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Asymptotic Optimality of One-Group Shrinkage
Priors in Sparse High-dimensional Problems

Prasenjit Ghosh∗ and Arijit Chakrabarti†

Abstract. We study asymptotic optimality of inference in a high-dimensional
sparse normal means model using a broad class of one-group shrinkage priors.
Assuming that the proportion of non-zero means is known, we show that the
corresponding Bayes estimates asymptotically attain the minimax risk (up to a
multiplicative constant) for estimation with squared error loss. The constant is
shown to be 1 for the important sub-class of “horseshoe-type” priors proving ex-
act asymptotic minimaxity property for these priors, a result hitherto unknown in
the literature. An empirical Bayes version of the estimator is shown to achieve the
minimax rate in case the level of sparsity is unknown. We prove that the result-
ing posterior distributions contract around the true mean vector at the minimax
optimal rate and provide important insight about the possible rate of posterior
contraction around the corresponding Bayes estimator. Our work shows that for
rate optimality, a heavy tailed prior with sufficient mass around zero is enough,
a pole at zero like the horseshoe prior is not necessary. This part of the work is
inspired by van der Pas et al. (2014). We come up with novel unifying arguments
to extend their results over the general class of priors. Next we focus on simul-
taneous hypothesis testing for the means under the additive 0− 1 loss where the
means are modeled through a two-groups mixture distribution. We study asymp-
totic risk properties of certain multiple testing procedures induced by the class of
one-group priors under study, when applied in this set-up. Our key results show
that the tests based on the “horseshoe-type” priors asymptotically achieve the
risk of the optimal solution in this two-groups framework up to the correct con-
stant and are thus asymptotically Bayes optimal under sparsity (ABOS). This is
the first result showing that in a sparse problem a class of one-group priors can
exactly mimic the performance of an optimal two-groups solution asymptotically.
Our work shows an intrinsic technical connection between the theories of minimax
estimation and simultaneous hypothesis testing for such one-group priors.

Keywords: asymptotic minimaxity, posterior contraction, ABOS, sparsity,
one-group shrinkage priors, horseshoe prior.

1 Introduction

In this paper we consider inference in a high-dimensional normal means model charac-
terized by sparsity. Suppose we observe a random vector X = (X1, . . . , Xn) ∈ R

n, such
that

Xi = θi + εi, for i = 1, . . . , n, (1)
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where the unknown mean parameters θ1, . . . , θn denote the effects under investigation
and εi’s are independent N(0, 1) random variables. We assume that the fraction of
non-zero θi’s is small and tends to zero as the dimension n grows to infinity. The nor-
mal means model (1) appears in many applications like signal and image processing,
model selection, microarray experiments and nonparametric density estimation. A nat-
ural Bayesian approach to model (1) is to use a two-component mixture (with mixing
proportion p) of a distribution δ{0} degenerate at 0 and an absolutely continuous dis-
tribution F over R, given by

θi
i.i.d.∼ (1− p)δ{0} + p · F, i = 1, . . . , n. (2)

For sparse modeling, F is typically chosen to be a heavy tailed distribution over
R. Carvalho et al. (2009) commented that a carefully chosen “two-groups” model can
be considered a “gold standard” for sparse problems. Use of such two-groups priors,
although very natural, often poses daunting computational challenges, especially in
high-dimensional problems and complex parametric frameworks. Sometimes it is also
possible that most of the parameters are very close to zero, but not exactly equal to zero.
So in such a case a continuous prior may be able to capture sparsity in a more flexible
manner. Due to these reasons, significant efforts have gone into modeling sparse high-
dimensional data in recent times through hierarchical one-group continuous shrinkage
priors which are computationally much simpler compared to the two-groups priors. An
amazing variety of such one-group shrinkage priors is available in the literature. Some
notable examples include the t-prior (Tipping 2001), the Laplace prior (Park and Casella
2008, Hans 2009), the normal–exponential–gamma priors (Griffin and Brown 2005), the
horseshoe prior (Carvalho et al. 2009, Carvalho et al. 2010), the three parameter beta
normal mixture priors (Armagan et al. 2011), the generalized double Pareto priors (Ar-
magan et al. 2012), the Dirichlet–Laplace priors (Bhattacharya et al. 2012, Bhattacharya
et al. 2014) etc. Most of these priors can be expressed as “global-local” scale-mixtures
of normals as

θi|(λ2
i , τ

2) ∼ N(0, λ2
i τ

2), λ2
i ∼ π1(λ

2
i ), τ2 ∼ π2(τ

2). (3)

Here τ is the “global shrinkage parameter” accounting for the overall sparsity and
λ2
i ’s are the “local shrinkage parameters” helpful in detecting the obvious signals. In

some prior specifications, τ is not assigned a non-degenerate prior distribution but is
assigned a fixed value or it is estimated from the data. Polson and Scott (2011) argued
that, in sparse problems, one should choose the prior π1 to be appropriately heavy tailed
and π2 should have a large probability near zero. Consequently, the resulting prior
distribution for θi’s assigns a significant amount of probability near zero while their
tails are heavy enough to accommodate large signals. As a result, noise observations are
shrunk towards zero while large signals are left almost unshrunk, that is, E(θi|X) ≈ Xi

for large Xi’s. The latter property is referred to as the “tail robustness” property and is
enjoyed by a broad class of one-group priors. Polson and Scott (2011) advocated the use
of such tail robust priors for recovery of sparse signals in high dimensional problems.

Several studies of asymptotic optimality of inference with one-group priors under
sparsity have been reported in the literature. In the context of estimation of the mean
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vector θ = (θ1, . . . , θn) in (1), van der Pas et al. (2014) showed that under the usual
squared error loss, the horseshoe estimator (Bayes estimator corresponding to the horse-
shoe prior) asymptotically achieves the minimax risk up to a multiplicative constant.
They also showed that the corresponding posterior distribution contracts around the
true mean vector at the minimax rate and around the horseshoe estimator at least as
fast as the minimax rate. Similar results on posterior contraction was shown by Bhat-
tacharya et al. (2012, 2014) for the Dirichlet–Laplace prior. Castillo and van der Vaart
(2012) commented that priors are not constructed with the goal of producing posteriors
contracting at the minimax rate. However, for theoretical investigations, the minimax
rate can be taken as a benchmark and therein lies the importance of such studies.
Moreover, such results are also useful for quantification of uncertainty in estimation.
See Bhattacharya et al. (2014) and van der Pas et al. (2014) in this context. Datta
and Ghosh (2013) followed by Ghosh et al. (2015) considered the problem of testing
H0i : θi = 0 against HAi : θi �= 0 simultaneously for i = 1, . . . , n, within a decision
theoretic framework when each θi is truly generated from a two-groups model. They
studied asymptotic risk properties of certain testing rules derived from the horseshoe
and a general class of one-group tail robust priors, respectively, in this two-groups set
up. Under an additive 0−1 loss function, they showed that the asymptotic risks of these
rules match up to a multiplicative constant that of the optimal rule in the two-groups
formulation, called the Bayes Oracle, the constant being close to 1. This implies that
the optimal two-groups performance may be reasonably approximated by appropriate
use of one-group priors.

The above results leave open some natural questions which motivate the present
article. van der Pas et al. (2014) asked what aspects of the horseshoe prior are essential
towards attaining optimal posterior concentration properties and whether its pole at
zero is necessary for that purpose. They also wondered whether a heavy tailed prior
distribution with sufficient mass around zero would work as well. Bhattacharya et al.
(2012) conjectured earlier that heavy tailed prior distributions, such as the horseshoe,
the normal–exponential–gamma and the generalized double Pareto, should possess mini-
max optimal concentration properties. In the context of multiple testing, a very natural
question is whether the one-group priors can exactly achieve the performance of the
optimal two-groups solution asymptotically.

This paper is an attempt to answer some of the questions mentioned above. Towards
that, we investigate optimality properties of a very general class of one-group tail robust
shrinkage priors described below. We do not assign any non-degenerate prior distribution
to τ and treat it either as a tuning parameter that we are free to choose or estimate it
from the data. Specifically, our chosen class of priors is given by

θi|(λ2
i , τ

2) ∼ N(0, λ2
i τ

2), λ2
i ∼ π1(λ

2
i ) = K(λ2

i )
−a−1L(λ2

i ), (4)

independently for i = 1, . . . , n. Here K ∈ (0,∞) is the constant of proportionality, a
is a positive real number and L : (0,∞) → (0,∞) is a measurable non-constant slowly
varying function, that is, limx→∞ L(αx)/L(x) = 1, for every fixed α > 0. The aforesaid
class is rich enough to include a great variety of one-group priors such as the three
parameter beta normal mixtures, the generalized double Pareto priors, the inverse–
gamma priors, the half–t priors, and many more. In particular, the horseshoe prior,
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the Strawderman–Berger prior and the normal–exponential–gamma priors fall inside
this class. Our work is based on several versions of a technical report by the authors
available in arXiv since late 2014 (see Ghosh and Chakrabarti 2015). To the best of
our knowledge, it is the first attempt to study posterior concentration properties of
one-group shrinkage priors under a general unified framework. Very recently, we have
come to know of a related article by van der Pas et al. (2016) which also addresses and
answers some of the questions raised in the previous paragraph regarding the estimation
problem. A pointed discussion of the work of van der Pas et al. (2016) and its comparison
with our work is given in Section 3.1 of this paper.

