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Bayesian Registration of Functions and Curves

Wen Cheng∗, Ian L. Dryden† and Xianzheng Huang‡

Abstract. Bayesian analysis of functions and curves is considered, where warping
and other geometrical transformations are often required for meaningful compar-
isons. The functions and curves of interest are represented using the recently
introduced square root velocity function, which enables a warping invariant elas-
tic distance to be calculated in a straightforward manner. We distinguish between
various spaces of interest: the original space, the ambient space after standard-
izing, and the quotient space after removing a group of transformations. Using
Gaussian process models in the ambient space and Dirichlet priors for the warp-
ing functions, we explore Bayesian inference for curves and functions. Markov
chain Monte Carlo algorithms are introduced for simulating from the posterior.
We also compare ambient and quotient space estimators for mean shape, and
explain their frequent similarity in many practical problems using a Laplace ap-
proximation. Simulation studies are carried out, as well as practical alignment of
growth rate functions and shape classification of mouse vertebra outlines in evo-
lutionary biology. We also compare the performance of our Bayesian method with
some alternative approaches.

Keywords: ambient space, Dirichlet, Gaussian process, Quotient space, shape,
warp.

1 Introduction

We consider statistical analysis of functions and curves where some form of registration
or time warping is of interest. The two main applications that we focus on involve
the alignment of growth rate curves and the classification of mouse vertebrae shape
outlines in evolutionary biology. Both applications require methods which can take
account of arbitrary reparameterizations of the functions or curves of interest. In order
to help choose appropriate methods and models, we first describe three different spaces
of interest: the original space, the ambient space and the quotient space. The choice of
space in which to specify the statistical model is important, as it determines what type
of mean estimation and subsequent statistical analyses are carried out.

Our main contribution is to introduce a Bayesian approach to the analysis of func-
tions and curves, which is demonstrated to be effective in the two applications as well
as in the comparison with some other existing methodologies. Inference is carried out
using Markov chain Monte Carlo simulation, and prior beliefs about the amount of time
warping or registration are included as part of the model.

We wish to consider applications where the functions or curves of interest may not
be in alignment. For example, in the study of growth curves of children it makes sense
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to consider a time warping of the curves so that the curves match up in a biologi-
cally meaningful way. Children reach various stages of development such as puberty at
different times, and so when comparing growth curves it is sensible to first align the
curves in time and then compare the different heights and growth rates of the children
using the time-warped curves (Ramsay and Li, 1998). The function registration prob-
lem has been considered by a large number of authors, including Kneip and Gasser
(1992); Silverman (1995); Ramsay and Li (1998); Kneip et al. (2000) and Srivastava
et al. (2011b), among many others. In earlier Bayesian approaches, Telesca and Inoue
(2008) and Zhou et al. (2014) model the functions and warps by linear combinations of
B-splines, and Claeskens et al. (2010) use another Bayesian method with multiresolution
warping functions.

After alignment, quantities such as a population mean function and a population
covariance function can then be estimated in the space of curves. In addition to the
amplitude variability of the functions post registration, it is also of interest to ana-
lyze the variability in the registration transformations themselves, which is also known
as phase variability. When analyzing curves in two or three dimensions we have ad-
ditional potential invariances, such as translation, rotation and possibly scale invari-
ance.

As a motivating example consider the functions in Figure 1, which are the growth
rates (smoothed first derivative of height with respect to time) of two girls from the
Berkeley growth study (Ramsay and Silverman, 2005). In order to compare the curves,
it makes sense to align the main features, which here are two growth spurts given
by the peaks. In the left hand plot of Figure 1, it can be seen that the scans are
not well aligned, as the large peaks are not in the same positions in the x-axis. The
goal of the alignment is to register the curves with a transformation of the x-axis so
that peaks representing the growth spurts can be compared between individuals. After
registration using the Bayesian methodology of this paper, it is clear in the middle plot of
Figure 1 that the two main peaks have been lined up using the posterior mean warping
function applied to the x-axis, and in the right hand plot the posterior mean warp
and 95% pointwise posterior credibility intervals are displayed. Clearly, there is little
uncertainty in the alignment in this case. In some applications much of the alignment
can be accounted for locally by a translation of the x-axis, and so we develop a Bayesian
method for alignment that places strong prior information on translations, if desired.
A strong prior parameter a = 50 is used in Figure 1, which will be explained later in
Section 4.

