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Bayesian Detection of Abnormal Segments in
Multiple Time Series

Lawrence Bardwell* and Paul Fearnhead!

Abstract. We present a novel Bayesian approach to analysing multiple time-
series with the aim of detecting abnormal regions. These are regions where the
properties of the data change from some normal or baseline behaviour. We allow
for the possibility that such changes will only be present in a, potentially small,
subset of the time-series. We develop a general model for this problem, and show
how it is possible to accurately and efficiently perform Bayesian inference, based
upon recursions that enable independent sampling from the posterior distribution.
A motivating application for this problem comes from detecting copy number vari-
ation (CNVs), using data from multiple individuals. Pooling information across
individuals can increase the power of detecting CNVs, but often a specific CNV
will only be present in a small subset of the individuals. We evaluate the Bayesian
method on both simulated and real CNV data, and give evidence that this ap-
proach is more accurate than a recently proposed method for analysing such data.
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1 Introduction

In this paper we consider the problem of detecting abnormal (or outlier) segments in
multivariate time series. We assume that the series has some normal or baseline be-
haviour but that in certain intervals or segments of time a subset of the dimensions
of the series has some kind of altered or abnormal behaviour. By the term abnormal
behaviour we mean some change in distribution of the data away from the baseline dis-
tribution. For example, this could include a change in mean, variance or auto-correlation
structure. In particular our work is concerned with situations where the size of this sub-
set is only a small proportion of the total number of dimensions. We attempt to do this
in a fully Bayesian framework.

This problem is increasingly common across a range of applications where the detec-
tion of abnormal segments (sometimes known as recurrent signal segments) is of interest
(particularly in high dimensional and/or very noisy data). Some example applications in-
clude the analysis of the correlations between sensor data from different vehicles (Spiegel
et al., 2011) or for intrusion detection in large interconnected computer networks (Qu
et al., 2005). Another related application involves detecting common and potentially
more subtle objects in a number of images, for example Jin (2004) and the references
therein look at this in relation to multiple images taken of astronomical bodies.

We will focus in particular on one specific example of this type of problem, namely
that of detecting copy number variants (CNV’s) in DNA sequences. A CNV is a type of
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structural variation that results in a genome having an abnormal (generally # 2) number
of copies of a segment of DNA | such as a gene. Understanding these is important as these
variants have been shown to account for much of the variability within a population.
For a more detailed overview of this topic see Zhang (2010); Jeng et al. (2013) and the
references therein.

Data on CNVs for a given cell or individual is often in the form of “log-R ratios”
for a range of probes, each associated with different locations along the genome. These
are calculated as log base 2 of the ratio of the measured probe intensity to the reference
intensity for a given probe. Normal regions of the genome would have log-R ratios with
a mean of 0, whereas CNVs would have log-R ratios with a mean that is away from
Zero.

Figure 1 gives an example of such data from 6 individuals. We can see that there is
substantial noise in the data, and each CNV may cover only a relatively small region of
the genome. Both these factors mean that it can be difficult to accurately detect CNVs
by analysing data from a single individual or cell. To increase the power to identify CNVs
we can pool information by jointly analysing data from multiple individuals. However
this is complicated as a CNV may be observed for only a subset of the individuals. For
example, for the data in Figure 1, which shows data from a small portion of chromosome
16, we have identified a single CNV which affects only three individuals. This can seen
by the raised means (indicated by the red lines) in these three series for a segment of
data. By comparison, the other individuals are unaffected in this segment.

Whilst there has been substantial research into methods for detecting outliers (Tsay
et al., 2000; Galeano et al., 2006) or abrupt changes in data (Olshen et al., 2004; Jand-
hyala et al., 2013; Wyse et al., 2011; Frick et al., 2014), the problem of identifying outlier
regions in just a subset of dimensions has received less attention. Exceptions include
methods described in Zhang et al. (2010) and Siegmund et al. (2011). However Jeng
et al. (2013) argue that these methods are only able to detect common variants, that is
abnormal segments for which a large proportion of the dimensions have undergone the
change. Jeng et al. (2013) propose a method, the PASS algorithm, which is also able to
detect rare variants.

The methods of Siegmund et al. (2011) and Jeng et al. (2013) are based on defining
an appropriate test-statistic for whether a region is abnormal for a subset of dimensions,
and then recursively using this test-statistic to identify abnormal regions. As such the
output of these methods is a list of estimated abnormal regions. Here we introduce a
Bayesian approach to detecting abnormal regions. This is able to not only give esti-
mates of the number and location of the abnormal regions, but to also give measures
of uncertainty about these. We show how it is possible to efficiently simulate from the
posterior distribution of the number and location of abnormal regions, through using
recursions similar to those from multiple changepoint detection (Barry and Hartigan,
1992; Fearnhead, 2006; Fearnhead and Vasileiou, 2009). We call the resulting algorithm,
Bayesian Abnormal Region Detector (BARD).

The outline of the paper is as follows. In the next section we introduce our model,
both for the general problem of detecting abnormal regions, and also for the specific
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Figure 1: Log-R ratios from 6 individuals for a small portion of chromosome 16. We
indicate the baseline level (mean zero) by a horizontal line in blue and the identified
CNYV (abnormal region) is highlighted between two vertical black lines with the mean
of the affected individuals in red.

CNV application. In Section 3 we derive the recursions that enable us to draw iid
samples from the posterior, as well as a simple approximation to these recursions that
results in an algorithm, BARD, that scales linearly with the length of data set. We then
present theoretical results that show that BARD can consistently estimate the absence
of abnormal segments, and the location of any abnormal segments, and is robust to some
mis-specification of the priors. In Section 5 we evaluate BARD for the CNV application
on both simulated and real data. Our results suggest that BARD is more accurate than
PASS, particularly in terms of having fewer false positives. Furthermore, we see evidence
that posterior probabilities are well-calibrated and hence are accurately representing the
uncertainty in the inferences. The paper ends with a discussion.
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2 The Model

We shall now describe the details of our model. Consider a multiple time series of
dimension d and length n, Y1., = (Y1,Y2,...,Y,) where Y; = (Y;1,Yi2,..., Y;a)T
We model this data through introducing a hidden state process, Xj.,,. The hidden state
process will contain information about where the abnormal segments of the data are.
Our model is defined through specifying the distribution of the hidden state process,
p(21.n), and the conditional distribution of the data given the state process, p(y1.n|Z1.n)-
These are defined in Sections 2.1 and 2.2 respectively.

Our interest lies in inference about this hidden state process given the observations.
This involves calculating the posterior distribution for the states

p(xl:n|y1:n) X p(xlznv yl:n) = p(xlzn)p(y1zn|x1:n)- (1)

It should be noted that these probabilities will depend on a set of hyper-parameters.
These parameters are initially assumed to be known, however we will later discuss
performing inference for them.

