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Bayesian Functional Forecasting with
Locally-Autoregressive Dependent Processes

Guillaume Kon Kam King∗, Antonio Canale†, and Matteo Ruggiero∗

Abstract. Motivated by the problem of forecasting demand and offer curves, we
introduce a class of nonparametric dynamic models with locally-autoregressive
behaviour, and provide a full inferential strategy for forecasting time series of
piecewise-constant non-decreasing functions over arbitrary time horizons. The
model is induced by a non Markovian system of interacting particles whose evo-
lution is governed by a resampling step and a drift mechanism. The former is
based on a global interaction and accounts for the volatility of the functional time
series, while the latter is determined by a neighbourhood-based interaction with
the past curves and accounts for local trend behaviours, separating these from
pure noise. We discuss the implementation of the model for functional forecasting
by combining a population Monte Carlo and a semi-automatic learning approach
to approximate Bayesian computation which require limited tuning. We validate
the inference method with a simulation study, and carry out predictive inference
on a real dataset on the Italian natural gas market.

Keywords: approximate Bayesian computation, autoregression, Bayesian
nonparametrics, functional data analysis, prediction, time series.

1 Introduction

In this paper we consider the problem of forecasting functional data given by a time
series of monotonic step functions that are completely observed and may exhibit local
trends over time. As a motivating dataset we consider data from the Italian virtual
balancing platform for natural gas trading, which describe the daily offer and demand
curves used by the public authority to settle the daily exchange unitary price. In such
framework, the interest lies in forecasting the entire curves as these can be used for
strategic decision making. Further details are discussed in Section 5.1.

Other approaches to this problem include Canale and Vantini (2016), that introduces
a functional autoregressive model for constrained functions and derives one-step ahead
point predictions, Rossini and Canale (2018), that extends the previous by including in
the model the effect of exogenous scalar variables and by accounting for predictive un-
certainty quantification via a block bootstrap technique or Canale and Ruggiero (2016),
that proposes a Bayesian nonparametric approach to this forecasting problem based on
an underlying system of interacting particles. Each of these approaches left room for
improvement, as the first two suffer from a limitation of the available forecast horizon,
while the latter showed systematic overestimation of the predictive uncertainty. In par-
ticular, this last point can be attributed to the model’s inability to account for possible
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local trends exhibited by the functional time series, resulting in a compensation through
higher predictive volatility.

With the aim of reducing the above drawbacks and improving on predictive accuracy
over arbitrary forecast horizons, in this paper we propose to extend the approach in
Canale and Ruggiero (2016) and construct a Bayesian nonparametric dependent process
with locally-autoregressive drift. Such process is still based on an underlying system of
interacting particles, with the addition of a mechanism that allows to capture local
trend behaviours of the functional time series. This operates by monitoring the past
curves in subsets of the particles state space and by inducing appropriate displacements
of the particles in each region, in turn determining a drift in the functional time series
that acts only locally.

We implement the model for performing predictive inference by combining ideas from
the literature on approximate Bayesian computation (ABC), a likelihood-free approach
to Bayesian inference based on measuring differences between real and simulated data
(see Marin et al., 2012, for a review), which is receiving growing attention as a forecasting
tool (Frazier et al., 2018). In a nutshell, an ABC strategy draws sets of parameters
at random from a prior distribution and simulates synthetic data from a generative
model given the sampled parameters. It then selects, based on carefully chosen summary
statistics, a subset of these sampled parameters that have generated data sufficiently
similar to the real data. The accepted parameters are then kept as an approximate
sample from the posterior distribution and can be used for deriving quantities of interest,
such as point estimates or credible regions. Here in particular we combine a semi-
automatic summary construction (Fearnhead and Prangle, 2010) with a population
Monte Carlo procedure that uses adaptive distances (Prangle, 2016). Together with
this implementation strategy, the proposed modelling approach shows a substantial
reduction in the predictive uncertainty with respect to the model without drift, while
preserving the availability of arbitrary forecast horizons.

The rest of the paper is organised as follows. Section 2 introduces the dependent
nonparametric model. This is given by a functional time series induced by an inter-
acting particle system which evolves by resampling and a locally-autoregressive drift
mechanism. Section 3 details the inferential strategy for posterior computation based
on population Monte Carlo and ABC techniques. After presenting a simulation study
in Section 4, Section 5 applies the proposed approach to forecasting demand and offer
curves relative to the Italian natural gas market. Finally, Section 6 provides a discussion
and some concluding remarks.

2 Locally-autoregressive dependent processes

We introduce a non Markovian dependent process based on locally-autoregressive time
series of bounded, non-decreasing step functions. Each of these functions is described—
after suitable rescaling—as a cumulative distribution function (cdf). Instead of mod-
elling the functions or the cdfs directly, e.g. through the specification of the jump sizes
and locations or by mixing with respect to the cdf parameters, we let these be induced
by a set of latent variables, or particles, which allow for a finer control of the local



G. Kon Kam King, A. Canale, and M. Ruggiero 1123

behaviour. Such particles are jointly specified to follow a multivariate stochastic pro-
cess, whereby the transition of a particle depends on the position of the others, giving
a so-called interacting particle system. The dynamic interaction among these particles
then in turn induces a time dependent process for the induced functions.