In this paper we first introduce the original, quotient and ambient spaces for repre-
senting functions and curves in Section 2. We focus on the square root velocity function
and quotient space in Section 3. A Bayesian model in ambient space is described in Sec-
tion 4, and inference is developed using Markov chain Monte Carlo simulation. Some
properties of the methods are given in Section 5, including asymptotic properties and
approximations. Various simulation studies and practical analysis of growth rate curves
are given in Section 6, and we also consider a problem in shape analysis where it is of
interest to classify mice vertebrae on the basis of the outline shape. We conclude with
a brief discussion.
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Figure 1: Growth rate curves from two girls in the Berkeley growth study (left), which
have been aligned using the Bayesian procedure (center) using the estimated posterior
mean warping function with 95% pointwise credibility intervals displayed (right). In
each plot the x-axis represents time from 1 to 18 years, and has been rescaled to unit
length.

2 The spaces of interest

2.1 Original, ambient and quotient spaces

Consider data of interest in the form of functions or curves

fi(t) : [0, 1] → R
m, i = 1, . . . , n.

In functional data analysis (Ramsay and Silverman, 2005), the function f(t) is typically
in m = 1 dimension. In statistical shape analysis (Klassen et al., 2003), the curve f(t)
is usually in m = 2 or m = 3 dimensions. In practice we cannot observe a complete
continuous function but rather a finite set of discrete points {f(tj) ∈ R

m : j = 1, . . . , k},
where the function is observed at times tj , j = 1, . . . , k.

In a general form of the registration problem, let us first consider the different spaces
of interest. Each object f is located in the original space (e.g., a space of functions, a
space of curves in R

m, or a space of landmark coordinates). The original space is where
we represent the raw objects under study.

It is very common to standardize the objects with a preliminary transformation,
such as centering or rescaling so that the objects have unit norm, or perhaps taking a
derivative with respect to time to be translation invariant. These initial transformations
are simple in nature and carried out individually on each object, very much in the spirit
of standardizing variables to have zero mean and unit variance in univariate statistics,
or taking first differences in time series. The standardized object f∗ is now represented
in the ambient space S. Given that it is straightforward to transform to the ambient
space, we will assume from now on that this initial standardization has been carried
out.

Finally, we wish to investigate the equivalence class [f ]Q ∈ Q which is obtained
by removing transformations γ ∈ G from the standardized f∗, where G is a group of
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transformations and Q = S/G is a quotient space. An important observation is that in
order to compute distances in the quotient space, optimization over the transformation
group G is required.

This notion of equivalence class and quotient space is precisely that introduced by
Kendall (1984) for the representation of the shapes of k landmarks in R

m, where k > m.
The k landmarks are points located in m dimensions which represent the important
features of the objects under study. In this situation the original space is the space of
landmark coordinates Rkm\{0}; the ambient space S is the pre-shape sphere S(k−1)m−1

of landmark coordinates which are Helmertized (or centered) to remove location and
scaled to have unit size; and the quotient space is Kendall’s shape space Σk

m after
quotienting out SO(m) = {R : RTR = RRT = Im, det(R) = 1}, where SO(m) is the
special orthogonal group of m × m rotation matrices. See Kendall et al. (1999) for a
detailed description of the geometry of this space and Dryden and Mardia (1998) for
statistical considerations.