2.1 Hidden State Model

The hidden state process will define the location of the abnormal segments. We will
model the location of these segments through a renewal process. The length of a given
segment is drawn from some distribution which depends on the segment type, and
is independent of all other segment lengths. We assume a normal segment is always
followed by an abnormal segment, but allow for either a normal or abnormal segment to
follow an abnormal one. The latter is because each abnormal segment may be abnormal
in a different way, for example with different subsets of the time-series being affected.
This will become clearer when we discuss the likelihood model in Section 2.2.

To define such a model we need distributions for the lengths of normal and abnormal
segments. We denote the cumulative distribution functions of these lengths by G n (¢) and
G A(t) respectively. We also need to specify the probability that an abnormal segment
is followed by either a normal or abnormal segment. We denote these probabilities as
mn and w4 respectively, with 7y =1 — 4.

Note that the first segment for the data will have a different distribution to other
segments as it may have started at some time prior to when we started collecting data.
We can define this distribution in a way that is consistent with our underlying model
by assuming the process for the segments is at stationarity and that we start observing
it at an arbitrary time. Renewal theory (Cox, 1962) then gives the distribution function
for the length of the first segment. If the first segment is normal, then we define its
cumulative distribution function as

t

Gon(t) = iN(S)?

E
s=1 N

where En is the expected length of a normal segment. The cumulative distribution

function for the first segment conditional on it being abnormal, Gga(t), is similarly
defined.
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Formally, we define our hidden state process X; as X; = (C, B;) where C} is the end
of the previous segment prior to time ¢ and B; is the type of the current segment. So
C; €{0,...,t — 1} with C; = 0 denoting that the current segment is the first segment.
We use the notation that B; = N if the current segment is normal, and B; = A if not.
This state process is Markov, and thus we can write

p(xlzn) - p(clznv bl:n)
n—1
(2)
= PI‘(Ol = (1, Bl = bl) H PI‘(CH_l = Ci+1, Bi+1 = bi+1|Ci = C4, B,’ = b,)

i=1

The decomposition in (2) gives us two aspects of the process to define, namely the
transition probabilities Pr(C;1+1 = ¢iq1, Bi+1 = bit+1]|ci, b;) and the initial distribution,
PI‘(Ol = Cl,Bl = bl)

Firstly consider the transition probabilities. Now either Cyy 1 = Cy or Ci4q = ¢
depending on whether a new segment starts between time ¢ and ¢ + 1. The probability
of a new segment starting is just the conditional probability of a segment being of length
t—Cy given that is at least t —Cy. If Cy 1 = CY, then we must have By = By, otherwise
the distribution of the type of the new segment depends on the type of the previous
segment as described above.

Thus for it = 1,...,t — 1 we have
1-Gy(t—i e
Wt(—i—)l) if j=i¢and k=N,

Pr(Cri1 =, Biy1 =k[Cy =i, By= N) = ¢ U000l if j— ¢ and k= A4,

0 otherwise,
et if j=1i and k= A,

TA (G“‘(fjgggff:f”) if j=t and k= A,

N (G“(fjgjgff_jj’”) if j=tand k=N,

0 otherwise.

PI'(Ct+1 :j, Bt+1 = k|Ct = 7:, Bt = A) =

(3)

For ¢« = 0, that is when C; = 0, we replace Gn(-) and G4- with Gon(-) and Goa(-)
respectively.

Finally we need to define the initial distribution for X; = (B, Cy). Firstly note
that C7 = 0 so we need only the distribution of B;. We define this as the stationary
distribution of the B; process. This is (see for example Theorem 5.6 of Kulkarni, 2012)

TI'NEN
TNEN + E4’

Pr(B; = N) = Pr(B; = A) =1 —Pr(B, = N),

where Ey and E 4 are the expected lengths of normal and abnormal segments respec-
tively.
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2.2 Likelihood Model

The hidden process Xi., described above partitions the time interval into contiguous
non-overlapping segments each of which is either normal, N, or abnormal, A. Now con-
ditional on this process we want to define a likelihood for the observations, p(y1.,|1.n)-

For many applications it is natural to assume a conditional independence property
between segments: this means that if we knew the locations of segments and their
types then data from different segments are independent. This assumption is key to the
algorithms we later introduce to sample from the posterior. Thus when we condition on
C; and B; the likelihood for the first ¢ observations factorises as follows

P(y1:41Ct = j, Bt) = p(y1,41Ct = J, Bt)p(¥j41:t|Ct = J, By). (4)

The second term in equation (4) is the marginal likelihood of the data, Y 1., given
it comes from a segment that has type B;. We introduce the following notation for these
segment marginal likelihoods, where for s > t,

Py(t,s) = Pr(y.s|Cs =t —1,Bs = N),

5
PA(tvs):Pr(yt:s|Cs:t*LBs:A), ( )

and define Py(t,s) = 1 and Pa(t,s) =1 if s < .

Now using the above factorisation we can write down the likelihood conditional on
the hidden process. Note that we can condition on X; rather than the full history Xj.,
in each of the factors in (6) due to the conditional independence assumption on the
segments

s

P(YelT1n, y1:0-1))
! (6)
p(y:|Cy, By, Y(C',«,J,-l):(t—l))'

p(}’1;n|331:n) =

~
Il

I
s

o~
Il

1

The terms on the right-hand side of equation (6) can then be written in terms of the
segment marginal likelihoods

PBt(Ct + ].,t)

p(¥t|Ce, Be, Y0 41):(t-1)) = PGt Li-1) (7)

Thus our likelihood is specified through defining appropriate forms for the marginal
likelihoods for normal and abnormal segments.
Model for Data in Normal Segments

For a normal segment we model that the data for all dimensions of the series are
realisations from some known distribution, D, and these realisations are independent
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over both time and dimension. Denote the density function of the distribution D as
fp (). We can write down the segment marginal likelihood as

d s
Px(t,s) = [T I /o(win)- (8)

k=11i=t

Model for Data in Abnormal Segments

For abnormal segments our model is that data for a subset of the dimensions are drawn
from D, with the data for the remaining dimensions being independent realisations
from a different distribution, Py, which depends on a segment specific parameter . We
denote the density function for this distribution as fp(-|6).

Our model for which dimensions have data drawn from Py is that this occurs for
dimension k with probability py, independently of the other dimensions. Thus if we have
an abnormal segment with data )., with segment parameter 6, the likelihood of the
data associated with the kth dimension is

Dk Hf’l’(yi,k 0) + (1 —px) HfD(yi,k)~

i=t i=t

Thus by independence over dimension

S

d s
plyesl0) = I [ (pk 11 o (ikl6) + (1 = i) HfD(%,k)) ~
k=1

i=t i=t

Our model is completed by a prior for 6, 7(#). To find the marginal likelihood P4 (¢, s)
we need to integrate out 6 from p(y;.|0)

Pa(t,s) = / p(y:s]0)(6) d. (9)

In practice this integral will need to be calculated numerically, which is feasible if 6 is
low-dimensional.