The particles’ evolution is governed by a resampling mechanism, based on a global in-
teraction, that drives the volatility of the functional process, and by a non-homogeneous
drift mechanism, which aims at modelling locally the functional trends. The drift acts
by monitoring the past behaviour of the time series in certain subsets of the region
of interest and by inducing different displacements in different parts of the space as
needed. This mechanism allows to separate more efficiently the noise from the signal
in the functional data evolution by appropriately accounting for local trends, which
ultimately results in an improvement of the predictive accuracy.

Before formally defining such mechanisms, we discuss the transformation of the
curves into particles. Here we assume the data allow for rescaling, as is the case in
our motivating dataset, and consider a collection D = {Dt(·)}t=1,...,T , T ∈ N of time-
indexed non decreasing step functions Dt : [0, 1] → [0, 1] in the unit square. Each Dt

is induced by n atoms X
(n)
t = (Xt,1, . . . , Xt,n), with Xt,i ∈ [0, 1], via the empirical cdf

Dt(x) = n−1
∑n

i=1 1(Xt,i ≤ x). Equivalently, we could group the possible ties in X
(n)
t ,

whereby jumps of size Jt,j occur at nt ≤ n locations Zt,j , giving

Dt(x) =

nt∑
j=1

Jt,j1(Zt,j ≤ x). (1)

If the stochastic processes {Xt,i, t = 1, . . . , T} are not independent across i, hence their

transition function needs to be specified jointly, then {X(n)
t , t = 1, . . . , T} is said to be

an interacting particle system. Thus, each X
(n)
t,i is a discrete time processes on [0, 1].

The transition function of X
(n)
t will be implicitly specified by the particles dynamics

detailed below, whereas the generic transition function for the single particle can be

written P (Xt,i ∈ A | {X(n)
s , s = t − 1, . . . , t − 1 − k}), so that X

(n)
t is Markovian

of order k + 1, the classical Markovian case corresponding to k = 0. Note that the
number of particles n, by determining the minimal discretisation of the jump sizes,
acts as a level of resolution with which the data are modelled and is not to be re-
garded as a model parameter. Further discussion of this point is postponed to Sec-
tion 6.

We now describe the two main mechanisms that govern the particles dynamics,
which we refer to as the drift and the resampling step respectively.

Drift step The drift step aims at capturing the local trends in the observed curves and
model future curves accordingly. The mechanism determines a localised, autoregressive
interaction among particles, in the sense that each particle is displaced by an amount
and in a direction determined by the behaviour of a predetermined number of previous
curves in a neighbourhood of the particle. Let Dt−1(x) = n−1

∑n
i=1 1(Xt−1,i ≤ x) be
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the curve at time t− 1. Define

X∗
t,i = Xt−1,i −

k∑
j=1

εj

∫
Uh

t−1,i

[Dt−1(x)−Dt−1−j(x)]dx (2)

for k ≥ 0 and ε1, . . . , εk > 0, where, for h ∈ [0, 2],

Uh
t−1,i =

[
Xt−1,i − h/2, Xt−1,i + h/2

]
∩ [0, 1]. (3)

When k = 0, we interpret the above sum as empty, yielding X∗
t,i = Xt−1,i, i.e., null

drift. When X∗
t,i falls outside [0, 1], we set it equal to the closest boundary, so more

formally X∗
t,i should be defined as max(0,min(1, x∗)) where x∗ is the right hand side

of (2).

The special case for k = 1 provides a useful model that lends itself easily to inter-
pretation. The drift step becomes

X∗
t,i = Xt−1,i − ε

∫
Uh

t−1,i

[Dt−1(x)−Dt−2(x)]dx, (4)

and yields a displacement of the i-th particle from its previous position by an amount
proportional to the integrated difference between the last two observed curves, computed
in the neighbourhood Uh

t−1,i of Xt−1,i. Here Uh
t−1,i is chosen to be symmetric around

Xt−1,i for simplicity, but different formulations can be devised. The quantity h regulates
the range of the interaction, and values h ∈ [0, 2] vary from the complete absence of
drift (h = 0) to a drift based on global interaction (h = 2), in which case Uh

t−1,i ≡ [0, 1].
Finally, ε > 0 determines the strength of the local interaction, the minus sign being due
to the fact that if the local integrated difference between consecutive curves is positive,
a similar displacement for the next curve is obtained by moving the particles to the left,
and vice versa. Figure 1 depicts the mechanism schematically.

The above defined drift is state-dependent, deterministic conditionally on the last
k + 1 curves, and induces an overall displacement of the jump locations of Dt, since
particles at the same location will imply the same value for (2). Note also that an
equivalent formulation in (2) that considers the differences between curves at t− j and
t− j−1, instead of t−1 and t−1− j, can be recovered by reparameterising with linear
combinations of the coefficients εj .

Resampling step Given the intermediate state of the particles X∗
t yielded by the drift

step, the next state is obtained by resampling a random number of particles in X∗
t . Here

we let M ∼ Binom(n, p), for p ∈ (0, 1), and sample M indices uniformly at random from
{1, . . . , n}, denoted here {in−M+1, . . . , in}. Letting then P0 be a probability measure
on [0, 1], we resample the particles with indices {in−M+1, . . . , in} from the Blackwell–
MacQueen Pólya urn scheme (Blackwell and MacQueen, 1973) with parameters θ > 0
and P0, conditionally on the other n−M particles with indices {i1, . . . , in−M}. Namely,
we have for each j = 1, . . . ,M ,

Xt,in−M+j
=

{
Y ∼ P0, w.p. θ

θ+n−M+j−1 ,

Xt,iw , w.p. 1
θ+n−M+j−1 , w = 1, . . . , n−M + j − 1.

