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Dynamic Bayesian Influenza Forecasting
in the United States with Hierarchical

Discrepancy (with Discussion)

Dave Osthus∗, James Gattiker†, Reid Priedhorsky‡, and Sara Y. Del Valle§

Abstract. Timely and accurate forecasts of seasonal influenza would assist public
health decision-makers in planning intervention strategies, efficiently allocating re-
sources, and possibly saving lives. For these reasons, influenza forecasts are conse-
quential. Producing timely and accurate influenza forecasts, however, have proven
challenging due to noisy and limited data, an incomplete understanding of the
disease transmission process, and the mismatch between the disease transmission
process and the data-generating process. In this paper, we introduce a dynamic
Bayesian (DB) flu forecasting model that exploits model discrepancy through a
hierarchical model. The DB model allows forecasts of partially observed flu sea-
sons to borrow discrepancy information from previously observed flu seasons. We
compare the DB model to all models that competed in the CDC’s 2015–2016 and
2016–2017 flu forecasting challenges. The DB model outperformed all models in
both challenges, indicating the DB model is a leading influenza forecasting model.

Keywords: probabilistic forecasting, hierarchical modeling, discrepancy,
influenza.

1 Introduction

Influenza is a respiratory illness caused by the influenza virus that hospitalizes hun-
dreds of thousands of people and affects millions in the United States annually (Rolfes
et al., 2016). Influenza also poses a significant burden on the U.S. economy through
hospitalization costs and lost productivity from missing work (Molinari et al., 2007).
Flu surveillance is a collaborative effort between the Centers for Disease Control and
Prevention (CDC) and many state and local healthcare providers, clinics and emergency
rooms (Centers for Disease Control and Prevention, 2016b). Monitoring the prevalence
and geographic distribution of the flu is critical for targeted flu prevention strategies,
such as vaccination campaigns and public education programs.

In addition to flu monitoring, the CDC is also interested in flu forecasting. To better
understand flu forecasting capabilities and to improve their usefulness to public health
decision-makers, the CDC organized the first national flu forecasting competition in
2013 (Biggerstaff et al., 2016). Participation in the challenge included over a dozen
models. The CDC defined forecasting targets relevant to public health decision-maker.
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These targets included the onset of the flu season, as well as the peak timing (PT) and
peak intensity (PI) of the flu season. One-to-four week ahead forecasts (i.e., short term
forecasts) were added as targets for the 2014–2015 challenge. From the 2013–2014 flu
forecasting challenge, the CDC concluded that though flu forecasting is possible, much
work remains. Flu forecasting is in its infancy and a concentrated effort to improve
forecasting capabilities is needed in order for forecasts to be practically useful. The
CDC has continued to organize an annual flu forecasting competition since the inaugu-
ral 2013–2014 challenge as a continuing effort to scope flu forecasting capabilities and
provide an environment for collaboration and iterative improvement.

Nsoesie et al. (2014) and Chretien et al. (2014) provide reviews of the flu fore-
casting landscape.1 Flu forecasting models can be broadly categorized into four groups:
mechanistic models, agent-based models, machine learning/regression models, and data-
assimilation/dynamic models.

• Mechanistic models are differential-equation model descriptions of the disease
transmission mechanism. They include a class of models referred to as compart-
mental models that partition a population into compartments and mathematically
describe how individuals in the population move between compartments (e.g.,
Towers and Feng, 2009).

• Agent-based models simulate a population that mimics a real population us-
ing, for example, U.S. Census data to match various aspects of the simulated
population to a real population (e.g., demographic information). The disease is
then propogated via simulation through the simulated population and used to ap-
proximate the transmission of disease through a real population (e.g., Mniszewski
et al., 2008; Grefenstette et al., 2013).

• Machine learning/regression models are models that learn patterns in his-
torical flu outbreaks and leverage those patterns for forecasting new flu seasons.
This group includes such approaches as statistical time series (e.g., Soebiyanto
et al., 2010), linear or regularized regression (e.g., Bardak and Tan, 2015), clus-
tering (e.g., Viboud et al., 2003), and nonparametric approaches (e.g., Brooks
et al., 2015). The machine learning/regression model approach to flu forecasting
is often characterized by the absence of a mechanistic model.

• Data-assimilation/dynamic models usually involve embedding a mechanistic
model into a probabilistic framework, allowing for the explicit modeling of the
disease transmission process and observational noise (e.g., Osthus et al., 2017;

1Apart from the disease forecasting literature, much work has gone into parameter estimation in
the context of embedding mechanistic compartmental models into a statistical framework (e.g., Boys
et al., 2008; Pokharel and Deardon, 2016; Angulo et al., 2012; Jandarov et al., 2012, 2014). Pokharel
and Deardon (2016) and Angulo et al. (2012) discuss approximations to the likelihood to improve com-
putational efficiency, while Jandarov et al. (2012) use an approximate Bayesian computation approach
in the context of parameter estimation. Jandarov et al. (2014) adds a discrepancy function in the form
of a Gaussian process to improve parameter estimation interpretability for the purposes of answering
scientifically meaningful questions. Our work deviates from all previously mentioned in that forecasting
real-world data, not parameter estimation or interpretation, is our exclusive interest.
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Hickmann et al., 2015; Shaman et al., 2013; Dukic et al., 2012). That is, the
dynamic modeling approach combines two sources of uncertainty in the modeling;
parametric uncertainty in the mechanistic model and random uncertainty in the
observations.

Our modeling approach extends the data assimilation/dynamic modeling approach
and can be viewed as a combination of the machine learning/regression approach and
the data assimilation/dynamic modeling approach. Our model, referred to as a dynamic
Bayesian (DB) model, explicitly accounts for systematic deviations between the mech-
anistic model and the data that are unable to be explained by pure observational noise.
This systematic deviation is referred to as model discrepancy and is modeled with a
flexible, statistical model. Discrepancy modeling is an often used and effective modeling
approach in the field of computer experiments, where systematic deviations between
mechanistic models and data can be common (e.g., Kennedy and O’Hagan, 2001; Ba-
yarri et al., 2007; Higdon et al., 2008; Brynjarsdóttir and O’Hagan, 2014).

Including a discrepancy model is an appealing way to account for the systematic
inadequacy of the mechanistic model. The basic insight leading to the inclusion of a
discrepancy model in our DB model is that the disease transmission model and the
data-generating model are not equivalent. Disease transmission is merely a component
of the data-generating process. Thus, even if a mechanistic model were able to accurately
identify the disease transmission process, there may still be a systematic discrepancy be-
tween the disease transmission model and the data, introducing a source of uncertainty
unable to be accounted for by observational noise alone.

Though effective for data fitting, discrepancy modeling can make extrapolation (i.e.,
forecasting) challenging due to potential overfitting (Bayarri et al., 2007). As opposed
to previous Bayesian flu modeling approaches where flu tracking and parameter esti-
mation were of interest (e.g., Coelho et al., 2011; Dukic et al., 2012), our exclusive
interest is forecasting. Thus, discrepancy modeling must be done with care. We address
the discrepancy/forecasting issue by modeling the discrepancy hierarchically across all
flu seasons. This allows us to borrow common discrepancy structure observed in past
seasons in the forecasting of the flu for the current season. The hierarchical discrepancy
model thus serves as a balance between the flexibility needed to match the statistical
model to data and the structure needed to make useful and valid forecasts.

This paper makes contributions and advances in the following ways. 1) We introduce
and demonstrate the importance of discrepancy modeling to the growing and conse-
quential field of flu forecasting. Discrepancy modeling is done hierarchically, allowing
information to be shared across available flu seasons. 2) We demonstrate the superi-
ority of our approach relative to all models that competed in the CDC’s 2015–2016
and 2016–2017 flu forecasting challenges, providing yet another instance where discrep-
ancy modeling is not only conceptually appealing but also practically effective. 3) In
an effort to advance flu forecasting capabilities, much effort has been spent identify-
ing possibly useful, nontraditional data sources such as Google (Ginsberg et al., 2009)
and Wikipedia (Generous et al., 2014). Alternatively, as we demonstrate, flu forecasting
can be improved through carefully made modeling choices, making use of the available
traditional data hierarchically.
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The paper is laid out as follows. In Section 2, we present the data. In Sections 3 and 4,
we present the mechanistic model and statistical DB model, respectively. We investigate
and assess the DB model in Sections 5.1 and 5.2, respectively. The DB model is compared
to all participating models in the 2015–2016 and 2016–2017 flu forecasting challenges
organized by the CDC in Section 5.3. We conclude with a discussion in Section 6.

2 Data

The CDC performs influenza surveillance in the United States via a multitude of surveil-
lance efforts including virologic, outpatient, mortality, and hospitalization surveillance
systems (Centers for Disease Control and Prevention, 2016b). In this paper, we focus
exclusively on outpatient illness surveillance. Symptomatic information on patient visits
to healthcare providers is collected through the United States outpatient influenza-like
illness surveillance network (ILINet). ILINet is a collection of almost 3,000 healthcare
providers across the United States. These participating healthcare providers supply in-
formation to the CDC regarding the number of patients seen for any reason and the
number of patients seen with a diagnosed influenza-like illness on a weekly basis. An
influenza-like illness is defined as a temperature greater than or equal to 100 degrees
Fahrenheit and a cough or sore throat with no known cause other than influenza. It
is important to note an influenza-like illness diagnosis and an influenza diagnosis are
not equivalent. Many diseases have flu-like symptoms prior to fully developing such
as measles, rubella, tuberculosis, food poisoning, dengue, and malaria. ILINet is ill-
equipped and not designed to discriminate between the flu and diseases with flu-like
symptoms. A flu diagnosis requires some form of laboratory test. We model and fore-
cast influenza-like illness in this paper.2

The CDC aggregates, organizes, and ultimately releases influenza-like illness infor-
mation to the public weekly throughout the year at both the national and health and
human service region levels (Health and Human Services, 2015). In this paper, we focus
exclusively on national level influenza-like illness surveillance. The proportion of the
population with an influenza-like illness is estimated by the CDC with the quantity
weighted influenza-like illness (wILI) where wILI is, “the percentage of patient visits to
healthcare providers for influenza-like illness reported each week weighted on the basis
of state population”, (Centers for Disease Control and Prevention, 2016b).

Figure 1 shows wILI for seasonal influenza from 1998 through 2015, excluding the
pandemic H1N1 flu seasons 2008 and 2009. We focus on seasonal influenza rather than
the more severe and substantially less frequent pandemic flu seasons as seasonal and
pandemic flu transmission dynamics are appreciably different. Seasonal flu outbreaks

2In the description of the statistical model in Section 4, we are somewhat loose about the influenza-
like illness versus influenza distinction. Shaman et al. (2013) proposed a scaling factor that multiplies
ILI by the proportion of ILI patients testing positive for influenza as a better estimate of the proportion
of influenza infectiousness in the population. We do not make use of this scaling factor in the statistical
modeling that follows because our exclusive interest is forecasting, not parameter inference or scientific
interpretation, and our statistical model has sufficient flexibility to account systematic differences be-
tween the mechanistic model outlined in Section 3 and the data. However, if model interpretation was
of interest, such a scaling factor could be useful.
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Figure 1: Weighted influenza-like illness for flu seasons 1998 through 2015, sans H1N1
seasons 2008 and 2009. Grey lines correspond to flu season trajectories. Week 1 is roughly
the first week of October, while week 35 is roughly the last week of May. The black points
are located at the peak timing (x-axis) and peak intensity (y-axis) of their respective flu
season. Peak timing occurs between week 13 (roughly the end of December) and week
24 (roughly the middle of March).

have a relatively predictable profile, as can be seen in Figure 1. The population often
has partial immunity to the circulating virus(es) of seasonal influenza and it occurs
nearly ever year in the United States. Pandemic influenza follows much less predictable
transmission patterns, due in part to the relatively low immunity in the population to
the new, yet to be seen strain of influenza. As a result, pandemic influenza is typically
non-recurring. There have been four instances of pandemic influenza since 1900: 1918,
1957, 1968, and 2009 (Centers for Disease Control and Prevention, 2016c).