We first describe our results on estimation of the normal mean vector θ under
the squared error loss. Upon appropriate choice of τ based on the proportion of non-
zero means, we prove that Bayes estimates based on our chosen class of priors are
asymptotically minimax up to some multiplicative constant. The constant becomes 1
for the “horseshoe-type” priors (taking a = 0.5 in (4)) when τ is taken to be the
proportion of non-zero means or up to a logarithmic factor of it. This is the first result
in the literature proving exact asymptotic minimaxity using such priors. When the
proportion of non-zero means is unknown, we show that an empirical Bayes version of
the estimate, originally proposed by van der Pas et al. (2014) for the horseshoe estimator,
attains the minimax risk up to a constant. We further study the rates of contraction
of these posteriors assuming the knowledge of the level of sparsity. We show that the
posterior distributions contract around the true mean vector at the minimax rate and
around the corresponding Bayes estimates at least as fast as this rate. We also derive a
lower found to the total posterior spread for an important sub-family of the horseshoe-
type priors. This provides important insights regarding the rates of convergence of these
posterior distributions towards their respective means and gives important pointers
about the optimal choice of τ for achieving optimal posterior concentration rates. Our
work establishes the fact that shrinkage priors which are appropriately heavy tailed and
put sufficient mass near zero through proper choice of τ are able to attain the minimax
optimal rate of contraction. It also shows that one does not need a sharp peak at the
origin for this to happen. This settles to a large extent the questions raised in van der
Pas et al. (2014) discussed before. We provide some novel unifying arguments exploiting
properties of slowly varying functions and extend the work of van der Pas et al. (2014)
over for the class of priors under study. As an immediate consequence of our general
theoretical results, we settle the conjecture of Bhattacharya et al. (2012) mentioned
already.

We now describe our work in the context of multiple testing. As discussed ear-
lier, an important question that remains unanswered in Datta and Ghosh (2013) and
Ghosh et al. (2015) is whether testing rules based on one-group priors can asymptoti-
cally attain the optimal Bayes risk exactly. A key inequality established for our proof
of asymptotic minimaxity turns out to be handy in this context. Using some novel ar-
guments based on this inequality we show that the answer to our question is indeed in
the affirmative for the “horseshoe-type” priors when τ is proportional to the theoretical
proportion of true alternatives. Similar result holds for an empirical Bayes version of
the same rule based on the empirical Bayes estimate of τ due to van der Pas et al.
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(2014). Such rules are called asymptotically Bayes optimal under sparsity (ABOS), af-
ter Bogdan et al. (2011). As far as we know, this is the first such result in the literature
which establishes the major fact that when applied to a two-groups formulation, the
use of certain one-group priors can exactly mimic the performance of the optimal two-
groups answer asymptotically. This reinforces and formally validates the basic wisdom
behind proposing the one-group priors as an alternative to the two-groups priors in
sparse problems. Our work also demonstrates an interesting technical connection be-
tween the theories of minimax estimation and simultaneous hypothesis testing under
sparsity.

The paper is organized as follows. Section 2 describes the general class of priors
under study. Section 3 presents results on the estimation problem while Section 4 con-
tains the results on the multiple testing problem. Section 5 contains some concluding
remarks. Because of space constraints, only proofs of exact asymptotic minimaxity and
asymptotic Bayes optimality properties of horseshoe-type priors plus some important
supporting results are presented in Section 6. Proofs of rest of the results are given in
the supplementary material (Ghosh and Chakrabarti, 2016).

2 A General Class of One-Group Tail Robust Priors

In this paper, we consider a general class of one-group shrinkage priors of the kind (4).
Then given τ , the posterior distribution of θi depends on the data X only through Xi.
From Theorem 1 of Polson and Scott (2011) it follows that the above general class of
one-group priors will be “tail robust” in the sense that given τ > 0, E(θi|Xi, τ) ≈ Xi

for large Xi’s, that is, limXi→∞ |E(θi|Xi, τ) − Xi| = 0 for any fixed τ > 0. For the
theoretical development of this paper, we assume that the slowly varying component
L(·) in (4) satisfies the following:

Assumption 1.

1. limt→∞ L(t) ∈ (0,∞), that is, there some exists c0(> 0) such that L(t) � c0 for
all t � t0, for some t0 > 0, which depends on both L and c0.

2. There exists some 0 < M < ∞ such that supt∈(0,∞) L(t) � M.

Note that condition (1) of Assumption 1 ensures that L(·) is indeed slowly varying.
Ghosh et al. (2015) established that many popular one-group shrinkage priors such as
the three parameter beta normal mixtures and the generalized double Pareto priors
can be expressed in the above general form. They showed that the corresponding prior
distribution of the local shrinkage parameters can be written as in (4). Specifically
π1(λ

2
i ) for the three parameter beta normal mixtures can be written as

π1(λ
2
i ) = K(λ2

i )
−β−1L(λ2

i ) (5)

where L(λ2
i ) =

(
1 + λ−2

i

)−(α+β)
, K = Γ(α+β)

Γ(α)Γ(β) and α > 0, β > 0. Here Γ(α) de-

notes the gamma function evaluated at α > 0. That this L(·) is slowly varying and
satisfies Assumption 1 are easily verifiable. The three parameter beta normal mixtures
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is rich enough to generalize some well known one-group shrinkage priors, such as the

horseshoe (α = 0.5, β = 0.5), the Strawderman-Berger (α = 1, β = 0.5) and the

normal–exponential–gamma (α = 1, β > 0) priors; see Armagan et al. (2011). On the

other hand the prior π1(λ
2
i ) for the generalized double Pareto priors can be expressed

as

π1(λ
2
i ) = K(λ2

i )
−α

2 −1L(λ2
i ), (6)

where L(λ2
i ) = 2

α
2 −1

∫∞
0

e−β
√

2u/λ2
i e−uu(α

2 +1)−1du, K = βα/Γ(α), with α > 0, β >

0. Using the dominated convergence theorem Ghosh et al. (2015) showed that this

satisfies condition 1 of Assumption 1, and hence it is slowly varying. Moreover, an

easy application of the monotone convergence theorem shows that this L(·) is bounded
above by the constant 2

α
2 −1Γ(α2 + 1) thereby satisfying condition 2 of Assumption 1.

See Section 2 of Ghosh et al. (2015) in this context.

It should be noted that some other well known shrinkage priors such as the inverse–

gamma priors (with π1(λ
2
i ) ∝ (λ2

i )
−α−1e−β/λ2

i , α > 0, β > 0) and the half–t priors

(with π1(λ
2
i ) ∝ (1+λ2

i /ν)
−(ν+1)/2, ν > 0) are also covered by our chosen class of priors.

We refer the class of priors with a = 0.5 in (4) as the horseshoe-type priors. The class of

horseshoe-type priors contains the three parameter beta normal mixtures with α = 0.5,

β > 0 (e.g. horseshoe, Strawderman–Berger), the generalized double Pareto priors with

α = 1 (e.g. standard double Pareto), and the inverse–gamma priors with α = 0.5, etc.

Note that not all members of the class of horseshoe-type priors have a spike at

zero like the horseshoe. But appropriately chosen small values of τ ensure that all such

priors assign sufficient mass near the origin which is necessary for handling sparsity.

Moreover, such a prior may have a tail which is even heavier than that of the horseshoe

prior. For example, the inverse–gamma prior with α = 0.5 and β = 0.5 results in a

Cauchy distribution for the θi’s which does not have a sharp peak at the origin and has

a tail heavier than that of the horseshoe prior. The hyperparameter a plays a crucial

role in determining the shrinkage profile of such one-group priors. This is why the

aforesaid differences do not affect the overall performances of these one-group priors

asymptotically as will be seen later in this paper. More specifically, with a = 0.5 and

upon proper choices of τ , such priors asymptotically attain the same optimal decision

theoretic benchmarks in both the problems of simultaneous estimation and multiple

hypothesis testing. This will be made more precise in Section 3 and Section 4 of this

paper.

Before describing our theoretical results in the forthcoming sections, we introduce

here some notations used therein. Let {An} and {Bn} be sequences of non-negative

reals such that Bn �= 0 for all large n. We write An 
 Bn to denote 0 < lim
n→∞

infn
An

Bn
�

lim
n→∞

supn
An

Bn
< ∞, and An � Bn to denote that An � cBn for all sufficiently large n

and some global constant c > 0. We write An ∼ Bn if limn→∞
An

Bn
= 1, and An = o(Bn)

if limn→∞
An

Bn
= 0. If An = cBn for all n � 1 and some global constant c > 0, we denote

it as An ∝ Bn.
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3 Asymptotic Minimaxity and Posterior Contraction
Rates

Consider the normal means model in (1), where the mean vector θ is modeled through
the general class of one-group priors (4) and is estimated by the corresponding posterior
means. For our work we take a � 0.5. We present in this section the theoretical results
involving the mean square error for these Bayes estimates and the spread of the corre-
sponding posterior distributions. Let θ0 = (θ01, . . . , θ0n) denote the true mean vector
which is assumed to be sparse in the nearly black sense, that is, θ0 ∈ �0[qn], where
�0[qn] = {θ ∈ R

n : #(1 � j � n : θj �= 0) � qn} and qn = o(n). It is assumed that the
maximum number of non-zero components qn is known. The corresponding minimax
error rate under the usual squared �2 norm ||θ̂ − θ||2 =

∑n
i=1(θ̂i − θi)

2 is given by (see
Donoho et al. 1992),

inf
θ̂

sup
θ0∈�0[qn]

Eθ0
||θ̂ − θ0||2 = 2qn log

( n

qn

)
(1 + o(1)), as n → ∞. (7)

For global-local scale mixtures of normals, θi|(Xi, κi, τ)
ind.∼ N((1 − κi)Xi, (1 − κi)),

where κi = 1/(1+λ2
i τ

2) denotes the i-th shrinkage coefficient. Thus, E(θi|Xi, τ) = (1−
E(κi|Xi, τ))Xi, for i=1, . . . , n. The resulting vector of posterior means (E(θ1|X1, τ), . . . ,
E(θn|Xn, τ)) will be denoted by Tτ (X). For notational convenience, let us denote
E(θi|Xi, τ) by Tτ (Xi). Note that given τ , Tτ (X) is the Bayes estimate of θ under
the squared error loss.