CNV Example

In Section 1 we discussed the copy number variant (CNV) application and showed some
real data in Figure 1. From the framework described above we now need to specify a
model for normal and abnormal segments. Following Jeng et al. (2013) we model the
data as being normally distributed with constant variance but differing means either
zero or i depending on whether we are in a normal or abnormal segment. This model
also underpins the simulation studies that we present in Section 5.

Using the notation from the more general framework discussed above the two dis-
tributions for normal and abnormal segments are

D ~ N(0,0?)



200 Bayesian Detection of Abnormal Segments in Multiple Time Series

P~ N(p,o 2)'
We assume that the variance o2 is constant and known. In practice we estimate this
quantity using the robust median absolute deviation estimator as recommended in Jeng
et al. (2013).

Having specified these two distributions we then need to calculate marginal likeli-
hoods for normal and abnormal segments given by equations (8) and (9) respectively.
Calculating the marginal likelihood for a normal segment is simple because of indepen-
dence over time and dimension as shown in equation (8). However calculating Pa(-, )
is more challenging, as there is no conjugacy between p(y|u) and 7(u) so we can only
numerically approximate the integral. Calculating the numerical approximation is fast
as it is a one-dimensional integral.

In the simulation studies and results we take the prior for x4 to be uniform on a region
that excludes values of p close to zero. For CNV data such a prior seems reasonable
empirically (see Figure 2¢) and also because we expect CNV’s to correspond to a change
in mean level of at least log(3/2) and can be both positive or negative.

3 Inference

We now consider performing inference for the model described in Section 2. Firstly a
set of recursions to perform this task exactly are introduced and then an approximation
is considered to make this procedure computationally more efficient.

3.1 Exact On-Line Inference

We follow the method of Fearnhead and Vasileiou (2009) in developing a set of recur-
sions for the posterior distribution of the hidden state, the location of the start of the
current segment and its type, at time ¢t given that we have observed data upto time
t, p(zi|ly1.t) = pler, bely1e), for t € {1,2,...,n}. These are known as the filtering dis-
tributions. Eventually we will be able to use these to simulate from the full posterior,
p(l'l:n|y1:n)-

To find these filtering distribution we develop a set of recursions that enable us to
calculate p(ciy1,bi41|y(1:¢41)) in terms of p(cy, be|yi.t). These recursions are analogous
to the forward-backward equations widely used in analysing Hidden Markov models.

There are two forms of these recursions depending on whether Cyy 1 = j for j < t
or Cyy1 =t. We derive the two forms separately. Consider the first case. For j < ¢t and
ke {N, A},

P(Cev1 = J, Bir1 = K[y1.(i41))
X P(Yi41|¥1:, Cro1 = J, Big1 = k)p(Crqr = J, Big1 = kly1:)

Pk(j+1,t+1)) ) . .
=——= | Pr(Cyy1 =4,B =k|C; =4,B = k)p(Cy = j, By = kly14),
( Pelj+ L,0) r(Cyp1 = J, B |Ct = j, By )p(Cr = j, By lyi:t)



L. Bardwell and P. Fearnhead 201

where the first term in the last expression is the conditional likelihood from equation
(7). The second two terms use the fact that there has not been a new segment and
hence Ct-‘,—l = Ct and Bt+1 = Bt.

Now for the second case, when Cyq = t,

p(Cey1 =t, Beyr = kly1:t)

t—1
= Z Z p(Cy =1, By = lly1.) Pr(Cip1 = t, Byg1 = k|Cy =4, By = 1).
i=0 1€ {N, A}

Thus, as p(yi41|Cre1 = ¢, Bir1 = k,y1.¢) = Pi(t + 1, + 1), the filtering recursion is;

p(Cir1 =t, Biy1 = kly1:e41))

t—1
o Pp(t+1,t4+1) Z Z p(Cr =i, By = l|y1.1)
i=0 1€{N,A}

X Pr(Ct+1 = t,BtJrl = k|Ct = i,Bt = l)

These recursions are initialised by p(Ch = 0,B1 = kly1) < Pr(B; = k)Py(1,1) for
ke {N,A}.

3.2 Approximate Inference

The support of the filtering distribution p(c;, bs|y1.+) has 2¢ points. Hence, calculating
p(ct, bely1.) exactly is of order ¢ both in terms of computational and storage costs. The
cost of calculating and storing the full set of filtering distributions t = 1,2, ..., n is thus
of order n?. For larger data sets this exact calculation can be prohibitive. A natural
way to make this more efficient is to approximate each of the filtering distributions by
distributions with a fewer number of support points. In practice such an approximation
is feasible as many of the support points of each filtering distribution have negligible
probability. If we removed these points then we could greatly increase the speed of our
algorithm without sacrificing too much accuracy.

We use the stratified rejection control (SRC) algorithm (Fearnhead and Liu, 2007)
to produce an approximation to the filtering distribution with potentially fewer support
points at each time-point. This algorithm requires the choice of a threshold, a > 0.
At each iteration the SRC algorithm keeps all support points which have a probability
greater than a. For the remaining particles the probability of them being removed is
proportional to their associated probability and the resampling is done in a stratified
manner. This algorithm has good theoretical properties in terms of the error introduced
at each resampling step, measured by the Kolmogorov Smirnov distance, being bounded
by a.

3.3 Simulation

Having calculated and stored the filtering distributions, either exactly or approximately,
simulating from the posterior is straightforward. This is performed by simulating the
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hidden process backwards in time (Carter and Kohn, 1994). First we simulate X,, =
(Ch, By,) from the final filtering distribution p(cy,, by |y1.,). Assume we simulate C,, = ¢.
Then, by definition of the hidden process, we have Cs = t and Bs = B, for s =
t4+1,...,n — 1, as these time-points are all part of the same segment. Thus we next
need to simulate Ci, from its conditional distribution given Ciy1, Biy1 and Yi.p,

p(ct, be|Cry1 =, Bri1, Y1)
o< pleg, by, Crpr =6, Bry1, Yiin)
= p(et, by) Pr(Ciy1 = t, Bey1|Cy, By)p(y1:n|Ct, B, Cry1 = t, Biy1)
o plet, be) Pr(Cryr = t, Beya|Ct, By)p(y1:4|Ce, Bt)
o p(cs, belyr:e) Pr(Cryq = t, Bi1|Ch, By).

We then repeat this process, going backwards in time until we simulate C; = 0. From
the simulated values we can extract the location and type of each segment.