A typical flu season begins in October and lasts until as late as May, thus, the 1998
flu season refers to the season starting in 1998 and ending in 1999. In this paper, flu
season week 1, referred to as “week 1”, corresponds to Morbidity and Mortality Weekly
Report (MMWR) week 40. MMWR is a common epidemiological dating system used
for reporting purposes (Centers for Disease Control and Prevention, 2016a). Week 1
roughly corresponds to the first week of October while week 35 roughly corresponds to
the last week of May.

In Figure 1, the point corresponds to the peak timing (PT) and peak intensity (PI)
of each flu season. We see most flu seasons either peak early (six flu seasons peaked on
week 13 – roughly the end of December) or late (nine flu season peaked between week 18
and 24 – roughly the beginning of February through the middle of March), with the 2000
flu season peaking during week 16. All flu seasons in Figure 1 exhibit a similar pattern;
wILI is low at the beginning of the flu season, increases to a maximum in the middle
of the flu season, and reverts to low levels by the end of the flu season. Though each
season shares this general pattern, heterogeneity exists between flu seasons. Some flu
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Figure 2: (Left) Weighted influenza-like illness (solid line) for each season and the av-
erage weighted influenza-like illness for all other flu seasons (dashed line). Seasons are
ordered from top, left to bottom, right by decreasing mean-squared error (MSE). (Right)
The MSE between each flu season and the average of the other flu seasons. Flu seasons
2003, 1998, and 1999 are the most “atypical” flu seasons.

seasons appear to deviate from “typical” flu seasons more than others. This observation
is illustrated in Figure 2. Flu seasons 1998, 1999, and 2003 most significantly deviate
from “typical” as calculated by the mean-squared error (MSE) between each flu season
and the week-specific average of all other flu seasons. Other flu seasons, such as 2005,
2006, and 2010 are the most “typical” by this same measure.

3 Susceptible-Infectious-Recovered Model

The susceptible-infectious-recovered (SIR) model was introduced in the seminal work of
Kermack and McKendrick (1927) and is considered the foundation for modern public
health (Weiss, 2013). The SIR model is a mechanistic model that describes how an
infectious disease spreads through a closed population via the following set of nonlinear,
ordinary differential equations:

dS

dt
= −βSI,

dI

dt
= βSI − γI,

dR

dt
= γI, (1)

where β > 0 is the disease transmission rate, γ > 0 is the recovery rate, and 1/γ is
the average infectious period. Under the SIR model, individuals in the population are
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partitioned into three mutually exclusive and exhaustive compartments: a susceptible,
infectious, and recovered compartment. The SIR model describes the rate at which
individuals move from being susceptible to infectious and finally recovered. S, I, and R
in (1) represent proportions of the population, such that S + I + R = 1 for all times.
An example of an SIR trajectory is shown in Figure 3.

Figure 3: Solution to a susceptible-infectious-recovered model with S0 = 0.9, I0 = 0.005,
R0 = 0.095, γ = 0.55, and β = 0.8, where S0, I0, and R0 are the proportions of the
population susceptible, infectious, and recovered from the disease at time 0.

The trajectories of the susceptible and recovered SIR compartments are monotoni-
cally non-increasing and non-decreasing, respectively. All SIR infectious trajectories can
be partitioned into two designations: epidemics and non-epidemics. These designations
are completely determined by the relationship between S0, the proportion of the pop-
ulation initially susceptible to the disease, and ρ, where ρ = γ/β (Weiss, 2013). An
epidemic designation occurs when S0/ρ > 1, where S0/ρ is the effective reproductive
number. An epidemic graphically corresponds to an infectious trajectory that monoton-
ically increases to a maximum followed by a monotonic decrease to zero as time goes
to infinity. The infectious trajectory shown in Figure 3 is an epidemic. A non-epidemic
designation occurs when S0/ρ ≤ 1, graphically meaning the infectious trajectory mono-
tonically decreases from I0, the proportion of the population initially infectious with
the disease, to zero as time goes to infinity. As can be seen in Figure 1, every flu season
we consider exhibits the general shape of an epidemic, where wILI is low at week 1 of
the flu season, increases to a maximum between weeks 13 and 24, and declines to low
levels by week 35.

Figure 4 plots the best fit SIR trajectory and wILI for each flu season constrained to
S0 = 0.9. Setting S0 = 0.9 is an identifying constraint, as an SIR solution is effectively
unidentifiable when only data related to the infectious trajectory is available (Capaldi
et al., 2012). Estimating S0, rather than fixing it, would require additional data related
to non-infectious compartments of the SIR model. We see the SIR trajectories match
the general shape of wILI. These trajectories do not, however, replicate some of the
more nuanced structure of wILI. For instance, some seasons exhibit a double peak (e.g.,
2002, 2005, 2006, and 2011). The SIR model, however, is incapable of capturing two
peaks within a flu season; it can only capture one. Another interesting feature of wILI
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Figure 4: Fitted susceptible-infectious-recovered model (black curve) to weighted
influenza-like illness (grey) by flu season. The black line segment denotes the systematic
decline in weighted influenza-like illness from week 13 to week 14 in all flu seasons.

happens at weeks 13 and 14. In every flu season, wILI on week 13 is larger than wILI
on week 14. For some flu seasons, this downturn in wILI from week 13 to 14 signifies
the peak of the flu season; flu seasons 1999, 2003, 2005, 2012, 2013, 2014 all peak on
week 13. For the other flu seasons, however, the decline in wILI from week 13 to week
14 does not signify the peak of the flu season as they all exhibit peaks later in the
season. It is not known exactly why wILI reliably declines from week 13 to 14, though
explanations have been posited, such as a change in disease transmission during winter
holidays (Ewing et al., 2016; Garza et al., 2013; Huang et al., 2014). For the purposes
of forecasting wILI, what is important is that the decline in wILI from week 13 to 14 is
reliable and unable to be captured by the SIR model.

Figure 5 plots the residuals between wILI and the fitted SIR curves for all flu seasons
in Figure 4, referred to as discrepancy trajectories, along with the average discrepancy
trajectory. Figure 5 articulates the systematic deviations between best fit SIR trajec-
tories and wILI. The SIR model tends to under estimate wILI near weeks at the start
(week 1), end (week 35), and peak (weeks 13 and 20) of the flu season, while systemat-
ically over estimating wILI near weeks 10, 15, and 27.

Figure 4 suggests describing wILI with even the best fitting SIR model is inadequate.
Furthermore, Figure 5 suggests the discrepancy between the best fit SIR model and
wILI cannot plausibly be described by random error alone as there is structure across
both seasons and time in the discrepancy. In the next section, we present the dynamic
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Figure 5: Discrepancy trajectories for all flu seasons are denoted by grey lines. The black
line is the average discrepancy trajectory. Discrepancy tends to be greater than zero and
the beginning (week 1), peak (weeks 13 and 20), and end of the season (week 35).

Bayesian model which incorporates both the SIR model and the structured discrepancy
hierarchically for the ultimate purpose of forecasting future wILI.

4 Dynamic Bayesian Model

In this section, we describe the various components of the DB model, broadly partitioned
into the data model (Section 4.1) and the process model (Section 4.2).

4.1 Data Model

Let yj,t be wILI for flu season j = 1998, . . . , 2007, 2010, . . . , 2015 during week t =
1, 2, . . . , T where T = 35. We model the proportion yj,t as

yj,t ∼ Beta(λπj,t, λ(1− πj,t)), (2)

where πj,t ∈ [0, 1] for all j and t is the true but unobservable proportion of the population
with an influenza-like illness. The mean and standard deviation for yj,t are

E(yj,t) = πj,t, (3)

SD(yj,t) =

(
πj,t(1− πj,t)

1 + λ

)0.5

. (4)

Equation 2 assumes yj,t is unbiased for πj,t. The concentration parameter λ governs the
standard deviation of yj,t. That is, λ governs the random variability of yj,t caused by such
things as sampling variability, ILI diagnosis errors, and reporting variability. For a given
λ, the standard deviation increases with increasing πj,t in the range 0 to 0.5. Increasing
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random variability with increasing levels of πj,t is a desired feature other models have
attempted to mimic through ad hoc means (e.g., Shaman and Karspeck, 2012). The
Beta distribution is able to capture this feature naturally. The random variability is
not expected to vary across flu seasons and is poorly learned from the data. For these
reasons, we set λ = 4,500, which we found to yield good predictions. Alternatively,
λ could have been chosen via cross-validation. The choice of λ was motivated by the
method of moments, where πj,t in (4) was set equal to the average of the training ILI on
week T and the standard deviation of yj,T was computed using the method of moments
for the training data. This choice of λ implies the standard deviation of yj,t is 0.0025
when πj,t is equal to 0.03 and yj,t is 0.0035 when πj,t is equal to 0.06.

4.2 Process Model

We model the logit of the true but unobservable proportion of influenza-like illness, πj,t,
as the sum of three components,

logit(πj,t) = logit(Ij,t) + μt + δj,t. (5)

Equation 5 decomposes logit(πj,t) into an SIR model component logit(Ij,t), a discrep-
ancy component common to all flu seasons μt, and a discrepancy component specific to
each flu season δj,t. The SIR model component represents the component of πj,t that can
be described by the SIR model. Ideally, logit(Ij,t) would describe all of logit(πj,t) imply-
ing the discrepancy terms are zero. On the basis of Figure 4, though, we know the SIR
model cannot capture all the relevant features of yj,t and by extension, πj,t. Thus, the
common discrepancy component μt captures systematic differences between logit(πj,t)
and logit(Ij,t) shared by all flu seasons. We anticipate there is discrepancy structure
common to all flu seasons on the basis of the non-zero, average discrepancy trajectory
in Figure 5. The flu season-specific discrepancy term, δj,t, captures the component of
logit(πj,t) unexplained by logit(Ij,t) and μt. Again, we anticipate season-specific discrep-
ancy is needed on the basis of the season-specific discrepancy trajectories in Figure 5.
In what follows, we specify the statistical models for each of the components of (5).

Model for logit(Ij,t)

We model Ij,t, the infectious proportion of the population according to the SIR model
for flu season j during week t, as the solution to (1). An explicit formula solution to (1),
however, is unavailable. Thus, a numerical approximation method is used. We follow
Osthus et al. (2017) and use the fourth order Runge–Kutta approximation method
(RK4) to approximate the solution to the SIR model. The details of the RK4 method
can be found in the accompanying supplementary material (Osthus et al., 2018). The
RK4 approximation method is known to be more stable than the simpler Euler’s method;
a result we have also found to be true.

The quantity Ij,t is completely determined once Sj,0, Ij,0, Rj,0, γj , and βj are speci-
fied. We set Sj,0 = 0.9 for all j following Osthus et al. (2017) as there is little information
to learn about the susceptible and recovered trajectories of the SIR model from only
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Figure 6: Parameter estimates for the best fit susceptible-infectious-recovered models
corresponding to each flu season in Figure 4 (black) and 1,000 draws from the truncated
Gaussian prior for Ij,0, βj , and ρj (grey).

wILI (Capaldi et al., 2012). Setting Sj,0 = 0.9 is, thus, an identifiability constraint. We
assign an informative prior to Ij,0, βj and ρj via empirical Bayes by fitting a multivari-
ate Gaussian distribution to the parameter estimates of the fitted SIR models shown in
Figure 4 and truncating to respect known and/or assumed boundary constraints. SIR
parameter estimates and draws from the prior are shown in Figure 6. The truncation
for Ij,0 is (0, 0.1) ensuring that Ij,0 is positive and Sj,0 + Ij,0 ≤ 1. To maintain mass
balance, we set Rj,0 equal to 1 − Sj,0 − Ij,0. The truncation for βj is (0,∞) ensuring
it is positive. The truncation for ρj is (0, .9), ensuring it is positive and less than Sj,0,
thus restricting the SIR model to be an epidemic. We find the upper bound truncation
on ρj helps with numerical stability in our posterior sampling in addition to aligning
with our expectations for the shape of the SIR infectious trajectory.

We emphasize that the ultimate goal of the model is to predict future observations of
wILI for a completely or partially unobserved flu season where data are not yet available.
Data from partially observed flu seasons are not used in the prior specification of Ij,0,
βj , and ρj . For example, if the model is forecasting wILI for flu season 2015, then SIR
parameter estimates from all non-2015 flu seasons are used to estimate the parameters
for the prior on Ij,0, βj , and ρj .