Theorem 1 below gives an upper bound to the mean square error for Tτ (X). Using
this result, we show that for a broad range of choices of τ , depending on the proportion
qn
n , Tτ (X) attains the minimax risk (7) up to a multiplicative constant. In particular,
for the class of horseshoe-type priors, Tτ (X) is shown to be exactly asymptotically
minimax. This is presented in Corollary 1. Proofs of both these results are presented in
Section 6.

Theorem 1. Suppose X ∼ Nn(θ0, In), where θ0 ∈ �0[qn]. Consider the class of priors
(4) with a > 0 where L(·) satisfies Assumption 1. Then

sup
θ0∈�0[qn]

Eθ0
||Tτ (X)− θ0||2 �

⎧⎪⎨⎪⎩
qn log

(
1

τ2a

)
+ (n− qn)τ

2a
√
log

(
1

τ2a

)
if a ∈ (0, 1),

qn log
(

1
τ2a

)
+ (n− qn)τ

√
log

(
1
τ

)
if a � 1,

provided τ → 0, qn → ∞ and qn = o(n) as n → ∞.

Corollary 1. Under the assumptions of Theorem 1, take τ = ( qnn )α, α � 1, or τ =
qn
n

√
log( n

qn
). Then for a � 0.5 we have

sup
θ0∈�0[qn]

Eθ0 ||Tτ (X)− θ0||2 
 2qn log
( n

qn

)
. (8)

In particular, for the horseshoe-type priors (with a = 0.5) if τ = qn
n , or, τ = qn

n

√
log( n

qn
)

sup
θ0∈�0[qn]

Eθ0
||Tτ (X)− θ0||2 ∼ 2qn log

( n

qn

)
. (9)
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Observe that (9) is a refinement of the corresponding result on asymptotic minimax-
ity (up to a multiplicative constant) of the horseshoe estimator obtained by van der Pas
et al. (2014) and cannot be improved further. This is achieved by producing a sharper
upper bound to the mean square error term due to the non-zero means. Note that the
aforesaid asymptotic minimaxity property depends on the knowledge of the proportion
qn
n . However, qn

n may not always be known in practice. In such cases, van der Pas et al.
(2014) proposed the following empirical Bayes estimate of τ , given by

τ̂ = max

{
1

n
,

1

c2n

n∑
j=1

1{|Xj | >
√
c1 logn}

}
(10)

with c1 ≥ 2 and c2 ≥ 1 being some predetermined finite real numbers. Let Tτ̂ (X) be
the Bayes estimate Tτ (X) evaluated at τ = τ̂ . Theorem 2 below shows that when the
proportion qn

n is unknown, the empirical Bayes estimates Tτ̂ (X) still attain the minimax
�2 risk up to some multiplicative constants, provided qn ∝ nβ for some 0 < β < 1. Proof
of this theorem can be found in the supplementary file.

Theorem 2. Suppose X ∼ Nn(θ0, In), where θ0 ∈ �0[qn] with qn ∝ nβ for some
0 < β < 1. Consider the class of priors (4) with a � 0.5 where L(·) satisfies Assumption
1. Then

sup
θ0∈�0[qn]

Eθ0 ||Tτ̂ (X)− θ0||2 
 2qn logn(1 + o(1)) as n → ∞. (11)

Note that when qn ∝ nβ for 0 < β < 1, the corresponding minimax error rate
under the squared �2 norm is of the order of 2qn log n. The significance of the above
theorem therefore lies in the fact that it provides asymptotic minimaxity property (up
to a multiplicative constant) of a completely data adaptive estimate Tτ̂ (X) under a very
general set up. van der Pas et al. (2016) expressed hope that such a result might be
true for a general class of priors. van der Pas et al. (2014) remarked that for asymptotic
minimaxity property of the empirical Bayes estimates to hold, a sharp peak near zero
like the horseshoe prior is probably not needed. Thus Theorem 2 proves both of these
statements to be correct.

The next theorem gives an upper bound to the total posterior variance corresponding
to the general class of priors under study when a � 0.5. This theorem is crucial for
proving Theorem 4 about the corresponding posterior concentration rates presented
below. Proof of Theorem 3 is presented in the supplementary file.

Theorem 3. Suppose X ∼ Nn(θ0, In), where θ0 ∈ �0[qn]. Consider the class of priors
(4) with a � 0.5 where L(·) satisfies Assumption 1. Then the total posterior variance
corresponding to this general class of priors satisfies

sup
θ0∈�0[qn]

Eθ0

n∑
i=1

V ar(θi|Xi) �

⎧⎨⎩ qn log
(

1
τ2a

)
+ (n− qn)τ

2a
√
log

(
1

τ2a

)
if a ∈ [0.5, 1),

qn log
(

1
τ2a

)
+ (n− qn)τ log

(
1
τ

)
if a � 1,

provided τ → 0, qn → ∞ and qn = o(n) as n → ∞.
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Theorem 4 below provides upper bounds on the rates of posterior contraction for
our chosen class of priors with a � 0.5, both around the true θ0 and the Bayes estimates
Tτ (X).

Theorem 4. Under the assumptions of Theorem 3, if τ =
(
qn
n

)α
with α � 1, or

τ = qn
n

√
log( n

qn
), then

sup
θ0∈�0[qn]

Eθ0Π

({
θ ∈ R

n : ||θ − θ0||2 > Mnqn log
( n

qn

)}
|X

)
→ 0, (12)

and

sup
θ0∈�0[qn]

Eθ0Π

({
θ ∈ R

n : ||θ − Tτ (X)||2 > Mnqn log
( n

qn

)}
|X

)
→ 0, (13)

for every Mn → ∞ as n → ∞.

Proof. A simple application of Markov’s inequality coupled with Theorem 1 and The-
orem 3, when τ =

(
qn
n

)α
with α � 1, lead to (12), while (13) follows from Theorem 3

together with Markov’s inequality.

Using (12) and (13), it follows that the posterior distributions considered in Theorem
3 contract around both the true θ0 and the corresponding Bayes estimates Tτ (X)
at least as fast as the minimax �2 risk. On the other hand, according to Theorem
2.5 of Ghosal et al. (2000), these posterior distributions cannot contract around the
true θ0 faster than the minimax risk. Hence, the rate of contraction of these posterior
distributions around θ0 must be the minimax optimal rate in (7). However, the same
may not be true for contraction around the corresponding Bayes estimates meaning that
credible sets around these Bayes estimates cannot guarantee the coverage of the true
θ0. It seems that a deeper investigation by invoking substantially newer techniques and
arguments is needed to deal with this issue satisfactorily. One natural step towards that
would be to find a lower bound to the total posterior spread. This is a highly non-trivial
and mathematically sophisticated result to achieve, as also remarked in van der Pas
et al. (2016).

In Theorem 5 below, we establish a lower bound of this kind, albeit for a smaller
subclass of priors in (4). We confine our attention to the class of horseshoe-type priors,
when L(·) is non-decreasing over (0,∞). This sub-family of priors covers the three
parameter beta normal mixtures with α = 0.5, β > 0 (e.g. horseshoe, Strawderman–
Berger), the generalized double Pareto priors with α = 1 and the inverse–gamma priors
with α = 0.5 etc. This result gives important pointers towards the appropriate choice
of τ depending on qn

n for optimal posterior concentration of the horseshoe-type priors.
This will be clear form the discussion that follows. Proof of this theorem is presented
in the supplementary file.

Theorem 5. Suppose X ∼ Nn(θ0, In), where θ0 ∈ �0[qn]. Consider the class of priors
(4) with a = 0.5, where L(·) satisfies Assumption 1 and is non-decreasing over (0,∞).
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Then, the total posterior variance corresponding to this class of priors, satisfies

inf
θ0∈�0[qn]

Eθ0

n∑
i=1

V ar(θi|Xi) � (n− qn)τ

√
log

(1
τ

)
, (14)

provided τ → 0, qn → ∞ and qn = o(n) as n → ∞.

If τ = ( qnn )α with 0 < α < 1, the lower bound in (14) exceeds the minimax rate
(7). Thus the corresponding posterior distribution may have a sub-optimal spread and a
credible set centered around its mean Tτ (X) may be too large to draw any meaningful
inference. If τ = ( qnn )α with α � 1, the lower bound in Theorem 5 is of a smaller
order compared to the minimax rate (7). Therefore, for such choices of τ , credible sets
centered around Tτ (X) may be too narrow to guarantee the coverage of the true θ0.
However, if we choose τ = qn

n

√
log(n/qn), then Theorem 3 and Theorem 5 together

imply that the total posterior spread is asymptotically of the order of the minimax �2
rate. This provides a plausibility argument that, for τ = qn

n

√
log(n/qn), the posterior

distributions contract around their respective means at the minimax �2 rate. Again,
for this choice of τ all the desired upper bounds in Theorem 1 and Theorem 3 are
asymptotically of the order of the minimax rate (7). This suggests that for optimal
recovery of a sparse normal mean vector as well as for attaining optimal posterior
contraction rates, τ = qn

n

√
log(n/qn) may be regarded as the desirable choice of τ for

the horseshoe-type priors. Similar observations were also made by van der Pas et al.
(2014) for the horseshoe prior.

Remark 1. Although the theoretical results presented in this section are built on
certain ideas of the proofs of the main theorems of van der Pas et al. (2014), we have to
employ novel unifying arguments using properties of slowly varying functions that work
for the one-group priors under study. In particular, Lemma 3 presented in Section 6 and
Lemmas A.1 – A.2 of the supplementary file, which are at the core of the arguments used
for proving most of the theoretical results of this section, are completely independent
of the work of van der Pas et al. (2014). However, proofs of Theorem 2 and Theorem
5 follow using some key arguments of van der Pas et al. (2014). Our work shows that
some of the technical arguments used in van der Pas et al. (2014) can be used in greater
generality.