3.4 Hyper-Parameters

As mentioned earlier in Section 2 the posterior of interest (1) depends upon a vector of
hyper-parameters which we now label as W. In Section 5, ¥ contains the parameters for
the LOS distributions for the two differing types of segments which determine the cdf’s
Gn(-) and G4(-). However we could extend ¥ to account for the hyperparameters for
the prior on p or, if we did not assume a common and known variance for the data, the
variance for each time-series.

We use two approaches to estimating these hyper-parameters. The first is to max-
imise the marginal-likelihood for the hyper-parameters, which we can do using Monte
Carlo EM (MCEM). For general details on MCEM see Levine and Casella (2001). Al-
though convergence of the hyper-parameters is quite rapid in the examples we look
at in Section 5, for very large data sets a cruder but faster alternative is to ini-
tially segment the data using a different method to ours and then use information
from this segmentation to inform the choice of hyper-parameter values. The alternative
method we use is the PASS method of Jeng et al. (2013) and discussed in detail in
Section 5.

3.5 Estimating a Segmentation

We have described how to calculate the posterior density p(21.,|y1:) from which we
can easily draw a large number of samples. However we often want to report a single
estimated “best” segmentation of the data. We can define such a segmentation using
Bayesian decision theory (Berger, 1985). This involves defining a loss function which
determines the cost of us making a mistake in our estimate of the true quantity which
we then seek to minimise. There are various choices of loss function we could use (see
Yau and Holmes, 2010), but we use a loss that is a sum of a loss for estimating whether
each location is abnormal or not. If L(Et\bt) gives the cost of making the decision that
the state at time ¢t is Et when in fact it is by, then:



L. Bardwell and P. Fearnhead 203

if b = A and by = N
L(bib)) =4~ ifb,=Nandb = A (10)
0 otherwise

—_

The inclusion of v allows us to vary the relative penalty for false positives as compared
to false negatives. Under this loss we estimate by = N if (b = A) < 1/(14+~) or by = A
otherwise.

4 Asymptotic Consistency

We will now consider the asymptotic properties of the method as d, the number of time-
series, increases. Our aim is to study the robustness of inferences to the choice of prior
for the abnormal segments, and the estimate of py, allowing for abnormal segments that
are rare. We will assume that each time-series is of fixed length n. Following Jeng et al.
(2013), to consider the influence of rare abnormal segments, we will let the proportion
of sequences that are abnormal in an abnormal segment to decrease as d increases.

Our assumptions on how the data is generated is that there are a fixed number and
location of abnormal segments. We will assume the model of Section 2.2 with, without
loss of generality, 02 = 1 (for 02 # 1 we can just normalise the data). So if B; = N,
then Y; ; ~ N(0,1). If (,..., s) is an abnormal segment then it has an associated mean,
po # 0. For each j = 1,...,d, independently with probability aq, Y;; ~ N(u,1) for
i=t,...,s; otherwise Y; j ~ N(0,1) for i =¢,...,s.

We fit the model of Section 2, assuming the correct likelihood for data in normal and
abnormal segments. For each abnormal segment we will have an independent prior for
the associated mean, 7(u). Our assumptions on m(u) is that its support is a subset of
{[-=b, —a], [a, ]} for some a > 0 and b < oo, and it places non-zero probability on both
positive and negative values of u. The model we fit will assume a specified probability,
pd, of each sequences being abnormal within each abnormal segment. Note that we do
not require pg = ag4, the true probability, but we do allow the choice of this parameter
to depend on d.

The lemmas used in the proof of the following two theorems can be found in the
Supplementary material (see Bardwell and Fearnhead, 2016).

Theorem 1. Assume the model for the data and the constraints on the prior specified
above. Let € be the event that there are no abnormal segments, and E¢ its complement.
If there are no abnormal segments and d — oo, with 1/pg = O(d%’f) for some € > 0,
then

Pr(56|y1;n) — 0,

in probability.
Proof. As n is fixed, we have a fixed number of possible segmentations. We will show

that the posterior probability of each possible segmentation with at least one abnormal
segment is 0p,(1) as d — oo.
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For time-series k let Py (t, s) denote the likelihood of the data y; k, ..., Ys k assum-
ing this is a normal segment; and let P4 (¢, s; ) be the marginal likelihood of the same
data given that it is drawn from independent Gaussian distributions with mean p. Then
if we have a segmentation with m abnormal segments, with the ith abnormal segment
from t; to s;, the ratio of the posterior probability of this segmentation to the posterior

probability of £ is
1 PAk m,Sm,/,L)
K m(pw)dp |,
E(/{H PNk m»sm) (M) a

where K is the ratio of the prior probabilities of these two segmentations. So it is
sufficient to show that for all ¢ < s,

Py i(t,s; Pak(t,s;p)
11
/{H OO }w(u)du—w (1)
in probability as d — oo.

Our limit involves treating the data as random. Each term in this product is then
random, and of the form

Pai(t,sip) - u
% =1+4pa (exp {M; (Yk,uf 2)} - 1) . (12)

By applying Lemma 1.4 separately to positive and negative values of u, we have that
this tends to 0 with probability 1 as d — oco. This is true for all possible segmentations
with at least one abnormal segments. As n is fixed, there are a finite number of such
segments, so the result follows. O

Theorem 2 tells us that the posterior probability of misclassifying a time point as
normal when it is abnormal tends to zero as more time-series are observed.

Theorem 2. Assume the model for the data and the constraints on the prior specified
above. Fix any position t, and consider the limit as d — oo, with dpg — o0 and either

(1) pa = o(aa); or

(ii) if po is the mean associated with the abnormal sequences at position t, then there
exists a region A such that the prior probability associated with p € A is non-zero,
and for oll p € A and for sufficiently large d

ag (et —1) — % (e“2 - 1) > 0.

Then if B, =
Pr(B: = N|y1.n) — 0.

in probability.
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Proof. We will show that each segmentation with B; = N has posterior probability
that tends to 0 in probability as d — oco. For each segmentation with By = N we will
compare its posterior probability with one which is identical except for the addition of
an abnormal segmentant, of length 1, at location ¢t. The ratio of posterior probabilities
of these two segmentations will be

d
PA k:(ta t; M)
K / —————= > m(p)dp |,
< {]]:[1 PN,k(tat) ( ) :
where K is a constant that depends on the prior for the segmentations. We require that
this ratio tends to infinity in probability as d — co. Under both conditions (i) and (ii)
above this follows immediately from Lemma 2.2. For case (i) we are using the fact that

the prior places positive probability both on p being positive and negative, and for p
the same sign as pp we have that e#*#° > 1. O

This result shows some robustness of the Bayesian approach to the choice of prior.
Consider a prior on the mean for an abnormal segment that has strictly positive density
for values in {[—b, —al, [a,b]} for a > 0. Then for any true mean, po with |ug| > a, we
will consistently estimate the segment as abnormal provided the assumed or estimated
probability of a sequence being abnormal is less than twice the true value. Thus we
want to choose a to be the smallest absolute value of the mean of an abnormal segment
we expect or wish to detect. The choice of b is less important, in that it does not affect
the asymptotic consistency implied by the above theorem.