In functional data analysis, the registration group is a transformation of the domain
of the function, for example, a translation γ(t) = t+c, affine transformation γ(t) = at+c,
or the full group of diffeomorphic transformations D = {γ : [0, 1] → [0, 1]}, such that γ is
1–1 and onto. The functions themselves lie in the original space, are then standardized to
the ambient space, and then finally are decomposed such that the amplitude variability
is represented in the quotient space and the phase variability is contained in the group
of transformations G.

In curve analysis the registration of interest is the transformation of the domain,
and in addition we may wish to register using the translation, rotation and scaling of
the curve. In this case the curves lie in the original space, standardized versions lie in
the ambient space, then the shapes of the curves are represented in the quotient space.
The main spaces used in this paper are given in Table 1.

Original object Ambient space Distance Quotient space distance

X ∈ M
k×m Z = HX

‖HX‖ ∈ S(k−1)m ‖Z1 − Z2‖ infΓ∈SO(m)‖Z1 − Z2Γ‖
{f(t) : t ∈ R} q = ḟ

|ḟ|1/2 ∈ L
2 ‖q1 − q2‖2 infγ∈D‖q1 − q2 ◦ γ‖2

{f(t) : t ∈ R
m} q = ḟ

‖ḟ‖1/2 ∈ L
2 ‖q1 − q2‖2 infγ∈D,Γ∈SO(m)‖q1 − (q2 ◦ γ)Γ‖2

Table 1: Three examples of original objects, ambient spaces, ambient space distances and
quotient space distances. Row 1: k landmarks in m dimensions, where H is a Helmert
sub-matrix (Dryden and Mardia, 1998, p. 34) used for removing translation and Γ is an
m×m rotation matrix; row 2: 1D functions, with warp γ ∈ D a re-parameterization of
time; row 3: curves in mD with warp γ ∈ D a re-parameterization of arc-length and Γ
is a rotation matrix in m-dimensions.

For our analysis of functions and curves, the original space and the ambient space S
are standard classical spaces, such as L2, L2×· · ·×L

2 or Sd−1, where statistical models
can be relatively easily formulated, and inference carried out. In terms of statistical
modeling and inference, working with objects in the group G of transformations is more
challenging, but can be undertaken. The geometry of the group is usually relatively
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simple and well understood. However, the quotient space can be considerably more
complicated in some situations. For example, the similarity shape space of a finite set
of landmarks in three dimensions is very complicated, being a non-homogeneous space
with singularities (Le and Kendall, 1993).

So, an important question is: In which space shall we define our statistical model,
the original, ambient or quotient space? Since the transformation from the original to
the ambient space is quite straightforward, the main issue is whether we should consider
models in the ambient space or the quotient space. Ultimately the choice of model will
depend on the goals of the study and what we are trying to make inference about.

Let us first consider two data objects X1 and X2, which could both be standardized
functions, curves, landmarks or any other type of object in an ambient space S. How
close are X1 and X2, ignoring arbitrary registrations γ1, γ2 ∈ G? Let [X1]Q and [X2]Q
denote the amplitudes (or shapes) of X1, X2. A natural distance between the amplitude
functions is in the quotient space:

d([X1]Q, [X2]Q) = inf
γ∈G

d(X1, X2 ◦ γ),

where we must also have the isometric property

d([X1 ◦ γ∗]Q, [X2 ◦ γ∗]Q) = d([X1]Q, [X2]Q), (1)

where an arbitrary common transformation γ∗ can be applied to both objects and the
quotient distance remains unchanged. This property is also known as a parallel orbit
property, in that the orbits (transformations of an object by γ∗) are parallel, and it
is also known as “right-invariance”. This property is a necessity when thinking about
practical statistical analyses which are invariant to transformations. If we apply an
arbitrary transformation to our data then clearly all distances must remain invariant.