3.1 A Comparison with the Work of van der Pas et al. (2016)

van der Pas et al. (2016) considered the following scale mixtures of normals as a prior
for the θi’s in (1):

θi|σ2
i

ind.∼ N(0, σ2
i ), σ2

i
ind.∼ π(σ2

i ), i = 1, . . . , n. (15)

Their aim was to find answers to the question that which features of one-group
shrinkage priors lead to minimax optimal posterior concentration rates under the �2
norm. Towards that they came up with interesting general conditions on the prior π in
(15) which ensure such minimax rate optimality under sparsity. Technically speaking,
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their work introduces a new concept of uniformly regularly varying functions and using
properties of such functions they obtained their conditions. These conditions require that
the tails of π be as heavy as the Laplace and a large amount of mass is assigned around
zero relative to the tails, specially when the sparsity is very pronounced. Their conditions
were general enough to be satisfied by the class of priors (4) satisfying Assumption 1
of this paper and also the horseshoe+ prior (Bhadra et al. 2015), the normal–inverse
Gaussian prior, the normal–gamma prior and the spike–and–slab Lasso prior.

We now compare and explain the relevance and importance of our work in relation to
the work of van der Pas et al. (2016). By way of comparison, first it should be noted that
we are trying to answer the same general question as in van der Pas et al. (2016). But
both these works have been developed independently of each other. Our work is based
on an earlier version of a technical report that is available in arXiv since late 2014. To
the best of our knowledge, this is the first such attempt to answer the aforesaid question
within a general unified framework. As compared to them, our work is based on carefully
exploiting standard facts on slowly varying functions and the conditions of Assumption
1 turns out to be essential in this approach. When τ is taken as a tuning parameter, our
conditions show that an appropriately heavy tailed π1 coupled with proper choice of
τ depending on sparsity (which ensures enough mass near the origin) implies minimax
optimal rate of convergence for the corresponding posterior distributions. In this sense,
there is a fundamental similarity between the conclusions obtained in these two papers.
It should be noted that the class of priors considered in our paper is actually motivated
by the observation of Polson and Scott (2011) on one-group tail robust priors. They
showed certain undesirable properties of priors having exponential tails such as the
lasso or the double exponential, the normal–gamma, the normal–inverse Gaussian etc
which do not satisfy the tail robustness criterion. Specifically they showed that in sparse
problems such priors are capable of handling sparsity, but this comes at the expense of
overshrinking the large observations by non-diminishing amounts. However, van der Pas
et al. (2016) showed that for optimal recovery as well as for attaining minimax optimal
rates of contraction, their conditions on the prior π in (15) are general enough to be
satisfied even by priors having exponential tails like the normal–gamma prior and the
normal–inverse Gaussian prior.

Thus the results of van der Pas et al. (2016) prove minimax rate optimality for a wider
class of priors. However, our work establishes the crucial fact that for appropriately
chosen values of the global tuning parameter τ , Bayes estimates obtained from the
horseshoe-type priors are exactly asymptotically minimax in terms of the squared �2
norm. This is achieved through a careful exploitation of the inequalities established in
Lemma 2 and Lemma 3 followed by some novel arguments. Based on these arguments
we obtain sharper bounds (including the multiplicative factors) to the mean square
error terms due to the zero and non-zero θi’s. This leads to the stronger result on the
minimax optimal recovery of θ by the horseshoe-type priors as presented in Corollary
1. It should further be noted that both our works show that the posterior distributions
contract around their respective means at least as fast as the minimax rate (7). But we
also prove an interesting lower bound to the total posterior spread for a large collection
of horseshoe-type priors. As remarked in van der Pas et al. (2016), this is the only
such result of its kind along with Theorem 3.4 of van der Pas et al. (2014). This result
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gives important clues about the plausible rates of posterior concentration around their

respective means and is the first step towards guaranteeing on coverage of the truth if a

credible set centered around the posterior mean is used. This also gives, as commented

before, the appropriate choice of τ in this problem. We also prove asymptotic minimaxity

results for an empirical Bayes version of the Bayes estimator which is an important

contribution of this work in the sense that the proportion of non-zero means may not

always be known. van der Pas et al. (2016) expressed hope that such a result might be

true for a general class of priors. On the other hand van der Pas et al. (2014) remarked

that for asymptotic minimaxity property of the empirical Bayes estimates to hold, a

sharp peak near zero like the horseshoe prior is probably not needed. Our work proves

both of these statements to be correct.

Last but not the least, our technique of proof shows that the compound decision

problems of estimation and testing involving the unknown mean vector θ in (1), are

intimately related. In the following section we prove optimality results for the testing

problem using a technique developed for the minimaxity proof. This in fact addresses

a question raised in van der Pas et al. (2016) about thresholding rules in the context of

simultaneous testing.

4 Asymptotic Bayes Optimality Under Sparsity

Consider the problem of simultaneous testing of hypotheses H0i : θi = 0 against HAi :

θi �= 0, for i = 1, . . . , n, in the normal means model (1). Our interest is in sparse

situations when the dimension n is large and most of the null hypotheses are true. We

assume that the unknown θi’s are truly generated according to a two-groups model.

We establish in this section asymptotic optimality properties of certain multiple testing

rules (defined in (23) and (25)) based on one-group continuous shrinkage priors when

these rules are applied in this two-groups set up. Interestingly, it turns out that an

analogous form of the key inequality derived in Lemma 3 for proving the asymptotic

minimaxity and posterior concentration results presented in Section 3, is crucial for the

proofs of the results presented in this section. In this way the theoretical developments

for the simultaneous estimation and multiple hypothesis testing problems based on our

chosen class of priors are intimately connected.

We start by describing the two-groups formulation and the related asymptotic and

decision theoretic framework followed by the multiple testing rules under investigation.

To describe the two-groups prior, let us introduce a set of latent indicator binary random

variables ν1, . . . , νn. Here ν1, . . . , νn are i.i.d. Bernoulli(p) random variables, with νi = 0

denotes the event that H0i is true while νi = 1 corresponds to the event H0i is false.

Given νi = 0, θi ∼ δ{0}, the distribution having probability mass 1 at the point 0, while

given νi = 1, θi is assumed to follow a N(0, ψ2) distribution with ψ2 > 0. Marginalizing

over the νi’s, given (p, ψ2), θi’s are i.i.d. with the following marginal distribution:

θi
i.i.d.∼ (1− p)δ{0} + pN(0, ψ2), i = 1, . . . , n. (16)
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The marginal distribution of Xi’s is given by the following two-groups model:

Xi
i.i.d.∼ (1− p)N(0, 1) + pN(0, 1 + ψ2), i = 1, . . . , n. (17)

Under this set up, the given testing problem now boils down to testing simultaneously

H0i : νi = 0 versus HAi : νi = 1 for i = 1, . . . , n. (18)

We define the overall loss of a multiple testing procedure for the above testing
problem as the number of misclassifications made by that test. Then the Bayes risk R
of a multiple testing procedures is given by

R =

n∑
i=1

[
(1− p)t1i + pt2i

]
. (19)

Here t1i and t2i denote the probabilities of a type I error and a type II error respec-
tively for the i-th testing problem. Under this set up, Bogdan et al. (2011) derived the
Bayes rule which minimizes the Bayes risk (19). It is the test which, for each i = 1, . . . , n,
declares the i-th null hypothesis H0i to be significant if

π(νi = 1|Xi) > 0.5, or equivalently, X2
i > c2, (20)

where π(νi = 1|Xi) denotes the posterior probability of the i-th alternative hypothesis

HAi to be true and c2 ≡ c2ψ,f,δ = 1+ψ2

ψ2 (log(1+ψ2)+2 log( 1−p
p )). The above testing rule

is also referred to as the Bayes Oracle since it involves the unknown model parameters

p and ψ2. By introducing two new parameters u ≡ un = ψ2
n and v ≡ vn = ψ2

n

(
1−pn

pn

)2
,

Bogdan et al. (2011) considered the following asymptotic scheme given by,

Assumption 2. pn → 0, un = ψ2
n → ∞ and log vn

un
→ C ∈ (0,∞) as n → ∞.

Bogdan et al. (2011) showed that under Assumption 2, the Bayes risk of the Bayes
Oracle (20), denoted RBO

Opt, has the following asymptotic expression

RBO
Opt = np(2Φ(

√
C)− 1)(1 + o(1)). (21)

Within this set up, a multiple testing procedure with Bayes risk R is said to be
asymptotically Bayes optimal under sparsity (ABOS), if

R

RBO
Opt

→ 1 as n → ∞. (22)

Carvalho et al. (2010) modeled the unknown θi’s in the normal means model by the
horseshoe prior and made the following interesting observation. They observed through
simulations that the posterior probability of HAi being true under the discrete mixture
model (2) with an appropriately heavy tailed F can be well approximated by 1 − κ̂i,
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where κ̂i denotes the i-th posterior shrinkage coefficient based on the horseshoe prior.
They proposed a natural classification rule under a symmetric 0− 1 loss function based
on the horseshoe prior, given by,

reject H0i if 1− κ̂i > 0.5, i = 1, . . . , n.