The prior for Ij,0, βj , and ρj assumes that the best fitting SIR model for a completely
or partially unobserved flu season comes from the same distribution as the best fitting
SIR models for completely observed seasons. That is, we have an informative prior about
the initial conditions and parameters of the best fitting SIR model prior to observing
any data. We believe this is a reasonable assumption for the task of forecasting seasonal
influenza. This, however, would be a questionable assumption for the task of forecasting
a less predictable and non-recurrent disease, such as pandemic influenza.

Model for μt

The discrepancy process μt captures the systematic discrepancy common to all flu sea-
sons and is what allows the forecasts of a partially observed season to borrow discrepancy
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information from other flu seasons. We specify the μt process as a reverse-random walk.
Specifically,

μT ∼ N(0, σ2
μT

), (6)

μt|μt+1 ∼ N(μt+1, σ
2
μ). (7)

The random-walk specification is a way to impose temporal structure to the common
discrepancy model as μt depends on μt+1. The reverse random-walk specification is
related to how wILI is released. Within a flu season, wILI is first available for week 1,
then week 2, and so forth. As a result, we are always forecasting the end of the flu season
and seldom the beginning of the flu season. From Figure 1, it is clear that the end of the
flu season is relatively well-behaved and predictable as compared to the middle of the
flu season. That is, though there is considerable uncertainty regarding the trajectory
wILI will take, there is much less uncertainty regarding wILI’s destination on week 35.
A reverse-random walk helps bridge the gap between the last wILI observation and the
end of the flu season. That is, the data observed at the beginning of the flu season
imposes a constraint on the early part of the model while the reverse random-walk
modeling assumption provides a constraint on the end of the flu season, restricting the
spread of plausible trajectories. A reverse random-walk has been used with success in
other forecasting contexts, such as presidential election forecasting (Linzer, 2013).

We assigned the following priors to the precisions of (6) and (7):

σ−2
μT

∼ Gamma(2, 2), σ−2
μ ∼ Gamma(2, 0.02). (8)

The priors reflect a belief that σμT
will be larger than σμ, as we expect the changes

for μt at adjacent time points to be small relative to our uncertainty in the value
of μT . The relative difference in these priors was motivated by these considerations.
The specific hyperparameters, however, were chosen somewhat by trial and error based
on the visual plausibility of realizations drawn from the prior predictive distribution.
Though our choices yielded good forecasts (see Section 5.3), hyperparameter selection
might be better optimized via cross-validation over the training data.

Model for δj,t

We would like to explain logit(πj,t) with logit(Ij,t) and μt if possible. Figure 5, however,
suggests this is not possible and thus the model will likely benefit from a season-specific
discrepancy term, δj,t. The introduction of δj,t creates an issue with model identifiability.
As an identifying constraint, we set

δj,T = −logit(Ij,T ). (9)

The constraint in (9) implies,

yj,T ∼ Beta(λlogit−1(μT ), λ(1− logit−1(μT ))), (10)
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as πj,T = logit−1(μT ). That is, the data model for wILI on week T is a function of μT ,
the discrepancy component common to all flu seasons, and λ, the parameter governing
the random variability of the data model.

We impose temporal structure on δj,t and encourage it to be close to zero for all
t �= T by modeling δj,t with the following autoregressive, reverse random-walk:

δj,t|δj,t+1 ∼ N(αjδj,t+1, σ
2
δ,j). (11)

The autoregressive parameter αj ∈ [0, 1] encourages δj,t to be close to zero. As with
μt, the random-walk structure for δj,t imposes a temporal dependence, as δj,t depends
on δj,t+1. The reverse random-walk allows for easy incorporation of the identifying
constraint in (9).

Both αj and the variance σ2
δ,j are modeled hierarchically. The model for αj is,

logit(αj) ∼ TN(logit(0.02),logit(0.98))(logit(0.9), σ
2
α), (12)

σα ∼ Gamma(2, 2), (13)

where TN(logit(0.02),logit(0.98)) is a truncated Gaussian distribution, truncated between
logit(0.02) and logit(0.98). The truncation improved numerical stability of the posterior
sampler. The mean in (12) reflects our prior belief that αj is near 0.9 for all j. Note that
if αj = 0, then (11) has no random-walk structure, as each δj,t is modeled as a mean
0 Gaussian distribution with a season-specific variance. Said another way, the closer αj

gets to zero, the less temporal structure exists in the season-specific discrepancy process.

Finally, we assign the following hierarchical prior to the precisions of the season-
specific discrepancy model, σ−2

δ,j :

σ−2
δ,j ∼ Gamma(aδ, bδ), (14)

where aδ ∼ Gamma(5, 1) and bδ ∼ Gamma(1, 10). The parameter σ−2
δ,j is a flexibility

parameter. The smaller σ−2
δ,j becomes (or equivalently, the larger the variance σ2

δ,j be-
comes), the more flexible δj,t becomes. Thus, we expect flu seasons that more acutely de-
viate from “typical” wILI behavior to require larger variances, σ2

δ,j , than more “typical”

flu seasons. The hierarchical specification for precisions σ−2
δ,j allows the estimation of σ−2

δ,j

for a partially observed flu season to borrow information from fully observed flu seasons.

5 Results

In practice, the DB model is updated each week when new wILI data becomes available.
We take a “leave-one-season-out” approach to model assessment, where we make use of
all available data from the seasons not being forecasted as well as all of the observed
data from the season being forecast. We refer to each model fit with a “Season.Week”
naming convention. Model “Season.Week” refers to a model fit to all observations from
flu seasons not equal to “Season” and all observations in “Season” from week 1 through
week “Week”. For example, model 2015.3 is a model fit to all wILI observations not
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in flu season 2015 plus weeks 1 through 3 of 2015 (recalling flu season 2015 means the
2015–2016 flu season). Forecasting model 2015.3 means forecasting the unobserved data
for weeks 4 through 35 of flu season 2015.

The posterior is not known in closed form, thus we sample from it via Markov chain
Monte Carlo (MCMC). The posterior sampling of the DB model was performed using
the rjags package (Plummer, 2016) within the R programming language (R Core Team,
2016), which calls the software “Just Another Gibbs Sampler”, or JAGS (Plummer,
2003). JAGS queries a set of internal samplers based on the specification of the model.
The internal samplers can be highly catered to specific models or highly generic (e.g.,
slice sampling) for any model specified as a directed acyclic graph. For more details, we
direct the reader to the JAGS user manual (Plummer, 2017).

Model parameter convergence was checked for the 2015.3 model by running four
chains for 100,000 iterations, throwing away the first half as burn-in and thinning every
20th iteration, resulting in four chains each of length 2,500. We assessed MCMC con-
vergence for all latent quantities of the model with the Gelman–Rubin diagnostic, R̂
(Gelman and Rubin, 1992). R̂ was computed using the gelman.diag() function in the
coda package (Plummer et al., 2006). All R̂s were less than 1.1, suggesting no evidence
for lack of convergence. For all other models, we ran one chain for 50,000 iterations,
throwing away the first half as burn-in and thinning every 10th iteration, resulting in
a chain of 2,500. Running the chain for 50,000 iterations takes approximately 10 to 15
minutes on a MacBook Pro with a 2.8 GHz Intel Core i7 processor.

In Section 5.1, we illustrate how the model is updated each week for the 2015 flu
season and discuss the different model components. We assess the model for all seasons
in the context of predictive empirical coverage in Section 5.2. Finally, in Section 5.3, we
compare the DB model’s forecasting accuracy to the 14 and 30 flu forecasting models
that participated in the CDC’s 2015–2016 and 2016–2017 flu forecasting challenges,
respectively.

5.1 DB Model Fit to the 2015–2016 Flu Season

Models 2015.3 through 2015.30, inclusively, were fit mimicking the sequential model
fitting for an entire flu season. Weeks 3 and 30 roughly correspond to the forecasting
window used in the CDC flu forecasting challenge. Figure 7 shows the posterior pre-
dictive mean and 95% point-wise posterior predictive intervals for select model fits.
Predictive uncertainty is largest when forecasts are made early in the flu season, but
gradually diminishes throughout the flu season as more data are observed and incorpo-
rated into the model fitting. Forecasts early in the flu season reflect the bimodal nature
of peak timing in the non-2015 flu seasons. That is, the forecasts for 2015 suggests there
could either be an early peak to the flu season at week 13, or the peak could occur later
around week 20. The average forecast exhibits a sharp decline from week 13 to week 14,
reflecting the decline in wILI from week 13 to week 14 in all non-2015 seasons (recall
Figure 4). The reason the forecast exhibits bimodality is because of the hierarchical
discrepancy model. Importantly, the empirical coverage for the 95% nominal predictive
intervals for all 2015.3 through 2015.30 model forecasts was 95.2%. Empirical coverage
will be discussed more in Section 5.2.
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Figure 7: Forecasts for the 2015 flu season. The panel label number denotes the “Week”
of the “2015.Week” model fit. Black, hollow circles denote observed data. Grey bands
denote 95% point-wise posterior predictive intervals for unobserved data while the black
line is the posterior predictive mean. Black, solid circles denote unobserved data that fell
within the 95% point-wise posterior predictive intervals. Black ‘X’s denote unobserved
data that fell outside the 95% point-wise posterior intervals. The empirical 95% coverage
for all forecasts in 2015 was 95.2%.

The 95% point-wise posterior predictive intervals corresponding to the model com-
ponents of (5) are presented in Figure 8 for various weeks of the 2015 flu season. In the
second row of Figure 8, we see the SIR component of the model approximates wILI. As
more observations are incorporated into the analysis, the infectious trajectory better
approximates the data. Though the infectious trajectory approximates the data, it is
unable to match it exactly (as expected). Thus, there is a non-zero discrepancy, captured
by μt + δ2015,t and plotted in the third row of Figure 8. When the average infectious
trajectory underestimates the data, the discrepancy μt+δ2015,t is greater than zero and
vice versa. The discrepancy, thus, compensates for the inadequacies of the infectious
trajectory. The point-wise 95% posterior interval for μt + δ2015,t is typically larger for
weeks corresponding to unobserved data than weeks for observed data.

The discrepancy μt + δ2015,t is further decomposed into the common discrepancy
μt and season-specific discrepancy δ2015,t in the fourth and fifth rows of Figure 8, re-
spectively. The posterior mean and 95% point-wise posterior interval for μt is relatively
unchanged for all model fits in Figure 8. This is because μt is common to all seasons,
meaning the complete data from all 15 non-2015 flu seasons are informing the esti-
mate of μt. The incremental increase in data added to the analysis for season 2015 is
a relatively small proportion of the total data informing μt. We also see the estimate
of μt captures the discrepancy bump between weeks 10 and 15. Finally, note that the
posterior mean and 95% posterior interval for μT is roughly -4.56 (-4.64, -4.47) for all
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Figure 8: Posterior predictive distribution for future weighted influenza-like illness
(wILI) (top row) and posterior distributions for the various components of (5) (rows 2
through 5) for models 2015.5, 2015.10, 2015.15, 2015.20, 2015.25, and 2015.30 (columns
from left to right). In the top row, hollow, black circles are observed wILI. Solid, black
circles are unobserved wILI that fell within the 95% predictive band. Black ‘X’s are
unobserved wILI that fell outside the 95% predictive band. In the second row, hollow,
black circles are observed wILI and solid, black circles are unobserved wILI. In all rows,
the black line and grey bands represent the posterior mean and 95% point-wise posterior
interval for the row-specific quantity, respectively.
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models displayed in Figure 8. The mean of logit(yj,T ) for all non-2015 seasons is -4.59.
The identifying constraint of (9) effectively sets μT equal to the average of logit(yj,T ),
as supported by these results.

The season-specific discrepancy term, δ2015,t, does change throughout the season, as
it is capturing the season-specific discrepancy unaccounted for by the common discrep-
ancy and infectious trajectory. Also by the identifying constraint of (9), δ2015,T is set
to -logit(I2015,T ). δ2015,t gradually reverts to near zero from week T to week 1, as was
encouraged by (11) and (12).

