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The Semi-Hierarchical Dirichlet Process and Its
Application to Clustering Homogeneous

Distributions∗
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Abstract. Assessing homogeneity of distributions is an old problem that has re-
ceived considerable attention, especially in the nonparametric Bayesian literature.
To this effect, we propose the semi-hierarchical Dirichlet process, a novel hierar-
chical prior that extends the hierarchical Dirichlet process of Teh et al. (2006) and
that avoids the degeneracy issues of nested processes recently described by Camer-
lenghi et al. (2019a). We go beyond the simple yes/no answer to the homogeneity
question and embed the proposed prior in a random partition model; this proce-
dure allows us to give a more comprehensive response to the above question and
in fact find groups of populations that are internally homogeneous when I ≥ 2
such populations are considered. We study theoretical properties of the semi-
hierarchical Dirichlet process and of the Bayes factor for the homogeneity test
when I = 2. Extensive simulation studies and applications to educational data
are also discussed.

Keywords: Bayes factors, Bayesian nonparametrics, partial exchangeability,
posterior consistency, homogeneity test.

MSC2020 subject classifications: Primary 60G57, 62G05, 62F15; secondary
62H30.

1 Introduction

The study and development of random probability measures in models that take into
account the notion of data that are not fully exchangeable has sparked considerable
interest in the Bayesian nonparametric literature. We consider here the notion of par-
tial exchangeability in the sense of de Finetti (see de Finetti, 1938; Diaconis, 1988),
which straightforwardly generalized the notion of an exchangeable sequence of ran-
dom variables to the case of invariance under a restricted class of permutations. See
also Camerlenghi et al. (2017) and references therein. In particular, our focus is on
assessing whether two or more populations (or groups) of random variables can be con-
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sidered exchangeable rather than partially exchangeable, that is whether they arose
from a common population/random distribution or not.

To be mathematically accurate, let us introduce partial exchangeability for a se-
quence of random variables. Let Y denote a complete and separable metric space (i.e. a
Polish space) with corresponding metric d. Let Y denote the Borel σ-algebra of Y, and PY

denote the space of all probability measures on (Y,Y), with Borel σ-algebra PY. We will
often skip reference to σ-algebras. A double sequence (y11, y12, y13, . . . , y21, y22, y23, . . .)
of Y-valued random variables, defined on a probability space (Ω,F , P ) is called partially
exchangeable if for all n,m ≥ 1 and all permutations (i(1), . . . , i(n)) and (j(1), . . . , j(m))
of (1, . . . , n) and (1, . . . ,m) respectively, we have

L(y11, . . . , y1n, y21, . . . , y2m) = L(y1i(1), . . . , y1i(n), y2j(1), . . . , y2j(m)).

Partial exchangeability can thus be conceptualized as invariance of the joint law above
under the class of all permutations acting on the indices within each of the samples.
Here and from now on, the distribution of a random element y is denoted by L(y).

The previous setting can be immediately extended to the case of I different pop-
ulations or groups. By de Finetti’s representation theorem (see the proof in Regazz-
ini, 1991), partial exchangeability for the array of I sequences of random variables
(y11, y12, . . . , y21, y22, . . ., yI1, yI2, . . .) is equivalent to

P (yij ∈ Aij , j = 1, . . . , Ni, i = 1, . . . , I) =

∫
P
I
Y

I∏
i=1

Ni∏
j=1

pi(Aij)Q(dp1, . . . , dpI),

for any N1, . . . , NI ≥ 1 and Borel sets {Aij} for j = 1, . . . , Ni and i = 1, . . . , I.
In this case, de Finetti’s measure Q is defined on the I-fold product space P

I
Y

=
PY × PY × · · · × PY, and (p1, p2, . . . , pI) ∼ Q. The whole joint sequence of random
variables is exchangeable if and only if Q gives probability 1 to the measurable set
S = {(p1, p2, . . . , pI) ∈ P

I
Y
: p1 = p2 = · · · = pI}.

Hence, partial exchangeability of data from different groups (or related studies) is a
convenient context to analyze departures from exchangeability. While homogeneity of
groups here amounts to full exchangeability, departures from this case may follow dif-
ferent directions, including independence of the population distributions p1, p2, . . . , pI .
However it could be interesting to investigate other types of departures from exchange-
ability beyond independence. The main goal here is to build a prior Q for (p1, p2, . . . , pI)
that is able to capture a wider range of different behaviors, not only restricting the anal-
ysis to assessing equality or independence among p1, p2, . . . , pI . In the simplest case of
I = 2, we just compare two distributions/populations, but we aim here at extending
this notion to I > 2 groups. In particular, we address the following issue: if the answer
to the question of homogeneity within all these groups is negative, a natural question
immediately arises, namely, can we assess the existence of homogeneity within certain
populations? In other words, we would like to find clusters of internally homogeneous
populations.

Vectors of dependent random distributions appeared first in Cifarelli and Regazzini
(1978), but it was in MacEachern (1999) where a large class of dependent Dirichlet
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processes was introduced, incorporating dependence on covariates through the atoms
and/or weights of the stick-breaking representation. Following this line, De Iorio et al.
(2004) proposed an ANOVA-type dependence for the atoms. These last two papers have
generated an intense stream of research which is not our focus here. For a review of such
constructions, see Quintana et al. (2020).

Our approach instead constructs a prior that explicitly considers a departure from
exchangeability. Other authors have considered similar problems. Müller et al. (2004)
and Lijoi et al. (2014a) constructed priors for the population distributions by these
distributions with the addition of a common component. See also Hatjispyros et al.
(2011), Hatjispyros et al. (2016) and Hatjispyros et al. (2018) for related models with
increasing level of generalization. Several references where the focus is on testing homo-
geneity across groups of observations are available. Ma and Wong (2011) and Soriano
and Ma (2017) propose the coupling optional Pólya tree prior, which jointly generates
two dependent random distributions through a random-partition-and-assignment pro-
cedure similar to Pólya trees. The former paper considers both testing hypotheses from
a global point of view, while the latter takes a local perspective on the two-sample hy-
pothesis, detecting high resolution local differences. Bhattacharya and Dunson (2012)
propose a Dirichlet process (DP) mixture model for testing whether there is a difference
in distributions between groups of observations on a manifold. Both Chen and Hanson
(2014) and Holmes et al. (2015) consider the two-sample testing problem, using a Pólya
tree prior for the common distribution in the null, while the model for the alternative
hypothesis assumes that the two population distributions are independent draws from
the same Pólya tree prior. Their approaches differ in the way they specify the Pólya tree
prior. Gutiérrez et al. (2019) consider a related problem, where a Bayesian nonparamet-
ric strategy to test for differences between a control group and several treatment regimes
is proposed. Pereira et al. (2020) extend this idea to testing equality of distributions
of paired samples, with a model for the joint distribution of both samples defined as a
mixture of DPs with a spike-and-slab prior specification for its base measure.

Another traditional (and fruitful) approach for modeling data arising from a collec-
tion of groups or related studies involves the construction of hierarchical random prior
probability measures. One of the first such examples in the Bayesian nonparametrics
literature, is the well-known hierarchical DP mixtures introduced in Teh et al. (2006).
Generalizations beyond the DP case are currently an active area of research, as testified
by a series of recent papers dealing with various such hierarchical constructions; these
include Camerlenghi et al. (2019b), Argiento et al. (2020) and Bassetti et al. (2019).
See the discussion below.

Our first contribution is the introduction of a novel class of nonparametric priors
that, just as discussed in Camerlenghi et al. (2019a), avoids the degeneracy issue of the
nested Dirichlet process (NDP) of Rodŕıguez et al. (2008) that arises from the presence
of shared atoms across populations. Indeed, Camerlenghi et al. (2019a) showed that
under the NDP, if two populations share at least one common latent variable in the
mixture model, then the model identifies the corresponding distributions as completely
equal. To overcome the degeneracy issue, they resort to a latent nested construction in
terms of normalized random measures that adds a shared random measure to draws
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from the NDP. Instead, we use a variation of the hierarchical DP (HDP), that we term
the semi-HDP, but where the baseline distribution is itself a mixture of a DP and a
non-atomic measure. We will show that this procedure solves the degeneracy problem
as well. While relying on a different model, Lijoi et al. (2020a) also propose to build
on the HDP, combining it with the NDP, to overcome the degeneracy issue of nested
processes.

Our second contribution is that the proposed model overcomes some of the practical
and applied limitations of the latent nested approach by Camerlenghi et al. (2019a).
As pointed out in Beraha and Guglielmi (2019), the latent nested approach becomes
computationally burdensome in the case of I > 2 populations. In contrast, implementing
posterior inference for the semi-HDP prior does not require restrictions on I. We discuss
in detail how to carry out posterior inference in the context of hierarchical models based
on the semi-HDP.

A third contribution of this article is that we combine the proposed semi-HDP prior
with a random partition model that allows different populations to be grouped in clus-
ters that are internally homogeneous, i.e. arising from the same distribution. See an
early discussion of this idea in the context of contingency tables in Quintana (1998).
The far more general extension we aim for here is also useful from the applied view-
point of finding out which, if any, of the I populations are internally homogeneous
when homogeneity of the whole set does not hold. For the purpose of assessing global
exchangeability, one may resort to discrepancy measures (Gelman et al., 1996); see
also Catalano et al. (2021). In our approach, homogeneity corresponds to a point-null
hypothesis about a discrete vector parameter, as we adopt a “larger” model for the al-
ternative hypothesis within which homogeneity is nested. We discuss the specific case of
adopting Bayes factors for the proposed test within the partial exchangeability frame-
work. We show that the Bayes factor for this test is immediately available, and derives
some of its theoretical properties.