Furthermore we do not need to specify pg exactly for consistency — the key is not to
over-estimate the true proportion of abnormal segments by more than a factor of two.
We could set pg = Kd~'/2*¢ for some constants K,e > 0 and ensure that asymptoti-
cally we will consistently estimate the absence of abnormal segments (Theorem 1) and
the location of any abnormal segments (Theorem 2) the true proportion of abnormal
segments decays at a rate that is slower than d—1/2t¢,

5 Results

We call the method introduced in Sections 2 and 3 BARD: Bayesian Abnormal Region
Detector. We now evaluate BARD on both simulated and real CNV data. Our aim
is to both investigate its robustness to different types of model mis-specification, and
to compare its performance with a recently proposed method for analysing such CNV
data.

The simulation studies we present are based on the concrete example in Section 2.2,
namely the change in mean model for Normally distributed data. For inference we
assume that the LOS distributions, Sy and S4, to be Negative binomial and the prior
probability of a particular dimension k& being abnormal p, as the same for all k =
{1,2,...,d}. For all the simulation studies we present we used MCEM on a single
replicate of the simulated data set to get estimates for the hyper-parameters for the
LOS distribution, but fixed pi. Data for normal segments are IID standard Gaussian,
and for abnormal segments data from dimensions that are abnormal are Gaussian with
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variance 1 but mean g drawn from some prior 7(u). Below we consider the effect of
varying the choice of prior used for simulating the data and that assumed within BARD.
In implementing BARD we used the SRC method of resampling described in Section
3.2 with a value of o = 107, we found this value of o gave a good trade off between
accuracy and computational cost.

To get an explicit segmentation from BARD we use the asymmetric loss function
(10) with a value of v =1/3.

As a benchmark for comparison we also analyse all data sets using the Proportion
Adaptive Segment Selection procedure (PASS) from Jeng et al. (2013). This was imple-
mented using an R package called PASS which we obtained from the authors website.
At its most basic level the PASS method involves evaluating a test statistic for different
segments of the data. After these evaluations the values of the statistic that exceed a cer-
tain pre-specified threshold are said to be significant and the segments that correspond
to these values are the identified abnormal segments. This threshold is typically found
by simulating data sets with no abnormal segments and then choosing the threshold
which gives a desired type 1 error, here we take this error to be 0.05 in the simulation
studies. The PASS algorithm considers all segments that are shorter than a pre-defined
length. To avoid excessive computational costs this length should be as small as possi-
ble, but at least as large as the longest abnormal segment we wish to detect (or believe
exists in the data). We ran PASS with this length set to ten-times the largest abnormal
segment.

We found that a run of PASS was about twice as fast as one run of BARD. In order
to estimate the hyper-parameters using MCEM took between 5 and 20 runs of BARD.

Evaluating a Segmentation

To form a comparison between the two methods we must have some way of evaluating
the quality of a particular segmentation with respect to the ground truth. We consider
the three most important criteria to be the number of true and false positives and the
accuracy in detecting the true positives.

We define a segment to be correctly identified or a true positive if it intersects with
the true segment. With this definition in mind then finding the true/false positives is
simple. Note that results for false positives are the number of false positive segments
per data set. To define the accuracy of an estimated segment compared to the truth it
is most intuitive to measure the amount of “overlap” of the segments, this is captured
by the dissimilarity measure Dy, (13) defined in Jeng et al. (2013).

Let I be the collection of estimated intervals, the accuracy of estimating the kth true
segment Iy, is given by Dy

I.nI
Dy, = min 1—7|3A k|
1€l Varairis

Dy € [0,1], if Dy = 0 then an estimated interval overlaps exactly with segment I
however if Dy = 1 then no estimated intervals overlap with the kth segment, i.e. it
hasn’t been detected. Smaller values of D indicate a greater overlap.

(13)
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For all measures we present the average value across the simulated data sets, together
with a 95% confidence interval for this average calculated via the bootstrap.

5.1 Simulated Data from the Model

Firstly we analysed data simulated from the model assumed by BARD. A soft maximum
on the length of the simulated data of n = 1000 was imposed and the number of
dimensions fixed at d = 200. The LOS distributions were

Sy ~ NBinom(10,0.1) and S4 ~ NBinom(15,0.3).

Two different distributions were used to generate the altered means for the affected
dimensions and we also varied my (see Table 1), and for each scenario we implemented
the Bayesian method with the correct prior for the abnormal mean, and the correct
choice of . The number of affected dimensions for each abnormal segment was fixed
at 4% and we fixed py to this value. For each scenario we considered we generated 200
data sets.

7 mn Method Proportion detected Accuracy Number of False
positives
PASS 0.68 (0.66,0.70) 0.12 (0.11,0.13) 0.80 (0.68,0.93)
U(0.3,0.7) 0.5
BARD 0.88 (0.87,0.89) 0.077 (0.071,0.084) 0.08 (0.04,0.12)
08 PASS 0.67 (0.65,0.69) 0.13 (0.12,0.14) 1.13 (0.98,1.29)
" BARD 0.78 (0.77,0.80) 0.094 (0.088,0.10)  0.07 (0.04,0.11)
PASS 0.92 (0.91,0.93) 0.074 (0.070,0.078) 1.08 (0.94,1.22)
U(0.5,0.9) 0.5
BARD 0.98 (0.98,0.99) 0.039 (0.036,0.042) 0.03 (0.01,0.06)
08 PASS 0.94 (0.93,0.95) 0.073 (0.069,0.076) 1.02 (0.88,1.17)
" BARD 0.96 (0.95,0.97) 0.042 (0.040,0.045) 0.02 (0.00,0.04)

Table 1: Scenarios differed in the prior for p and the value of 7w used to simulate the
data. In BARD these same priors were used for the analysis of the data. The results for
each scenario are averages across 200 simulated data sets together with 95% confidence
interval in brackets.

Results summarising the accuracy of the segmentations obtained by the two methods
are shown in Table 1. BARD performed substantially better than PASS here especially
with regards to the number of false positives each method found, though this is in part
because all the modelling assumptions within BARD are correct for these simulated
data sets. It is worth noting that both methods do much better when p ~ U(0.5,0.9)
due to the stronger signal present.