Figure 9 displays the posterior credible intervals for σδ,j , the evolution standard
deviation of the season-specific discrepancy trajectory. The larger the evolution standard
deviation, the more flexible δj,t is. Greater flexibility for δj,t is needed for seasons whose
wILI deviates more acutely from “typical” wILI flu seasons. From Figure 9, we see the
three largest σδ,js as measured by posterior means correspond to flu seasons 1998, 1999,
and 2003. These were also the three most “atypical” flu seasons as measured by MSE
in Figure 2, supporting the interpretation that σδ,j captures season-specific discrepancy
flexibility.

Figure 9: 95% credible intervals (line segments) along with means (points) for the prior
and posterior distributions for σδ,j for model 2015.3, with seasons ordered by ascending
posterior means.

5.2 DB Model Assessment

For each of 16 flu seasons shown in Figure 4, we fit and forecast models Season.3
through Season.30. Recall that when we fit, for example, model 2015.3, we forecast
weeks 4 through 35 (32 forecasts) of season 2015. When we fit model 2015.30, we fore-
cast weeks 31 through 35 (5 forecasts) of season 2015. For each complete season, we
make 518 forecasts. Weighted ILI for weeks 34 and 35 are unavailable for seasons 1998
through 2001, thus 462 forecasts were made for those seasons. The totality of all fore-
casts across all “leave-one-season-out” model fits was 8,064 forecasts. Each forecast is a
95% point-wise posterior predictive interval for a future observation of wILI. The overall
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Figure 10: Empirical forecast coverage (points) by various partitionings of forecasts.
The overall empirical coverage was 89.4% (dashed line). The solid line represents the
nominal 95% coverage.

empirical coverage was 89.4%, suggesting the DB model forecasts, on balance, exhibit
undercoverage.

Figure 7 suggests that empirical coverage is correlated, with future wILI often either
falling within or outside predictive intervals on consecutive weeks. We can interrogate
the DB model’s forecasting accuracy by subsetting the 8,064 forecasts. Figure 10 plots
empirical coverage versus various partitionings of the forecasts, revealing both areas
the DB model’s forecasts perform well and need improvement as well as times in the
forecasting process that are inherently more difficult to forecast than others.

Figure 10a plots empirical coverage by flu season. We see empirical coverage ranges
from 100% during seasons 2005, 2006, and 2011 to 55.6% in 1999. The flu seasons
whose empirical coverage deviated most significantly below the nominal 95% coverage
were also the most “atypical” flu seasons as determined by MSE in Figure 2: 1998,
1999, and 2003. Hierarchical models are powerful models for borrowing strength across
a collection of similar units (e.g., flu seasons). An underlying assumption of hierarchical
models, however, is that a new flu season is “similar” to the flu seasons that have already
been seen (i.e., a new flu season comes from the same superpopulation of flu seasons
the observed flu seasons came from). When a new flu season deviates from “typical”,
forecasts struggle. If seasons 1998, 1999, and 2003 were removed from the coverage
assessment, the overall coverage would be 94.6%. The forecast undercoverage appears
to be driven by a few flu seasons, suggesting more variability should be accounted for
in the model.
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Figure 10b plots empirical coverage by the week of the flu season. Empirical coverage
ranged from 100% on weeks 4 and 6 to 73.2% on week 20. We see a general trend of
declining empirical coverage from week 4 to week 20, followed by a recovery in coverage
to week 35. Weeks near week 20 represent the most challenging period of the flu season
to forecast, as wILI for some of the later peaking flu seasons are still ascending to their
peak, while the early peaking flu seasons have been reverting to low levels for multiple
weeks. Though the range in wILI at week 20 is the same as at week 13 (both 0.055, see
Figure 1 for reference), all wILI trajectories are ascending to week 13 while some are
ascending and some are descending to week 20. This ascending/descending distinction
is an added source of uncertainty for week 20 not shared with week 13, making it so
challenging to forecast.

Figure 10c plots the “Week” of the Season.Week model fit. For example, the plot-
ted empirical coverage for “Week” 5 is the average empirical coverage over all forecasts
made when only the first 5 weeks of the flu season have been observed. The empirical
coverage ranges from 96.2% for Season.28 models to 80.8% for Season.14 models. There
is a general decline in empirical coverage in Season.5 through Season.14, with an up-
turn in empirical coverage from Season.14 to Season.30. Forecasts for model Season.14
represent a fork in the forecasting process. Recall all flu seasons exhibit a downturn
in wILI from week 13 to week 14. That downturn either signifies the worst of the flu
season has occurred or a temporary decline in an otherwise still ascending flu season.
Forecasts corresponding to model Season.14, thus, exhibit appreciable uncertainty. The
information in wILI for weeks 15, 16, and 17 provide much information about whether
the flu season will continue to ascend or descend.

Finally, Figure 10d plots the empirical forecast versus the week-ahead-forecast. Em-
pirical coverage ranges from 96.4% for one-week-ahead forecasts to 84.3% for seven-
week-ahead forecasts. Empirical coverage generally declines from one to seven-week-
ahead forecasts, and then increases with increasing week-ahead-forecasts. The average
empirical coverage for all one to four-week ahead forecasts is 91.9%, representing an
improvement when compared to the overall empirical coverage of 89.4%. Seasonal flu
forecasting represents an example of forecasting where forecast accuracy does not de-
cline with increasing week-ahead-forecasts. Figure 1 illustrates why this is. Again, wILI
is relatively well-behaved and predictable at the beginning and the end of the flu sea-
son. The bulk of the uncertainty occurs in the middle of the flu season. In October, it
is easier to predict wILI in May (roughly 30 weeks into the future) than it is to predict
wILI in December (roughly 10 weeks into the future).

5.3 DB Model Comparisons to Other Flu Models

Forecasting challenges are effective ways to both identify and improve predictive ca-
pabilities in a myriad of fields, including influenza forecasting (Tetlock et al., 2017).
The CDC has hosted an influenza forecasting challenge, open to the public, since the
2013–2014 flu season. In the inaugural 2013–2014 challenge, over a dozen forecasting
models participated in the challenge (Biggerstaff et al., 2016). Since then, the chal-
lenge has grown, with 30 forecasting models participating in the 2016–2017 challenge
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(Epidemic Prediction Initiative, 2016). The CDC’s flu forecasting challenge is an op-
portunity for the CDC to scope flu forecasting capabilities. It is also an opportunity for
teams to compare their forecasting models against the leading forecasting models in the
field. Competition drives innovation and incentives iterative improvement.

To see how the DB model compares to cutting-edge forecasting competition, we com-
pare the DB model to the 14 models and 30 models that participated in the 2015–2016
and 2016–2017 flu forecasting challenges, respectively. These models represent a diverse
collection of mechanistic, machine learning, ensemble, and statistical models, making use
of numerous data sources including Internet based sources, such as Wikipedia and Twit-
ter, as well as non-Internet based sources, such as weather attributes and school vacation
schedules. The weekly submissions for all models are publicly available (FluSight In-
fluenza Forecasting Challenge, 2016). We stress that we did not use 2015–2016 data when
constructing priors for the DB model and did not even have access to the 2016–2017 data
when the DB model was developed, ensuring that our forecasts were true out-of-sample
forecasts.

Model comparison follows the evaluation criteria of the flu forecasting challenge
(Epidemic Prediction Initiative, 2015a), comparing each model’s ability to accurately
predict seven targets throughout the flu season:

• Peak intensity (PI): the maximum value of wILI for the flu season.

• Timing of peak intensity (PT): the week the PI occurs.

• Onset: the start of the flu season, defined as the first of three consecutive weeks
of wILI equal to or above the national baseline (Epidemic Prediction Initiative,
2015b). For the 2015–2016 and 2016–2017 flu seasons, the national baselines were
0.021 and 0.022, respectively.

• One, two, three, and four week ahead forecasts: short-term forecasts.

Each week of the flu season, a submission for all targets is made in the form of a
probabilistic forecast. For each target and submission week, probabilities are assigned
to mutually exclusive and exhaustive bins such that the probabilities sum to one. For
PI and the short-term forecasts, bins range from 0 to 0.13, with bin widths of 0.005 in
2015–2016 and 0.001 in 2016–2017. For completion, there is a catch-all bin from 0.13
to 1. For PT and onset, each bin corresponds to a week. There is an additional bin of
“no onset” for onset, as there is no guarantee a flu season will have three consecutive
weeks of wILI at or above baseline.

The evaluation of each target is done by computing a logarithmic score. Let

pmod,wk,tgt = (pmod,wk,tgt,1, pmod,wk,tgt,2, . . . , pmod,wk,tgt,ntgt)
′ (15)

represent the vector of binned probabilities for model “mod” submitted on week “wk”
corresponding to target “tgt”, where pmod,wk,tgt,i corresponds to the probability assigned
to bin i = 1, 2, . . . , ntgt.
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Assume the target falls in bin i∗. Then, the log score corresponding to pmod,wk,tgt is
defined as,

S(pmod,wk,tgt, i
∗) = ln(pmod,wk,tgt,i∗−1 + pmod,wk,tgt,i∗ + pmod,wk,tgt,i∗+1). (16)

That is, the log score is the natural log of the sum of the probabilities assigned to the
correct bin and the immediately preceding and proceeding bins.3 For example, if the
forecasted probability of the PT occurring on weeks 19, 20, and 21 are 0.1, 0.3, and 0.2,
respectively, and the true PT is week 20, then the log score is ln(0.1+0.3+0.2) = −0.51.
A perfect log score is 0 and is achieved if all the probability is assigned to the correct or
immediately adjacent bins. A score of -10 is assigned to all undefined natural log scores
(e.g., ln(0) is undefined), all late submissions, and all submissions where the sum of
pmod,wk,tgt > 1.1. Good forecasts, as determined by (16), are forecasts that concentrate
appreciable probability tightly around the bin of the true target value.

For the CDC challenge participating models, the binned probabilities are publicly
available. For the DB model, bins were populated by simulating from the posterior
predictive distribution for each target and submission week.

Weighted ILI estimates are revised every week. For example, when wILI on week 3
of the 2015–2016 flu season was first publicly released, it was 0.0135. The next week,
when week 4 was first publicly released, the estimate for wILI on week 3 was revised
from 0.0135 to 0.0141. This process of revision can occur every week. These weekly
revisions can cause wrinkles when retrospectively comparing a new model (e.g., the DB
model) to models that participated in past forecasting challenges, as the retrospective
model fitting is often based on wILI estimates that were unavailable on the date real-
time submissions were made. For the comparison of the DB model to the other models,
we used the wILI estimates that were available on each submission week, allowing us
to faithfully replicate the forecasting conditions. In general, though, the weekly wILI
revisions can cause problems with retrospective model comparisons.

For every target, model, and season we computed the average log score over all sub-
mission weeks. The results are plotted in Figure 11. The DB model compared favorably
to all models with respect to all targets. The DB model beat all models with respect to
onset and two week ahead forecasts in 2015–2016 and beat all models with respect to
three and four week ahead forecasts both seasons. Furthermore, the DB model ranked
no worse than fourth for all targets in 2015–2016 and no worse than sixth in 2016–2017.
Averaging over the log scores for all targets provides an estimate of a model’s forecast-
ing ability. The DB model beat all models with respect to overall average log score in
both seasons.

As shown in Table 1, the DB model was the only model to rank first for more than
one target in 2015–2016 and one of two models to rank first for more than one target
in 2016–2017, indicating that it was the best forecasting model with respect to multiple
targets. The DB model was also the only model to rank no worse than fourth with
respect to all forecasting targets in 2015–2016 and no worse than sixth for all targets

3For 2016–2017, the five immediately preceding and proceeding bins were summed for PI and all
short term forecasts, as was specified by the CDC.
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Figure 11: Average log score for every target and model in the CDC’s 2015–2016 (left)
and 2016–2017 (right) flu forecasting challenge (grey) and the DB model (black). The
overall average log score is shown as ‘logscore’. The numbers on the right represent the
rank of the DB model relative to all other models where 1 is the best log score. The DB
model had the best overall average log score for both seasons.

in 2016–2017, suggesting the DB model was not deficient at forecasting any flu season
target, in a relative sense.