Carvalho et al. (2010) empirically observed that the estimated misclassification risk
for the above thresholding rule is close to that of the optimal Bayes rule within their
chosen two-groups framework. Datta and Ghosh (2013) made a formal asymptotic study
of the aforesaid phenomena. They investigated the asymptotic risk properties of the
thresholding rule above when applied to data generated from the two-groups model
(17). Formally, taking τ as a tuning parameter, the thresholding rule considered in
Datta and Ghosh (2013) is given by

reject H0i if 1− E(κi|Xi, τ) > 0.5, i = 1, . . . , n. (23)

They showed that under Assumption 2, the induced decision (23) attains the optimal
Bayes risk (21) up to a multiplicative constant if τ ∼ p. Ghosh et al. (2015) proved that
similar results hold for testing rule (23) using posterior shrinkage coefficients based on
a general class of one-group shrinkage priors that includes the horseshoe. Specifically,
they considered the class of priors of the form (4) with either (I) 0.5 < a < 1 or, (II)
a = 0.5 and L(t)/

√
log(t) → 0 as t → ∞. Assuming that limn→∞ τ/p ∈ (0,∞), they

showed that the Bayes risk of the multiple testing rules (23), denoted ROG, satisfies as
n → ∞

2Φ
(√

2aC
)
− 1

2Φ
(√

C
)
− 1

(
1 + o(1)

)
� ROG

RBO
Opt

�
2Φ

(√
2aC

η(1−δ)

)
− 1

2Φ
(√

C
)
− 1

(
1 + o(1)

)
, (24)

for every fixed η ∈ (0, 1
2 ) and δ ∈ (0, 1). This was a generalization and improvement

over Datta and Ghosh (2013). In case p is unknown, Ghosh et al. (2015) considered a
data adaptive version of (23), given by

reject H0i if 1− E(κi|Xi, τ̂) > 0.5, i = 1, . . . , n, (25)

where τ̂ has already been defined in (10). They showed that, if p ∝ n−β for β ∈ (0, 1),
then REB

OG/R
BO
Opt has the same upper bound as in (24), where REB

OG denotes the Bayes
risk of the empirical Bayes procedure (25).

Thus, the induced decisions (23) and (25) based on a general family of heavy tailed
one-group prior distributions, asymptotically attain the Oracle risk (21) up to a multi-
plicative factor. However, an interesting and natural follow up question is whether this
multiplicative factor can be 1. This is equivalent to ask whether such induced multiple
testing rules can be ABOS under Assumption 2. This question is investigated in The-
orem 6 and Theorem 7 presented below. It is shown that the answer to the aforesaid
question of asymptotic Bayes optimality is indeed in the affirmative for the horseshoe-
type prior distributions. Proofs of both these theorems are given in Section 6.
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Theorem 6. Let X1, . . . , Xn be i.i.d. having distribution (17) where the sequence of
vectors (ψ2, p) satisfies Assumption 2. Suppose we wish to test (18) using the classifi-
cation rule (23) induced by the class of priors (4) with a ∈ [0.5, 1), where L(·) satisfies
Assumption 1. Suppose p → 0, τ → 0 as n → ∞ such that limn→∞ τ/pα ∈ (0,∞), for
α � 1. Then

lim
n→∞

ROG

RBO
Opt

=
2Φ

(√
2aα

√
C
)
− 1

2Φ
(√

C
)
− 1

. (26)

In particular, for a = 0.5 and α = 1 we have,

lim
n→∞

ROG

RBO
Opt

= 1.

Theorem 6 therefore shows that, if τ is asymptotically of the order of p, such induced
decisions based on the horseshoe-type priors asymptotically attain the risk of the Bayes
Oracle up to the right constant, and hence, are ABOS. This is the first result of its
kind as far as we know, and sharpens all known theoretical results about asymptotic
risk properties of this kind of induced decisions in a two-groups framework. It shows
that a broad class of one-group shrinkage priors can asymptotically mimic the overall
performance of a more natural two-groups model. This resolves a long awaited technical
question in the Bayesian literature that whether the optimal “two-groups answer” can
exactly be matched by the “one-group solution”. This demonstrates in a very strong
sense that appropriately chosen one-group shrinkage priors can be used with confidence
in an inference problem under sparsity, where a two-groups modeling is more natural in
a strict mathematical sense.

Note that the above limiting expression in (26) gives exact asymptotic expressions
for the ratio of Bayes risk of the induced testing rule (23) to that of the Bayes Oracle,
for any a ∈ [0.5, 1) and any α � 1. It also shows that the limiting value of the ratio
of Bayes risks is an increasing function of both α � 1 and a ∈ [0.5, 1). This suggests
that the hyperparameter a in the definition of π1(λ

2
i ) in (4) may be set at a = 0.5 as a

default choice for the present multiple testing problem.

The above theorem also establishes a necessary and sufficient condition on the choice
of τ for the horseshoe-type priors for achieving optimal or near optimal performance
for the present multiple testing problem. It will be shown in Section 6 that the type I
and type II error probabilities of the i-th decision in (23), do not depend on i. Thus,
the Bayes risk of the induced decision (23) is given by ROG = np( 1−p

p t1 + t2) (using

(19)). Suppose that limn→∞
τ
pα ∈ (0,∞) with α > 0. If α ∈ (0, 1), then using (53) of

Section 6, one can show easily that t1
p diverges to ∞ as n → ∞. Thus, ROG/R

BO
Opt → ∞

as n → ∞ implying that the aforesaid Bayesian optimality property fails to hold in
such cases. On the other hand, the limiting value of ROG/R

BO
Opt as given by (26), is

non-decreasing in α � 1, thereby attaining its minimum value 1 at α = 1. Therefore,
for the horseshoe-type priors, the optimal choice of τ is asymptotically of the order of
p, when the latter is assumed to be known.

The next theorem shows that, within the asymptotic framework of Bogdan et al.
(2011), when pn ∝ n−β for 0 < β < 1, the empirical Bayes induced testing procedures
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(25) based on the horseshoe-type priors asymptotically attain the optimal Bayes risk in
(21) up to the correct constant, and hence, are ABOS. Proof of this result is given in
Section 6.

Theorem 7. Let X1, . . . , Xn be i.i.d. having distribution (17) and suppose Assumption
2 is satisfied by the sequence of vectors (ψ2, p), where p ∝ n−β for some 0 < β < 1.
Suppose we wish to test (18) using the classification rule (25) induced by the class of
priors (4) with a = 0.5, where L(·) satisfies Assumption 1. Then the Bayes risk of the
empirical Bayes testing procedure (25), denoted REB

OG, satisfies

lim
n→∞

REB
OG

RBO
Opt

= 1,

that is, the corresponding empirical Bayes decisions (25) will be ABOS.

Ghosh et al. (2015) showed that under the assumptions of Theorem 7, τ̂
p converges

to 2β0 in probability as n tends to ∞, for some β0 > 0. Thus the asymptotic Bayes
optimality property of the empirical procedure (25) based on the horseshoe-type priors
is in concordance with the conclusions of Theorem 6. The importance of this result lies
in the fact that it is the first such result in the literature showing a completely data
adaptive procedure based on one-group shrinkage priors to exactly achieve the optimum
decision theoretic benchmark in a high dimensional problem under sparsity.

5 Discussion

In this paper, we study a high-dimensional sparse normal means model. Our focus is
on various theoretical properties of inference using a general class of one-group tail ro-
bust shrinkage priors. We first show, assuming that the proportion of non-zero means
is known, that the Bayes estimates arising out of this general class asymptotically at-
tain the minimax risk with respect to the �2 norm, possibly up to some multiplicative
constants. In particular, for the sub-class of “horseshoe-type” priors exact asymptotic
minimaxity is established. In case the level of sparsity is unknown, an empirical Bayes
version of the estimator is shown to achieve the minimax rate. Optimal rates of posterior
contraction of these prior distributions around the truth in terms of the minimax error
rate has also been established for proper choice of τ depending on the knowledge of
sparsity. We provide a novel unifying theoretical treatment that holds for a very broad
class of one-group shrinkage priors. Another major contribution of this work is to show
that shrinkage priors which are appropriately heavy tailed are good enough in order
to attain the minimax optimal rate of contraction and that one does not need a pole
at the origin for this to happen, provided that τ is carefully chosen. This provides a
partial answer to the question raised in van der Pas et al. (2014) already discussed in
the introduction. We believe that one possible reason for such good performance of the
kind of one-group shrinkage priors studied in this paper, is their ability to shrink the
noise observations back to the origin, while leaving the large signals mostly unshrunk.

In the latter half of this paper, we also study, within a decision theoretic framework,
the asymptotic risk properties of induced decisions based on our chosen class of priors
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in the context of multiple testing. A major theoretical contribution of this work is to
show that such induced decisions based on the horseshoe-type priors are asymptotically
Bayes optimal under sparsity. To the best of our knowledge, this is the first such result
in the literature where the optimal two-groups answer can be exactly achieved asymp-
totically by an one-group formulation under the assumption of sparsity. Our work also
demonstrates an interesting technical connection between the theories of minimax esti-
mation and simultaneous hypothesis testing under sparsity. An important consequence
of this work is to theoretically establish the fact that for the class of horseshoe-type
priors with a = 0.5, the optimal choice of τ in the multiple testing problem should be
asymptotically of the order of the proportion of true alternatives p, when p is assumed
to be known. Moreover, the present work also provides strong theoretical support in
favor of using a = 0.5 as a default choice in our one-group prior specification.

Over the past few years, one-group shrinkage priors have been gaining increasing
popularity in the Bayesian literature for modeling sparse high-dimensional data instead
of the more natural two-groups models. We hope that the present work is a useful
contribution towards understanding various theoretical properties of such one-group
priors. It provides important theoretical justifications in favor of the use of such kind
of one-group priors together with some useful guidelines regarding the choice of the
underlying hyperparameters. We are hopeful that the techniques employed in the present
article would prove to be important ingredients for optimality studies of such one-group
shrinkage priors. However, an interesting problem that remains open till date is to show
asymptotic optimality properties of a full Bayes approach by assigning a hyperprior to
the global shrinkage parameter τ . This applies in equal measure in both the problems
of simultaneous estimation and testing. We hope to address this problem elsewhere in
future.