(5)
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Figure 1: Schematic description of the drift step for k = 1, as in (4). The movement
of a particle at time t is determined by the (signed) integrated difference between the
curve at time t − 1 (dark-coloured) and that at time t − 2 (light-coloured), computed
in a neighbourhood of the particle.

With probability proportional to θ, a particle is substituted with a new value drawn
from P0, and with the remaining probability it is copied from one of the other particles
(including those already resampled). Note that when P0 is a nonatomic probability
measure, Y in (5) is a value not previously observed with probability one.

This resampling mechanism determines a partial reallocation of the jumps, whose
sizes are broken down into particle units which are moved across the space. The mass
removed from existing jumps is either reallocated to other jumps, chosen with proba-
bility proportional to the jump size after the shortening, or is assigned to a new jump,
whose location is drawn from P0. The overall effect is a fluctuation of the current jump
sizes and the possible appearance of new jumps. Furthermore, the resampling step can
remove particles which ended up at the boundaries with the drift step and bring them
back to the interior of the state space. It is interesting to note that the resampling
step can be shown to provide, with additional technical conditions and when n → ∞,
a weak approximation to the diffusive term of certain classes of measure-valued diffu-
sion processes (see, e.g., Ruggiero and Walker 2009a,b), and can therefore be thought
of as providing a discrete type of diffusive component of the particle dynamics, which
constitutes a more familiar counterpart to a drift term.

3 Model estimation

The parameters of the locally-autoregressive dependent process can be learned for pre-
dictive inference purposes by means of a strategy based on approximate Bayesian com-
putation. Here we opt for a likelihood-free approach that circumvents the intractability
of the likelihood and is robust with respect to the number of particles used. Indeed, our
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approach is only based on the structural similarities between the observed curves and a
set of synthetic functional time series, measured through summary statistics. Since the
summaries are not affected by the number of particles in that, e.g., twice the number
of particles allow in principle to reconstruct the same exact curve, the choice of n has
minimal impact on the inference, at least for sufficiently large values of n.

We borrow from the recent literature on ABC combined with the semi-automatic
summary construction of Fearnhead and Prangle (2010) and the population Monte
Carlo ABC algorithm of Prangle (2016). With the proposed strategy, the model shows
improved performance for functional forecasting with respect to the model without drift
and compares extremely well, in a simulation study, with oracle predictions.

More specifically, let π(D|ξ) be a model for generating the datum D given a vector of
parameters ξ, π(ξ) a prior density for ξ, S a function mapping a dataset into a vector of
summary statistics, and d a distance function between vectors of summary statistics. The

standard ABC rejection sampling proceeds by sampling candidate parameters ξ�
iid∼ π(ξ),

simulating data D� ∼ π(· | ξ�) conditionally on ξ�, computing summaries s� = S(D�)
and sobs = S(Dobs) on the simulated data and on the observed data respectively, and
evaluating the associated distances d� = d(s�, sobs) after choosing a suitable distance
measure. The candidate parameters ξi such that d� ≤ q, where q is a chosen quantile of
the distances computed, are then accepted and can be seen as an approximate sample
from the posterior distribution of ξ given the data.

Clearly, the quality of the approximation of the true posterior distribution of the
parameters, hence of the estimates to be obtained based on the ABC sample, largely
depends on the criterion used for the parameter selection. The challenges for imple-
menting a successful ABC scheme therefore consist in measuring effectively the dis-
tance between real and synthetic data, and designing an efficient acceptance rule. The
summarising function S should desirably be of low dimension (Beaumont et al., 2002)
while capturing as much information as possible on the parameters, the ideal situation
being when S is a set of sufficient statistics for the model at hand. When these are
not available, the choice of distance becomes critical as it strongly influences the shape
and location of the mass of the approximate posterior distribution. Intuitively, this
should weight each summary according to its informativeness about the parameters,
compensating for the scale of variation and downplaying the influence of uninformative
summaries.

In the present framework, we use a semi-automatic data summaries approach in the
spirit of Fearnhead and Prangle (2010), combined with a handful of carefully chosen
ad hoc summaries that capture peculiar features of the type of data at hand, denoted
later t1, . . . , t7. The next section (3.1) provides full details on both choices. The semi-
automatic approach is based on the observation that when multiple summary statistics
are available or the relevant summaries are not immediately identifiable, their relevance
can be learnt using regression models where the summaries are the covariates and the
parameters are the multivariate responses. The estimated regression coefficients ob-
tained in the dimension reduction then provide weights for the summaries that reflect
their predictive power, alleviating the need to be parsimonious in the inclusion of sum-
maries.
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3.1 Summary statistics

As first step before the implementation of the main inferential strategy, we run a pi-
lot study and fit a suitable regression model, in order to estimate the semi-automatic
summaries. Specifically, let ξ� be the �-th draw of the vector of parameters from the
prior and let D� be the functional time series generated from π(D�|ξ�). We fit the
multivariate regression ξ� = βg(D�) + ε�, where g(D�) is a suitable transformation of

the data. Once an estimate β̂ for β is obtained, we take the quantities s(D) = β̂g(D)
to be used as summary statistics in the accept-reject routine of the ABC inference.
In order to monitor the curves’ values at certain spatial locations, we specify g to
provide 20 equally spaced quantiles relative to the curves evaluated at the locations
.01, .05, .1, .25, .5, .75, .9, .95, .99, computed over t = 1, . . . , T . To test for sensitivity of
this particular choice, the same analysis was run varying the number of quantiles and
with finer and coarser locations grid, yielding qualitatively similar results.