Though the DB model had the best overall log score for both seasons and appears to
be one of the best models for all considered targets, there is still room for improvement.
Figure 12 illustrates one such area and articulates why accounting for the weekly wILI
revisions is important for faithful retrospective comparisons between new models and
flu challenge participating models. The top of Figure 12 shows that on week 13 of the
2015–2016 season, the DB model’s log score for onset was -10, indicating zero probability
was assigned to the correct or neighboring bins of the true onset (week 16). The bottom
of Figure 12 reveals why this occurred. Based on the data available through the first 13
weeks of the 2015–2016 flu season, week 11 was, by definition, the onset (i.e., week 11
was the first of three consecutive weeks equal to or above baseline). Thus, on week 13,
the DB model forecasted week 11 to be the onset with probability one. Declaring week
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Season Model Top 1 Top 2 Top 3 Top 4 Top 5 Top 6

2015 – 2016

DB 4 5 6 7 7 7
Model 1 1 4 4 5 5 6
Model 2 1 1 1 2 2 5
Model 3 1 1 1 1 4 5
Model 4 0 2 2 2 2 2
Model 5 0 1 3 6 7 7
Model 6 0 0 2 3 5 5
Model 7 0 0 1 1 2 2
Model 8 0 0 1 1 1 1

Models 9 – 10 0 0 0 0 0 1
Models 11 – 14 0 0 0 0 0 0

2016 – 2017

DB 2 3 4 5 6 7
Model 1 2 2 2 3 3 4
Model 2 1 1 3 3 3 4
Model 3 1 1 1 1 2 2
Model 4 1 1 1 1 1 1
Model 5 0 2 3 5 5 6
Model 6 0 2 3 4 5 5
Model 7 0 1 2 2 3 3

Models 8 – 9 0 0 1 1 1 1
Model 10 0 0 0 2 3 3

Models 11 – 12 0 0 0 0 1 1
Models 13 – 15 0 0 0 0 0 1
Models 16 – 30 0 0 0 0 0 0

Table 1: The number of top 1 through top 6 rankings by each model. The DB model
was the only model to have more than one top 1 ranking in 2015–2016 and one of
two models with more than one top 1 ranking in 2016–2017. The DB model was the
only model to rank no worse than fourth for all seven targets in 2015–2016 and no
worse than sixth for all seven targets in 2016–2017. Models 1 through 30 represent the
anonymized comparison models. Model X in 2015–2016 does not correspond to Model
X in 2016–2017.

11 the onset, however, ignores the weekly wILI revisions. The very next week when
14 weeks of wILI estimates were available, week 11’s wILI estimate was revised and
fell below the national baseline, indicating it was not the onset. The scenario displayed
in Figure 12 articulates that the forecasts of the DB model are missing a source of
uncertainty caused by wILI revisions. It also articulates that using revised versions
of wILI estimates to retrospectively compare a model to forecasts based on currently
available wILI estimates gives an unfair advantage to the new model. The log onset
score of -10 would not have occurred for the DB model were forecasts based on wILI
estimates available at the end of the flu season, biasing the log scores up.

Even without accounting for the uncertainty caused by weekly wILI revisions in the
forecasts, the DB model outperformed all models it was compared against, suggesting
that it is one of the leading flu forecasting models with room for improvement.
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Figure 12: (Top) The weekly onset log score for the DB model in 2015–2016. (Bottom)
Weighted influenza-like illness estimates available through the first 13 and 14 weeks of
the 2015–2016 flu season, respectively. The grey, horizontal line is the national baseline
equal to 0.021.

6 Discussion

In this paper, we introduced a novel dynamic Bayesian influenza forecasting model that
exploits discrepancy structure. The basic insight and motivation leading to the devel-
opment of the DB model is that the disease transmission model (e.g., the SIR model)
and the data-generating model are not equivalent; disease transmission is a compo-
nent of but not equal to the data-generating process. The data-generating model is
non-exhaustively comprised of a disease transmission process, a healthcare provider vis-
itation process, an influenza-like illness determination process, and a reporting process.
Thus, even if a disease transmission model more sophisticated than the SIR model were
used, of which there are numerous (e.g., the SIRS model, the SEIR model), there might
still be a disagreement between the best version of the disease transmission model and
the data. Rather than attempt to model each component of the data-generating model,
we acknowledge there will likely be a systematic disagreement between the best version
of the disease transmission model and the data. We then model the commonalities of
the discrepancy across flu seasons with a flexible, hierarchical model. The hierarchical
discrepancy model allows us to leverage patterns in the data the disease transmission
model is incapable of capturing and not simply model the discrepancy as white noise.

The DB model assumes future flu seasons will exhibit similar trajectories to past flu
seasons. We showed that the more dissimilar a flu season was as compared to the other
considered flu seasons, the worse forecasts were. Because of this underlying assumption,
the DB model would be inappropriate for forecasting pandemic influenza. A companion
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model to the DB model that tracks how “dissimilar” a new flu season is compared to the
collection of observed seasonal flu seasons could be useful to gauge when the DB model
should be trusted and when it should not. Alternatively, λ in (2) could be modeled as
a function of how similar/dissimilar the current flu season is to past flu seasons and
forecast uncertainty could be modified accordingly.

When compared to the forecasting models participating in the CDC’s 2015–2016
and 2016–2017 flu forecasting challenges, the DB model had the best overall scores.
Comparisons were facilitated by the CDC coordinating the flu forecasting challenge
and making the submissions publicly available. These submissions provide an excellent
test case for future models to be compared against.

The work of Ginsberg et al. (2009) demonstrated the potential value of monitor-
ing flu outbreaks with Google search queries. The basic idea being, when individuals
experience symptoms of the flu, they may go to their web browser to search for more
information. Thus, an increase in searches for flu related terms may indicate an in-
crease in flu incidence in the population. The work of Ginsberg et al. (2009) sparked a
large research effort to investigate other digital surveillance sources and their possible
connection to disease surveillance (e.g., Generous et al., 2014; Wilson and Brownstein,
2009; Polgreen et al., 2008). Many forecasting models have augmented wILI with dig-
ital surveillance data (e.g., Hickmann et al., 2015; Brooks et al., 2015; Shaman et al.,
2013), including those that participated in the 2013–2014 CDC flu forecasting com-
petition (Biggerstaff et al., 2016). Recently, the value of digital surveillance data with
respect to flu forecasting has been curbed (e.g., Lazer et al., 2014; Priedhorsky et al.,
2017). In fact, as Biggerstaff et al. (2016) conclude from the 2013–2014 flu forecasting
competition, “not all digital data are equally accurate, and the algorithms and method-
ologies underpinning these data require constant upkeep to maintain their accuracy.
. . . Influenza forecasting models informed by digital data are subject to the biases and
errors of their underlying source data”. The DB model does not use digital surveillance
data. Incorporating digital surveillance data may or may not improve forecasts; inves-
tigation into this might serve as a next iteration of the DB model. It is worth noting,
however, that even without digital surveillance data, the DB model compared favorably
to all comparison models, some of which did make use of digital surveillance data. The
results presented in Section 5.3 suggest influenza forecasting can be improved without
augmenting wILI with digital surveillance data but rather focusing on statistical model
development.

Supplementary Material

Dynamic Bayesian Influenza Forecasting in the United States with Hierarchical Dis-
crepancy: Supplementary Material (DOI: 10.1214/18-BA1117SUPP; .pdf).
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Invited Discussion

Lance A. Waller∗†

1 On the interface of statistical and mathematical
modeling

Many thanks to Osthus et al. (2019) for a thoughtful addition to the literature op-
erating at the interface of statistical and mathematical modeling of dynamic systems
with particular application to inference regarding the annual influenza season. Having
served as a judge in the 2013-2014 influenza modeling competition sponsored by the
US Centers for Disease Control and Prevention (CDC), I am grateful to see continuing
developments in this area. As noted by the authors, past competitions featured a variety
of approaches applied to the weekly case reports of influenza-like illness (ILI) from the
CDC. Some approaches link machine learning, search engine results, and social media
posts to the ILI reports and seek to identify predictive patterns over the annual flu
season, others utilize dynamic models via systems of differential equations or large-scale
agent-based models to describe the cycle of infection across local, regional, and national
populations. The authors’ approach blends these via a hierarchical framework linking
a smooth underlying dynamic systems model with stochastic patterns of observational
discrepancies both across and within individual flu seasons.

The authors’ modeling approach builds on a general hierarchical combination of a
deterministic mathematical process model defining the general dynamics of the system,
and a statistical data model given the process model. The data model defines stochastic
variation from the dynamic process resulting in the observed data values. A hierarchical
framework of a process model and a data model given the process was introduced in the
context of time series modeling by Berliner (1996) and is a popular framework in the
environmental sciences, especially within climate science and ecology (Wikle (2003)).
The data model (given the process) can be simple (e.g., Gaussian measurement error)
or can capture multiple levels of structured uncertainty and covariation, as in the case
of the authors’ approach.

Generally speaking, the hierarchical process and data model approach is attractive
for the study of the dynamics of disease outbreaks particularly because the framework
requires modelers to understand, appreciate, and apply both advanced mathematical
and statistical modeling in an integrated inferential framework. This integration often
requires statisticians and mathematical modelers to step outside of their traditional
comfort zones, training systems, and worldviews. I previously summarized some as-
pects of this contrast in a discussion of a model of chronic wasting disease by Heisey

∗This work supported in part by grant number R01HD09258, US Eunice Kennedy Shriver National
Institute of Child Health and Human Development (NICHD). The opinions expressed here reflect those
of the author and do not necessarily represent those of the funding agency.
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1518 Clifton Road NE, Atlanta GA 30322, lwaller@emory.edu
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et al. (2010) (Waller (2010)) and a few points raised there also merit mention here. At
one extreme, a mathematical modeling-only approach seeks to define the underlying
dynamics of a system via the process model and often only includes a very simple data
model involving measurement error (e.g., using least squares or another error measure
to assess goodness-of-fit via differences between observed and model-predicted values).
At the other extreme, a statistical modeling-only approach focuses on defining inference
on associations between observed outcomes and potential covariates, often without an
underlying model of how these variables interact (e.g., various regressions). Machine-
learning approaches can extend the statistical approach further to build sophisticated
predictive algorithms based on patterns between variables but again with little atten-
tion to any underlying biologic or epidemiologic process. Such approaches can provide
improved prediction but may ignore known features of disease epidemiology and can go
astray for periods of time, as was the case with Google Flu Trends (Lazar et al. (2014)).
While our current training systems often concentrate on one aspect or the other (math-
ematical or statistical modeling), there is substantial value and insight in incorporating
both perspectives at a high level. In the present paper, the authors (Osthus et al. (2019))
provide a framework for drawing from the strengths of both worlds connected through
a hierarchical structure allowing Bayesian inference on model parameters.

While the authors use the process and data model terminology in the titles of Sec-
tions 4.1 and 4.2, I feel it can be helpful to remind readers of the general framework,
which is simple to state but widely extendable and general. Additional focused dis-
cussion of the roles of the process and data models also allows discussion of whether
the hierarchical terms μt and δj,t represent components of the underlying susceptible-
infected-recovered (SIR) process model (where they are defined currently in Section 4.2)
or whether, conceptually, they are better framed as components of the data model by
providing more nuanced statistical modeling of discrepancies between the underlying
mathematical model and the observed data.

I frame my thinking as follows. Typically, one can partition the full set of model pa-
rameters into process parameters (relating to dynamics) and data parameters (relating
to variation and covariation in observations) and it is helpful to think of each of these in
turn. In disease outbreak applications of the process and data model framework, process
parameters typically focus on biological/epidemiologic quantities linked to the dynamics
of disease transmission. In the case of a SIR process model, process parameters include
the rate (for deterministic implementations) or probability (for stochastic implementa-
tions) of transmission per contact between infected (assuming, for simplicity, all infected
individuals are infectious) and susceptible individuals and the rate (or probability) of
susceptible-infected contacts. Such parameters provide epidemiologic understanding of
the dynamics and potential control of the outbreak as they help define the basic and
effective reproductive numbers that, in turn, define whether and how an outbreak will
grow or shrink. However, these process parameters are defined at the individual infection
level and these parameters can be notoriously difficult to estimate due to identifiability
concerns, if the only data available are aggregate counts of cases over a given period
of time (e.g., weekly ILI counts). For example, it can be difficult to assess whether an
observed number of cases is more likely due to a low rate of transmission per contact
and a high rate of contact, or a high rate of transmission per contact and a low rate of
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contact. While epidemiologically meaningful, the process parameters may only weakly
be identifiable (or, in some cases, not identifiable at all) from the data at hand.