The rest of this article is organized as follows. Section 2 gives some additional back-
ground that is relevant for later developments, presents the semi-HDP prior (Section 2.2)
and, in particular, it describes a food court of Chinese restaurants with private and
shared areas metaphor (Section 2.3). Section 3 studies several theoretical properties
of the semi-HDP such as support, moments, the corresponding partially exchangeable
partition probability function (in a particular case) and specially how the degeneracy
issue is overcome under this setting. Section 3.3 specializes the discussion to the related
issue of testing homogeneity when I = 2 populations are present, and we study prop-
erties of the Bayes Factor for this test. Section 4 describes a computational strategy to
implement posterior inference for the class of hierarchical models based on our proposed
semi-HDP prior. Extensive simulations, with I = 2, 4 and 100 populations are presented
in Section 5. An application to an educational data set is discussed in Section 6. The
article concludes with a discussion in Section 7. A Supplementary Materials file (Beraha
et al., 2021), available online, collects the proofs for the theoretical results, together with
additional formulas and figures, and a discussion on consistency for the Bayes Factor
in the case of I = 2 homogeneous populations. Code for posterior inference has been
implemented in C++ and is available as part of the BayesMix library.1

1https://github.com/bayesmix-dev/bayesmix.

https://github.com/bayesmix-dev/bayesmix
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2 Assessing Exchangeability Within a Partially
Exchangeable Framework

While exchangeability can be explored in more generality, for clarity of exposition we set
up our discussion in the context of continuous univariate responses, but extensions to,
e.g. multivariate responses, can be straightforwardly accommodated in our framework.

2.1 A Common Home for Exchangeability and Partial
Exchangeability

A flexible nonparametric model for each group can be constructed by assuming a mix-
ture, where the mixing group-specific distribution Gi is a random discrete probability
measure (r.p.m.), i.e.

yij |Gi
iid∼ pi(·) =

∫
Θ

k(· | θ)Gi(dθ), j = 1, . . . , Ni, (2.1)

where k(· | θ) is a density in Y for any θ ∈ Θ, and Gi is, for example, a DP on Θ. Note
that, with a little abuse of notation, pi in (2.1) and in the rest of the paper denotes
the conditional population density of group i (before pi represented the population dis-
tribution of group i in de Finetti’s theorem). In what follows, we will always assume
that the parametric space is contained in R

p for some positive integer p, and we will
always assume the Borel σ–field B(Θ) of Θ. Using the well-known alternative represen-
tation of the mixture in terms of latent variables, the previous expression is equivalent
to assuming that for any i,

yij | θij ind∼ k(· | θij), θij |Gi
iid∼ Gi, j = 1, . . . , Ni. (2.2)

In this case, partial exchangeability of observations (yij)ij is equivalent to partial ex-
changeability of the latent variables (θij)ij . Hence exchangeability of observations (yij)ij
is equivalent to the statement G1 = G2 = · · · = GI with probability one.

In the next subsection we develop one of the main contributions of this paper, namely,
the construction of a prior distribution π(G1, . . . , GI) such that there is positive prior
probability that G1 = G2 = · · · = GI , but avoiding the degeneracy issues discussed in
Camerlenghi et al. (2019a) and that would arise if we assumed that (G1, . . . , GI) were
distributed as the NDP by Rodŕıguez et al. (2008). Briefly, (G1, . . . , GI) is distributed
as the NDP if

Gi |G iid∼ G =

∞∑
�=1

π�δG∗
�
, i = 1, . . . , I and G∗

�
iid∼ Q0 = DγG00 ,

i.e., the independent atoms in G are all drawn from a DP on Θ, specifically G∗
� =∑∞

h=1 wh�δθh�
, with θh�

iid∼ G00, a probability measure on Θ, and α, γ > 0. The weights
(πj)j and (wh�)h, � = 1, 2, . . ., are independently obtained from the usual stick-breaking
construction, with parameters α and γ, respectively. Here DγG00 denotes the Dirich-
let measure, i.e. the distribution of a r.p.m. that is a DP with measure parameter
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γG00. However, nesting discrete random probability measures produces degeneracy to
the exchangeable case. As mentioned in Section 1, Camerlenghi et al. (2019a) showed
that the posterior distribution degenerates to the exchangeable case whenever a shared
component is detected, i.e., the NDP does not allow for sharing clusters among non-
homogeneous populations. The problem is shown to affect any construction that uses
nesting, and not just the NDP.

To overcome the degeneracy issue, while retaining flexibility, Camerlenghi et al.
(2019a) proposed the so-called Latent Nested Nonparametric priors. These models in-
volve a shared random measure that is added to the draws from a Nested Random Mea-
sure, hence accommodating for shared atoms. See also the discussion by Beraha and
Guglielmi (2019). There are two key ideas in their model: (i) nesting discrete random
probability measures as in the case of the NDP, and (ii) contaminating the population
distributions with a common component as in Müller et al. (2004) and also, Lijoi et al.
(2014b). The contamination aspect of the model yields dependence among population-
specific random probability measures, and avoids the degeneracy issue pointed out by
the authors, while the former accounts for testing homogeneity in multiple-sample prob-
lems. Their approach, however, becomes computationally burdensome in the case of
I > 2 populations, and it is not clear how to extend their construction to allow for
the desired additional analysis, i.e. assessing which, if any, of the I populations are
internally homogeneous when homogeneity of the whole set does not hold.

2.2 The Model

We present now a hierarchical model that allows us to assess homogeneity, while avoid-
ing the undesired degeneracy issues and which further enables us to construct a grouping
of populations that are internally homogeneous. To do so we create a hierarchical rep-
resentation of distributions that emulates the behavior arising from an exchangeable
partition probability function (EPPF; Pitman, 2006) such as the Pólya urn. But the
main difference with previous proposals to overcome degeneracy is that we now al-
low for different populations to arise from the same distribution, while simultaneously
incorporating an additional mechanism for populations to explicitly differ from each
other.

Denote [I] = {1, . . . , I}. A partition S1, . . . , Sk of [I] can be described by cluster
assignment indicators c = (c1, . . . , cI) with ci = � iff i ∈ S�. Assume this partition
arises from a given EPPF. We introduce the following model for the latent variables in
a mixture model such as (2.2). Let yi := (yi1, . . . , yiNi), for i = 1, . . . , I. We assume
that y1, . . . ,yI , given all the population distributions F1, . . . , FI are independent, and
furthermore arising from

yij |F1, . . . , FI , c
iid∼

∫
Θ

k(· | θ)Fci(dθ), j = 1, . . . , Ni, for all i, (2.3)

c ∼ πc(c1, . . . , cI), (2.4)

F1, . . . FI | P̃ iid∼ DαP̃ , (2.5)

P̃ = κG0 + (1− κ)G̃, (2.6)
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G̃ ∼ DγG00 , (2.7)

κ ∼ Beta(aκ, bκ), (2.8)

where α, γ > 0. Thus the role of the population mixing distribution Gi in (2.1) – or,
equivalently, in (2.2) – is now played by Fci . Observe that F1, . . . , FI in (2.5) play a role
similar to the cluster specific parameters in more standard mixture models. Consider
for example a case where I = 4 and c = (1, 2, 3, 1). Under the above setting, F1, F2, F3

define a model for three different distributions, so that populations 1 and 4 share a
common mixing distribution, and F4 is never employed.

Equation (2.5) means that conditionally on G̃ each Fk is an independent draw from

a DP prior with mean parameter P̃ (and total mass α), i.e. Fk is a discrete r.p.m. on
Θ ⊂ R

p for some positive integer p, with Fk =
∑

h≥1 wkhδθ∗
kh

where for any k the

weights are independently generated from a stick-breaking process, {wkh}h iid∼ SB(α),
i.e.

wk1 = βk1, wkh = βih

h−1∏
j=1

(1− βkj) for h = 2, 3, . . . , βij
iid∼ Beta(1, α),

and {θ∗kh}h, {βkh}h are independent, with θ∗kh | P̃
iid∼ P̃ . We assume the centering mea-

sure P̃ in (2.6) to be a contaminated draw G̃ from a DP prior, with centering measure
G00, with a fixed probability measure G0. Both G0 and G00 are assumed to be absolutely
continuous (and hence non-atomic) probability measures defined on (Θ,B(Θ)).

By (2.7), G̃ =
∑

h≥1 phδτh , where {ph}h ∼ SB(γ), τh
iid∼ G00 are independent weights

and location points. The model definition is completed by specifying πc(c1, . . . , cI). We
assume that the ci’s are (conditionally) i.i.d. draws from a categorical distribution on

[I] with weights ω = (ω1, . . . , ωI), i.e. ci |ω iid∼ Cat([I]; ω), where the elements of
ω are non-negative and constrained to add up to 1. A convenient prior for ω is a
finite dimensional Dirichlet distribution with parameter η = (η1, . . . ηI). Observe that
distributions Fc1 , . . . , FcI allow us to cluster populations, so that there are at most I
clusters and consequently F1, . . . , FI are all of the cluster distributions that ever need
to be considered.