Additionally, we insert in the above regression model supplementary predictors given
by specific transformations of the data, denoted below t1(D), . . . , t7(D). At the end
of the section we provide some general comments on the inclusion of these additional
covariates. For what concerns instead their specification, aiming at the precision θ in (5)
we consider the mean number of jumps in the curves across the time series t1(D) = K̄ =

T−1
∑T

t=1 Kt, where Kt is the number of jumps in curve Dt. Regarding the expected
resampled proportion p, we consider the average difference between the sums of the
squared jumps sizes of consecutive curves, i.e.

t2(D) =
1

T − 1

T∑
t=2

[ nt∑
j=1

(Jt,j)
2 −

nt−1∑
j=1

(Jt−1,j)
2

]
.

For the parameters of P0 in (5), we assume sufficient statistics are available for the
chosen parametric family. Since our P0 is defined on [0, 1], a reasonable choice is to
consider a beta(α, β) distribution, with α, β > 0, so we take

t3(D) =

T∏
t=1

nt∏
j=1,Zj �=0

Z
Jt,j

t,j t4(D) =

T∏
t=1

nt∏
j=1,Zj �=1

(1− Zt,j)
Jt,j

with the same notation as in (1). Note that here we have excluded locations that happen
to be at the boundaries (which is permitted by the drift term). When no locations are at
the boundary, the above coincide with the sufficient statistics for the beta parameters.
Let now k = 1 in (2). Aiming at ε in the resulting drift (4), we consider t5(D) =
med[(Zt+1,M −Zt,M )2], i.e. the median squared displacement of the largest jump, where
Zt,M is the location of the largest jump of Dt, transformed into log scale to bring the
predictor to a similar scale as the other summaries. If at certain times there are ties for
the highest jump, which is an event of low probability, the displacement of the largest
jump cannot be tracked. When this occurs, we split the time series at these time points
and compute the median displacement based on the resulting sub-series.

As summaries that target the global behaviour of the times series, we consider the
ergodic average of the curves t6(D) = T−1

∑T
t=1 Dt(·), which is informative on the mean
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of the process, and the ergodic average of the L2 distances between consecutive curves,
i.e.

t7(D) =
1

T − 1

T∑
t=2

√∫
[0,1]

(Dt(x)−Dt−1(x))
2
dx,

which is informative on the functional volatility. t6 is computed on a discrete grid of
[0, 1], which can be uniform or whose choice can be data driven. For our motivating
application it is crucial to learn as much as possible near the boundaries of the state
space, so we use the quantile function of the beta(0.5, 0.5) distribution computed on a
regular grid of 100 points in [0, 1].

Following Fearnhead and Prangle (2010), we also include in the regression model
the first four powers of all the above considered predictors, as a simple way to allow
for a richer model at a low cost. To limit the effects of multicollinearity, we use par-
tial least squares regression for dimension reduction, implemented using the R-package
plsgenomics. Lasso regression or elastic-net regression (Friedman et al., 2010) were also
tested as alternatives and gave very similar results while proving, in our framework,
computationally less efficient. It is known that the type and degree of penalisation in
these regression models may impact the results (which in our case concern the pilot
run and not the final output of inference). Here we choose the optimal number of com-
ponents in the partial least squares regression by cross-validation using the method of
Boulesteix and Strimmer (2005).

Note that the partial least squares approach cancels the need, in classical ABC, to be
parsimonious with the predictors. On the one hand, the semi-automatic regression step
filters out irrelevant predictors and prevents them from impacting the inference, hence
one incurs little to no additional costs if some non informative summary is included in
the regression model. On the other hand, the addition of t1(D) showed to improve our
ability to learn about θ while the addition of tj(D) for j = 2, . . . , 7 showed to provide
an overall improvement of the parameters posterior uncertainty, with respect to using
the quantile-based summaries alone.

3.2 Population Monte Carlo ABC

After selecting the above summary statistics, the ABC strategy needs a suitable distance
function for selecting the most relevant draws and, when available, some way of improv-
ing over sampling directly from the prior. To both these ends, we adopt the population
Monte Carlo approach with adaptive distances of Prangle (2016), which dramatically
improves the quality of the approximate samples from the posterior along consecutive
generations of draws.

The algorithm is structured as follows. The first generation of candidate parameters
is sampled from the prior π(1)(ξ) = π(ξ). At generation b = 2, . . . , B, the proposals are
sampled from the mixture

π(b)(ξ) =

∑
�w

(b−1)
� φ(ξ | ξ(b−1)

� , 2Σ(b−1))∑
m w

(b−1)
m

, w
(b−1)
� =

π(ξ
(b−1)
� )

π(b−1)(ξ
(b−1)
� )

, (6)
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where φ(·|ϕ,Ω) is the multivariate Gaussian kernel with mean ϕ and covariance matrix

Ω, ξ
(b−1)
� are the parameters selected from the previous generation, and Σ(b−1) is the

sample covariance matrix of {ξ(b−1)
� }�≥1. Here each of the draws ξ

(b−1)
� selected from

the previous generation is perturbed by means of a Gaussian kernel with covariance
matrix given by twice the weighted sample covariance of the accepted parameters of the

previous generation, calculated using weights w
(b−1)
� . This is then reweighed by w

(b−1)
� ,

which accounts for the relative importance of the prior weight and the occurrence in
the previous generation, as in a sequential importance sampling scheme.