The authors make use of three tools to help address the identifiability challenges.
First, pooling data across multiple outbreaks of the same disease or adding data with
additional information can help for weakly identifiable parameters, but, as the authors
carefully illustrate, the fundamental mismatch between the biologic/epidemiologic pro-
cess parameters of interest and the parameters identifiable in the data can continue to
present a challenge in model fitting. Second, setting constraints for some parameters
also provides a tool to aid identifiability and proves useful within the authors’ model.
The Bayesian formulation of the hierarchical process and data model system provides
a third tool to address aspects of the identifiability challenge, namely the use of prior
distributions for model parameters and random effects. In a sense, the definition of
prior distributions provides a formal inferential mechanism for the first two tools by (1)
defining a structure for borrowing information across data sets through the definition of
random effects and (2) implementing constraints via subjective prior distributions (pro-
viding a potential way of weakening dependence upon fixed constraints). A particularly
attractive feature of the authors’ approach is the creative use of the discrepancy ran-
dom effect parameters (and their prior distributions) to frame borrowing of information
across outbreaks via the μt parameters and within each outbreak via the autoregressive
δj,t parameters for each year t. The authors’ prior specifications define how the full
model will combine information across annual outbreaks and across months within a
given outbreak in order to model systematic deviations from the smooth SIR process
model. While the authors define the μt and δj,t parameters as part of the process model
in Section 4.2 (I suspect primarily due to the convenience of defining these parameters
as part of equation 5), I suggest that, conceptually, they are better considered part
of an expanded data model to define how and to what extent the model borrows in-
formation across observations in order to allow statistical estimation of the underlying
process parameters. The distinction of whether to include these parameters as part of
the process model or the data model may be a bit of a quibble on my part, but I feel
some additional discussion by the authors on this topic may be helpful in placing the
authors’ model within the broader context of hierarchical process and data models for
complex systems.

2 On modeling discrepancy

The discrepancy parameters μt and δj,t are key to the authors’ approach and allow
statistical modeling of how and when we see consistent deviation between the smooth
underlying SIR model of transmission dynamics and individual quirks in observations
each year. Importantly, the discrepancy parameters allow the authors’ model to adjust
between annual peaks that tend to occur either early or late in the season, and to model
the unusual but consistent deviations observed in week 13 of the season each year.
That is, while the Runge-Kutta algorithm minimizes the overall deviation between the
dynamic SIR process and the observed data within each year, the added hierarchical
elements identify that there is a pattern to these deviations both across influenza seasons
and within each individual season.
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The discrepancy modeling within the authors’ model provides improved fit over the
individual models in the CDC competition as illustrated in their performance measures.
The authors’ model clearly benefits from information across repeated outbreaks but it is
not clear whether, in the competition setting of predicting within an ongoing outbreak,
the other models would have access to the same level of data completeness used by the
authors. The current comparisons clearly show the added value of borrowing information
across seasons and months, but it was not entirely clear to me whether direct comparison
to the competition model performances is entirely fair with respect to the data assumed
available at any particular point during an ongoing flu season.

The authors’ comments regarding the anomaly during week 13 reflect an advantage
of their discrepancy modeling approach. As noted, week 13 of any flu season typically
overlaps the December holidays of Christmas and New Year’s Eve/Day and this week
is clearly different than others with respect to ILI reports. With holidays from work
and school, behaviors are different, locations are different, interaction patterns are dif-
ferent, health seeking behaviors are different, healthcare staffing may be different, and
record reporting may be different at the end of the calendar year. All of these changes
can result in different overall transmission dynamics, even if the individual probability
of transmission per contact remains unchanged. Such changes can be very difficult to
incorporate within a process model (either SIR or agent-based), and the authors’ dis-
crepancy approach offers a mechanism to summarize the annual pattern of this impact
through the data model without seeking to detail such changes within the process model
to capture a single, anomalous week of the season.

The modeling of discrepancies across and within seasons has appeal but, as noted
in general above, also pushes the limits of identifiability within the model. As the au-
thors’ Figure 8 illustrates, the combined discrepancies defined by μt + δj,t are well
identified and the separate identifiability between μt and δj,t is aided by “anchoring”
of the endpoints through the implemented identifiability constraints coupled with the
temporal random walk priors. The annual weekly pattern in μt captures the consis-
tent week 13 effect, as one might expect. However, the (general) pattern of negative
μt and a similar-in-magnitude positive δj,t for any particular week t suggests potential
identifiability challenges in applying the approach to other data sets. Additional com-
ments/recommendations from the authors directed toward others hoping to apply or
extend the models in other settings would be welcome in this regard.

3 On the value of multiple models

In closing, I again express my thanks to the authors for their thoughtful work on an
inferential framework for assessing both the process and patterns within a given disease
outbreak. Their hierarchical structure links the underlying dynamic system to system-
atic and stochastic data discrepancies and provides posterior inference on all model
parameters. As noted in Biggerstaff et al. (2016) and Biggerstaff et al. (2018) in review-
ing the 2013–2014 and 2014–2015 flu season CDC modeling challenges, model-based
influenza forecasting is still in its early stages of development. Linking model outcomes
to measurable public health goals remains a priority and requires expansion of the col-
laboration between mathematical and statistical modeling mindsets above with public
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health practice to ensure accurate, reliable, reproducible, and actionable forecasts. As a
judge for one of the competitions, I found value in reviewing multiple models of the same
outbreak to see where they agreed, and, almost as importantly, where they differed in
order to explore potential features of a particular outbreak that differed from the “av-
erage” outbreak. The authors’ discrepancy parameters may offer a general mechanism
for summarizing and exploring these differences and may be extendable to model com-
parisons in future analyses (and competitions!), perhaps through application of similar
data models on top of different process models. Identifying which discrepancies represent
regular features of outbreaks and which represent one-time anomalies could be partic-
ularly powerful in assessing a current outbreak and customizing potential intervention
strategies while formally learning from historical outbreaks of the same disease.
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Leonhard Held∗ and Johannes Bracher†

We congratulate Osthus et al. (2018) for their interesting work which proposes new
methodology for modelling and prediction of influenza epidemics. The repeated success
of their methods in flu forecasting competitions is impressive. We separate our discussion
into comments on modelling and forecasting.

1 Modelling

Osthus et al. (2018) analyse weekly influenza-like illness (ILI) surveillance data from the
Centers for Disease Control (CDC) on the US national level. As the authors note, the
data are actually available at a finer resolution stratified by ten surveillance regions, see
the map in Figure 1. An interesting question is whether an analysis on this finer geo-
graphical resolution would give improved national ILI forecasts. In a study of norovirus
gastroenteritis incidence in the twelve regions of Berlin, Germany, multivariate mod-
elling has generally led to better predictions, even of aggregated forecast targets (Held
et al., 2017). A simple approach would be to apply the Osthus et al. (2018) methodology
separately to each ILI surveillance region with subsequent aggregation of the forecasts.
It would then also be of interest to investigate whether region-specific discrepancy tra-
jectories show similar structures as on the national level (Osthus et al., 2018, Figure
5). However, this simple approach ignores dependencies between regions and could be
improved by a joint space-time model for all regions.

Indeed, models at the national level without accounting for differences in geogra-
phy may lead to suboptimal forecasts if ILI characteristics are different across regions
(Chakraborty et al., 2018). Such differences in peak time and incidence are clearly vis-
ible in Figure 1 and are not surprising given that the territory in question spans four
time zones with very diverse climatic conditions. It has been suggested that spatial pat-
terns in peak timing are relatively stable across seasons among older adults, with the
Western United States peaking earlier (Wenger and Naumova, 2010). In a recent analy-
sis of insurance claim data for ILI, Charu et al. (2017) find pronounced spatial patterns
in onset times. Their results point to a predominantly localized mode of transmission
which suggests that an even finer resolution than the crude ten-region resolution will
be required to capture spatio-temporal spread. Long-range transmission events are less
common as the distribution of human travel distances approximately decays as a power
law (Brockmann et al., 2006). In this context, air travel information has been success-
fully incorporated into analyses of the CDC ILI database at the ten-region resolution
(Brownstein et al., 2006; Paul et al., 2008). In the absence of such information, a power
law formulation (Meyer and Held, 2014), possibly combined with a gravity model (Xia
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Figure 1: Weighted influenza-like illness for flu seasons 2004–2007 in the US: ten surveil-
lance regions (grey lines) and aggregate national level (black line). Dots indicate the
respective peak weeks and peak intensities. The seasons 2004 and 2007 show only lim-
ited variation in peak timing, while pronounced differences between regions can be seen
in 2005 and 2006. In all four seasons substantial differences in peak intensity can be
observed among the ten regions. The map shows the partition of the US into the ten
surveillance regions.

et al., 2004) can serve as a useful proxy in a suitable statistical model. See Wakefield
et al. (2019) for a comprehensive summary of different statistical modelling approaches
for space-time infectious disease surveillance data.

There is also a large body of literature on how to extend the deterministic SIR
(susceptible-infectious-recovered) model used by Osthus et al. (2018) to a stratified
population (Daley and Gani, 1999, Section 2.4). A recent application to ILI can be
found in Pei et al. (2018) who integrated commuter data in a metapopulation SIRS
model. They found this approach to outperform isolated region-specific forecasts for 35
US states. It would be interesting to see whether the proposed hierarchical discrepancy
approach can also improve such multivariate SIR analyses. For example, region-specific
discrepancy components could be modelled using correlated random walks, see Riebler
et al. (2012) for an application in mortality forecasting.
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It is worth emphasizing that the basis of the stratification is not necessarily only
geographical. Other potentially useful stratification variables include age group (Meyer
and Held, 2017), virus strain (Goldstein et al., 2011) and degree of urbanization (Dalziel
et al., 2018). Indeed, surveillance data stratified by region and age group are often
available and have been used for multivariate forecasting (Held et al., 2017).

Turning to the proposed hierarchical discrepancy model, Osthus et al. (2018, Section
4.2) use a reverse random walk formulation for the discrepancy component μt common
to all seasons and a reverse autoregressive model for the season-specific discrepancy
components δj,t during week t = 1, . . . , 35. The reverse-time formulation is suggested
because it imposes a constraint on the late rather than the early part of the season.
A possible alternative is an intrinsic autoregression (Rue and Held, 2005, Chapter 3),
where the proper normal prior on μT is replaced by a flat improper prior. This would
lead to a less informative prior distribution, constraining neither the early nor the late
part of the season. The deterministic constraint on δj,T (equation (9) in Osthus et al.
(2018)) could be replaced by a sum-to-zero constraint

∑
j δj,t = 0 for all t, see Knorr-

Held and Besag (1998) for a similar formulation applied to age-group specific random
walks in a space-time disease mapping model.

2 Forecasting

Osthus et al. (2018) provide a thorough comparison with other flu prediction models
based on proper scoring rules. We welcome this as often improper measures are used for
the evaluation of probabilistic forecasts. Specifically, Osthus et al. (2018) consider the
onset of the flu season, peak timing (PT) and peak intensity (PI) as forecast targets, as
well as one-to-four week ahead forecasts. This reflects the aims of the CDC forecasting
competitions, but long-term flu forecasts may also be of interest (Ray et al., 2017; Held
and Meyer, 2019).