We say that a vector of random probability measures (F1, . . . , FI) has the semi-
hierarchical Dirichlet process (semi-HDP) distribution if (2.5)–(2.7) hold, and we write
(F1, . . . , FI) ∼ semi-HDP(α, γ, κ,G0, G00). It is straightforward to prove that, condi-
tional on κ and eventual hyperparameters in G0 and G00, the expectation of any Fi is
κG0 + (1 − κ)G00 which further reduces to G00 if G0 = G00. Note that (F1, . . . , FI) ∼
semi-HDP(α, γ, κ,G0, G00) defines an exchangeable prior over a vector of random prob-
ability measures.

We note several immediate yet interesting properties of the model. First, note that
if κ = 1 in (2.6), then all the atoms and weights in the representation of the Fi’s
are independent and different with probability one, since the beta distribution and
G0 are absolutely continuous. If κ = 0, then our prior (2.5)–(2.7) coincides with the

Hierarchical Dirichlet Process in Teh et al. (2006). Since G̃ =
∑

h≥1 phδτh , then, with
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positive probability, we have θ∗kh = θ∗k′m = τ� for k �= k′, i.e. all the Fk’s share the same

atoms in the stick-breaking representation of G̃. However, even when κ = 0, Fk �= Fj

with probability one, as the weights {wkh}h and {wjh}h are different, since they are
built from (conditionally) independent stick-breaking priors. This is precisely the feature
that allows us to circumvent the degeneracy problem.

Second, our model introduces a vector parameter c, which assists selecting each
population distribution from the finite set F1, . . . , FI , in turn assumed to arise from
the semi-HDP prior (2.5)–(2.7). The former allows two different populations to have
the same distribution (or mixing measure) with positive probability, while the latter
allows to overcome the degeneracy issue while retaining exchangeability. Indeed, as noted
above, Fi and Fj may share atoms. The atoms in common arise from the atomicity of the
base measure and we let the atomic component of the base measure to be a draw from
a DP. The result is a very flexible model, that on one hand is particularly well-suited
for problems such as density estimation, and on the other, can be used to construct
clusters of the I populations, as desired.

2.3 A Restaurant Representation

To better understand the cluster allocation under model (2.3)–(2.7), we rewrite (2.3)
introducing the latent variables {θij} as follows

yij |F1, . . . FI , c, θij
ind∼ k(· | θij), (2.9)

θi1, . . . θiNi |F1, . . . FI , c
iid∼ Fci (2.10)

and {θi�}� ⊥ {θjm}m for i �= j, conditionally on F1, . . . , FI .

We first derive the conditional law of the θij ’s under (2.9)–(2.10), and (2.4)–(2.6),

given G̃. All customers of group i enter restaurant r (such that ci = r). If group i is the
first group entering restaurant r, then the usual Chinese Restaurant metaphor applies.
Instead, let us imagine that group i is the last group entering restaurant r among those
such that cm = r. Upon entering the restaurant, the customer is presented with the
usual Chinese Restaurant Process (CRP), so that

θij | c, {θmk, ∀m : cm = ci = r}, θi1, . . . , θij−1, G̃ ∼
Hr∑
�=1

nr�

α+ nr·
δθ∗

r�
+

α

α+ nr·
P̃ , (2.11)

that is the CRP when considering all the groups entering restaurant r as a single group.
HereHr denotes the number of tables in restaurant r, and nr� is the number of customers

who entered from restaurant r and are seating at table �. Moreover, note that θ∗r� | G̃
iid∼

P̃ , so that, as in the HDP, there might be ties among the θ∗r� also when keeping r fixed.
This is an important observation as the fact that there might be ties for different values
of r �= r′ instead, is exactly what let us avoid the degeneracy to the exchangeable case.
Note that (2.11) holds also for θi1, i.e. the first customer in group i. In the following, we
will use clusters or tables interchangeably. However, note that, unlike traditional CRPs,
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the number of clusters does not coincide with the number of unique values in a sample.
This point is clarified in Argiento et al. (2020), who introduce the notion of �–cluster,
which is essentially the table in our restaurant metaphor.

Observe from (2.11) that when a new cluster is created, its label is sampled from

P̃ . In practice, we augment the parameter space with a new binary latent variable for

each cluster, namely hr�, with hr�
iid∼ Bernoulli(κ), so that

θ∗r� |hr� = 1 ∼ G0 and θ∗r� |hr� = 0, G̃ ∼ G̃.

Upon conditioning on {hr�} it is straightforward to integrate out G̃. Indeed, we can
write the joint distribution of {θ∗r�, ∀r ∀�}, conditional on {hr�} as

{θ∗r�} | {hr�}, G̃ ∼
∏
r,�

G0(dθ
∗
r�)

hr�

∏
r,�

G̃(dθ∗r�)
1−hr� .

Hence we see that {θ∗r�, ∀r ∀� : hr� = 0} is a conditionally i.i.d sample from G̃ (given

all the hrl’s and G̃), so that we can write:

θ∗r� |hr� = 0, {θ∗ij : hij = 0} ∼
H0∑
k=1

m·k
m·· + γ

δτk +
γ

m·· + γ
G00 (2.12)

and τk
iid∼ G00, where H0 denotes the number of tables in the common area in Figure 1,

and mrk denotes the cardinality of the set {θ∗r� : θ∗r� = τk}. The dot subindex denotes
summation over the corresponding subindex values. Hence, conditioning on all the (r, �)
such that hr� = 0, with r corresponding to a non-empty restaurant, we recover the
Chinese Restaurant Franchise (CRF) that describes the HDP.

We can describe the previously discussed clustering structure in terms of a restaurant
metaphor as the “food court of Chinese restaurants with private and shared areas”. Here,
the θ∗r� correspond to the tables and θij to the customers. Moreover, a dish is associated
to each table. Dishes are represented by the various θ∗r�’s. There is one big common
area where tables are shared among all the restaurants and I additional “private” small
rooms, one per restaurant, as seen in Figure 1. The common area accommodates tables

arising from the HDP, i.e. those tables such that τk
iid∼ G00, while the small rooms

host those tables associated to non empty restaurants, such that θ∗r� |hr� = 1
iid∼ G0.

All the customers of group i enter restaurant r (such that ci = r). Upon entering the
restaurant, a customer is presented with a menu. The Hr dishes in the menu are the

θ∗r�’s, and because θ∗r�
iid∼ P̃ , there might be repeated dishes; see (2.11). The customer

either chooses one of the dishes in the menu, with probability proportional to the number
of customers who entered the same restaurant and chose that dish, or a new dish (that
is not included in the menu yet) with probability proportional to α; again, see (2.11). If
the latter option is chosen, with probability κ a new table is created in the restaurant-
specific area, Hr is incremented by one and a new dish θ∗rHr+1 is drawn from G0. With
probability 1 − κ instead, the customer is directed to the shared area, where (s)he
chooses to seat in one of the occupied tables with a probability proportional to m·k, i.e.



1196 Semi-HDP

Figure 1: Restaurant representation of the semi-HDP allocation. In the image, c =
(1, 4, 1, 4) so that groups one and three enter in restaurant R1 while groups two and
four enter in restaurant R4. In the “common area” two tables are represented, τ1 and
τ2. “Zooming” into τ2 shows that there are three different θ∗’s associated to the value
τ2, namely θ∗12, θ

∗
13 and θ∗43. The first two originate from R1, showing that it is possible

to have ties among the θ∗’s even inside the same restaurant, while the table labeled θ∗43
shows that it is possible to have ties across different restaurants.

the number of items in the menus (from all the restaurants) that are equal to dish τk,
or seats at a new table with a probability proportional to γ, as seen from (2.12). We
point out that the choice of table in this case is made without any knowledge of which
restaurant the dishes came from. Moreover, if the customer chooses to sit at a new table,
we increment H0 by one and draw τH0+1 ∼ G00; we also increment Hr by one and set
θ∗rHr+1 = τH0+1. Observe that in the original CRF metaphor, it is not the tables that
are shared across restaurants, but rather the dishes. In our metaphor instead, we group
together all the tables corresponding to the same τh and place them in the shared area.
This is somewhat reminiscent of the direct sampler scheme for the HDP. Nevertheless,
observe that the bookkeeping of the mrk’s is still needed. To exemplify this, in Figure 1
we report a “zoom” on a particular shared table τ , showing that the θ∗’s associated to
that table are still present in our metaphor, but can be collapsed into a single shared
table when it is convenient.

3 Theoretical Properties of the Semi-HDP Prior

Here we develop additional properties of the proposed prior model. In particular, we
study the topological support of the semi-HDP and show how exactly the degener-
acy issue is resolved by studying the induced joint random partition model on the I
populations.
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3.1 Support and Moments

An essential requirement of nonparametric priors is that they should have large topolog-
ical support; see Ferguson (1973). Let us denote by πG the probability measure on P

I
Θ

corresponding to the prior distribution π(G1, . . . , GI) of the random vector (G1, . . . , GI)
specified in (2.4)–(2.7), with Gi = Fci ; see (2.1). We show here that the prior probability
measure πG has full weak support, i.e. given any point g = (g1, . . . , gI) in P

I
Θ, πG gives

positive mass to any weak neighborhood U(g; ε) of g, of diameter ε.

Proposition 3.1 (Full Weak Support). Let πG(g1 . . . , gI) be the prior probability mea-
sure on P

I
Θ defined by (2.4)–(2.7).

(a) If G0 in (2.6) has full support on Θ and 0 < κ ≤ 1, then πG(g1 . . . , gI) has full
weak support.

(b) If κ = 0 and G00 in (2.7) has full support, then πG(g1 . . . , gI) has full weak support.

Proof. See the Supplementary Materials file, Section 1.