The values ξ(b−1) used in (6) are the best half of generation b− 1 with reference to
the distance function

d(sobs, s�) =

( m∑
j=1

[rj(sobs,j − s�,j)]
2

)1/2

. (7)

Here sobs,j and s�,j denote the jth summary computed on the real and simulated data
respectively, and rj = (MADj)

−1 is the inverse median absolute deviation computed on
s�,j , with MADj = med(|s�,j−med(s�,i)|). At each generation the distance is thus scaled
to reflect the variation within the current summaries computed on the simulated data.
This calibration-free automatic scaling is particularly useful if the summaries do not vary
on the same scale, as it prevents one summary from dominating all the others in the
distance function. Notice that the semi-automatic summary statistics S(D) = β̂g(D)
estimated through the regression from these transformations are continuous random
variables, so MADj never vanishes.

Algorithm 1 summarises the pseudo code for the generation of Particle Monte-Carlo
ABC (PMC-ABC) samples outlined above. A similar approach to the one outlined above
was developed in Bonassi and West (2015).

4 Simulation study

We evaluate the inference strategy presented above by fitting simulated data for a
range of parameters which produces realistic functional time series, relatively to our
motivating dataset. To emphasise the difference between the present model and that of
Canale and Ruggiero (2016), we compare the results obtained with the model presented
in Section 2 with those obtained with the model without locally-autoregressive drift,
in the following called for short the autoregressive and basic model respectively. Both
are fitted using the same inferential setting and strategy. We also compare them with
oracle predictions, based on the true model parameters, which provide a benchmark for
the best possible prediction with the current model.

We consider a scenario whose parameters produce a challenging dataset, with highly
volatile behaviour and exhibition of trends. Table 1 shows some descriptive statis-
tics, highlighting greater volatility for the simulated dataset than for the real dataset
(cf. Figure 7 below). Specifically, for simulating the data we set parameter values of
θ = 40, p = 0.4, α = 0.25, β = 0.3, ε = 4.5, and use 500 particles to generate a yearly
time series of length 365, of which the first 300 curves are used for training the model
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Algorithm 1: PMC-ABC draws generation.

Data: Dobs

Initialise

Set N ∈ N, L ∈ N, l = 0, α ∈ [0, 1], M = �αN�, b = 1, h(1) = ∞, w
(0)
i = 1 ∀i

Compute sobs = S(Dobs)

Repeat
Set x = ∅, y = ∅, z = ∅, n = 0
While n < N repeat

Sample ξ∗ ∼ π(b)(ξ) as in (6) and D∗ ∼ π(D|ξ∗)
Compute s∗ = S(D∗)
If π(ξ∗) > 0 do

if d(k)(s∗, sobs) ≤ h(k) for all k ≤ b, set x = (x, ξ∗) and y = (y, s∗)
else set z = (z, s∗)

Compute n = card(x)

if l = L return {ξ(k)i , i ≤ M,k < b}
else set l = l + 1

Compute σ
(b)
i = MAD(si; s ∈ y ∪ z)

Compute d∗i = d(b)(s∗i , sobs) as in (7) with rj = 1/σ
(b)
j for 1 ≤ i ≤ N Set h(b+1) to be

the M th smallest d∗i value
Set (ξ

(b)
i )1≤i≤M = {ξ∗i ; d∗i ≤ h(b+1)}

Set b = b+ 1

Mean L2 distance Mean L2 distance
between consecutive curves to the ergodic mean

Offer data 4.510−2 4.910−3

Demand data 5.810−2 1.810−3

Simulated data 9.810−2 4.610−2

Table 1: For real and simulated data, L2 distances between consecutive curve in the
time series or with respect to the ergodic mean of the series, averaged over the time
series. The latter quantity for the simulated dataset is an order of magnitude higher,
showing higher volatility.

and the last 65 are kept as test set. Other choices of parameter values were thoroughly
tested by combining values in the ranges θ ∈ [10, 60], p ∈ [0.05, 0.99], α, β ∈ [0.1, 0.9],
ε ∈ [1.5, 10] and the results were qualitatively similar.

We use the locally-autoregressive dependent model of order k = 1 (cf. (2)), whose
drift is based on the displacement of the last two available curves and was identified
as the most interesting model. Concerning the choice of h in (3), an indication of the
most interesting range yielding small to moderate local interactions turned out to be
[.025, .075], lower values being close to no interaction at all. Our experience showed that
while the range [.075, .15] can still be considered of interest, larger values quickly increase
the effect of h on the drift in a way that resembles a global interaction. Different choices
of h within the range [.025, .075] were tested and showed to provide little qualitative
difference in the results, so we chose the midpoint h = .05. As for the resampling step,
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we let P0 = beta(α, β) be the distribution of new values of the resampled particles. The
model unknown parameters are therefore θ, p, α, β, ε.