We next investigated how robust the results were to our choice for pg. We just
consider p ~ U(0.3,0.7) and my = 0.8 and we vary our choice of pj from 0.5% to 10%.
These results are in Table 2. Whilst, as expected, if we take pi to be the true value for
the data we get the best segmentation, the results are clearly robust to mis-specification
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pr  Proportion detected Accuracy Number of False positives
ﬁ 0.65 (0.63,0.67) 0.093 (0.086,0.10) 0.03 (0.005,0.06)

s 0.76 (0.74,0.78) 0.092 (0.086,0.10) 0.09 (0.05,0.12)
S5 0.77(0.75,0.78)  0.086 (0.081,0.093) 0.06 (0.03,0.09)
22 076 (0.74,0.78)  0.089 (0.083,0.096) 0.06 (0.03,0.095)
26 0.74 (0.72,0.76)  0.091 (0.084,0.098) 0.06 (0.03,0.09)
20 0.72(0.70,0.74)  0.095 (0.088,0.102) 0.05 (0.02,0.08)

Table 2: The robustness of BARD under a misspecification of py taking the prior as
w~ U(0.3,0.7) and 7y = 0.8 with the true value of pyx being 4%. Values of px were
varied between 0.5% and 10% and we simulated 200 data sets for each pg. The results for
each scenario are averages across 200 simulated data sets together with 95% confidence
interval in brackets.

of pi. In all cases we still achieve much higher accuracy and fewer false positives than
PASS. Apart from the choice py = 1/200 we also have a higher proportion of correctly
detected CNVs than PASS.

We also investigated the robustness to mis-specification of the model for the LOS
distribution, and for the distribution of the mean of the abnormal segments. We fixed
the position of five abnormal segments at the following time points 200, 300, 500, 600
and 750. Additionally the segments at 200 and 750 were followed by another abnormal
segment. Thus we have seven abnormal segments in total. The true LOS distribution
for the abnormal segments are in fact Poisson with intensity randomly chosen from
the set {20,25,30,35,40}. For these abnormal segments the mean value that affected
the dimensions was drawn from a Normal distribution with differing means and a fixed
variance shown in Table 3. The number of affected dimensions for each of the abnormal
segments was also varied randomly from 3-6% of the total number of dimensions (d =
200). For inference, we fixed pp to 4% for all k and we set the prior for the abnormal
mean to be uniform on (—0.7,—0.3) U (0.3,0.7). Our model for the LOS distribution
were negative binomials, with MCEM used to estimate the hyper-parameters of these
distributions.

From Table 3 it can be seen that BARD still outperforms PASS especially in regards
to accuracy and the number of false positives. The performance of BARD also shows
that it is robust to a misspecification of both the LOS distributions and the distribution
from which p was drawn from as we kept the prior in BARD the same. The performance
of both methods was impacted by the decreasing mean of the Normal distributions from
which g was drawn as more of them became close to zero and thus abnormal segments
became indistinguishable from normal segments.

5.2 Simulated CNV Data

We now make use of the CNV data presented in the Section 1, to obtain a more real-
istic model to simulate data from. We used the PASS method to initially segment one
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I Method Proportion detected Accuracy Number of False
positives

N(0.8,0.4%) PASS 0.81 (0.78,0.82) 0.065 (0.056,0.068)  1.26 (1.15,1.41)
’ BARD 0.85 (0.82,0.86) 0.055 (0.048,0.059)  0.04 (0.02,0.07)
N(0.7,0.42) PASS 0.77 (0.74,0.78) 0.076 (0.069,0.084)  1.11 (1.05,1.33)
’ BARD 0.80 (0.78,0.82) 0.066 (0.060,0.073)  0.02 (0.01,0.07)
N(0.6,0.42) PASS 0.69 (0.66,0.71) 0.086 (0.079,0.095)  1.22 (1.08,1.37)
’ BARD 0.73 (0.70,0.75) 0.066 (0.061,0.072)  0.06 (0.03,0.09)
N(0.5,0.4%) PASS 0.62 (0.60,0.65) 0.10 (0.089,0.11) 1.15 (1.06,1.37)
R BARD 0.65 (0.62,0.68) 0.087 (0.075,0.093)  0.06 (0.02,0.08)
N(0.4,0.42) PASS 0.53 (0.51,0.56) 0.12 (0.10,0.13) 1.07 (0.92,1.22)
T BARD 0.58 (0.55,0.61) 0.093 (0.084,0.10)  0.07 (0.03,0.10)

Table 3: Results based on 200 simulated data sets as we vary the distribution from which
w was simulated from but keeping the prior 7(u) in BARD uniform. The results for
each scenario are averages across 200 simulated data sets together with 95% confidence
interval in brackets.

replicate of the data, and then analysed this segmentation to obtain information about
the LOS distributions and the distributions that generate the data in both normal and
abnormal segments.

In Figure 2 we plot some of the empirical data from the segmentation given by
PASS. To simulate data sets we either fitted distributions to these quantities or sampled
from their empirical distributions. Firstly if we consider the two LOS distributions then
for normal segments, see Figure 2b, we found that a geometric distribution fitted the
data well. For the abnormal LOS distribution we took a discrete uniform distribution
on {1,2,...,200}. This was partly due to us having specified a maximum abnormal
segment length of 200 in the PASS method but is potentially realistic in practice as
abnormal segments longer than 200 time points are unlikely to occur. To support this
choice we plot the empirical cdf of the ordered data and a straight line which are the
quantiles of the uniform distribution we propose. We can see that although the fit is
not perfect, this is probably due to the small sample size.

Now consider the distributions that generate the actual observations, we can think of
these in two parts, one of them being a distribution for the “noise” in normal segments
(Figure 2d) and then the mean shift parameter for the abnormal segments (Figure 2c).
Up until now we have taken this noise distribution to be standard Normal, however
the data suggests that in reality it has heavier tails than the Normal distribution. We
found that a t-distribution with 15 degrees of freedom was a better fit to the data so we
simulated from this for the noise distribution. For the mean shift parameter u we took
abnormal segments found by the PASS method and looked at the means of each of the
dimensions and took the affected dimensions only, this gave the histogram in Figure 2c.
In the study we simulated p from this empirical distribution.
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Figure 2: Empirical distribution of features of the optimal segmentation of CNV data
obtained using the PASS method. (a) QQ-plot of length (measured in number of ob-
servations) of abnormal segments against a Uniform distribution on {1,2,...,200};
(b) histogram of length (measured in number of observations) of normal segments;
(c) histogram of estimated mean for abnormal segments; and (d) histogram of residu-
als.

Each simulated data set has length of approximately n = 20,000 and dimension
d = 50. We also varied the proportion of affected dimensions between 4% and 6%. The
robustness of BARD to the choice of prior for p introduced in Section 4, where |u] is
uniform on an interval (a,b), was also investigated. We simulated 40 of these data sets
for each of the scenarios and used both methods to segment them, results are given in
Table 4.

We can see that the proportion of correct segments identified is decreased in both
methods, this is most likely due to the non-Normally distributed noise present. However
the two methods report a very different number of false positives. The performance of
BARD is encouraging as it gives many fewer false positives than PASS even with heavier
tailed observations than the standard Gaussian case for all choices of a. The results for
BARD are similar for different values of a < 0.3, but do deteriorate slightly for a = 0.6.
This is likely to be due to a loss of power in detecting abnormal segments with whose
change in mean is less than 0.6.