It is straightforward to show that in case where πc(c1, . . . , cI) is exchangeable and
P (ci = �) = ω� for � = 1, . . . , I then (2.3)–(2.7) becomes, after marginalizing with
respect to c,

yij |F1, . . . , FI
iid∼

∑
c

∫
Θ

k(· | θ)Fci(dθ)πc(c1, . . . , cI) =
I∑

�=1

ω�

∫
Θ

k(· | θ) dF�(θ).

In this case, the conditional marginal distribution of each observation can be expressed
as a finite mixture of mixtures of the density k(· | θ) with respect to each of the random
measures F1, . . . , FI , i.e. a finite mixture of Bayesian nonparametric mixtures.

We have mentioned above that in the case in which G00 = G0 in (2.6)–(2.7), the
marginal law of Fi is G0, and equivalently, for each A ∈ B(Θ), E[Fi(A)] = G0(A) for
any i. In this case, the covariance between F1 and F2 is given by

cov (F1(A), F2(B)) =
(1− κ)2

1 + γ
(G0(A ∩B)−G0(A)G0(B)) .

See the Supplementary Materials file, Section 1, for the proof of these formulas. Note
that, in the case of Hierarchical Normalized Completely Random Measures, and hence
in the HDP, the covariance between F1 and F2 depends exclusively on the intensity
of the random measure governing G̃ (in the case of the DP the dependence is on γ).
For instance, see Argiento et al. (2020), Equation (5) in the Supplementary Material.
Instead, in the Semi-HDP, an additional parameter can be used to tune such covari-
ance: the weight κ. Indeed, as κ approaches 1, the two measures become more and
more uncorrelated, the limiting case being full independence as discussed at the end of
Section 2.2. In the Supplementary Materials file, Section 1, we also report an expression
for the higher moments of Fi(A) for any i.
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3.2 Degeneracy and Marginal Law

We now formalize the intuition given in Section 2.3 and show that our model, as de-
fined in (2.3)–(2.7), does not incur in the degeneracy issue described by Camerlenghi
et al. (2019a). The degeneracy of a nested nonparametric model refers to the following
situation: if there are shared values (or atoms in the corresponding mixture model)
across any two populations, then the posterior of these populations/random probabil-
ities degenerates, forcing homogeneity across the corresponding samples. See also the
discussion in Beraha and Guglielmi (2019).

From the food court metaphor described above, it is straightforward to see that
degeneracy is avoided if two customers sit in the same table (of the common area) with
positive probability, conditioning on the event that they entered from two different
restaurants.

To see that this is so for the proposed model, let us consider the case I = 2 and
θi1 |F1, F2, c = (1, 2) ∼ Fi, for i = 1, 2. Marginalizing out (F1, F2), this is equivalent

to θ11, θ21 | G̃, c = (1, 2)
iid∼ wG0 + (1 − w)G̃. Now, since G0 is absolutely continuous,

{θ11 = θ21} if and only if (i) θ11 and θ21 are sampled i.i.d. from G̃; and (ii) we have a
tie (which arises from the Pólya-urn scheme), i.e. θ21 = τ1 = θ11 and τ1 ∼ G00. This
means that θ11, the first customer, sits in a table of the common area, an event that
happens with probability 1 − κ since she is the first one in the whole system, and θ21
decides to sit in the common area (with probability 1 − κ) and subsequently decides
to sit at the same table of θ11 (which happens with probability 1

γ+1 ). Summing up we

have that p(θ11 = θ21 | c = (1, 2)) = (1− κ)2/(1 + γ) which is strictly positive if κ < 1.
Hence, by Bayes’ rule, we have that

P (c1 �= c2 | θ11 = θ21) =
P (θ11 = θ21 | c1 �= c2)P (c1 �= c2)∑

i,j P (θ11 = θ21 | c = (i, j))P (c = (i, j))
> 0.

Moreover, when κ = 1 we find the same degeneracy issue described in Camerlenghi
et al. (2019a), as proved in Proposition 3.2 below.

To get a more in-depth look at these issues, we follow Camerlenghi et al. (2019a) and
study properties of the partially exchangeable partition probability function (pEPPF)
induced by our model, which we define in the special case of I = 2. Consider a sample
θ = (θ1,θ2) of size N = N1+N2 from model (2.10), together with (2.4)–(2.7) for I = 2
populations; let k = k1 + k2 + k0 the number of unique values in the samples, with k1
(k2) unique values specific to group 1 (2) and k0 shared between the groups. Call ni the
frequencies of the ki unique values in group i and qi the frequencies of the k0 shared
values in group i; this is the same notation as in Camerlenghi et al. (2019a), Section 2.2.
The pEPPF is defined as

ΠN
k (n1,n2, q1, q2 | c = (�,m))

=

∫
Θk

E

⎡⎣ k1∏
j=1

F
n1j

� (dθ∗1j)
k2∏
j=1

Fn2j
m (dθ∗2j)

k0∏
j=1

F
q1j
� (dτj)F

q2j
m (dτj)

⎤⎦
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Proposition 3.2. Let κ in (2.6) be equal to 1, let π1 = P (c1 = c2), then the pEPPF

Π
(N)
k (n1,n2, q1, q2) can be expressed as:

Π
(N)
k (n1,n2, q1, q2) = π1Φ

(N)
k (n1,n2, q1 + q2)

+ (1− π1)Φ
(N1)
k0+k1

(n1, q1)Φ
(N2)
k0+k1

(n2, q2)I(k0 = 0), (3.1)

where

Φ
(N)
k (n1,n2, q1 + q2) =

αk1+k2+k0Γ(α)

Γ(α+N)

k1∏
j=1

Γ(n1j)

k2∏
j=1

Γ(n2j)

k0∏
j=1

Γ(q1j + q2j)

is the EPPF of the fully exchangeable case, and

Φ
(Ni)
k0+ki

(ni, qi) =
αki+k0Γ(α)

Γ(α+Ni)

ki∏
j=1

Γ(nij)

k0∏
j=1

Γ(qij), i = 1, 2

is the marginal EPPF for the individual group i.

Proof. See the Supplementary Materials file, Section 1.

This result shows that a suitable prior for κ requires assigning zero probability to
the event κ = 1. The assumption in (2.8) trivially satisfies this requirement.

Finally, we consider the marginal law of a sequence of vectors (θ1, . . . ,θI), θ� =
(θ�1, . . . θ�Nl

) from model (2.3)–(2.7). Let us first derive the marginal law conditioning
on c, as the full marginal law will be the mixture of these conditional laws over all the
possible values of c.

Proposition 3.3. The marginal law of a sequence of vectors (θ1, . . . ,θI), θ� = (θ�1, . . . ,
θ�N�

) from model (2.3)–(2.7), conditional to c is

R(c)∏
i=1

eppf(nri ;α)
∑

h∈{0,1}L

p(h)

L∏
�=1

G0(dθ
∗
� )

h� × eppf(mri |h; γ)
M∏
k=1

G00(dθ
∗∗
k ). (3.2)

Here, {θ∗� }L�=1 = {θ∗11, . . . , θ∗IHI
} is a sequence representing all the tables in the process,

obtained by concatenating the tables in each restaurant. Moreover, R(c) is the number
of unique values in c, i.e. the number of non-empty restaurants, nri is the vector of
�-cluster sizes for restaurant ri, mri is the vector of the cluster sizes of the θ∗� such
that h� = 0 and θ∗∗k are the unique values among such θ∗� , where “eppf” denotes the
distribution of the partition induced by the table assignment procedure in the food court
of Chinese restaurants described in Section 2.3.

Proof. See the Supplementary Materials file, Section 1.
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The marginal law of (θ1, . . . ,θI) is then

L(dθ1, . . . , dθI) =
∑
c

L(dθ1, . . . , dθI | c)π(c),

where L(dθ1, . . . , dθI | c) is given in (3.2).

Observe that in Proposition 3.2 we denoted by Φ the EPPF, while in (3.2) we use
notation “eppf”. This is to remark that these objects are inherently different: Φ is the
EPPF of the partition of unique values in the sample, while eppf here is the EPPF
of the tables, or �–clusters, induced by the table assignment procedure described in
Section 2.3. Hence, from a sample θ one can recover n1,n2, q1, q2 in (3.1) but not nri

in (3.2).

3.3 Some Results on the Bayes Factor for Testing Homogeneity

We consider now testing for homogeneity within the proposed partial exchangeability
framework. As a byproduct of the assumed model, the corresponding Bayes factor is
immediately available. For example, if one wanted to test whether populations i and j
were homogeneous, it would suffice to compute the Bayes factor for the test

H0 : ci = cj vs. H1 : ci �= cj (3.3)

which can be straightforwardly estimated from the output of the posterior simulation
algorithm that will be presented later on. Note that these “pairwise” homogeneity tests
are not the only object of interest that we can tackle within our framework. Indeed it
is possible to test any possible combination of c against an alternative.

These tests admit an equivalent representation in terms of a model selection problem;
for example in the case of I = 2 populations, we can rewrite (3.3), for i = 1 and j = 2,
as a model selection test for M1 against M2, where

M1 : y11, . . . , y1N1 , y21, . . . , y2N2 |F1
iid∼

∫
Θ

k(· | θ)F (dθ), F1 ∼ semi-HDP(α, γ, κ,G0, G00)

and

M2 : yi1, . . . , yiNi , |Fi
iid∼

∫
Θ

k(· | θ)Fi(dθ), i=1, 2, F1, F2 ∼ semi-HDP(α, γ, κ,G0, G00).