To complete the prior specification, we choose a mildly informative prior for the
precision parameter θ in (5) given by the normal density N (20, 20) truncated to positive
values. Not constraining θ to low values can be important in order to accommodate for a
certain degree of smoothness in the curves, if the data require it. At the same time, very
large values for θ are uninteresting if not detrimental, since they force all new particles
in (5) to be sampled from the baseline probability measure P0. This in turn determines a
reversion to the mean effect in the functional time series, going in the opposite direction
of learning about the recent data and propagating the trends. For α and β we choose
uniform priors on [0, 1]. These are informative, since they rule out values greater than 1
and constrain the beta(α, β) cdf to a certain range of shapes between the identity line
and a wide plateau with most of the jumps near the boundaries. This choice is based
on the general shape of the curves, which is similar to those in Figure 7. Finally, we
assign a uniform prior on [0, 1] to p, the proportion of particles resampled at each step,
and a uniform prior on [0, 10] to ε in (2), as values greater than 10 yield a degenerate
behaviour of the curves with all the jumps at the boundaries of the [0, 1] domain.

To assess the regression step in the semi-automatic ABC procedure, we performed
a predictive check diagnostic of the regression model trained on the pilot run. Within
the range of values with significant mass in the prior distribution, the regression model
did not show any particular problem. Concerning the length of the pilot run, note that
the semi-automatic summary statistics obtained after the pilot run are random vari-
ables, feature that grants the semi-automatic ABC posterior the calibration property
(cf. Theorem 1 in Fearnhead and Prangle, 2010). This essentially means that it is enough
to reach a number of points sufficient to correctly fit a regression model, so the only
concern in deciding the length of the pilot run is the robustness of the semi-automatic
summaries. Here we use 3000 iterations for the pilot run. To check for robustness, we
verified that both a double number of iterations and a different starting seed with the
same number of iterations led to the same posterior distributions. For the population
ABC implementation, we used 20000 iterations, which turned out to produce 6 genera-
tions of candidate parameters. A higher number of iterations yields strongly diminishing
returns, e.g. twice as many iterations produce only 2 additional generations. Therefore
we regarded 20000 as a good compromise between computational cost and accuracy of
approximation of the true posterior distributions.

For both the simulation study and the application of Section 5 we used Julia as the
programming language (Bezanson et al., 2017), and the implementation of Algorithm 1
from the Julia package ABCDistances,1 with the above number of iterations.

Figure 2 shows the PMC-ABC posterior densities of the parameters of the autore-
gressive model. The posteriors can be seen to concentrate progressively around the
true values along subsequent generations, only p showing a little bias. Figure 3 shows
pointwise credible regions for the 1-, 4- and 8-step-ahead curve forecasts. For an easier
comparison, we plot forecasts of the same curve at t performed from t−1, t−4, t−8. Here

1Available at https://github.com/dennisprangle/ABCDistances.jl.

https://github.com/dennisprangle/ABCDistances.jl
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Figure 2: Posterior densities of the parameters for the autoregressive model, with line
colours corresponding to successive ABC generations (lines get darker with each it-
eration), together with the true parameter values (vertical solid lines) and the prior
distributions (dashed lines).

Figure 3: 95% pointwise credible intervals for 1-, 4- and 8-step-ahead forecasts of the
darkest solid line, using the two other solid lines. The lighter colour denotes older
data. Prediction are obtained with the basic model (dotted), the autoregressive model
(dashed) and the oracle prediction (dashed-dotted).

the basic model accounts for the data dynamics mostly through volatility, whereas the
autoregressive model, separating drift and volatility, is able to reduce the uncertainty.
This is especially true for the 1-step-ahead forecast, where the difference between the two
models is substantial whereas the difference between the autoregressive model and the
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Figure 4: Posterior predictive densities corresponding to five vertical sections of the left-
most panel of Figure 3 for the basic model (dotted), the autoregressive model (dashed)
and the oracle prediction (dashed-dotted). The forecasts use the two other solid lines.
Lighter colour denotes older data (predicted day - 1 and predicted day - 2).

oracle predictions is moderate. For longer forecast horizons the prediction is challeng-
ing for this dataset, as shown by the width of the oracle prediction intervals. Figure 4
shows 1-step ahead posterior forecast densities for five given locations, corresponding
to vertical sections of the leftmost panel of Figure 3. The autoregressive model provides
forecast densities which are very similar to the oracle prediction, whereas the basic
model proves incapable of accounting for the trend in the data and compensates with
a larger uncertainty. Finally, Figure 5 shows the L2 forecast error as a global measure
of out-of-sample predictive performance, averaged over the PMC-ABC sample and the
test set, as a function of the forecast horizon, for the basic, the autoregressive and the
oracle prediction. The improvement with respect to the basic model is substantial in
comparison with the lowest possible error of the oracle prediction.

5 Forecasting in the Italian natural gas market

5.1 Context

Since the mid 1990s, the European gas market has been gradually converted from a local
to a regional scale market through a series of deregulation measures aiming at creating
a unique, fluid and competitive market at the continental level (Defeuilley, 2009). One
of these measures is the separation of distribution and retail activities, the former being
operated by single national entities subject to strict regulations, while the latter have
been liberalised.
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Figure 5: L2 prediction error for the simulated data, as a function of the forecast horizon
(days), for the basic model (dotted), the autoregressive model (dashed) and the oracle
prediction (dashed-dotted lines).

