github.com/jihuilee/
VCERGM.

3Senators can leave the Congress in the middle of their interim and these seats can be filled by
newly appointed/elected Senators, and hence causing the network size to be larger than 100 at times.

http://voteview.com
http://voteview.com
https://github.com/jihuilee/VCERGM
https://github.com/jihuilee/VCERGM
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Figure 6: Co-voting networks of 41st, 64th, 71st, 91st, 100th and 111th Congress, which
were formed in the year of 1869, 1915, 1929, 1969, 1987 and 2009, respectively. Colors
indicate Senators’ party affiliations, blue = Democrats(D), red = Republican(R).

the Dirichlet prior for τ and multivariate normal priors for θk’s. We set the mean of
the multivariate normal prior μ to be (1, 0, . . . , 0︸ ︷︷ ︸

p−1

) to reflect the prior belief that the

expected mean degree is larger than 1. Because the total number of cross-party edges
is zero for some networks, we use the pseudolikelihood approximation for statistical
inference as there is no finite maximizer of the likelihood when the observed statistics
happen to lie on the relative boundary of the convex hull of possible values of the
sufficient statistics (Handcock, 2003), causing issues for approximating the normalizing
factor.

We calculate the DIC and BIC values for the candidate model specifications, which
yields DIC(M1) = 220240, DIC(M2) = 188177; BIC(M1) = 219869, BIC(M2) =
187806; since both model selection criteria identify M2 as the better model specifica-
tion, we conduct cluster-specific analysis based on it. Such a huge gap in DIC values is
indicative of the substantial importance of incorporating triadic closure effects in mod-
eling co-voting networks. The estimated number of non-empty mixture components
K̂0 is 4 for M2 and we summarize the posterior mean and 95% credible intervals for
cluster-specific parameters under M2 in Table 4.
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Cluster

1 2 3 4

edges 0.92 (0.27, 1.08) 1.91 (1.86, 1.97) 2.04 (1.99, 2.08) 2.47 (2.35, 2.58)
D-D 2.08 (1.89, 3.27) −0.35 (−0.41, −0.23) −0.12 (−0.15, −0.09) 0.92 (0.86, 0.99)
D-R −1.91 (−2.29, −1.00) −2.68 (−2.80, −2.57) −3.09 (−3.17, −3.00) −4.47 (−4.63, −4.30)
gwesp.0.25 0.99 (0.91, 1.24) 1.46 (1.37, 1.50) 2.14 (2.11, 2.18) 2.63 (2.54, 2.72)

Table 4: Posterior mean (95% credible interval) of cluster-specific parameters under
M2.

We note that the size-invariant parameters for edge term (first column) can be in-
terpreted as the log of the baseline mean degree (rather than the logit of the baseline
density, as in the case of the counting measure), suggesting expected degrees varying
from approximately exp(0.92) ≈ 2.5 to exp(2.47) ≈ 11.8 across clusters prior to consid-
eration of other effects.

Based on these estimates, we see inhibition of cross-party ties (D-R row in Table 4)
except for the first cluster and strong triadic closure (see gwesp.0.25 row in Table 4), as
well as apparent qualitative distinctions between clusters. To probe the impact of the
four behavioral regimes inferred from the co-voting data, we take a simulation-based
approach which exploits a critical advantage of working with a fully generative model:
the ability to perform “what-if” analyses that separate effects due to observed covariates
from differences in structure arising from differences in generative processes. Specifically,
we consider how the entire ensemble of Congressional networks would be expected to
have been different, if each respective regime had governed the U.S. Congress for the
entire study period. Such an analysis proceeds as follows. First, we simulate a set of
posterior predictive networks for each Congress during the study period, with param-
eters drawn from the posterior distribution of each respective cluster. Each collection
of networks can be thought of as a simulated “alternate history,” in which the size and
composition of each Congress were held to their real-world values but the behavioral
tendencies that shaped the co-voting networks throughout the period were reflective of
only one of the three clusters. Systematic differences in network structure across sets
thus provide insight into the potential impact of behavioral regime, controlling for size
and composition.