In this case

BF12 := BF12(y11, . . . , y1N1 , y21, . . . , y2N2) =
mM1(y11, . . . , y1N1 , y21, . . . , y2N2)

mM2(y11, . . . , y1N1 , y21, . . . , y2N2)
,

where mMi denotes the marginal law of the data under model Mi, i = 1, 2, defined
above. Asymptotic properties of Bayes factors have been discussed by several authors.
We refer to Walker et al. (2004), Ghosal et al. (2008) for a more detailed discussion and
to Chib and Kuffner (2016) for a recent survey on the topic. Chatterjee et al. (2020) is
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a recent and solid contribution to the almost sure convergence of Bayes factor in the
general set-up that includes dependent data, i.e. beyond the usual i.i.d. context.

In words, our approach can be described as follows. When the data are assumed to
be exchangeable, we assume that both samples are generated i.i.d from a distribution
P0 with density p0. If the data are instead assumed to be partially exchangeable, then
we consider the first population to be generated i.i.d from a certain P0 with density
p0, while the second one is generated from Q0 with density q0, with P0 �= Q0 and
independence holds across populations. The Bayes factor for comparing M1 against M2

is thus consistent if:

(i) BF12 → +∞ P∞
0 –a.s. when N1, N2 → +∞ if the groups are truly homogeneous,

and

(ii) BF12 → 0 (P0⊗Q0)
∞–a.s. whenN1, N2 → +∞ if the groups are not homogeneous.

The two scenarios must be checked separately. In the latter case, consistency of
the Bayes factor can be proved by arguing that only model M2 satisfies the so-called
Kullback-Leibler property, so that consistency is ensured by the theory in Walker et al.
(2004). We summarize this result in the following proposition.

Proposition 3.4. Assume that y11, . . . , y1N1

iid∼ P0, y21, . . . , y2N2

iid∼ Q0, P0 �= Q0, and
that {y1i} and {y2j} are independent. Assume that P0 and Q0 are absolutely contin-
uous measures with probability density functions p0 and q0 respectively. Then, under
conditions B1-B9 in Wu and Ghosal (2008), BF12 → 0 as N1, N2 → +∞.

Proof. See the Supplementary Materials file, Section 1.

Observe that, out of the nine conditions B1-B9, we have that B1−B3, B7 and B9
involve regularity conditions of the kernel k(·|θ). These are satisfied if the kernel is, for
example, univariate Gaussian with parameters θ = (μ, σ2). Conditions B4−B6 involve
regularity of the true data generating density, which are usually satisfied in practice.
Condition B8 requires that the mixing measure has full weak support, already proved
in Proposition 3.1.

On the other hand, when p0 = q0, consistency of the Bayes factor would require
BF12 → +∞. This is a result we have not been able to prove so far. The Supplemen-
tary Materials file, Section 2 discusses the relevant issues arising when trying to prove
the consistency in this setting; we just report here that the key missing condition is an
upper bound of the prior mass of M2. The lack of such bounds for general nonparamet-
ric models is well known in the literature, and not specific to our case, as it is shared,
for instance, by Bhattacharya and Dunson (2012) and Tokdar and Martin (2019). In
both cases, the authors were able to prove the consistency under the alternative hy-
pothesis but not under the null. For a discussion on the “necessity” of these bounds in
nonparametric models, see Tokdar and Martin (2019).
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In light of the previous consistency result for the non-homogeneous case, our rec-
ommendation to carry out the homogeneity test is to decide in favor of H0 whenever
the posterior of ci, cj does not strongly concentrate on ci �= cj . As Section 5 shows, in
our simulated data experiments this choice consistently identifies the right structure of
homogeneity among populations. See also the discussion later in Section 7.

4 Posterior Simulation

We illustrate a Markov chain Monte Carlo (MCMC) sampler based on the restaurant

representation derived in Section 2.3. The random measures {Fi}i and G̃ are marginal-
ized out for all the updates except for the case of c, for which we use a result from
Pitman (1996) to sample from the full conditional of each Fi, truncating the infinite
stick-breaking sum adaptively; see below. We refer to this algorithm as marginal. We
also note that, by a prior truncation of all the stick-breaking infinite sums to a fixed
number of atoms, we can derive a blocked Gibbs sampler as in Ishwaran and James
(2001). However, in our applications the blocked Gibbs sampler was significantly slower
both in reaching convergence to the stationary distribution and to complete one sin-
gle iteration of the MCMC update. Hence, we will describe and use only the marginal
algorithm.

We follow the notation introduced in Section 2.3. The state of our MCMC sampler
consists of the restaurant tables {θ∗rh}, the tables in the common area {τh}, a set of
binary variables {hrj}, indicating if each table is “located” in the restaurant-specific or
in the common area, a set of discrete shared table allocation variables tr�, one for each
θ∗r� such that θ∗r� = τk iff tr� = k and hr� = 0, the categorical variables ci, indicating
the restaurant for each population, κ ∈ (0, 1), and the table allocation variable sij : for
each observation such that θij = θ∗rh iff ci = r and sij = h. We also denote by H0 and
Hr the number of tables occupied in the shared area and in restaurant r respectively,
mrk indicates the number of customers in the common area entered from restaurant r
seating at table k.

We use the dot notation for marginal counts, for example nr· indicates all the cus-
tomers entered in restaurant r. We summarize the Gibbs sampling scheme next.

• Sample the cluster allocation variables using the Chinese Restaurant Process,

p(sij = s | ci = r, rest) ∝
{
n−ij
r� k(yij | θ∗rh) if s previously used,

αp(yij | s−ij , rest) if s = snew,
(4.1)

where

p(yij | s−ij , rest) = κ

∫
k(yij | θ)G0(dθ)

+ (1− κ)

(
H0∑
k=1

m−ij
·k

m−ij
·· + γ

k(yij | τk) +
γ

m−ij
·· + γ

∫
k(yij | θ)G00(dθ)

)
, (4.2)
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and where the notation x−ij means that observation yij is removed from the
calculations involving the variable x.

If s = snew, a new table is created. The associated value θ∗rsnew is sampled from G0

with probability κ or from G̃ with probability 1− κ, as described in Section 2.3.
The corresponding latent variables hrsnew and trsnew are set accordingly. When
sampling from (2.12) a new table in the shared area might be created. In that
case, trsnew is set to H0 + 1.

• Sample the table allocation variables tr� as in the HDP:

p(tr� = k | rest) ∝

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m−r�

·k
∏

(i,j):ci=r,si,j=�

k(yij | τk) if k previously used,

γ

∫ ∏
(i,j):ci=r,si,j=�

k(yij | τ)G00(dτ) if k = knew,
(4.3)

where the notation x−r� means that table θ∗r�, including all the associated obser-
vations, is entirely removed from the calculations involving variable x. If k = knew

a new table is created in the shared area, the allocation variables sij are left
unchanged.

• Sample the cluster values from

L(θ∗r� |hr� = 1, rest) ∝ G0(θ
∗
r�)

∏
(i,j):ci=r,si,j=�

k(yij | θ∗r�)

and
L(τk | rest) ∝ G00(τk)

∏
(i,j)∈(∗)

k(yij | τk),

where the product (∗) is over all the index couples such that ci = r, sij = �,
hr� = 0 and θ∗r� = τk. Observe that, when hr� = 0, it means that θ∗r� = τk for
some k. Hence, in this case, θ∗r� is purely symbolic and we do not need to sample
a value for it.

• Sample each hr� independently from

p(hr� = 1|rest) ∝ κG0(θ
∗
r�),

p(hr� = 0|rest) ∝ (1− κ)

(
H0∑
k=1

m−r�
·k

m−r�
·· + γ

δτk(θ
∗
r�) +

γ

m−r�
·· + γ

G00(θ
∗
r�)

)
,

where, as in (4.3), the notation x−r� means that table θ∗r�, including all its associ-
ated observations, is removed from the calculations involving variable x. Observe
that, while in the update of the cluster values all the θ∗r� referring to the same τk
were updated at once, here we move the tables one by one.

• Sample κ from L(κ | rest) ∼ Beta(aκ +
∑

i,j hij , bκ +
∑

i,j(1− hij)).
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• Sample ω from

ω | rest ∼ Dirichlet
(
η1 +

I∑
i=1

I[ci = 1], . . . , ηI +

I∑
i=1

I[ci = I]
)
,

where I[·] denotes the indicator function.

• Sample each ci in c = (c1, . . . , cI) independently from

P (ci = r |F1, . . . , FI ,ω,yi) ∝ ωr

Ni∏
j=1

∫
k(yij | θ)Fr(dθ). (4.4)

If the new value of ci differs from the previous one, then following (4.1), all the
observations yi1, . . . , yiNi are reallocated to the new restaurant.

Note that the update in (4.4) involves the previously marginalized random probabil-
ity measures F1, . . . , FI . Thus, before performing this update, we need to draw the
Fi’s from their corresponding full conditional distributions. It follows from Corollary
20 in Pitman (1996) that the conditional distribution of Fr given c, nr, θ

∗
r , κ, and G̃

coincides with the distribution of πr0F
′
r +

∑Hr

h=1 πrhδθ∗
rh
, where (πr0, πr1, . . . , πrHr ) ∼

Dirichlet(α, nr1, . . . , nrHr ) and F ′
r | G̃ ∼ DαP̃ . This result was employed in Taddy et al.