Here, we consider the Italian natural gas market, where the system recommended
by the EU has been implemented through the Italian Natural Gas Balancing Platform.
Snam, the entity responsible for gas transportation and storage, aims at the daily com-
pensation of the imbalance between the gas injections and the actual consumption by
submitting a demand bid (in case of gas shortage) or a supply offer (in case of gas excess)
on the balancing platform market for a volume equal to the global imbalance. On the
other hand, operators on the gas network submit their own bids and offers according to
their gas or storage availability, at the price at which they deem the operation profitable.
Sorting all bids by increasing price and cumulating the related quantities then provides
the offer and demand curves, which are the price to be paid per gigajoule (GJ) as a func-
tion of the quantity of gas bought or sold. The market is organised such that the intersec-
tion of these curves determines the daily exchange price, and all offers below and all de-
mands above the intersection are accepted and performed at the exchange price. Bidding
decisions are based on the evaluation of the profitability which depends on the predicted
price as a function of the traded volume. To make those decisions, the traders need to
account for the effect of their own next bid, which affects the intersection price. Figure 6
illustrates schematically this point. The main statistical goal in the present context is
therefore to forecast the entire demand and offer curves, which can be used for deriving
price predictions and to evaluate the effect of possible bids on the equilibrium price.

5.2 Model specification and implementation

We focus our analysis on a dataset on the Italian Natural Gas Balancing Platform
consisting of 366 daily demand and offer curves for the leap year 2012. Let x denote
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Figure 6: Illustration of the effect of placing an offer bid of 9·106 gigajoule (GJ) of gas at
5e/GJ (left) or an offer bid of 2 ·106 GJ of gas at 6e/GJ (right) on the exchange price.
Offer bids are first sorted by price and then the related quantities are cumulated so that
the abscissas represent the cumulative quantities of gas. Placing an offer bid at 5e/GJ
(left) or 6e/GJ (right) increases the amount of gas available at that price, shifting the
quantities of gas with higher prices to the right and thus inducing a global shift of the
offer curve. The equilibrium price without intervention is identified by the intersection of
the estimated curves (solid). After the potential offer bids, the new offer curves (dashed)
move also the intersection resulting in a different exchange prices. Changing the amount
and price of the bid, it is possible to modify the exchange price to fit one’s strategies
and needs.

the gas quantity (in GJs) and let t = 1, . . . , 366 index consecutive days. We use the
first 300 for training the algorithm and retain the last 66 as a test set for out-of-sample
prediction. Let Y off

t (x) denote the offer price for the quantity x at day t, and consider
the rescaling

yofft (x) =
1

23
Y off
t

(
x− Lt

Rt − Lt

)
, (8)

where Lt and Rt are respectively the leftmost and rightmost jump location of the curve
on day t. Recall also that the curves are bounded between 0 and 23e/GJ by regulation,
so yofft : [0, 1] → [0, 1]. The demand curves are similarly rescaled and inverted to obtain
a monotone increasing function, denoted by ydemt (x). Figure 7 shows the dataset after
the rescaling.

In 2012, Snam provided very precise estimates of the location of the first (or left-
most) jump of each curve, representing the amount and sign of network imbalance.
Since deviations from this estimate and the true values are negligible, we consider this
parameter as known and fixed. The location of the last (or rightmost) jump is subject
to slightly different constraints than the rest of the curve,2 which makes it relatively in-
dependent from the functional dynamics and the overall shape of the curves. We choose

2If some of the traders are unwilling to sell or buy, they can submit an offer at 23e or a demand
bid at 0e and not perform any transaction.
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Figure 7: Rescaled daily demand (left) and offer (right) curves from the Italian natural
gas market dataset. Darker colours indicate more recent curves.

therefore to model the location of the last jump independently from the rest of the
curve, assuming

rt = ρrt−1 + ε, rt = lnRt+1 − lnRt, ε ∼ N (0, σ2), (9)

where Rt is the rightmost jump of the curve on day t. Prediction is then performed by
combining the predictions of the scaled curves with predictions for the largest jump. We
assign non informative priors ρ ∼ N (0, 1000) and σ2 ∼ I-Ga(0.01, 0.01) where I-Ga de-
notes the inverse gamma distribution. The posterior computation for (9) is performed via
Markov Chain Monte Carlo (MCMC) sampling using Stan (Stan Developement Team,
2015) (details available in the Supplementary Material (Kon Kam King et al., 2018)).

For the curve dynamics, we use the same prior specification as the simulation study.
Namely, we use a locally-autoregressive dependent model of order k = 1, let h = 0.05

and P0 = beta(α, β), and assign priors θ ∼ N (20, 20)1(θ > 0), α, β, p
iid∼ U(0, 1) and

ε ∼ U(0, 10). Models based on 500 and 2000 particles were tested and provided qual-
itatively similar results. The former requires a shorter computational effort, but here
we show the results using the latter, which is still a good compromise between com-
putational efficiency and resolution of the jump sizes. The computing time amounts to
approximately 10 hours on a single laptop core (Intel i-7@2.60GHz, Unix, 16 GB RAM)
for the offer dataset with the autoregressive model. The computations for the offer and
demand datasets are independent and can be run at the same time on different cores.
The pilot runs depend only on the model and can be shared between the offer and
demand set of curves.