We also vary the second parameter, b, in the prior for u. We fix a = 0.3 and the
number of dimensions as d = 50. These figures are reported in Table 5 and show that
our procedure is relatively robust to the choice of b. For an extreme choice of prior with
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% of dim. Method Proportion detected Accuracy Number of False
affected positives

PASS 0.55 (0.51,0.59)  0.071 (0.061,0.081) 1.23 (0.95,1.53)

BARD a=0 0.65 (0.62,0.70)  0.064 (0.056,0.074) 0.23 (0.10,0.38)

4% BARD ¢ =0.15  0.65 (0.61,0.69)  0.065 (0.056,0.074) 0.23 (0.10,0.38)
BARD a=0.3 0.65 (0.61,0.69)  0.064 (0.055,0.072) 0.2 (0.08,0.35)

BARD a =0.6 0.55 (0.50,0.59)  0.070 (0.060,0.081) 0.13 (0.03,0.23)

PASS 0.64 (0.61,0.68)  0.068 (0.062,0.074) 1.38 (0.98,1.80)

BARD a =0 0.72 (0.69,0.75)  0.058 (0.053,0.064) 0.23 (0.10,0.35)

6% BARD ¢ =0.15 0.71 (0.68,0.74)  0.059 (0.053,0.065) 0.2 (0.08,0.35)
BARD ¢ =0.3 0.70 (0.67,0.73)  0.054 (0.049,0.060) 0.1 (0.00,0.20)

BARD a =0.6 0.63 (0.59,0.66)  0.071 (0.061,0.081) 0.05 (0.00,0.13)

Table 4: Results based on 40 simulated data sets for two scenarios where the proportion
of dimensions affected for each abnormal segment varied between 4% and 6% (of the
total number of dimensions d = 50). The prior for |u| assumed by BARD is uniform on
(a,0.7) The results for each case are averages across simulated data sets together with
95% confidence interval in brackets.

b = 10 then we can see that the PASS method outperforms BARD on the proportion
of segments detected. This highlights that although our method is robust to choices in
priors, to ensure the best performance of our method sensible choices need to be made.

b  Method Proportion detected Accuracy Number of False positives

— PASS 0.55 (0.51,0.59)  0.071 (0.061,0.081) 1.23 (0.95,1.53)
0.5 BARD  0.64 (0.60,0.68)  0.063 (0.055,0.072) 0.13 (0.03,0.23)
1  BARD  0.64 (0.61,0.69)  0.063 (0.055,0.073) 0.3 (0.15,0.48)
2 BARD  0.63 (0.59,0.66)  0.069 (0.059,0.081) 0.2 (0.08,0.35)
4 BARD 061 (0.57,0.64)  0.067 (0.057,0.079) 0.13 (0.03,0.25)
10 BARD 052 (0.48,0.55)  0.071 (0.060,0.082) 0.10 (0.03,0.20)

Table 5: Results based on 40 simulated data sets for each scenario where the proportion
of dimensions affected for each abnormal segment was fixed at 4% and the number of
dimensions d = 50. The prior for |u| used by BARD was (0.3,b). The results for each
case are averages across simulated data sets together with 95% confidence interval in
brackets.

We also looked at the effect of varying the dimension d of the data, but keeping the
proportion of affected dimensions the same. The results can be seen in Table 6, these
indicate that both the proportion of abnormal segments detected and the accuracy
improve as d is increased, due to the extra information with larger d. However the
number of false positives gets worse for both methods, as with larger d there is more
chance for some dimensions to show evidence for abnormality within normal regions.

The final parameter we investigate is v which is instrumental in getting an explicit
segmentation from the BARD method using the loss function in (10). If « is small
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d  Method Proportion detected Accuracy Number of False positives

50 PASS 0.55 (0.51,0.59) 0.071 (0.061,0.081) 1.23 (0.95,1.53)
BARD 0.65 (0.61,0.69) 0.064 (0.055,0.072) 0.2 (0.08,0.35)

100 PASS 0.65 (0.62,0.68) 0.063 (0.056,0.070) 2.1 (1.68,2.58)
BARD 0.73 (0.70,0.76) 0.051 (0.045,0.059) 0.35 (0.18,0.58)

900 PASS 0.75 (0.72,0.78) 0.055 (0.049,0.062) 3.1 (2.60,3.60)

BARD  0.85 (0.84,0.87)  0.038 (0.034,0.043) 1.4 (1.05,1.80)

Table 6: Results based on 40 simulated data sets for each scenario where the proportion
of dimensions affected for each abnormal segment was fixed at 4% and the number of
dimensions d was varied from 50 to 200. The results for each case are averages across
simulated data sets together with 95% confidence interval in brackets.

then more evidence is needed for a time point to be classified as abnormal so generally
the smaller v is the smaller the proportion of true positives will be, however the mean
number of false positives detected would be large. The reverse is true as -y is increased.
We can see from Table 7 that all values of v perform similarly.

v  Method Proportion detected Accuracy Number of False positives
- PASS 0.55 (0.51,0.59) 0.071 (0.061,0.081) 1.23 (0.95,1.53)
1/4 BARD 0.64 (0.60,0.68) 0.064 (0.057,0.073) 0.2 (0.05,0.38)
1/3  BARD 0.65 (0.61,0.69) 0.064 (0.055,0.072) 0.2 (0.08,0.35)
1/2  BARD 0.66 (0.62,0.69) 0.063 (0.054,0.072) 0.28 (0.13,0.45)
2/3  BARD 0.67 (0.63,0.71) 0.063 (0.055,0.073) 0.35 (0.18,0.53)
3/4 BARD 0.67 (0.63,0.71) 0.061 (0.053,0.072) 0.4 (0.23,0.60)
1 BARD 0.68 (0.64,0.71) 0.065 (0.056,0.075) 0.48 (0.28,0.68)

Table 7: Results based on 40 simulated data sets for each scenario where the propor-
tion of dimensions affected for each abnormal segment was fixed at 4%, the number of
dimensions d = 50 and values of a = 0.3 and b = 0.7 in the split prior. The parameter
~ was varied in the loss function (10). The results for each case are averages across
simulated data sets together with 95% confidence interval in brackets.

BARD also allows us to get an estimate of the uncertainty in the position of abnormal
segments as from the posterior we can get the probability of each time point belonging
to an abnormal segment. If we bin these probabilities into intervals and then find the
proportion of these points that are actually abnormal we can obtain a calibration plot
Figure 3. We can see from this that the model seems to be well calibrated.

5.3 Analysis of CNV Data

We now apply our method to CNV data from Pinto et al. (2011), a subset of which
was presented in Section 1 and was used to construct a model for the simulated data in
Section 5.2.
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Figure 3: All the time points ¢ for which the posterior probability lies in a certain interval
plotted against the proportion of times ¢ lies in an abnormal segment.