(2012) to quantify posterior uncertainty of functionals of a Dirichlet process, and also
in Canale et al. (2019) to derive an alternative MCMC scheme for mixture models.
It follows from the usual stick breaking representation that F ′

r =
∑∞

h=1 w
′
rhδθ′

rh
with

{w′
rh}h ∼ SB(α) and θ′rh |κ, G̃

iid∼ κG0 + (1 − κ)G̃. Similarly, the conditional distribu-

tion of G̃ given τ and m coincides with the distribution of v0G̃
′ +

∑H0

k=1 vkδτk , where

(v0, v1, . . . , vH0) ∼ Dirichlet(γ,m·1, . . . ,m·H0) and G̃′ ∼ DγG00 .

In practice, we draw each F ′
r by truncating the infinite sum. Note that we do not need

to set a priori the truncation level. Instead, we can specify an upper bound for the error
introduced by the truncation and set the level adaptively. In fact, as a straightforward
consequence of Theorem 1 in Ishwaran and James (2002) we have that the total variation
distance between F ′

r and its approximation with M atoms, say FM ′
r , is bounded by

εM = 1−
∑M

h=1 w
′
rh (see also Theorem 2 in Lijoi et al., 2020b). The error induced on Fr

is then bounded by πr0εM . Note that simulation of the atoms θ′rh involves the discrete

measure G̃′. However, we only need to draw a finite number of samples from it, and not
its full trajectory, so that no truncation is necessary for G̃′. For ease of bookkeeping,
we employ retrospective sampling (Papaspiliopoulos and Roberts, 2008) to simulate the
atoms. Alternatively, the classical CRP representation can be used. In our experiments,
because

∑Hr

h=1 nrh � α we have πr0 �
∑Hr

h=1 πrh ≈ 1. Thus, choosing a truncation
level M = 10 always produces an error on Fi lower than 10−4 (henceforth fixed as
the truncation error threshold). Furthermore, we are often not even required to draw

samples from G̃′.

Of the aforementioned steps, the bottleneck is the update of c because for each ci
we are required to evaluate the densities of Ni points in I mixtures. If Ni = N for all i,



M. Beraha, A. Guglielmi, and F. A. Quintana 1205

the computational cost of this step is O(NI2), which can be extremely demanding for
large values of I. We can mitigate the computational burden by replacing this Gibbs
step with a Metropolis-within-Gibbs step, in the same spirit of the Metropolised Carlin
and Chib algorithm proposed in Dellaportas et al. (2002). At each step we propose a

move from c
(�)
i = r to c

(�+1)
i = m with a certain probability pi(m | r). The transition is

then accepted with the usual Metropolis-Hastings rule, i.e. the new update becomes:

• Propose a candidate m by sampling pi(m | r)

• Accept the move with probability q, where

q = min

[
1,

P (ci = m)
∏Ni

j=1

∫
k(yij | θ)Fm(dθ)

P (ci = r)
∏Ni

j=1

∫
k(yij | θ)Fr(dθ)

pi(r |m)

pi(m | r)

]
.

We call this alternative sampling scheme the Metropolised sampler. The key point is
that if evaluating the proposal pi(·|·) has a negligible cost, the computational cost of this
step will be O(2NI) as for each data point we need to evaluate only two mixtures: the
one corresponding to the current state Fr and the one corresponding to the proposed
state Fm. Of course, the efficiency and mixing of the Markov chain will depend on
a suitable choice of the transition probabilities pi(·|·); some possible alternatives are
discussed in Section 5.

When, at the end of an iteration, a cluster is left unallocated (or empty), the prob-
ability of assigning an observation to that cluster will be zero for all subsequent steps.
As in standard literature, we employ a relabeling step that gets rid of all the unused
clusters. However, this relabeling step is slightly more complicated since there are two
different types of clusters: one arising from G0 and ones arising from G̃. Details of the
relabeling procedure are discussed in the Supplementary Materials file, Section 3.

4.1 Use of Pseudopriors

The above mentioned sampling scheme presents a major issue that could severely impact
the mixing. Consider as an example the case when I = 2; if, at iteration k, the state
jumps to c1 = c2 = 1, then all the tables of the second restaurant would be erased
from the state, because no observation is assigned to them anymore. Switching back
to c1 �= c2 would then require that the approximation of F2 sampled from its prior
distribution gives sufficiently high likelihood to either y1 or y2, an extremely unlikely
event in practice.

To overcome this issue, we make use of pseudopriors as in Carlin and Chib (1995),
that is, whenever a random measure Fr in (F1, . . . , FI) is not associated with any group,
we sample the part of the state corresponding to that measure (the atoms {θ∗r�} and
number of customers {nr�} in each restaurant) from its pseudoprior. From the com-
putational point of view, this is accomplished by running first a preliminary MCMC
simulation where the ci’s are fixed as ci = i, and collecting the samples. Then, in the
actual MCMC simulation, whenever restaurant r is empty we change the state by choos-
ing at random one of the previous samples obtained with fixed ci’s. Note that this use
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of pseudopriors does not alter the stationary distribution of the MCMC chain. Further-
more, the way pseudopriors are collected and sampled from is completely arbitrary, and
our proposed solution works well in practice. Other valid options include approximations
based on preliminary chain runs, as discussed in Carlin and Chib (1995).

Section 5 below contains extensive simulation studies that show that the proposed
model can be used to efficiently estimate densities for each population. We also tried
the case of a large number of populations, e.g. I = 100 without any significant loss of
performance.

5 Simulation Study

In this section we investigate the ability of our model to estimate dependent random
densities. We fix the kernel k(·|θ) in (2.2) to be the univariate Gaussian density with
parameter θ = (μ, σ2) (mean and variance, respectively). Both base measures G0 and
G00 are chosen to be

N (μ | 0, 10σ2)× inv − gamma(σ2 | 1, 1),

and unless otherwise stated, with hyperparameters α, γ fixed to 1, aκ = bκ = 2, and
η = (1/I, . . . , 1/I). Chains were run for 100,000 iterations after discarding the first
10,000 iterations as burn-in, keeping one every ten iterations, resulting in a final sample
size of 10,000 MCMC draws.

5.1 Two Populations

We first focus on the special case of I = 2 populations. Consider generating data as
follows

y1j
iid∼ w1N (μ1, σ1) + (1− w1)N (μ2, σ2) j = 1, . . . N1,

y2j
iid∼ w2N (μ3, σ3) + (1− w2)N (μ4, σ4) j = 1, . . . N2,

(5.1)

that is each population is a mixture of two normal components. This is the same example
considered in Camerlenghi et al. (2019a). Table 1 summarizes the parameters used to
generate the data. Note that these three scenarios cover either the full exchangeability
case across both populations (Scenario I), as well as the partial exchangeability between
the two populations (scenarios II and III). For each case, we simulated N1 = N2 = 100
observations for each group (independently).

Table 2 reports the posterior probabilities of the two population being identified as
equal for the three scenarios. We can see that our model recovers the ground truth.

(μ1, σ1) (μ2, σ2) (μ3, σ3) (μ4, σ4) w1 w2

Scenario I (0.0, 1.0) (5.0, 1.0) (0.0, 1.0) (5.0, 1.0) 0.5 0.5
Scenario II (5.0, 0.6) (10.0, 0.6) (5.0, 0.6) (0.0, 0.6) 0.9 0.1
Scenario III (0.0, 1.0) (5.0, 1.0) (0.0, 1.0) (5.0, 1.0) 0.8 0.2

Table 1: Parameters of the simulated datasets.
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P (c1 = c2 | data) BF01

Scenario I 0.99 98.9
Scenario II 0.0 0.0
Scenario III 0.0 0.0

Table 2: Posterior inference.

Figure 2: Posterior distribution of the number of shared unique values and unique values
specific to first and second group in Scenario II.

Moreover Figure 3 in the Supplementary Materials file shows the density estimates, i.e.
the posterior mean of the density evaluated on a fixed grid of points, together with
pointwise 95% posterior credible intervals at each point x in the grid, obtained by our
MCMC for scenarios I and III. Here, densities are estimated from the corresponding
posterior mean evaluated on a fixed grid of points, while credible intervals are obtained
by approximating the Fi’s as discussed in Section 4. We can see that in both the cases,
locations and scales of the populations are recovered perfectly, while it seems that
the weights of the mixture components are slightly more precise in Scenario I than in
Scenario III.

Comparing the Bayes Factors shown in Table 2 with the ones in Camerlenghi et al.
(2019a) (5.86, 0.0 and 0.54 for the three scenarios, respectively), we see that both models
are able to correctly assess homogeneity. However, the Bayes Factors obtained under
our model tend to assume more extreme than those from Camerlenghi et al. (2019a).
Figure 2 shows the posterior distribution of the number of shared and private unique
values (reconstructed from the cluster allocation variables sij and the table allocation
variables tr�) in Scenario II, when either κ ∼ Beta(2, 2) or κ = 1. Also in the latter
case P (c1 = c2 | data) = 0, but the shared component between groups one and two is
not recovered, due to the degeneracy issue described in Proposition 3.2.

As the central point of our model is to allow for different random measures to
share at least one atom, we test more in detail this scenario. To do so, we simulate

50 different datasets from (5.1), by selecting μ1, μ2, μ4
iid∼ N (0, 10) and σ2

1 , σ
2
2 , σ

2
4

iid∼
inv − gamma(2, 2), w1 ∼ Beta(1, 1) and setting μ3 = μ1, σ

2
3 = σ2

1 , w2 = w1. In this
way we create 50 independent scenarios where the two population share exactly one
component and give the same weight to this component. Figure 4 in the Supplementary
Materials file reports the scatter plot of the estimated posterior probabilities of c1 = c2
obtained from the MCMC samples. It is clear that our model recovers the right scenario
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most of the times. Out of 50 examples, only in four of them P (c1 = c2 | data) is greater
than 0.5, by a visual analysis we see from the plot of the true densities that in those
cases the two populations were really similar.