6 Proofs

We start this section by first noting that under (4), the shrinkage coefficients κi’s are
independently distributed given (x, τ), with the posterior distribution of κi only de-
pending on (xi, τ) and is given by

π(κi|xi, τ) ∝ κ
a+ 1

2−1
i (1− κi)

−a−1L
( 1

τ2
( 1

κi
− 1

))
e−

κix
2
i

2 , κi ∈ (0, 1).

We next present three very important lemmas which are crucial for deriving most
of the results of this paper. Lemma 1 gives an upper bound to the tail probability
Pr(κi > η|xi, τ), while Lemma 2 presents an upper bound to E(1 − κi|xi, τ). Lemma
3 provides a non-trivial upper bound to the difference of the coordinate-wise posterior
means Tτ (xi) and the observation xi. This upper bound is one of the core facts used
for proving most of the results described in this paper. For notational convenience, we
suppress the dependence of κi and xi on i while presenting these lemmas. Lemma 1
follows as an immediate consequence of Theorem 5 of Ghosh et al. (2015) and hence
the proof is skipped.
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Lemma 1. Consider the class of priors (4) with a > 0 where L(·) satisfies Assumption
1. For every fixed τ > 0 and each fixed η ∈ (0, 1), δ ∈ (0, 1), the posterior distribution
of the shrinkage coefficients κ = 1/(1 + λ2τ2) satisfies the following:

Pr(κ > η|x, τ) � H(a, η, δ)e−
η(1−δ)x2

2

τ2aΔ(τ2, η, δ)
, uniformly in x ∈ R,

where

Δ(τ2, η, δ) = Ψ(τ2, η, δ)L
( 1

τ2
(
1

ηδ
− 1)

)
,

Ψ(τ2, η, δ) =

∫∞
1
τ2

(
1
ηδ−1

) t−(a+ 1
2+1)L(t)dt

(a+ 1
2 )

−1
(

1
τ2

(
1
ηδ − 1

))−(a+ 1
2 )L( 1

τ2

(
1
ηδ − 1

)
)
, and

H(a, η, δ) =
(a+ 1

2 )(1− ηδ)a

K(ηδ)(a+
1
2 )

·

Furthermore, limτ→0 Δ(τ2, η, δ) is a finite positive quantity for every fixed η ∈ (0, 1)
and δ ∈ (0, 1).

Lemma 2. Consider the class of priors (4) with a > 0 where L(·) satisfies Assumption
1. Then, for each fixed x ∈ R and every fixed τ > 0, we have

E(1− κ
∣∣x, τ) �

⎧⎨⎩ KMa−1(1− a)−1e
x2

2 τ2a(1 + o(1)) if a ∈ (0, 1),

2M
(
2a− 1

)−1
e

x2

2 τ(1 + o(1)) if a � 1,

where the o(1) term depends only on τ such that limτ→0 o(1) = 0.

Proof. The case for a ∈ (0, 1) follows directly from Theorem 3 of Ghosh et al. (2015).
So, let us now consider the case a � 1.

First we observe that

E(1− κ
∣∣x, τ) =

∫ 1

0
κa+ 1

2−1(1− κ)−aL
(

1
τ2

(
1
κ − 1

))
e−

κx2

2 dκ∫ 1

0
κa+ 1

2−1(1− κ)−a−1L
(

1
τ2

(
1
κ − 1

))
e−

κx2

2 dκ

≤
e

x2

2

∫ 1

0
κa+ 1

2−1(1− κ)−aL
(

1
τ2

(
1
κ − 1

))
dκ∫ 1

0
κa+ 1

2−1(1− κ)−a−1L
(

1
τ2

(
1
κ − 1

))
dκ

. (27)

Then, using the change of variable t = 1
τ2

(
1
κ −1

)
in the numerator of (27) and applying

the fact
∫ 1

0
κa+ 1

2−1(1 − κ)−a−1L( 1
τ2 (

1
κ − 1))dκ = K−1τ−2a(1 + o(1)) (see Lemma A.5

of Ghosh et al. 2015) to its denominator, we obtain

E(1− κ
∣∣x, τ) � Ke

x2

2

∫ ∞

0

tτ2

1 + tτ2
t−a−1L(t)√

1 + tτ2
dt(1 + o(1))
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= Ke
x2

2

(∫ 1

0

+

∫ ∞

1

)
tτ2

1 + tτ2
t−a−1L(t)√

1 + tτ2
dt(1 + o(1))

= Ke
x2

2

(
J1τ + J2τ

)
, say. (28)

Now note that the term J1τ can be bounded above as

J1τ � τ2
∫ 1

0

t−a−1L(t)dt(1 + o(1)) � K−1τ2(1 + o(1)). (29)

Also, since tτ2

1+tτ2

t−a−1L(t)√
1+tτ2

� Mτt−(a− 1
2 ), we have

J2τ � Mτ

∫ ∞

1

t−(a− 1
2 )dt(1 + o(1)) = 2M

(
2a− 1

)−1
τ(1 + o(1)). (30)

Combining (27)–(30), the desired upper bound for a � 1 follows. That the cor-
responding o(1) term depends only on τ and tends to 0 as τ → 0 is clear from the
proof.

Lemma 3. Consider the class of priors (4) satisfying Assumption 1, with a > 0.
Then, for each fixed τ ∈ (0, 1) and given any c > 2, the absolute difference between the
coordinate-wise posterior mean Tτ (x) and an observation x, can be bounded above by a
non-negative real valued function h(·, τ), depending on c satisfying the following:

for any ρ > c,
lim
τ↓0

sup

|x|>
√

ρ log
(

1
τ2a

)h(x, τ) = 0. (31)

Proof. By definition,∣∣Tτ (x)− x
∣∣ =

∣∣xE(κ|x, τ)
∣∣

=
∣∣x ∫ 1

0
κ · κa+ 1

2−1(1− κ)−a−1L( 1
τ2 (

1
κ − 1))e−κx2/2dκ∫ 1

0
κa+ 1

2−1(1− κ)−a−1L( 1
τ2 (

1
κ − 1))e−κx2/2dκ

∣∣.
Now observe that, for each fixed τ ∈ (0, 1), the function

∣∣Tτ (x) − x
∣∣ is symmetric

in x and it takes the value 0 when x = 0. Therefore, it would be enough to find any
non-negative function h(x, τ) that is symmetric in x and satisfies the stated conditions.
Hence, without any loss of generality, let us assume that |x| > 0.

Let us fix any η, δ ∈ (0, 1). Observe that, for any x ∈ R and for each fixed τ ∈ (0, 1),∣∣Tτ (x)− x
∣∣ � I1(x, τ) + I2(x, τ) (32)

where I1(x, τ) =
∣∣xE(κ1{κ � η}|x, τ)

∣∣ and I2(x, τ) =
∣∣xE(κ1{κ > η}|x, τ)

∣∣.
Now using the variable transformation t = 1

τ2 (
1
κ−1) in I1(x, τ) we have the following:

I1(x, τ) =
∣∣x ∫ η

0
κ · κa+ 1

2−1(1− κ)−a−1L( 1
τ2 (

1
κ − 1))e−κx2/2dκ∫ 1

0
κa+ 1

2−1(1− κ)−a−1L( 1
τ2 (

1
κ − 1))e−κx2/2dκ

∣∣
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�
∣∣x ∫∞

1
τ2 ( 1

η−1)
1

(1+tτ2)3/2
t−a−1L(t)e

− x2

2(1+tτ2) dt∫∞
t0
τ2

1
(1+tτ2)1/2

t−a−1L(t)e
− x2

2(1+tτ2) dt

∣∣
= J1(x, τ), say. (33)

Observe that t0
τ2 > t0 as τ2 < 1. Hence L(t) � c0 for all t � t0

τ2 . Also, note that L is

bounded above by the constant M > 0. Therefore, using the transformation u = x2

1+tτ2

in both the numerator and the denominator of J1(x, τ) in (33), and writing s = 1
1+t0

∈
(0, 1), we obtain

J1(x, τ) � M

c0

∣∣x∫ ηx2

0
e−u/2

(
u
x2

)3/2( 1
τ2

(
x2

u − 1
))−a−1 x2

τ2u2 du∫ sx2

0
e−u/2

(
u
x2

)1/2( 1
τ2

(
x2

u − 1
))−a−1 x2

τ2u2 du

∣∣
� M

c0

∣∣ 1
x
·
∫ ηx2

0
e−u/2ua+3/2−1

(
1− u

x2

)−a−1
du∫ sx2

0
e−u/2ua+1/2−1

(
1− u

x2

)−a−1
du

∣∣.
Note that when 0 < u < ηx2 we have 0 < u

x2 < η < 1, that is, 1 − η < 1 − u
x2 < 1.

Similarly, we have 1 − s < 1 − u
x2 < 1 when 0 < u < sx2. Using these observations we

get

J1(x, τ) � M

c0(1− η)1+a

∣∣ 1
x
·
∫ ηx2

0
e−u/2ua+3/2−1du∫ sx2

0
e−u/2ua+1/2−1du

∣∣
� M

c0(1− η)1+a

∣∣ 1
x
·
∫∞
0

e−u/2ua+3/2−1du∫ sx2

0
e−u/2ua+1/2−1du

∣∣
= h1(x, τ), say, (34)

where h1(x, τ) = C∗
[∣∣x ∫ sx2

0
e−u/2ua+1/2−1du

∣∣]−1
for some global constant C∗ ≡

C∗(a, η, L) > 0 which is independent of both x and τ .