As in the simulation study, we compare the predictive performance obtained with
the autoregressive model with those obtained using the basic model when fitted using
the same inferential strategy and setting.

5.3 Results

Figure 8 shows the PMC-ABC posterior densities for the parameters of the autoregres-
sive model and of the basic model. Here we observe that the basic model, lacking a drift
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Figure 8: Posterior densities of the parameters of the autoregressive (top) and of the
basic model (bottom) fitted to the gas data. Darker lines correspond to successive ABC
generations, dashed lines indicate the priors.

Figure 9: 1-, 4- and 8-step-ahead curve forecasts of the 345th day for the Italian gas
market dataset. The solid lines denote the real data, the darkest being the most recent
to be predicted, and pointwise credible intervals are given for the basic (dotted) and
the autoregressive model (dashed).

mechanism (hence the parameter ε), tends to account for the time series dynamics using
volatility, which results in pushing the resampling rate p close to 1. The autoregressive
model is instead able to separate drift and volatility by exploiting the presence of an
additional parameter. Figure 9 shows forecasts of the 345th day curve, performed from
1, 4 and 8 days before, where the autoregressive model gains in terms of predictive
uncertainty with respect to the basic model. This improvement carries over to the one-
dimensional price forecast obtained as the intersection of the demand and offer curves,
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Figure 10: 1-, 4- and 8-step-ahead price forecast using the basic model (dotted lines)
and the autoregressive model (dashed lines), the vertical solid line being the target of
prediction.

which is one of the quantities of interest for the bidders. Figure 10 shows the posterior
1-, 4- and 8-step-ahead prediction densities for the price on the last day of the test set.

An overall picture of the quality of these estimates is provided by summarising mea-
sures of predictive accuracy for the offer data and the price data. Here we consider for
the former the L2 prediction error in the transformed scale and for the latter the root
mean squared error. Both are averaged over the ABC sample and the whole test set, as a
function of the forecast horizon. These are provided in Figure 11 and show an apprecia-
ble improvement over the basic model. The comparison of the two approaches in terms
of forecasting power thus substantially supports the introduction of the drift mecha-
nism. Computation of the continuous ranked probability score (Gneiting and Raftery,
2007) for the price data gave similar results.

6 Discussion and concluding remarks

We have introduced a non Markovian Bayesian nonparametric dependent process for
functional forecasting with locally-autoregressive behaviour that substantially improves
over the model without drift of Canale and Ruggiero (2016) and retains the availability
of all forecast horizons. An aspect of the proposed approach is the presence of two
tuning parameters, the number of particles n and the autoregression bandwidth h. Our
formulation considers the number of particles n not as a model parameter but as a tuning
of the precision for describing the curves shape, similar to retaining a given number of



G. Kon Kam King, A. Canale, and M. Ruggiero 1139

Figure 11: L2 prediction error (left) and root mean squared error (right) as measures
of predictive accuracy for the functional and the price forecasts respectively, as a func-
tion of the forecast horizon. The basic model is denoted by the dotted lines, while the
autoregressive model is denoted by the dashed lines.

digits in a numerical experiment. Although it is tempting to try to deduce a minimum
resolution from all the jump values in the observed time series, new jumps in future
data points may require a different resolution level. Furthermore, a suitable maximum
value for n cannot be determined, as using, say, 2n particles would also satisfy the same
minimum resolution requirement and yield at least as good a prediction. Hence the
value for n should be determined by a compromise between the desired accuracy and
computational cost. Similarly, h is a tuning parameter related to the type of interactions
one wants to model, and its choice could be determined by external factors. In our case,
we observed little sensitivity to the particular value chosen within the interesting range
(cf. Section 4), but in the context of another application choosing h might require a
different approach.

Among potential further developments of the present proposal, one possibility would
be to model jointly the demand and supply curves by means of a bivariate functional
process. This would allow to borrow information on the supply side in order to an-
ticipate changes in the demand side or vice-versa, possibly leading to more accurate
predictions. Operationally, such model could for example be based on an appropriate
specification of the bivariate system of dynamically interacting Pólya urns introduced
in Prünster and Ruggiero (2013), perhaps together with an accordingly more elabo-
rate drift mechanism. Another appealing extension would be to enlarge the model to
account for covariates that provide exogenous information, such as, for example, spe-
cific financial indices and seasonal/meteorological variables known to be correlated with
the traded quantities/prices (Rossini and Canale, 2018). These tasks will be pursued
elsewhere.



1140 Bayesian Functional Forecasting with Locally-AR Processes

An interesting specificity of our inferential strategy is that it could accommodate
quite naturally online learning when small amounts of new data become available at
successive times. Extending previously simulated time series by a few steps to match the
new length is computationally cheap. All simulations can then be recycled in the semi-
automatic summary selection step, including those used in the accept-reject algorithm.
Summaries should be re-computed, but the operation is much faster than the data
simulation. Furthermore, one could start the population Monte-Carlo from a proposal
density given by the posterior distribution conditional on the previous batch of data.
Then the overall posterior update in light of the new data should be reasonably faster
than running the inference anew.

Supplementary Material

Supplementary Material for “Bayesian functional forecasting with locally-autoregressive
dependent processes” (DOI: 10.1214/18-BA1140SUPP; .zip). The Supplementary Ma-
terial contains code and data to reproduce the results of Sections 4 and 5.
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