5.2 More than Two Populations

We extend now the simulation study to scenarios with more than two populations.
We consider three simulated datasets with four populations each and different cluster-
ing structures at the population level. In particular, we use the same scenarios as in
Gutiérrez et al. (2019), and simulate Ni = 100 points for each population i = 1, 2, 3, 4
as follows

• Scenario IV

y1j , y2k, y3�
iid∼ N (0, 1) y4n

iid∼ SN(0, 1, 1) j, k, �, n = 1, . . . , 100.

• Scenario V

y1j , y4n
iid∼ N (0, 1) y2k

iid∼ N (0, 2.25) y3�
iid∼ N (0, 0.25) j, k, �, n = 1, . . . , 100.

• Scenario VI

y1j , y2k
iid∼ 0.5N (0, 1) + 0.5N (5, 1) j, k = 1, . . . , 100,

y3�
iid∼ 0.5N (0, 1) + 0.5N (−5, 1) � = 1, . . . , 100,

y4n
iid∼ 0.5N (−5, 1) + 0.5N (5, 1) n = 1, . . . , 100.

Hence, the true clusters of the label set of the populations, {1, 2, 3, 4}, are: ρtrue
4 =

{{1, 2, 3}, {4}}, ρtrue
5 = {{1, 4}, {2}, {3}} and ρtrue

6 = {{1, 2}, {3}, {4}} for the three
scenarios under investigation respectively. By SN(ξ, ω, α) in Scenario IV we mean the
skew-normal distribution with location ξ, scale ω and shape α; in this case, the mean
of the distribution is equal to

ξ + ω
α

1 + α2

√
2

π
.

Note that we focus on a different problem than what Gutiérrez et al. (2019) discussed,
as they considered testing for multiple treatments against a control. In particular they
were concerned about testing the hypothesis of equality in distribution between data
coming from different treatments yj (j = 2, 3, 4 in these scenarios), and data coming
from a control group y1. Instead our goal is to cluster these populations based on their
distributions.

Observe how the prior chosen for c does not translate directly into a distribution
on the partition ρ, as it is affected by the so called label switching. Thus, in order
to summarize our inference, we post-process our chains and transform the samples
c(1), . . . , c(M) from c to samples ρ(1), . . . ,ρ(M) from ρ. For example we have that c(i) =
(1, 1, 1, 3) and c(j) = (2, 2, 2, 4) both get transformed into ρ(i) = ρ(j) = {{1, 2, 3}, {4}}.
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Figure 3: Posterior probability of ρ for Scenario IV.

Figure 4: Density estimates and pointwise 95% posterior credible intervals for Scenario
IV.

The posterior probabilities of the true clusters P (ρi = ρtrue
i | data) are estimated us-

ing the transformed (as described above) MCMC samples and equal 0.75, 0.95 and 0.99

for the three scenarios respectively. Figure 3 shows the posterior distribution of ρ, and

Figure 4 reports the density estimation of each group, for Scenario IV. Observe how the

posterior mode is in ρtrue
4 but significant mass is given also to the case {{1}, {2, 3}, {4}}.

We believe that this behavior is mainly due to our use of pseudopriors, as it makes the

transition between these three states fairly smooth. On the other hand, in Scenario V,

where the posterior mass on the true cluster is close to 1, it is clear that such transi-

tions happen very rarely, as the posterior distribution, not shown here, is completely

concentrated on ρtrue
5 . Our insight is that the pseudopriors make a transition between

two states, say c(j) = (1, 1, 3, 4) and c(j+1) = (1, 2, 3, 4) (or viceversa), more likely when

the mixing distributions of population one and two are the same.
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We compared the performance of the Metropolised algorithm against the full Gibbs
move for the update of c, computing the effective sample size (ESS) of the number
of population level clusters (i.e. the number of unique values in c) over CPU time. We
consider two choices for the proposal distribution pi(r |m), namely, the discrete uniform
over {1, . . . , I} and another discrete alternative, with weights given by

pi(r |m) ∝ 1 +
(
1 + d2(Fr, Fm)

)−1
, (5.2)

where d2(Fr, Fm) is the squared L2 distance between the Gaussian mixture represented
by Fr and that represented by Fm, which are sampled as discussed in Section 4. This
distance is available in closed form and the formula is reported in Section 4 of the
Supplementary Materials file.

Results for data as in Scenario IV show that the best efficiency is obtained using
the full Gibbs update, with an ESS per second of 57.1. The Metropolised sampler
with proposal as in (5.2) comes second, yielding an ESS per second of 34.1 while the
Metropolised sampler with uniform proposal is the worst performer with an ESS per
second of 12.8. Hence, even when the number of groups is not enormous, the good
performance of the Metropolised sampler is clear. Preliminary analysis showed how the
Metropolised sampler outperforms the full Gibbs one as the number of groups increases.

Finally, we test how our algorithm performs when the number of populations in-
creases significantly. We do so by generating 100 populations in Scenario VII as follows:

yij
iid∼ 0.5N (−5, 1) + 0.5N (5, 1) i = 1, . . . , 20,

yij
iid∼ 0.5N (−5, 1) + 0.5N (0, 1) i = 21, . . . , 40,

yij
iid∼ 0.5N (0, 1) + 0.5N (5, 0.1) i = 41, . . . , 60,

yij
iid∼ 0.5N (−10, 1) + 0.5N (0, 1) i = 61, . . . , 80,

yij
iid∼ 0.1N (−10, 1) + 0.9N (0, 1) i = 81, . . . , 100.

Thus, full exchangeability holds within populations {1, . . . , 20}, {21, . . . , 40}, {41, . . . ,
60}, {61, . . . , 80} and {81, . . . , 100} but not between these five groups. For each popu-
lation i, 100 datapoints were sampled independently.

To compute posterior inference, we run the Metropolised sampler with proposal
(5.2). To get a rough idea of the computational costs associated to this large simulated
dataset, we report that running the full Gibbs sampler would have required more than
24 hours on a 32-core machine (having parallelized all the computations which can be
safely parallelized), while the Metropolised sampler ran in less than 3 hours on a 6-core
laptop.

As a summary of the posterior distribution of the random partition ρ100, we compute
the posterior similarity matrix [P (ci = cj | data)]Ii,j=1. Estimates of these probabilities
are straightforward to obtain using the output of the MCMC algorithm. Figure 5 shows
the posterior similarity matrix as well as the density estimates of five different popula-
tions. It is clear that the clustering structure of the populations is recovered perfectly
and that the density estimates are coherent with the true ones.
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Figure 5: Density estimates (orange line), pointwise 95% posterior credible intervals
(orange bands), true data generating densities (blue line) for groups 10, 30, 50, 70 and
90 and posterior similarity matrix (bottom right, white corresponds to 0.0 and dark
blue to 1.0) in Scenario VII.

6 Chilean Grades Dataset

The School of Mathematics at Pontificia Universidad Católica de Chile teaches many
undergraduate courses to students from virtually all fields. When the number of stu-
dents exceeds a certain maximum pre-established quota, several sections are formed,
and courses are taught in parallel. There is a high degree of preparation in such cases,
so as to guarantee that courses cover the same material and are coordinated to function
as virtual copies of each other. In such cases, only the instructor changes across sec-
tions, but all materials related to the courses are the same, including exams, homework,
assignments, projects, etc., and there is a shared team of graders that are common to
all the parallel sections. According to the rules, every student gets a final grade on a
scale from 1.0 to 7.0, using one decimal place, where 4.0 is the minimum passing grade.
We consider here the specific case of a version of Calculus II, taught in parallel to three
different sections (A, B and C) in a recent semester. Our main goal here is to examine
the instructor effectiveness, by comparing the distributions of the final grades obtained
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Figure 6: Density estimates and pointwise 95% posterior credible intervals for the three
groups (left); posterior distribution of the clusters (right).

by each of the three populations (sections). The sample sizes of these populations are
76, 65 and 50 respectively.

A possible way to model these data could be to employ a truncated normal distri-
bution as the kernel in (2.2). However since our primary interest is to investigate the
homogeneity of the underlying distributions and not to perform density estimates, we
decided to first add a small amount of zero-mean Gaussian noise, with variance 0.1 to the
data (i.e. “jittering”) and then proceeded to standardize the whole dataset, by letting
ynewij = (yij− ȳ)/sy, where ȳ = (

∑
ij yij)/(

∑
i Ni) and s2y = (

∑
ij(yij− ȳ)2)/(

∑
i Ni−1)

are the global sample mean and variance, respectively. In the sequel, index i = 1, 2, 3
denotes sections A, B and C, respectively, as described above.

Figure 6 reports density estimates in all groups (i.e. posterior density means eval-
uated on a fixed grid of points and pointwise 95% posterior credible intervals at each
point x in the grid), as well as the posterior distribution of the random partition ρ,
obtained from the posterior distribution of c, getting rid of the label switching in a
post-processing step (see also Section 5.2). From Figure 6 we see that the posterior
distribution of ρ gives high probability to the case of the three groups being all different
as well as to the case when the first and third groups are homogeneous but different
from the second one. This is in accordance with a visual analysis of the observed and
estimated densities.