2.2 Statistical models and inference

Consider a distribution for a random object X, where it is the equivalence class up to
transformations in γ ∈ G that is of interest. We have several choices for specifying a
distribution. We could model X in the ambient space with a population mean

μA = arg inf
ν∈S

∫
S

d(x, ν)2h(x)dx, (2)

where h(x) is the probability density function (p.d.f.) of X. If d(·, ·) is the L
2 or Eu-

clidean norm then μA = E[X] =
∫
xh(x)dx. The key location parameter of interest is

then the amplitude (shape) of μA.

Statistical models in the ambient space are quite straightforward to specify because
the ambient space is usually not complicated. For example, we specify a stochastic
process/probability distribution forX, and then choose some coordinates in the quotient
space, which we write as U = [X]Q together with registration parameters γ ∈ G.
We can specify a probability distribution for X and transform from X to U (where
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U = X◦γ−1 ∈ Q and γ ∈ G). Likelihood based inference about μA up to transformations
γ is then carried out after marginalization, i.e., after integrating out the transformations
γ from the distribution of X. This approach was used by Mardia and Dryden (1989);
Dryden and Mardia (1991, 1992) in landmark shape analysis, for example.

Alternatively, we could model the equivalence class U = [X]Q directly in the quotient
space with population Fréchet (1948) mean

μQ = arg inf
μ∈Q

∫
Q

d(u, μ)2h(u)du, (3)

where h(u) is the p.d.f. of U , and d(·, ·) is an intrinsic distance in the space. An intrinsic
distance is the length of the shortest geodesic path between two points, where the path
remains in the space at all times (e.g., Huckemann et al., 2010). The minimized value of
the expected squared distance is known as the Fréchet variance, and we assume that a
global minimum is obtained. If instead only a local minimum has been found, we denote
this as the Karcher mean (Karcher, 1977).

Also, we could consider extrinsic distance between two points, where a space is
embedded in a higher dimensional Euclidean space. The extrinsic distance is taken as
the Euclidean distance between the points in the embedding space. The population
extrinsic mean

μE = arg inf
μ∈Q

∫
Q

dE(u, μ)
2h(u)du, (4)

where dE(·, ·) is an extrinsic distance (e.g., Bhattacharya and Patrangenaru, 2003).
Models can be specified in the quotient space itself and we can perform inference on μQ

or μE . The method requires optimization over the γ parameters in order to compute the
intrinsic distances in the shape spaces. This is the approach used in Procrustes analysis
(Goodall, 1991) in landmark shape analysis.

Type of mean Notation Reference
Ambient space mean function μA Equation (2)

Quotient space/Fréchet/Karcher mean function μQ Equation (3)
Extrinsic mean function μE Equation (4)

Ambient space mean vector μA([t]) Section 5.1
Quotient space mean vector μQ([t]) Section 5.1

Table 2: Notation for the types of population means.

A summary of the notation for the different types of population means considered
in the paper is given in Table 2.

In terms of practical guidance on which approach to use, statistical models in the
original or ambient space are easier to specify and interpret, and so in many situations
such models are more desirable to use. However, statistical inference can be difficult,
with complicated marginal distributions obtained after integrating out the invariant
transformations γ. On the other hand, models specified in the quotient space are eas-
ier to work with for inference; however, their interpretation in terms of the objects
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under study is difficult. Ideally, then we would like to develop practical inference pro-
cedures for models in the ambient space, and our Bayesian inferential approach for
ambient space models is the approach that we develop and recommend. The main dis-
advantage is that the computational time is longer than with quotient space based
methods.

In the next section we shall describe some methods for computing distances and
carrying out inference in quotient spaces for functions and curves. Then, in the following
section we introduce our main approach to modeling using a Bayesian procedure in the
ambient space.