One important property that can be probed in this way is the expected incidence of
voting coalitions, which play an important role in party politics. Here, we focus on min-
imal coalitions, defined as sets of three legislators who consistently vote together (i.e.,
triangles). Within-party coalitions can be sources of party cohesion, although they also
act as blocks that can sometimes resist (and must be negotiated with by) party leaders;
cross-party coalitions, by contrast, pose significant challenges to party cohesion, but
can also serve as foci for sponsorship and promotion of bipartisan legislation. Both are
hence significant, with distinct implications for the political landscape. To examine the
coalition structures that would have been expected to occur under our three behavioral
regimes, we simulate ten “alternate histories” from the posterior distributions of each
cluster, calculating the realized proportions of intra-Democratic, intra-Republican, and
inter-Party triangles. (That is, the counts of fully connected triads with all three mem-
bers as Democrats, all three members as Republicans, or members from both parties,
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Figure 7: Proportion of realized intra-party triangles in simulated networks. Colors
indicate the party affiliation (blue = Democrat (D), red = Republican (R)).

scaled by their maximum possible values.) Using proportions rather than raw counts
ensures these metrics are normalized for network size and the distribution of party af-
filiations in each Congress; substantively, this choice of scaling tells us how close each
party (or the cross-party cut) is to forming a perfect coalition, in which all members
vote in concert. Figures 7 and 8 respectively show the realized proportion of intra-party
and inter-party triangles in the simulated networks. Both figures show substantial dif-
ferences in coalition structure, implying that the behavioral regimes associated with the
three inferred clusters would be expected to have a meaningful impact on the political
process. Specifically, we note the following:

• The regime of cluster 1 is marked by the extremely strong coalition of Democrats
compared to Republicans.

• The key symbol of the regime of cluster 2 is marked by the formation of very few
voting coalitions, either within party or between party.

• By contrast, the regimes of cluster 3 show a much higher incidence of intra-party
coalition formation, with roughly 10–20% of the potential intra-party coalitions
being present. Coalition incidence differs by party, with Republicans forming more
coalitions in percentage versus Democrats. Interestingly, the regime 3 also shows
the highest rate of cross-party coalition formation; while the rate is very low
overall, it is considerably higher than all other clusters.
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Figure 8: Proportion of realized inter-party triangles in simulated networks.

• Finally, the regime of cluster 4 favors extremely high levels of intra-party cohesion,
with rates approaching 50% of the maximum possible for Republicans and 70%
for Democrats. As this implies, the resulting networks are also highly asymmetric,
with the Democratic party expected to generate a much more cohesive coalition
structure than the Republicans. Interestingly, this strong intra-party coalition
formation does not exist entirely at the expense of cross-party coalitions: we find an
expected rate of cross-party coalition formation that is only slightly less than that
expected for networks arising under cluster 3. That said, the much higher incidence
of intra-party coalition formation under cluster 4 leads inter-party coalitions to
be a smaller fraction of the total coalition set than under cluster 3, potentially
making them less critical to the legislative process.

Taken together, these observations suggest that the cluster 2 regime tends to generate
uniformly loose voting networks with very few coalitions of any kind. These networks
may resist polarization, but their high level of fragmentation may make it more difficult
to assemble the sorts of alliances needed to push through controversial legislation. By
contrast, the regime of cluster 3 tends to produce uniformly clustered networks with
moderately high levels of coalition formation in both parties coupled with relatively
high numbers of cross-party coalitions. These networks may pose particular challenges
for party leaders, as they contain a mix of multiple local coalitions that must be courted
for votes, “lone wolves” outside of coalitions who must be approached individually, and
likely defectors whose cross-party coalitions provide a bullwark against within-party
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Figure 9: Maximum probability cluster assignments over study period. Colors indicate
the majority party determined by the numbers of Senators in the dataset in the corre-
sponding Congress (blue = Democratic (D), red = Republican (R)). Regimes of voting
behavior are visibly correlated over time.

influence. The regime of cluster 4 tends to produce party-cohesive networks dominated
by dense intra-party coalitions on both sides of the aisle (but with substantially higher
levels of cohesion among Democratic legislators). This regime offers party leaders the
greatest chance of being able to mobilize members in support of legislation, at the cost
of potential legislative deadlock during periods of high inter-party conflict. Finally, the
extreme behavior of Democrats in early years under the regime of cluster 1 might be
partially attributed to the fact that the percentage share of Democratic legislators in
the Congress is too low to allow them to be divisive (17% in 1867, 16% in 1869, 24% in
1871, 27% in 1873).