We considered several functionals of the random population distribution Fci (see
(2.3)) for i = 1, 2, 3. Recall that, according to notation in (2.1), Fci = Gi. First of
all, we consider the mean and variance functionals of the random density pi(y) =∫
Θ
k(y|θ)Fci(dθ) =

∫
Θ
k(y|θ)Gi(dθ), for each i = 1, 2, 3. Observe how they are func-

tionals of the random probability Fci = Gi. Moreover, since Figure 6 seems to suggest
that the three groups differ mainly due to their different asymmetries, we considered
two more functionals of Gi, i.e. two indicators of skewness: Pearson’s moment coefficient
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Section μi σ2
i ski γMi P4i

A −0.264 0.671 120.84 −0.01 0.53
B 0.438 1.428 −64.86 0.292 0.71
C −0.171 0.943 55.60 −0.01 0.56

Table 3: Posterior means of functionals μi, . . . , P4i of the population density pi for each
Section A (i = 1), B (i = 2) and C (i = 3) in the Chilean grades dataset. All the
functionals refer to standardized data {ynewij = (yij − ȳ)/sy}.

of skewness sk and the measure of skewness with respect to the mode γM proposed by
Arnold and Groeneveld (1995). Pearson’s moment coefficient of skewness of the random
variable T is defined as sk = E[((T −E(T ))/

√
Var(T ))3], while the measure of skewness

with respect to the mode as γM = 1 − 2FT (MT ), where MT is the mode of T and FT

denotes its distribution function. The last functional of Gi we consider is the probabil-
ity, under the density pi(y) =

∫
Θ
k(y|θ)Gi(dθ) of getting a passing grade (≥ 4.0 before

normalization), that is

P4i =

∫ +∞

(4−ȳ)/sy

pi(y)dy.

Table 3 shows the posterior mean of the functionals μi, σ2
i (mean and variance

functionals), ski, γMi and P4i of pi, for i = 1, 2, 3. To be clear, the posterior mean of
the mean functional μ1 is computed as

1

M

M∑
�=1

μ
(�)
1 =

1

M

M∑
�=1

E[y |G(�)
1 ] =

1

M

M∑
�=1

(∫
R

yp
(�)
1 (y)dy

)
,

where M is the MCMC sample size, and the superscript (�) attached to a random
variable denotes its value at the �–th MCMC iteration.

In agreement with the posterior distribution of the partition ρ, for all the functionals
considered we observed close values for sections A and C, while both differ significantly
from the values for section B. In summary, we conclude that section B presents a heavier
right tail than sections A and C, hence it is characterized by a higher mean (positive)
and also more spread across the range. Section B shows a larger (estimated) value for
P4, i.e. students in section B are more likely to pass the exam than their colleagues from
the other sections. This seems to suggest that a higher concentration of good students
(with high grades) was present in Section B, compared to A and C, possibly combined
with a higher effectiveness of the instructor in this Section.

We also computed the pairwise L1 distances between the estimated densities in the
populations. If p̃i denotes the estimated density (posterior mean of pi evaluated in a
grid of points) for each population, we found d(p̃A, p̃B) = 0.56, d(p̃A, p̃C) = 0.15 and
d(p̃B , p̃C) = 0.44. This confirms once again that the estimated densities for section A
and C are closer than when comparing sections A and B and sections B and C.

To end the analysis, we show in Figure 7 estimated couples of densities (pi, p�),
i �= �, i, � = 1, 2, 3, i.e. the posterior mean of (pi, p�), evaluated on a fixed grid in R

2.
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Figure 7: Posterior means of (pi, p�), i �= �, i, � = A,B,C, evaluated on a fixed grid in
R

2 for the Chilean grades dataset.

While sections A and C look independent (central panel in Figure 7), the (posterior)
propensity of section B to get higher grades is confirmed in the left and right panels in
Figure 7.

7 Discussion

Motivated by the traditional problem of testing homogeneity across I different groups
or populations, we have presented a model that is able to not only address the prob-
lem but also to perform a cluster analysis of the groups. The model is built on a prior
for the population distributions that we termed the semi-hierarchical Dirichlet process,
and it was shown to have good properties and also to perform well in synthetic and
real data examples, also in case of I = 100 groups. One of the driving features of our
proposal was to solve the degeneracy limitation of nested constructions that has been
pointed out by Camerlenghi et al. (2019a). The crucial aspect of the semi-HDP that
solves this problem was described using the metaphor of a food court of Chinese restau-
rants with common and private dining area. The hierarchical construction introduces a
random partition at the population level, which allows for identifying possible clusters
of internally homogeneous groups.

Our examples focus on unidimensional data, though extensions to multivariate re-
sponses can be straightforwardly accommodated in our framework. However, scaling
with respect to data dimension is not a property we claim to have. In fact, this is a
situation shared with any type of hierarchical mixture models.

We studied support properties of the semi-HDP and also the posterior asymptotic
behavior of the Bayes factor for the homogeneity test when I = 2, as posed within the
proposed hierarchical construction. We showed that the Bayes factor has the appropriate
asymptotic behavior under the alternative hypothesis of partial exchangeability, but a
final answer under the assumption of truly exchangeable data is still pending. The lack
of asymptotic guarantees is not at all specific to our case. In fact, this situation is rather
common to all model selection problems when the hypothesis is not well separated and
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at least one of the two models under comparison is “truly” nonparametric, as, for
instance, in Bhattacharya and Dunson (2012) and Tokdar and Martin (2019). Indeed,
as discussed in Tokdar and Martin (2019), it is not even clear if in such cases the need
for an upper bound on the prior mass under the more complex model is a natural
requirement or rather a technical one. More generally, intuition about BFs (at least
in parametric cases) is that they tend to favor the more parsimonious model. In the
particular context described in Section 3.3, model M1 can be regarded as a degenerate
case of model M2, even though they are “equally complicated”. In this case, the above
intuition evaporates, since technically, embedding one model in the other is still one
infinite-dimensional model contained in another infinite-dimensional model, and it is
probably meaningless to ask which model is “simpler”. Under this scenario exploratory
use of discrepancy measures, such as those discussed in Gelman et al. (1996), may offer
some guidance.

In the simulation studies presented, our model always recovers the true latent clus-
tering among groups, thus providing empirical evidence in favor of our model to perform
homogeneity tests. We provide some practical suggestions when the actual interest is
on making this decision. Our insight is that in order to prove asymptotic consistency
of the Bayes factor, one should introduce explicit separation between the competing
hypotheses. One possible way to accomplish this goal is, for example, by introducing
some kind of repulsion among the mixing measures Fi’s in the model. This point will
be focus of further study.

Supplementary Material

Supplementary material for “The semi-hierarchical Dirichlet Process and its application
to clustering homogeneous distributions” (DOI: 10.1214/21-BA1278SUPP; .pdf).
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MR0000909. 1187

De Iorio, M., Müller, P., Rosner, G., and MacEachern, S. (2004). “An ANOVAModel for
Dependent Random Measures.” Journal of the American Statistical Association, 99:
205–215. MR2054299. doi: https://doi.org/10.1198/016214504000000205. 1189

Dellaportas, P., Forster, J. J., and Ntzoufras, I. (2002). “On Bayesian model and vari-
able selection using MCMC.” Statistics and Computing , 12(1): 27–36. MR1877577.
doi: https://doi.org/10.1023/A:1013164120801. 1205

Diaconis, P. (1988). “Recent progress on de Finetti’s notions of exchangeability.” In
J. M. Bernardo, M. H. DeGroot and A. Smith (eds.), Bayesian statistics 3 , 111–125.
Oxford: Oxford University Press. MR1008047. 1187

Ferguson, T. S. (1973). “A Bayesian analysis of some nonparametric problems.” The
Annals of Statistics, 1: 209–230. MR0350949. 1197

Gelman, A., Meng, X.-L., and Stern, H. (1996). “Posterior predictive assessment of
model fitness via realized discrepancies.” Statistica sinica, 6: 733–760. MR1422404.
1190, 1215

Ghosal, S., Lember, J., and Van Der Vaart, A. (2008). “Nonparametric Bayesian model
selection and averaging.” Electronic Journal of Statistics, 2: 63–89. MR2386086.
doi: https://doi.org/10.1214/07-EJS090. 1200

Gutiérrez, L., Barrientos, A. F., González, J., and Taylor-Rodŕıguez, D. (2019).
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ple problem.” Journal of the American Statistical Association, 106(496): 1553–1565.
MR2896856. doi: https://doi.org/10.1198/jasa.2011.tm10003. 1189

MacEachern, S. N. (1999). “Dependent nonparametric processes.” In ASA proceedings
of the section on Bayesian statistical science, volume 1, 50–55. Alexandria, Virginia.
Virginia: American Statistical Association; 1999. 1188

Müller, P., Quintana, F., and Rosner, G. (2004). “A method for combining inference
across related nonparametric Bayesian models.” Journal of the Royal Statistical So-
ciety: Series B (Statistical Methodology), 66(3): 735–749. MR2088779. doi: https://
doi.org/10.1111/j.1467-9868.2004.05564.x. 1189, 1192

Papaspiliopoulos, O. and Roberts, G. O. (2008). “Retrospective Markov chain Monte
Carlo methods for Dirichlet process hierarchical models.” Biometrika, 95(1): 169–186.
MR2409721. doi: https://doi.org/10.1093/biomet/asm086. 1204
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