3 Quotient space

3.1 SRVF and quotient space

Let f be a real valued differentiable curve function in the original space, f(t) : [0, 1] →
R

m. From Srivastava et al. (2011a) the Square Root Velocity Function (SRVF) of f is
defined as q : [0, 1] → R

m, where

q(t) =
ḟ(t)√
‖ḟ(t)‖

,

and ‖f‖ denotes the standard Euclidean norm. The q function is invariant under trans-
lation of the original function, and is in an ambient space. We consider situations when
m = 1 for functions and m = 2 for planar shapes. In the one-dimensional functional
case, the domain t ∈ [0, 1] often represents ‘time’ rescaled to unit length, whereas in
two- and higher-dimensional cases, t represents the proportion of arc-length along the
curve.

Let f be warped by a re-parameterization γ ∈ G, i.e., f ◦ γ, where γ ∈ G : [0, 1] →
[0, 1] is a strictly increasing differentiable warping function. The SRVF of f ◦ γ is then
given as

q∗(t) =
√
γ̇(t)q(γ(t)),

using the chain rule. An advantage of using the SRVF is that it can be used to compute
the elastic metric

d(q1, q2) = d([q1]Q, [q2]Q) = inf
γ∈G

‖q1 −
√

γ̇q2(γ)‖22 = dElastic(f1, f2),

where ‖q‖2 = {
∫ 1

0
q(t)2dt}1/2 denotes the L

2 norm of q, and the elastic metric obeys
the isometric property of (1):

dElastic(f1 ◦ γ, f2 ◦ γ) = dElastic(f1, f2),

where the distance is unchanged if both functions undergo a common reparameteriza-
tion. For the m = 1 dimensional case the elastic metric is equivalent to the Fisher–Rao
metric for measuring distances between probability density functions. If q1 can be ex-
pressed as some warped version of q2, i.e., they are in the same equivalence class, then
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d([q1]Q, [q2]Q) = 0 in quotient space. Note that we sometimes wish to remove scale from
the function or curve, and hence we can standardize so that

∫ 1

0

q(t)2dt = 1. (5)

In this case the ambient space would be the Hilbert sphere S∞. In them ≥ 2 dimensional
case, it is common to also require invariance under rotation of the original curve. Hence
we may also wish to consider an elastic distance (Joshi et al., 2007; Srivastava et al.,
2011a) defined in Q given as

d([q1]Q, [q2]Q) = inf
γ∈G,Γ∈SO(m)

‖q1 −
√
γ̇q2(γ)Γ‖2.

The m = 2 dimensional elastic metric for curves was first given by Younes (1998).

3.2 Quotient space inference

Inference can be carried out directly in the quotient space Q, and in this case the
population mean is most naturally the Fréchet/Karcher mean μQ. Given a random
sample [q1]Q, . . . , [qn]Q, we obtain the sample Fréchet mean by optimizing over the
warps for the 1D function case (Srivastava et al., 2011b):

μ̂Q = arg inf
μ∈Q

n∑
i=1

inf
γi∈G

‖μ−
√
γ̇i(qi ◦ γi)‖22.

In addition, for the m ≥ 2 dimensional case (Srivastava et al., 2011a) we also need to
optimize over the rotation matrices Γi where

μ̂Q = arg inf
μ∈Q

n∑
i=1

inf
γi∈G,Γi∈SO(m)

‖μ−
√
γ̇i(qi ◦ γi)Γi‖22.

This approach can be carried out using dynamic programming (Bradley et al., 1977,
Chapter 11) for pairwise matching, then ordinary Procrustes matching (Dryden and
Mardia, 1998, Chapter 5) for the rotation, and the sample mean is given by

μ̂Q =
1

n

n∑
i=1

√
˙̂γi(qi ◦ γ̂i)Γ̂i.

Each of the parameters is then updated in an iterative algorithm until convergence.

4 A Bayesian ambient space model

4.1 The likelihood for functions

Our main approach is to consider a model in the ambient space, and then remove
the unwanted transformations by marginalization. This Bayesian model was initially
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described briefly by Cheng et al. (2014), and here we give a more complete description
and extend the model to higher dimensions.