Empirical coverage of the dynamic Bayesian forecasting model is investigated for
nominal 95% prediction intervals, which could be complemented with probability in-
tegral transform (PIT) histograms (Gneiting and Katzfuss, 2014). Empirical coverage
turns out to be correlated (Figure 10) which suggests to assess calibration in a mul-
tivariate fashion (Gneiting et al., 2008). It may also be of interest to compute proper
scoring rules for multivariate forecasts. This could be applied to path forecasts of the
epidemic curve in one season (Held et al., 2017) or to the joint distribution of onset, peak
timing and peak incidence. As noted by Wenger and Naumova (2010), these quantities
are dependent with early seasons often showing higher intensity.
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Vladimir N. Minin∗, Jonathan Fintzi†, Luis J. Martinez Lomeli‡, and Jon Wakefield†,§

The authors present an elegant method for accurate prediction of influenza-like-illness
(ILI) incidence during an ongoing flu season. Their method combines ordinary differ-
ential equation-based (ODE-based) mechanistic modeling of ILI spread with flexible
modeling of discrepancies between the ODE trajectories and observed incidence. The
key idea is that these discrepancies behave similarly across flu seasons. Capturing these
similarities in a Bayesian hierarchical model, the authors arrive at a predictive semi-
parametric model of ILI spread. The authors conjecture that there is room for improving
their approach and discuss some enhancements to the nonparametric component of their
model. Below we argue that more careful handling of the parametric model component
may also be a fruitful strategy to pursue in parallel with nonparametric model enhance-
ments.

Flexible modeling and forecast sharpness

The authors motivate their discrepancy model component by correctly pointing out that
certain consistently repeated features of ILI incidence time series cannot be predicted
using deterministic mechanistic epidemic models. The authors’ results show that the new
Bayesian hierarchical model can indeed capture these features. For example, Figure 7
in the Osthus et al. manuscript shows that a consistent, but mysterious drop in ILI
incidence from week 13 to week 14 can be seen in the authors’ short term forecasts.
However, the same figure shows that using the first 4 and 8 weeks of ILI data produces
weeks 10-25 predictive intervals that are so large that they cover almost the entire
plausible range of weighted ILI (wILI) counts. This suggests that the authors’ model
may be a little too flexible. There are multiple ways to tighten the authors’ model,
but from our perspective, the most intriguing avenue to pursue is to try to improve
the parametric model component. Specifically, we first concentrate modeling efforts on
improving the mean model, to reduce bias. Second, we finesse the wILI variance model,
in particular paying attention to how the variance depends on the mean, so that we
obtain an appropriate measure of uncertainty.

SIR-only model

Incidence ODEs with unknown initial conditions To establish a baseline, we wanted
to see how SIR-only predictions compare to the authors’ much more advanced modeling.
Following the authors, we model the transmission dynamics of wILI in the population
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†Department of Biostatistics, University of Washington, Seattle, WA
‡Center for Complex Biological Systems, University of California, Irvine, CA
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using a Susceptible-Infected-Recovered (SIR) model, represented as a system of ODEs.
Let X(j)(t) = (S(j)(t), I(j)(t), R(j)(t)), S(j)(t)+I(j)(t)+R(j)(t) = K, denote the vector
of compartment counts at time t in season j ∈ {1998, . . . , 2014}, where K is the popu-
lation size that we set to 3 × 108 to approximate the size of U.S. population. We also

let X
(j)
0 = (S

(j)
0 , I

(j)
0 , R

(j)
0 ) be the initial compartment counts.

The standard ODE representation of the SIR model expresses the time-evolution of
the compartment counts as the solution to the following system of ODEs:

dS(j)(t)

dt
= −βjS

(j)(t)I(j)(t),
dI(j)(t)

dt
= βjS

(j)(t)I(j)(t)− γjI
(j)(t), (1)

dR(j)(t)

dt
= γjI

(j)(t), such that, X(j)(0) = X
(j)
0 ,

where βj is the per–contact infection rate in season j and γj is the recovery rate. This
is the same model that the authors use as their parametric component.

We modify the authors’ SIR model in two ways. First, we are skeptical of the authors’
claim that the initial number of susceptible individuals in each season is not identifiable.
This claim may be true if only one season/outbreak is observed, but availability of mul-
tiple season onsets can make the initial number of susceptibles identifiable. To explore
this issue, we introduce an additional parameter, Cj , for the number of susceptibles who
are effectively removed at the start of season j, e.g., due to pre–existing immunity or
geographic isolation. Second, to make the SIR model more appropriate for the incidence
data, we follow Bretó and Ionides (2011) and Ho et al. (2018) and reparameterize the

SIR ODEs in terms of cumulative incidence. Let N(j)(t) = (N
(j)
SI (t), N

(j)
IR (t)) denote the

cumulative numbers of infections and recoveries and N(j)(0) be the initial numbers of
these events. The SIR ODEs for cumulative incidence and recoveries are given by

dN
(j)
SI (t)

dt
= βj

(
S
(j)
0 − Cj −N

(j)
SI (t)

)(
I
(j)
0 +N

(j)
SI (t)−N

(j)
IR (t)

)
, (2)

dN
(j)
IR (t)

dt
= γj

(
I
(j)
0 +N

(j)
SI (t)−N

(j)
IR (t)

)
,N(j)(0) = (0, 0).

Notice that we need the initial compartment counts X
(j)
0 in the above system. Techni-

cally, we do not need to have both Cj and Rj
0 in our model, because they represent the

same number of initially removed individuals. We set Rj
0 = 0 and estimate Cj due to

constraints of our pre-baked implementation of the SIR model.

We fit two versions of our modified model to 15 seasons corresponding to years
1998–2007 and 2010–2014. In the first model A we assume that Cj = C, for j, with
C being an unknown parameter that we estimate together with season-specific infec-
tion and recovery rates. We use this model primarily to test whether C is identifiable.
The second model B is more realistic and assumes that each season j can have its
own number of initially removed individuals, Cj . The model is hierarchical in that it
assumes that a priori Cj ’s are drawn independently from the same distribution. More
specifically, logit(Cj/K) ∼ N (μC , σ

2
C), with unknown parameters μC and σ2

C that we
estimate.
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Figure 1: Prior density and posterior histogram of the proportion of initially removed
individuals C/K. The prior and posterior are for the simple model in which all seasons
start with the same number of initially removed individuals.

Data model Let P
(j)
SI (t) = N

(j)
SI (t)/K be the attack rate (% of the population infected)

up to time t in season j. Let ΔP
(j)
SI (t�) = P

(j)
SI (t�) − P

(j)
SI (t�−1) denote the attack rate

in week 
. We model the observed wILI in week 
 of season j, denoted Y
(j)
� , as

logit
(
Y

(j)
�

)
∼ N

⎛
⎜⎝logit

(
ΔP

(j)
SI (t�)

)
,

ω0 + ω1ΔP
(j)
SI (t�)

ΔP
(j)
SI (t�)

(
1−ΔP

(j)
SI (t�)

)2

⎞
⎟⎠ , (3)

where ω0 and ω1 control the variance of the emission distribution. This measurement
model derives from an application of the delta method to a normal approximation of an
overdispersed binomial distribution for detected wILI cases under the assumption that
the rate of patient visits is not changing across time. The main motivation for this fairly
complicated data model is our desire to model the dependence of wILI count variance
on the latent/unobserved population incidence.

Priors and posterior inference We assign informative, scientifically meaningful pri-
ors, detailed in Table 1, for the parameters of models A and B. Note that we assign
Dirichlet-Multinomial prior to the initial state X0 in such a way that there are no re-
moved individuals at time 0, because we have a separate parameter to the number of
initially removed individuals, Cj . For model A, where all parameters but the number
of removed individuals C, are decoupled across all the seasons, we used our custom
Markov chain Monte Carlo (MCMC) algorithm to approximate the posterior distribu-
tion of (βj , γj , I

j
0 , S

j
0, ω0, ω1) for each season j and C that is common to all seasons.

We show the prior and posterior distributions of the number of removed individuals
C in Figure 1. The apparent differences between the prior and posterior distributions
suggests that parameter C is identifiable. Moreover, our proportion of initially removed
individuals C/K is much lower than 0.1 — the number used by Osthus et al. In Model B,
we used MCMC to target the posterior distribution of (βj , γj , I

j
0 , S

j
0, Cj , ω0, ω1) for each

season j and (μC , σC). We found that the season-specific Cj ’s and their overall prior
mean μC and standard deviation σC were also identifiable. We omit most of posterior
summaries for the sake of brevity.
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Model Parameter Interpretation Prior Prior Median (90% Interval)

A R0(j) = βj(K − C)/μj − 1 Basic reproduction #-1 LogNormal(log(0.4), 1.25) R0(j) = 1.4 (1.05, 4.10)

B R0(j) = βj(K − Cj)/μj − 1 Basic reproduction #-1 LogNormal(log(0.4), 1.25) R0(j) = 1.4 (1.05, 4.10)
A,B 7/μj − 1 Mean infectious period (days-1) LogNormal(log(7), 0.843) 7/μj = 7 (1.75, 28)
A C/K % initially removed LogitNormal(logit(0.1), 1) C/K = 0.1 (0.02, 0.37)
B μC Mean logit % initially removed LogitNormal(logit(0.1), 0.63) expit(μC) = 0.1 (0.04, 0.24)
B σC Std.dev. logit % initially removed Exponential(4) σC = 0.17 (0.013, 0.75)
B Cj/K % initially removed LogitNormal(μc, σ2

C) —
A,B ω0 Variance parameter Exponential(3× 108) ω0 = 2.3× 10−9 (1.7× 10−10, 1.0× 10−8)
A,B ω1 Variance parameter Exponential(5) ω1 = 0.14 (0.01, 0.60)
A,B X0 Initial compartment counts Dirichlet–Multinom.(150,2,0)

Table 1: Parameters and priors used in fitting SIR models to wILI data. Under Model A, the initial depletion of susceptibles
is common to all seasons, whereas Model B hierarchically allows for season–specific initial depletion of susceptibles.
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Figure 2: Forecasts for 2015 season under models A and B. The left six plots show
forecasts produced by model A, where all seasons share the same number of initially
removed individuals. The right six plots show forecasts produced by model B, where
this number of initially removed individuals is season-specific. Each plot has the first
z weeks/points used as training data, with the rest of the data being withheld during
model fitting. This number z is shown above each plot (e.g., z = 4 in the top left
plot). The solid red lines show the medians of the predictive distributions on which the
forecasts are based. The shaded areas designate 95% predictive intervals.

SIR-only predictions

Now we use our SIR models A and B to make predictions about wILI incidence in sea-

son 2015. During this forecasting exercise, we use the estimated posterior distributions

of SIR model parameters for seasons 1998–2007 and 2010–2014 in the following way.

We pool MCMC samples of season-specific parameters and fit a multivariate Gaussian

mixture model to these samples. For model A, separately from the mixture model fit-

ting, we approximate the posterior distribution of initially removed individuals C with a

univariate log-normal distribution. We use these approximations to the posterior model

parameters as priors in our analysis of partial data from the 2015 season. As in the

authors’ paper, we fit our SIR model A to the first z weeks of data and use this model

to predict the rest of the season for z = 4, 8, 12, 16, 20, 24. Prediction results are shown

in Figure 2. Both sets of priors result in reasonable short term forecasts in weeks 4,

8, 12, and 24, but the timing of the epidemic peak is not predicted well. We see that

a mixture model-based prior distribution of the initial number of removed individuals,

obtained from the posterior samples under model B, produces better forecasts than

predictions based on a prior distribution obtained from the posterior of model A. How-

ever, similarly to the Osthus et al. hierarchical model, this improvement comes at the

expense of wider predictive intervals. Still, our experiments with the initial states of

flu seasons demonstrate that careful modeling of initially removed individuals may be

a fruitful forecasting strategy, at least in the context of time homogeneous infectious

disease dynamics.
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Speculative remarks

Although our SIR-only predictions are not competitive with the state-of-the-art ILI
forecasting methods, they establish a parametric modeling starting point, which is dif-
ferent from the starting point of Osthus et al. Combining parametric modeling similar to
ours with the authors’ hierarchical discrepancy model may improve ILI forecasting even
further. More specifically, it would be interesting to see if including the initial number
of removed individuals as a free parameter and/or a data model with a mean/variance
relationship into Osthus et al. model would lead to better forecasts.