Next, from Lemma 1 it follows that

I2(x, τ) �
∣∣xPr(κ > η|x, τ)

∣∣ �
∣∣xH(a, η, δ)e−

η(1−δ)x2

2

τ2aΔ(τ2, η, δ)

∣∣ = h2(x, τ), say. (35)

Let h(x, τ) = h1(x, τ) + h2(x, τ). Therefore combining (32), (33), (34) and (35), we
finally obtain for every x ∈ R and τ ∈ (0, 1),∣∣Tτ (x)− x

∣∣ � h(x, τ). (36)

Note that h(x, τ) defined above is symmetric in x about the origin. Now observe
that the function h1(x, τ) is strictly decreasing in |x| for |x| > 0. Also, the function

x �→ |x|e−η(1−δ)x2/2 is strictly decreasing in x when |x| > 1/
√
η(1− δ). Using these facts
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and the definition of the function h, it follows after some straightforward calculation
that

lim
τ→0

sup

|x|>
√

ρ log
(

1
τ2a

)h(x, τ) =

{
0 if ρ > 2

η(1−δ)

∞ otherwise.
(37)

Note that by choosing η appropriately close to 1 and δ sufficiently close to 0, any real
number larger than 2 can be expressed in the form 2

η(1−δ) . Hence, given any c > 2, let

us choose η, δ ∈ (0, 1) such that c = 2
η(1−δ) . Clearly, the choice of h(·, τ) depends on c.

This, coupled with (36) and (37), completes the proof of Lemma 3.

Proof of Theorem 1. Define q̃n = #{i : θ0i �= 0}. Let us split the mean square error

Eθ0
||Tτ (X)− θ0||2 =

∑n
i=1 Eθ0i

(
Tτ (Xi)− θ0i

)2
as

n∑
i=1

Eθ0i

(
Tτ (Xi)− θ0i

)2
=

∑
i:θ0i �=0

Eθ0i

(
Tτ (Xi)− θ0i

)2
+

∑
i:θ0i=0

Eθ0i

(
Tτ (Xi)− θ0i

)2
. (38)

Non-zero means: For θ0i �= 0, using the Cauchy-Schwartz inequality and the fact

that Eθ0i

(
Xi − θ0i

)2
= 1, we get

Eθ0i

(
Tτ (Xi)− θ0i

)2 �
[√

Eθ0i

(
Tτ (Xi)−Xi

)2
+ 1

]2
. (39)

Let ζτ =
√
2 log

(
1

τ2a

)
. Fix any c > 1 and choose any ρ > c. Now using Lemma 3,

there exists a non-negative real-valued function h, depending on c, such that |Tτ (x) −
x| � h(x, τ) for all x ∈ R, where the function h satisfies (31). Also note that |Tτ (x)−x| �
x for all x ∈ R. Using these facts and further noting that ζτ → ∞ when τ → 0, we
obtain as τ → 0

Eθ0i

(
Tτ (Xi)−Xi

)2
= Eθ0i

[
(Tτ (Xi)−Xi

)2
1
{
|Xi| � ρζτ

}]
+ Eθ0i

[
(Tτ (Xi)−Xi

)2
1
{
|Xi| > ρζτ

}]
� ρ2ζ2τ (1 + o(1)). (40)

Note that (40) holds uniformly for any i such that θi �= 0. Therefore, using (39) and
(40), we obtain as τ → 0 ∑

i:θ0i �=0

Eθ0i

(
Tτ (Xi)− θ0i

)2 � q̃nζ
2
τ . (41)

Zero means: We treat the cases 0 < a < 1 and a � 1 separately.

Case (I) When 0 < a < 1: For θ0i = 0, we split the corresponding mean square error
as

E0

[
T 2
τ (Xi)

]
= E0

[
T 2
τ (Xi)1{|Xi| � ζτ}

]
+ E0

[
T 2
τ (Xi)1{|Xi| > ζτ}

]
, (42)
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where ζτ =
√
2 log

(
1

τ2a

)
. Now using Lemma 2, we obtain as τ → 0

E0T
2
τ (Xi)1{|Xi| � ζτ} � (τ2a)2

∫ ζτ

0

x2e
x2

2 dx(1 + o(1)) � ζτ τ
2a, (43)

where we use the identity d
dx [xe

x2

2 ] = x2e
x2

2 + e
x2

2 to bound the term
∫ ζτ
0

x2e
x2

2 dx. For
the second term, we first observe that |Tτ (x)| � |x| for any x ∈ R. Using this, together
with the fact that x2φ(x) = φ(x)− d

dx [xφ(x)], we obtain as τ → 0

E0T
2
τ (Xi)1{|Xi| > ζτ} � 2

∫ ∞

ζτ

x2φ(x)dx � 2ζτφ(ζτ ) + 2
φ(ζτ )

ζτ
� ζτ τ

2a. (44)

Combining equations (42), (43) and (44), it follows that, for 0 < a < 1, we have as
τ → 0 ∑

i:θ0i=0

Eθ0i

(
Tτ (Xi)− θ0i

)2 � (n− q̃n)τ
2a

√
log

( 1

τ2a
)
. (45)

Case (II) When a � 1: Letting ζ̃τ =
√
2 log

(
1
τ

)
, we split the corresponding mean square

error as

E0

[
T 2
τ (Xi)

]
= E0

[
T 2
τ (Xi)1{|Xi| � ζ̃τ}

]
+ E0

[
T 2
τ (Xi)1{|Xi| > ζ̃τ}

]
.

Then applying the same reasoning as in Case (I) together with Lemma 2, it follows,
for a � 1, we have as τ → 0

∑
i:θ0i=0

Eθ0i

(
Tτ (Xi)− θ0i

)2 � (n− q̃n)τ

√
log

(1
τ

)
. (46)

Finally, on combining (38), (41), (45) and (46), we get, as τ → 0, the following:

Eθ0
||Tτ (X)− θ0||2 �

⎧⎪⎨⎪⎩
q̃n log

(
1

τ2a

)
+ (n− q̃n)τ

2a
√
log

(
1

τ2a

)
if a ∈ (0, 1)

q̃n log
(

1
τ2a

)
+ (n− q̃n)τ

√
log

(
1
τ

)
if a � 1.

The required result now follows immediately by observing that q̃n � qn and qn = o(n)
and then taking supremum over all θ0 ∈ �0[qn]. This completes the proof of Theorem 1.

Proof of Corollary 1. Fix any constant c > 1 and choose any ρ > c in the proof of
Theorem 1. Then the corresponding multiplicative factor in the upper bound to the
worst case �2 risk of Tτ (X) over �0[qn] as obtained in Theorem 1 can at most be 4aρ2.
Now taking τ = ( qnn )α with α � 1, or τ = qn

n

√
log(n/qn) in Theorem 1, it follows

that the corresponding mean square error can at most be of the order of 2qn log
(

n
qn

)
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up to the multiplicative factor 2aρ2 max{1, α}. It is also always bounded below by the
minimax �2 risk which is of the order of 2qn log

(
n
qn

)
. This immediately leads to (8).

Note that for the horseshoe-type priors we have a = 0.5. Therefore, when τ = qn
n or

τ = qn
n

√
log( n

qn
), by using the proof of Theorem 1, it follows that

sup
θ0∈�0[qn]

Eθ0 ||Tτ (X)− θ0||2 � 2ρ2qn log
( n

qn

)
(1 + o(1)) as n → ∞, (47)

where the o(1) term depends on ρ > c > 1. Now, using (47), and the fact that the
minimax �2 risk in (7) is the greatest lower bound to the mean square error term in
(47), we obtain

1 �
sup

θ0∈�0[qn]

Eθ0 ||Tτ (X)− θ0||2

inf
θ̂

sup
θ0∈�0[qn]

Eθ0 ||θ̂ − θ0||2
� ρ2(1 + o(1)) as n → ∞. (48)

Hence taking limit inferior and limit superior in (48) as n → ∞, we have,

1 � lim inf
n→∞

sup
θ0∈�0[qn]

Eθ0
||Tτ (X)− θ0||2

inf
θ̂

sup
θ0∈�0[qn]

Eθ0 ||θ̂ − θ0||2
� lim sup

n→∞

sup
θ0∈�0[qn]

Eθ0
||Tτ (X)− θ0||2

inf
θ̂

sup
θ0∈�0[qn]

Eθ0 ||θ̂ − θ0||2
� ρ2.

(49)
Note that the Bayes estimator Tτ (X) does not depend on the choice of ρ > c > 1. Hence
the ratio in (48) is independent of the choices of ρ > c > 1. Consequently, the limit
inferior and limit superior terms in (49) are also independent of the choices of ρ > c > 1
which are arbitrary. Therefore, taking infimum over all possible choices of ρ > c > 1 in
(49), we get

sup
θ0∈�0[qn]

Eθ0 ||Tτ (X)− θ0||2 ∼ inf
θ̂

sup
θ0∈�0[qn]

Eθ0 ||θ̂ − θ0||2. (50)

(50) together with (7) completes the proof of (9).