Since the q-function is a continuous function in the ambient space, naturally we
consider a general stochastic process as the modeling framework for q, and we first
consider the m = 1 dimensional case. We assume a zero mean Gaussian process for the
difference of two 1D q functions, i.e., {q1 − q∗2 |γ} ∼ GP , where q1 is untransformed and
q∗2 is warped by a fixed reparameterization γ, i.e., q∗2(t) =

√
γ̇(t)q2(γ(t)). The relative

alignment function γ contains the parameters of interest.

If we use q1([t]) and q∗2([t]) to denote vectors evaluated at the same finite points on
the domain of of q1(t) and q∗2(t), respectively, then the joint distribution of these finite
differences q1([t])− q∗2([t]) is a multivariate normal distribution based on the Gaussian
process assumption, i.e.,

{q1([t])− q∗2([t])|γ} ∼ Nk(0k,Σk×k),

where here k is the number of points. We assume Σk×k = 1
2κIk×k, where κ is a concen-

tration parameter, although one may use more general covariance functions, such as the
Gaussian or Matérn functions (Stein, 1999). Note that the assumption of independent
differences implied in the Gaussian model above is at the level of q function, not on the
original function itself. On the original function level, our model is analogous to a first
order random walk model, which is commonly used in many applications. It encourages
functions to have similar neighboring values, and hence the first derivatives are inde-
pendent and identically distributed. One may also consider the second order random
walk model, which encourages smoothness, e.g., similar neighboring slopes. The main
advantage of our model is that it is a non-stationary model for the original function
itself, allowing non-constant mean and also allowing the values on the function to be
dependent. In Appendix E of the Supplementary Materials (Cheng et al., 2015), we
demonstrate the performance of the proposed estimators obtained when this assump-
tion of independent differences is violated, and we see that they are not very sensitive
for pointwise estimation.

4.2 Prior distributions

The re-parameterization function γ ∈ G: [0, 1] → [0, 1] is a strictly increasing cumulative
distribution function (c.d.f.), and this c.d.f. can be approximated by a set of equally
spaced points along its domain [0, 1] and linear interpolation. Let γ([t]) denote {γ(ti), i =
0, 1, 2, . . . ,M}, the finite collection of M + 1 discretized points and ti = i

M , then we
have γ(t0) = γ(0) = 0 and γ(tM ) = γ(1) = 1. We do not require equally spaced points,
but we use this formulation for convenience. Further, if we let pi = γ(ti) − γ(ti−1) for

i = 1, 2, . . . ,M , we have 0 < pi < 1 and
∑M

i=1 pi = 1. Denoting pM = (p1, p2, . . . , pM )
and treating pM as a random vector, we can assign a Dirichlet prior to pM |γ([t]), i.e.,
π(pM ) ∼ Dirichlet(a1, . . . , aM ). We take equal ai = a here, writing Dirichlet(a). This
prior distribution is uniform when a = 1, and a larger value of a leads to a transformation
more concentrated on γ̇ = 1 (i.e., translations). In the limit as M → ∞, the warping
function is a Dirichlet process. The choice of M is user specific, but it should be less
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than the number of discrete points in the q functions, i.e., M < k. A possible way to
choose M is to use the Deviance Information Criterion (Spiegelhalter et al., 2002), and
further approaches to deal with the infinite dimensional nature of Dirichlet processes
are finite truncations (Ishwaran and James, 2001), slice samplers (Walker, 2007; Kalli
et al., 2011) and adaptive truncation (Griffin, 2014).

The prior distribution for the concentration parameter κ is taken as a Gamma(α, β)
distribution, independent of γ. We use a fairly non-informative prior throughout with
α = 1, β = 1,000, and hence we have prior mean E[κ] = αβ = 1,000 and prior variance
αβ2 = 1,000,000.

4.3 Pairwise function comparison

Using Bayes Theorem, the posterior distribution for {γ([t]), κ} given (q1([t]), q2([t])) is

π(γ, κ|q1, q2) ∝ κp/2e−κ‖q1([t])−
√
γ̇(q2([t])◦γ)‖2

π(γ)π(κ).