Another way to improve SIR-only predictions is to use stochastic SIR modeling and
to move to a nonparametric modeling of the infection rate, as was recently proposed by
Xu et al. (2016) in a wider context of stochastic epidemic modeling. For example, we
can assume that for season each j the time-varying infection rate has the form βj(t) =
αj × β(t), where αj ’s are season-specific multipliers and β(t) captures commonalties in
infection rate changes across seasons. A priori modeling of β(t) as a Gaussian process
or another suitable functional prior would result in nonparametric estimation of β(t).
In summary, we are excited about the successes of Osthus et al. forecasting method
based on semi-parametric modeling of infectious disease dynamics and looking forward
to future modeling and forecasting improvements in this area.
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Contributed Discussion

David Conesa∗†, Rubén Amorós∗‡,
Antonio López-Qúılez∗†, and Miguel-Angel Martinez-Beneito§

We would like to start by congratulating the authors for this great piece of work that
provides a novel and competitive model in the complicated field of influenza forecasting.

Influenza surveillance has become a challenging issue in public health practice due
to its propensity to cause large scale seasonal epidemics and even pandemics. Many
surveillance information sources (real-time internet surveys, over the counter sales, ab-
senteeism registers, syndromic/sentinel surveillance, hospital admissions, influenza mor-
tality rates, etc.) have been used to forecast its behaviour. As a result, always a new
model is proposed to perform this forecast, it is important to describe how the model
could be extended to deal with other kind of data. The beta modelling proposed by the
authors clearly fits for the weighted influenza-like illness (wILI) data provided by the
Centers for Disease Control and Prevention, but if the outcome of interest was collected
in terms of counts (or even rates) as in Conesa et al. (2015), a Poisson or a Binomial
model would more adequate. Could the proposal by Osthus et al. (2018) be adapted to
these alternative information sources that provide other outcomes?

As stated by the authors, the key issue when trying to forecast influenza is how
to model the discrepancy between seasons. In our experience, the behaviour of some
epidemic seasons can be very different to what the authors appropriately named a
“typical” season. Indeed, we have found seasons in which the influenza is not present
(Martinez-Beneito et al., 2008). Is the proposal of Osthus et al. (2018) robust enough as
for dealing with data of this kind? The causes of this discrepancy and the way it can be
included in the final model will guide the remaining comments of Osthus et al. (2018)
paper.

The extension of the region analysed is one of these possible causes. It is not clearly
the same to perform global forecasting (like in the USA) than to do it in states or even
counties. As stated by the authors, the behaviour of wILI in the whole USA is low at the
beginning of the influenza season, increases to a maximum in the middle, and reverts
to low levels by the end of the season. But, this behaviour could not be appropriate if
the interest is to forecast in smaller parts of the country.

A possible first option to deal with this would be to use the Dynamic Bayesian
Influenza Forecasting model proposed by the authors to analyse each region separately,
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although an option taking into account the spatial relationship among counties or states
would be more helpful in order to understand the usual behaviour with diseases (Banks
et al., 2012; Zou et al., 2012). In this line, including a spatio-temporal term in formulae
(5) of Osthus et al. (2018) could take into account both temporal and spatial structures
of the data and so it could provide a better performance of the forecasting system.

Another possible way to describe the discrepancies between seasons could be the
environmental and/or climatic effects. In line with our previous comment, these effects
could also be incorporated in the forecasting model as covariates in formulae (5) of
Osthus et al. (2018). These covariates would also be helpful to describe above mentioned
differences between states or counties.

Finally, the nowcasting or, even better, the forecasting of the onset of influenza
epidemics is sometimes as important as the forecasting of the time series on its own.
Predicting that particular feature of the epidemics has important consequences in real
terms as it allows to prepare health services for the starting of the outbreak, which is
the more critic time point for the health system. Do the authors find that their proposal
could be useful in some sense for this particular purpose?
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Rejoinder

Dave Osthus∗, James Gattiker∗, Reid Priedhorsky†, and Sara Y. Del Valle‡

We thank the Bayesian Analysis editorial team for organizing this discussion and all
the discussants for their thoughtful and encouraging comments. In the rejoinder, we
provide needed clarification on the Dynamic Bayesian (DB) model and address issues
raised regarding model interpretation and future model development directions.

Response to Waller

We appreciate the discussion of data and process models. We chose to include discrep-
ancy modeling components μt and δj,t in the description of the process model for the
convenience of defining equation 5, as correctly conjectured by the discussant. Rather
than include discrepancy in either the data or process models, we think partitioning the
model into data, discrepancy, and process is a better representation, as is often done in
the computer experiments modeling literature (e.g., Kennedy and O’Hagan, 2001; Hig-
don et al., 2004). That is, we prefer the representation that hierarchically decomposes
the DB model into

[data | discrepancy, process]× [discrepancy | process]× [process].

This formulation does not change the DB model, but rather makes more explicit the
three different modeling components. Namely, section “Model for logit(Ij,t)” describes
the disease transmission dynamics of the susceptible-infectious-recovered (SIR) process
model, sections “Model for μt” and “Model for δj,t” collectively describe the discrepancy
model conditional on the process model, as δj,T is defined in equation 9 conditional
on the process model, and section “Data Model” is defined conditional on both the
process and discrepancy model, as πj,t is a function of both the process and discrepancy
model. This description preserves the process model interpretation advocated for by the
discussant while making clear discrepancy is a significant modeling component deserving
of thoughtful consideration separate from the data model. The process, discrepancy, and
data model description can be viewed as either an extension to the process/data model
decomposition described by Berliner (1996) or as the hierarchical, rather than additive,
decomposition of the model presented by Kennedy and O’Hagan (2001).

We agree that in some scenarios discrepancy unidentifiability could be problematic,
but since the focus of this work is exclusively on forecasting, this does not directly
apply. It is a known problem that adding in a flexible discrepancy model to account
for systematic deviations between the process model and the data comes at the cost of
model interpretation (Brynjarsdóttir and O’Hagan, 2014). However, not including a dis-
crepancy model may lead to biased inference and inappropriate uncertainties. Building
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‡Information Systems and Modeling, Los Alamos National Laboratory
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a model that has both identifiable model components and appropriate uncertainties is a
challenging problem. Formulating constraints on the discrepancy model, either through
setting parameters to constant values, using informative/regularizing priors, or imposing
model structure, are mechanisms that can improve model identifiability. The discrep-
ancy constraints we chose (e.g., equation 9) were highly catered to this application and
we only argue that they are pragmatically useful, not optimal in any sense. Determining
the best way to impose constraints on the discrepancy model so that it is sufficiently
flexible to capture residual structure but not too flexible to produce unreasonably large
predictive uncertainty intervals is an open area of ongoing research.

Regarding the comparisons to other challenge participants in the paper, we affirm
that direct comparisons are fair. We worked with challenge organizers from the Centers
for Disease Control and Prevention (CDC) when writing this manuscript to ensure this,
hence our discussion of using only data that would have been available at the time a
forecast is rendered. For additional context, the DB model participated in the CDC’s
2017–2018 flu forecasting challenge (not retrospectively) and, at the national scale,
placed 3rd while our next iteration of the DB model, one that incorporates Google
search volume data, placed 1st.

Response to Held and Bracher

We agree that extending the DB model to finer stratifications, such as age groups, flu
strains, and/or geographic scales, is a really promising direction for future model de-
velopment for improved forecast accuracy at more actionable levels for public services
and funding. In fact, we have already implemented one of these promising directions.
In 2017, the CDC piloted a state-level flu forecasting challenge, accompanied with the
public release of state-level influenza-like illness (ILI) data. Since then, we have devel-
oped a spatio-temporal variation of the DB model that is currently participating in the
CDC’s 2018–2019 flu forecasting challenge (Centers for Disease Control and Prevention,
2019). Regional and national forecasts are directly derived as upscaled quantities of the
state-level model, facilitating a unified view of forecasting not requiring different mod-
els at different scales. We are excited to see evidence provided by the discussants that
suggests improved coarse-scale forecasting can be accomplished by modeling at finer
scales.

The suggested alternative approaches to hierarchical discrepancy modeling, such as
an intrinsic autoregression or a deterministic sum-to-zero constraint on

∑
j δj,t = 0 for

all t, provide additional options for constraining the discrepancy model and potentially
improving identifiability. These are directly applicable to the question of identifiability
raised by Waller.

The suggestion to consider probability integral transform histograms and proper
scoring rules for multivariate forecasts is well-received. Model assessments for flu fore-
casting are less sophisticated and less popular than model comparisons. We think there
is substantial potential for flu forecasting model improvements based on improved model
assessments. Work to develop and introduce appropriate model assessment techniques
to the flu forecasting community are admittedly needed to better diagnose areas for
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future model improvement. Model assessments can further be complemented with post-
challenge analyses to identify areas for improvement (Anderson-Cook et al., 2019).

Response to Minin, Fintzi, Martinez Lomeli, and
Wakefield

The discussants highlight that in addition to nonparametric improvements, parametric
model improvements should also be considered. We agree improvements to the paramet-
ric SIR model is a potentially fruitful avenue for model improvement worth pursuing,
especially for applications where the primary focus goes beyond prediction.

The discussants comment that the DB predictive intervals cover nearly the entire
plausible weighted influenza-like illness (wILI) range when early season forecasts are
made, suggesting our model may be too flexible. We agree the predictive intervals are
large early in the season, but that is because there is little information in the early
season wILI data to discriminate between seasons (e.g., mild vs. intense, early vs. late
peaking), not because the model is too flexible. Furthermore, Figure 10(c) presents
empirical coverage results that do not suggest the early season predictive intervals are
too wide.

As the discussants correctly asserted and helpfully demonstrated, the initial num-
ber of susceptible individuals can be identified when multiple seasons are considered
and model assumptions linking the initial susceptibility across seasons are made. Our
comment about lack of identifiability of the initially susceptible population was in the
context of fitting an SIR model to a single season of wILI data. We like the suggestion
by the discussants to model Sj,0 hierarchically across seasons, as we did with other
SIR parameters. This, in fact, might help improve our general under coverage problem
(Figure 10) by enlarging our predictive intervals, a result that was illustrated by the
discussant’s Figure 2 and appears to be a consequence of weakening the constraint on
Sj,0 across seasons.

The discussant’s equation 3 allows for modeling the relationship between the vari-
ance of the wILI data and the latent population incidence. We point out that the Beta
distribution used in our data model (equation 2) also allows for mean-variance model-
ing. Specifically, equation 4 shows that the variance of yj,t grows as E(yj,t|πj,t) = πj,t

increases from 0 to 0.5 for a fixed, positive λ. We had difficulties learning λ, which is
partially why we set it. It would be interesting to see if the discussants were able to
learn ω0 and ω1 well in their model.

Response to Conesa, Amorós, López-Qúılez, and
Martinez-Beneito

In response to the question about how the DB model can be extended to incorporate
different types of surveillance information sources, such as internet surveys and hospital
admissions, we note the answer will depend on the information source. For instance,
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internet surveys can be piped through a machine learning short-term forecasting model
and appended to the end of available wILI data; this is what was done in the next
iteration of the DB model that placed first nationally in the 2017–2018 challenge. Hos-
pital admissions data might be related to the variability of wILI data. In equation 4,
λ could be modeled as a function of hospital admissions. Whether it is useful or not
to include additional information sources should be measured by improved predictive
performance.

We note the DB model can be adapted to accommodate other forms of response
data, such as counts or rates. The distribution of the data model should correspond to
the support of the data being modeled. If, for instance, the response data were counts,
the Beta distribution could be replaced with a Poisson(θ) distribution where θ would
be modeled as a function of the process and discrepancy models.

The discussants also wonder about the effectiveness of the model when little or no
influenza is present. The DB model is able to handle these scenarios straightforwardly,
as little influenza corresponds to yj,t near zero. This is an important case from a prac-
tical perspective as different models are not needed for different degrees of circulating
influenza; they are all handled by the same unified model.

Finally, regarding the question about forecasting features of the flu season, such as
the onset of the flu season, we note that this is in fact what the DB model does for the
flu forecasting challenge. The peak intensity, the timing of the peak intensity, and the
flu season onset are examples of public health-relevant flu season features of interest.
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