Pinto et al. (2011) undertook a detailed study of the different technologies (plat-
forms) used to obtain the measurements and many of the algorithms currently used
to call CNV’s. We chose to analyse data from the Nimblegen 2.1M platform and from
chromosomes 6 and 16. For both chromosomes we have three replicate data sets, each
consisting of measurements from six genomes. We preprocessed the data to remove
experimental artifacts, using the method described in Siegmund et al. (2011), before
analysing it. The data from chromosome 16 consisted of 59,590 measurements, and the
data from chromosome 6 consisted of 126,695 measurements, for each genome.

Firstly we ran the PASS method on just the first replicate of the data from chro-
mosome 16 and found the most significant segments. Doing this enables us to get an
estimate of the parameters for the LOS distributions to use in the Bayesian method
without having to do any parameter inference. The maximum length of segment we
searched over was 200 (measured in observations not base pairs) as this is greater than
the largest CNV we would expect to find. This gave parameters that suggested a ge-
ometric distribution for the length of normal segments Sy ~ Geom(0.0007) and the
following Negative Binomial distribution for abnormal segments Sy ~ NBinom(2,0.1).
We used the same split uniform prior for p as we did in Section 5.2 namely one with
equal density on the set (—0.7,—0.3) U (0.3,0.7) and zero elsewhere. We justified the
use of this form of prior which excludes values close to zero in Section 2.2 and it was
shown to perform well on some realistically simulated data in Section 5.2.

For both chromosomes we analysed the three replicates separately. Ideally we should
infer exactly the same segmentation for each of the replicate data sets. Due to the large
amount of noise present in the data this does not happen. However we would expect
that a “better” method would be more consistent across the three replicates, and we
use the consistency of the inferred segmentations across the replicates as a measure of
accuracy.

We can also use data from the HapMap project to validate some of the CNV’s
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Truth PASS BARD
Start Length | Repl Rep2 Rep3 | Repl Rep2 Rep3
2619669 62144 - - - - v v
21422575 76266 v v v v v v
32165010 456897 v v v v v v
34328205 286367 v v v v v v
54351338 28607 v v - v v v
70644511 21083 - v v - v v

Table 8: Known CNV’s from HapMap found by either method when analysing different
replicates of data from chromosome 16. Ticks indicate whether the particular segment
was detected or not.

Truth PASS Bayesian

Start Length | Rep1l Rep2 Rep3 | Repl Rep2 Rep3

202353 37484 - - - v v -

243700 80315 v v v v v v
29945167 12079 v v - - - -
31388080 61239 v - - v - -
32562253 117686 v - v - - -
32605094 74845 - v - v v v
32717276 22702 v - v v v
74648953 9185 v v - v v v
77073620 10881 - v - v v v
77155307 781 - - - v - -
77496587 12936 - - - v v v
78936990 18244 v v v v v v
103844669 24085 v v v v v v
126225385 3084 v v - - - v
139645437 3392 - - - v - -
165647807 4111 - - - v - v

Table 9: Known CNV’s from HapMap found by either method when analysing different
replicates of data from chromosome 6. Ticks indicate whether the particular segment
was detected or not.

we found to those known experimentally or which have been called by other authors.
A list containing these known CNV’s by chromosome and sample can be found at
http://hapmap.ncbi.nlm.nih.gov/. These validated segments suggest that about 1%
of chromosome 16 is abnormal.

To make comparisons between BARD and PASS fair we implemented both of these
methods so that they identified the same proportion, 4%, of the chromosome as being
abnormal. For BARD this involved choosing v in the loss function (10) appropriately
and for PASS selecting the most significant segments that give us a total of 4% abnormal
time points. We then tested these against the validated CNV’s.


http://hapmap.ncbi.nlm.nih.gov/
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Chromosome Method Repl1lv2 Replv3 Rep2v3

6 PASS 0.474 0.709 0.522
BARD 0.495 0.457 0.416
16 PASS 0.478 0.507 0.388
BARD 0.426 0.467 0.682

Table 10: The average consistency measured using the dissimilarity measure for found
CNV’s between replicates and methods. A lower value indicates the inferred segmenta-
tions for the two replicates were more similar.

The results for chromosome 16 are contained in Tables 8 and 10; and those for
chromosome 6 in Tables 9 and 10. Tables 8 and 9 list the known CNV regions that
were detected by one or both methods for at least one replicate, whilst Table 10 gives
summaries of the consistency of the inferred segmentations across replicates.

The results show that BARD is more successful at detecting known CNV regions
than PASS. In total BARD found 6 CNV regions on chromosome 16 for at least one
replicate, and 14 for chromosome 6, while PASS managed 5 and 11 respectively. For
the measures of consistency across the different replicates, shown in Table 10, BARD
performed better for 4 of the 6 pairs.

6 Discussion

In this paper we have developed novel methodology to detect abnormal regions in mul-
tiple time series. Firstly we developed a general model for this type of problem including
length of stay distributions and marginal likelihoods for normal and abnormal segments.
We then derived recursions that could be used to calculate the posterior of interest and
showed how to obtain iid samples from an accurate approximation to this posterior in
a way that scales linearly with the length of series.

The resulting algorithm, BARD, was then compared in several simulation studies
and some real data to another competing method PASS. These results showed that
BARD was consistently more accurate than the PASS benchmark on several important
criteria for all of the data sets we considered. Furthermore, being able to accurately
and efficiently perform Bayesian inference for large and high dimensional data sets of
this type allows us to quantify uncertainty in the location of abnormal segments. Before
this with other methods such as PASS this quantification of uncertainty has not been
possible.

Whilst we have focused on a specific model of changes in mean from some baseline
level, our method could easily be adapted to any model which specifies some normal
behaviour and abnormal behaviour. The only restrictions we place on this is the ability
to calculate marginal likelihoods for both types of segment. The main computational
bottleneck would be in the calculation of the abnormal marginal likelihoods as this
involves integration over a prior for the parameter(s) which cannot be done analytically,
and for higher dimensional parameters would be computationally intensive. For example,
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our approach can trivially be extended to allow different but known variances for each
time-series. To allow each abnormal segment to have its own variance as well as mean
is possible, but would involve extra computation, as a 2-dimensional integral would be
needed to calculate the marginal likelihoods for abnormal segments.

R code to run the BARD method is available at the first authors website. http://
www.lancaster.ac.uk/pg/bardwell/Work.html. The real CNV data we analysed in
Section 5.3 is available publicly and can be downloaded from the GEO accession website
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25893.

Supplementary Material

Supplementary Material of “Bayesian detection of abnormal segments in multiple time
series” (DOI: 10.1214/16-BA998SUPP; .pdf).
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