Figure 9 shows maximum probability cluster assignments over the study period,
which enables us to connect the co-voting behaviors to different eras. We observe that
the co-voting culture represented by cluster 1 is seen mostly at the beginning of the
study period (1867, 1869, 1871, 1873 and 1877), the culture represented by cluster 2 and
cluster 3 alternate in the late nineteenth and almost the entire twentieth centuries, while
the culture represented by asymmetric polarization represented by cluster 4 becomes
dominant after the late 1990’s.
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Figure 10: Brain connectivity networks of Subject No. 021, 003, 016, 013. Colours (green,
blue) indicate the different hemispheres (left, right); coordinates of nodes are solely
determined by the built-in algorithm of R package network (Butts, 2008) for the purpose
of demonstration, without taking the actual 3D spatial structure into consideration.

6 Application to Brain Functional Connectivity
Networks

In this section, we apply the proposed method to model an ensemble of brain functional

connectivity networks that was previously studied in Simpson et al. (2011, 2012). The

data were collected among 10 normal subjects (5 female, average age: 27.7 years old,

standard deviation: 4.7 years) who were part (Subject No. 002, 003, 005, 008, 009, 010,

012, 013, 016, 021) of a larger functional magnetic resonance imaging (fMRI) studies

of age-related changes in cross-modal deactivations (Peiffer et al., 2009). The nodes in

brain functional connectivity networks correspond to 90 distinct anatomical regions of

interest (ROI) defined by the Automated Anatomical Labeling atlas (AAL) (Tzourio-

Mazoyer et al., 2002) and these 90 regions are divided symmetrically across left and

right hemispheres (see Figure 10). The edges in these functional connectivity networks

were constructed by thresholding the temporal correlation coefficient matrix adjusted

for motion and physiological noise (see Hayasaka and Laurienti, 2010; Simpson et al.,

2011, for further details) to discard the weak and non-significant links that may represent

spurious connections. The thresholds were selected at subject level to make log(n)

log(d̄)
≈ 2.8,

or equivalently d̄ ≈ n1/2.8 ≈ 5 for each network, where n = 90 is the total number of

nodes and d̄ is the average degree.

6.1 Model Specification

With the edge statistic controlling the baseline propensity of forming edges, Simpson

et al. (2011) proposed to use geometrically weighted edgewise shared partner (GWESP)
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edges gwesp, φ = 0.25 gwnsp, φ = 0.25 nodematch(“Hemisphere”)

M1 � � �
M2 � � � �, diff = F

Table 5: List of candidate model specifications (M1, M2) for brain functional con-
nectivity networks. � indicates the corresponding term is included in the respective
model.

statistic and geometrically weighted non-edgewise shared partner (GWNSP) statistic4

to capture the two most important structural features in brain functional connectiv-

ity networks, namely, functional segregation and functional integration (Rubinov and

Sporns, 2010), where the functional segregation in the brain refers to the ability for

specialized processing to occur within densely interconnected groups of brain regions,

and the functional integration in the brain means the ability to rapidly combine spe-

cialized information from distributed brain regions. In the context of network modeling

perspective, the former favors the graphs with more local clusters (local efficiency),

whereas the latter requires the presence of bridging edges connecting the local clusters

to make different regions in the whole brain coordinate more efficiently (global effi-

ciency). Building upon this seminal work, Sinke et al. (2016) added a nodematch term

with respect to hemisphere (i.e., total number of edges connecting nodes in the same

hemisphere) to capture the additional propensity of forming edges between nodes in the

same hemisphere. Following the choices in literature, we consider two competing model

specifications (Table 5).