Proof of Theorem 6. Let us first note that for each i,Xi ∼ N(0, 1) underH0i. Therefore,
the type I error probability of the i-th induced decision in (23) does not depend on i.
Let t1 denote the common value of t1i’s, i = 1, . . . , n. Then, by definition

t1 = PH01

(
E(1− κ1|X1, τ) > 0.5

)
, (51)

where PH01(B) denotes the probability of an event B under the distribution of X1 under
H01. Again, for each i, Xi ∼ N(0, 1 + ψ2) under HAi. Hence the corresponding type
II error probability t2i does not depend on i. Let t2 denote the common value of t2i’s,
i = 1, . . . , n. Therefore, by definition

t2 = PHA1

(
E(1− κ1|X1, τ) � 0.5

)
, (52)
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where PHA1
(B) denotes the probability of an event B under the distribution of X1 under

HA1. Thus, using (51) and (52), we get ROG = n((1 − p)t1 + pt2). Let us now fix any
0 < η, δ < 1 and choose any ξ > 2

η(1−δ) . It will be shown that t1 can be bounded as

G1(a, η, δ)
(
τ2a

) ξ
2√

log( 1
τ2 )

(1 + o(1)) � t1 � H1(a, η, δ)τ
2a√

log( 1
τ2 )

(1 + o(1)) as n → ∞, (53)

where G1(a, η, δ) and H1(a, η, δ) are some finite positive constants each being indepen-
dent of n, but depend on a ∈ (0, 1), η ∈ (0, 1) and δ ∈ (0, 1). On the other hand, one
can show that t2 can be bounded as[

2Φ(
√
2aα

√
C)− 1

]
(1 + o(1)) � t2 �

[
2Φ(

√
ξaα

√
C)− 1

]
(1 + o(1)) as n → ∞. (54)

For the time being, let us assume that (53) and (54) are true. It will now be shown
how they lead to the proof of Theorem 6.

First of all, observe that one can rewrite ROG as ROG = np(t2+
t1
p ). Then using the

bounds given in (53) and (54), and the fact that limn→∞ τ/pα = 0 for α � 1, it follows
easily that the Bayes risk ROG satisfies

2Φ
(√

2aα
√
C
)
− 1

2Φ
(√

C
)
− 1

(
1+ o(1)

)
� ROG

RBO
Opt

�
2Φ

(√
ξaα

√
C
)
− 1

2Φ
(√

C
)
− 1

(
1+ o(1)

)
as n → ∞. (55)

Here the o(1) terms depend on η, δ and ξ. Now taking limit inferior and limit superior
in (55) as n → ∞, it follows

2Φ
(√

2aα
√
C
)
− 1

2Φ
(√

C
)
− 1

� lim inf
n→∞

ROG

RBO
Opt

� lim sup
n→∞

ROG

RBO
Opt

�
2Φ

(√
ξaα

√
C
)
− 1

2Φ
(√

C
)
− 1

· (56)

Now observe that the multiple testing rules under study do not depend on how
η ∈ (0, 1), δ ∈ (0, 1) and ξ > 2/(η(1 − δ)) are chosen. Hence the ratio ROG

RBO
Opt

is free of

any η, δ ∈ (0, 1) and any ξ > 2/(η(1 − δ)), for all n � 1. Thus, the limit inferior and
the limit superior terms in (56) are also independent of the choices of η, δ and ξ. But
ξ > 2/(η(1− δ)) in (56) is arbitrary. Therefore, taking infimum over all such ξ’s in (56)
and subsequently over all possible choices of (η, δ) ∈ (0, 1)× (0, 1) and repeatedly using
the continuity of Φ(·), we get

lim
n→∞

ROG

RBO
Opt

=
2Φ

(√
2aα

√
C
)
− 1

2Φ
(√

C
)
− 1

·

That lim
n→∞

ROG

RBO
Opt

= 1 if a = 0.5 and α = 1 is now obvious. This completes the proof of

the theorem, modulo the proof of (53) and (54) which are now presented below.

Proof of (53). First note that, following the same arguments as in the proof of Lemma
3, one can show that for each fixed x ∈ R and every fixed 0 < τ < 1, there exists a
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measurable non-negative real valued function g(x, τ), depending on η and δ, given by

g(x, τ) =

⎧⎨⎩ C∗
[∣∣x2

∫ sx2

0
e−u/2ua+1/2−1du

∣∣]−1
+ H(a,η,δ)e−

η(1−δ)x2

2

τ2aΔ(τ2,η,δ) if |x| > 0

1 if x = 0.
(57)

Here C∗ ≡ C∗(a, η, L) is some finite positive constant that is independent of both x and
τ . The function g(x, τ) defined in (57) is such that E(κ|x, τ) � g(x, τ), for each x ∈ R

and each τ ∈ (0, 1), and satisfies the following:

given any ξ > 2
η(1−δ) ,

lim
τ↓0

sup
|x|>

√
ξ log( 1

τ2a )

g(x, τ) = 0. (58)

Hence, for each fixed τ < 1 we have{
E(1− κ1|X1, τ) > 0.5

}
⊇

{
g(X1, τ) < 0.5

}
≡ Bc

n, say, (59)

where Bn ≡
{
g(X1, τ) � 0.5

}
. Let ζτ =

√
ξ log( 1

τ2a ) and define Cn ≡
{
|X1| > ζτ

}
.

Then using (51) and (59), we have,

t1 � PH01(g(X1, τ) < 0.5)

= PH01(B
c
n)

� PH01(B
c
n ∩ Cn)

=
[
1− PH01(Bn|Cn)

]
PH01(Cn). (60)

Note that the function g(x, τ) is measurable, non-negative and continuously decreasing
in |x| for |x| �= 0. Hence EH01

(
g(X1, τ)

∣∣|X1| > ζτ
)
is well defined and is bounded for all

sufficiently small τ ∈ (0, 1). Using these facts and applying Markov’s inequality, coupled
with (58) and the condition that τ → 0 as n → ∞, it follows that,

lim
n→∞

PH01(Bn

∣∣Cn) = 0. (61)

Now, underH01,X1
d
= Z, where Z denotes a N(0, 1) random variable having probability

density function φ(·) and cumulative distribution function Φ(·). Further note that ζτ →
∞ as τ → 0 and limn→∞ τ = 0. Using these observations and Mill’s ratio, we obtain as
n → ∞

PH01(Cn) = P
(
|Z| > ζτ

)
� 2

φ(ζτ )

ζτ

(
1− 1

ζ2τ

)
= G1(a, η, δ)

(
τ2a

) ξ
2√

log( 1
τ2 )

(1 + o(1)), (62)

for some appropriately chosen finite positive constant G1(a, η, δ) which is independent
of n, but depends on a ∈ (0, 1), η ∈ (0, 1) and δ ∈ (0, 1). Combining (60) – (62), the
stated lower bound in (53) follows.
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On the other hand, the corresponding upper bound in (53) follows as an immediate
consequence of Theorem 6 of Ghosh et al. (2015) with some appropriately chosen finite
positive constant H1(a, η, δ) which does not depend on n, but depends on a ∈ (0, 1),
η ∈ (0, 1) and δ ∈ (0, 1). This completes the proof of (53).

Proof of (54). Using the fact that E(κ|x, τ) � g(x, τ) for each fixed x ∈ R and each
fixed τ ∈ (0, 1), we obtain

t2 � PHA1

(
g(X1, τ) � 0.5

)
= PHA1

(Bn)

= PHA1
(Bn

∣∣Cn)PHA1
(Cn) + PHA1

(Bn

∣∣Cc
n)PHA1

(Cc
n)

� PHA1
(Bn

∣∣Cn) + PHA1
(Cc

n), (63)

where the events Bn and Cn have already been defined before. Now applying the same
argument for proving (61), it can be shown that

lim
n→∞

PHA1
(Bn

∣∣Cn) = 0. (64)

Again, as lim
n→∞

τ
pα ∈ (0,∞) for α > 0, using Assumption 2, it follows that lim

n→∞
log( 1

τ2 )

1+ψ2 =

αC. Therefore, we have n → ∞

PHA1
(Cc

n) = PHA1

(
|X1| � ζτ

)
= P

(
|Z| �

√
ξa

√
log( 1

τ2 )

1 + ψ2

)
= P

(
|Z| �

√
ξaα

√
C
)
(1 + o(1))

=
[
2Φ(

√
ξaα

√
C)− 1

]
(1 + o(1)). (65)

Combining (63) – (65), the stated lower bound in (54) follows. On the other hand,
the corresponding lower bound in (54) follows immediately following the same line of
arguments for proving Theorem 8 of Ghosh et al. (2015). This completes the proof of
(54).

Proof of Theorem 7. Let us fix any η ∈ (0, 1), δ ∈ (0, 1) and any ξ > 2
η(1−δ) . Now we

want to find upper bounds on the probability t̃1i of type I error and the probability t̃2i
of type II error of the i-th empirical Bayes decision in (25). Using the same techniques
employed in proving Theorem 10 and Theorem 11 of Ghosh et al. (2015), together with
(53) and (54) used in the proof of Theorem 6, it follows that

t̃1i �
B∗

1αn√
log( 1

α2
n
)
(1 + o(1)) +

1/
√
π

nc1/2
√
log n

+ e−2(2 log 2−1)β0np(1+o(1)) as n → ∞, (66)

and

t̃2i �
[
2Φ

(√
ξC

2

)
− 1

](
1 + o(1)

)
as n → ∞. (67)
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In (66) above, B∗
1 and β0 are some finite positive constants, each being independent

of both i and n, while αn = P(|X1| >
√
c1 logn) ∼ 2β0p depends on n only. It should

further be noted that the o(1) terms as displayed in both (66) and (67) are independent
of the index i. Then, using the upper bounds given in (66) and (67), and the arguments
used for proving Theorem 2 of Ghosh et al. (2015), one can establish it easily that the
Bayes risk REB

OG of the empirical Bayes decision (25), satisfies

REB
OG � np

[
2Φ

(√
ξC

2

)
− 1

](
1 + o(1)

)
as n → ∞, (68)

for every fixed ξ > 2
η(1−δ) . Rest of the proof follows analogously by first taking the ratio

REB
OG/R

BO
Opt and then employing the same arguments used in the proof of Theorem 6.

Supplementary Material

Supplementary Materials to the article “Asymptotic Optimality of One-Group Shrink-
age Priors in Sparse High-dimensional Problems” (DOI: 10.1214/16-BA1029SUPP; .pdf).
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