For each candidate model specification, we use adjusted pseudolikelihood and run

long MCMC chains (100000 total iterations where first 60% of draws are discarded

as burn-in and a thinning interval of size 100) with K = 4 and prior specified in

Section 3. The estimated number of mixture components K̂0 is 2 for both model

specifications. We calculate the DIC and BIC values for candidate model specifica-

tions and find DIC(M1) = 25997.5, DIC(M2) = 26873.2; BIC(M1) = 25999.2,

BIC(M2) = 26835.2, therefore we select M1 for subsequent analysis (see online sup-

plementary material for the results of posterior predictive checks with respect to two key

characteristics of primary interests, global efficiency and local efficiency). We note that

our mixture model provides a richer framework for assessing the heterogeneity in brain

functional connectivity networks than was feasible in prior work such as Simpson et al.

(2011) and Sinke et al. (2016), in which each individual network was fitted to ERGMs

separately followed by a direct comparison on the coefficient values across prespecified

subgroups (e.g., age).

4g(y) = eφ
∑n−2

k=1

{
1− (1− e−φ)k

}
NPk(y), geometrically weighted non-edgewise shared partner

(GWNSP). Here NPk(y) is the number of non-connected pairs that have exactly k common neighbors.
The decay parameter φ controls the relative contribution of NPk(y) to the GWNSP statistic, and it is
fixed at 0.25 in this case.
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Cluster 1 Cluster 2

edges −2.53 (−2.74, −2.35) −1.47 (−1.79, −1.18)
gwesp, φ = 0.25 1.39 (1.27, 1.54) 0.90 (0.70, 1.11)
gwnsp, φ = 0.25 −0.29 (−0.31, −0.28) −0.41 (−0.43, −0.38)

Table 6: Posterior mean (95% credible interval) of cluster-specific parameters under
M1.

Figure 11: Global efficiency and local efficiency for networks simulated from cluster 1
and cluster 2.

6.2 Results

Table 6 presents the posterior means and 95% credible intervals for cluster-specific pa-
rameters and we run simulations to compare the difference in local efficiency and global
efficiency between the networks represented by these two clusters. Specifically, we select
100 draws from the retained posterior samples for each cluster and simulate a net-
work for each selected draw, which yields 100 representative networks for each cluster.
We calculate the global efficiency and local efficiency (see Rubinov and Sporns, 2010,
for details on these metrics) of these simulated networks using function efficiency

in R package brainGraph (Watson, 2020). Figure 11 shows that the networks repre-
sented by cluster 1 exhibits higher level of global efficiency (functional aggregation)
while those represented by cluster 2 shows higher level of local efficiency (functional
segregation).
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Figure 12: Posterior probability of cluster membership. The x-axis gives the subject id
(age) order by age.

Figure 12 shows the posterior probability of cluster membership with subject id or-
dered by age. Despite the fact that several previous published analyses (Simpson et al.,
2011; Sinke et al., 2016) were concerned with comparing the brain functional connectiv-
ity networks between younger and older adults, we do not a observe consistent pattern
between cluster membership and age from our clustering results; this suggests that,
while individual differences are present, they may not correspond to a priori obvious
characteristics. The ability to discover such patterns (rather than to have to specify
them ex ante) is an advantage of this approach.

7 Conclusion

This paper develops a mixture of ERGMs approach for modeling the generative process
leading to heterogeneous network ensembles. We propose a Metropolis-within-Gibbs al-
gorithm to perform Bayesian inference, and estimate the number of mixture components
based on a deliberately overfitting model with sparse priors that allow us to eliminate
excess components during MCMC. To deal with the intractable likelihoods of ERGMs
with complex dependence, we consider two tractable approximations (pseudolikelihood
(PL) and adjusted pseudolikelihood (APL)) to facilitate efficient statistical inference.
Simulation studies show that both PL and APL are able to provide accurate point es-
timates of cluster-specific parameters but the latter provides better quantification of
the uncertainties. With respect to clustering performance, the APL appears to be more
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robust in terms of identifying the true number of clusters across different network sizes
and sample sizes, while the PL improves substantially when the network size is large.
Although the computation time of the APL is substantially larger than that of PL if
only one computing core is available, this disadvantage can be greatly reduced when
multi-core architectures are available.

In our model, we choose to use small values of α to promote a small number of clusters
for parsimonious estimation and to maintain the desired theoretical properties of the
resulting posterior distributions. This idea has been previously explored in Malsiner-
Walli et al. (2016) and a theoretical justification is given in Rousseau and Mengersen
(2011). However, those two references mainly focus on regular likelihood function and it
remains unclear how those results can be extended to PL and APL for complex models
such as ERGM. Investigating the impact of α on the posterior distribution under the
use of PL and APL is an interesting future working direction.

We apply the proposed approach to study the political co-voting networks among
U.S. Senators with size-adjusted parameterizations being used to account for the differ-
ence in the size of the observed networks, and identify four clusters that represent very
different co-voting patterns. After matching the clusters with temporal information,
we observe one extremely asymmetric co-voting pattern under which the Democrats
are extremely cohesive, one roughly symmetric co-voting pattern with very few voting
coalitions and one mildly asymmetric co-voting patterns under which the Republicans
are more cohesive that alternated in late nineteenth and almost the entire twentieth
century, and an abrupt shift in the co-voting pattern towards the direction of political
party polarization in last two decades. As the regimes of voting behavior are visibly
correlated over time according to our analysis, further analysis of this data can leverage
dynamic network models, which is a whole area onto itself, to capture the temporal
dependency at the node level (i.e., same Senator incumbent for multiple Congresses) as
well as at the graph level (i.e., neighboring Congresses are more likely to hold similar
co-voting culture).

The application to brain functional connectivity networks showcases that the pro-
posed approach can offer a more principled alternative to existing methods, which fit
each network to the ERGM separately, for modeling the heterogeneity in brain func-
tional connectivity networks. Compared to other methods in the literature, our method
allows principled statistical inference for the generative processes of heterogeneous en-
sembles of networks.

In closing, we comment on four important directions for future research that could
prove beneficial to the modeling of ensembles of networks. It is worth noting that the
sizes of the US congresses between 1867 and 2014 range from 69 to 112, non-identical
but broadly similar. More importantly, these size changes occur within a social system
whose basic structure remains fairly similar throughout the time period. In other cases,
however, large size differences may be accompanied by increasingly complex internal
barriers to interaction or other additional exogenous structure that must be accounted
for to obtain realistic predictions. While this additional structure is not available in
the form of covariates, more sophisticated size-adjusted parameterizations may be re-
quired; reference measures or other tools facilitating “automatic” correction of such
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effects would facilitate mixture modeling in such scenarios. With respect to likelihood
calculation, it is encouraging that we obtain favorable results in terms of clustering
performance when the network size is large and point estimation in general in our sim-
ulation study using the easily computed pseudo-likelihood approximation, and adjusted
pseudolikelihood can provide us with better uncertainty estimates and more robust clus-
tering performance in general but at higher computational cost. Although the additional
computational costs accompanied by the use of adjusted pseudolikelihood (APL) can
be reduced with the use of multi-core architectures, it is of critical interest to identify
the optimal settings beyond which there is diminishing return for the path sampling
step involved in the APL calculation. A natural further extension of the finite mix-
ture modeling framework could be Dirichlet Process mixtures (DPM) or mixture of
finite mixtures (MFM) of ERGMs where the number of mixture components can vary
depending on the incoming data size. Although computationally challenging, such an
extension can provide a highly flexible-yet-interpretable density estimation framework
for complex graph distributions. Last but not least, the developments of more scalable
inference algorithms (e.g., variational inference) are favorable for handling data of large
size.

Supplementary Material

Web-based Supplementary File for “Finite Mixtures of ERGMs for Modeling Ensembles
of Networks” (DOI: 10.1214/21-BA1298SUPP; .pdf). The supplementary material con-
tains details about computational details for adjusted pseudolikelihood, selecting the
prior hyperparameters, summary of the post MCMC inference for simulation studies
and posterior predictive assessments for data applications.
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