In the above model, p represents the degrees of freedom in the model. If there is no unit
scale length constraint (5) for q, then p would be calculated as follows: p = km, where k
is the number of finite points taken from the q function, and m is the original function
space dimension, i.e., m = 1 for functions and m ≥ 2 for curves in higher dimensions.
One degree of freedom will be lost in the constrained case (5) and thus p = km− 1.

We use a Markov chain Monte Carlo (MCMC) algorithm to simulate from the joint
posterior distribution of {γ([t]), κ}. The concentration parameter κ is updated using
a Gibbs sampler as the conditional posterior for κ given all other parameters is still
Gamma distributed. For γ([t]) with M + 1 points, a shift in γ([t]) is proposed at each
discrete point (i = 1, . . . ,M − 1) and accepted/rejected according to a Metropolis–
Hastings step. Note that γ(t0) = 0 and γ(tM ) = 1 are both fixed and thus are not
updated. The resulting Markov chain is irreducible and aperiodic, and hence dependent
values from the posterior distribution can be simulated after a large number of iterations.

4.4 Multiple functions

If we are interested in multiple functions or curves, we can specify a mean process
for q functions in the ambient space, i.e., E(q∗i ) = μA, where q∗i =

√
γ̇iqi(γi) is a

warped version of qi through some underlying fixed γi. Based on the Gaussian process
assumption again, we have

{q∗i ([t])− μA([t])|γi([t]), μA([t])} ∼ N(0k,Σk×k)

for i = 1, 2, . . . , n, where n is the number of q functions of interest. We take the prior
distribution of μA to be a zero mean Gaussian process with large variance, independent
of all other parameters. The joint posterior density for (μA, γ1, . . . , γn) is then

π(μA, γ1, . . . , γn|q1, . . . , qn) ∝ κnp/2e−κ
∑n

i=1 ‖μA([t])−q∗i ([t])‖2

π(μA)π(γ1, . . . , γn)π(κ).

To simulate from the posterior distribution, we again use an MCMC algorithm, con-
sisting of pairwise MCMC updates from each curve to the current mean μA([t]) and a
Gibbs update for μA([t]) itself.
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Due to the simultaneous invariance of all the q functions to a common warping,
μA([t]) is only identifiable up to an equivalence class of warpings. Therefore, in order to
compute the posterior mean estimate μ̂A([t]), it is helpful to standardize in each MCMC
iteration such that the Karcher mean of the warping functions from μA to each qi is the
identity function, i.e., ˙̂γ = 1. The standardization is carried out by applying the inverse
of Karcher mean of the warping functions from μ to the individual qi’s.

4.5 Curve warping

In the m ≥ 2 dimensional case, we consider a Gaussian process for the difference of two
vectorized q functions in a relative orientation Γ, i.e., {vec(q1 − q∗2)|γ,Γ} ∼ GP , where
q∗2 =

√
γ̇q2(γ)Γ. The matrix Γ ∈ SO(m) is a rotation matrix with parameter vector θ. If

we assign a prior for rotation parameters (Eulerian angles) θ corresponding to rotation
matrix Γ, then the joint posterior distribution of (γ([t]), θ), given (q1([t]), q2([t])) is

π(γ, θ|q1, q2) ∝ κp/2e−κ‖q1([t])−q∗2 ([t])‖2

π(γ)π(θ)π(κ),

where γ, θ, κ are independent a priori. Throughout the paper we take Γ to have a
uniform prior on the space of rotation matrices, e.g., see Czogiel et al. (2011).

For the multiple curves case, define q∗i (t) =
√
γ̇i(t)qi(γi(t))Γi and μA = E(q∗i ) for

fixed γi and Γi, and we assume

vec(μA([t])− q∗i ([t])) ∼ N(0km,Σkm×km)

for fixed (γi,Γi), i = 1, . . . , n. The joint posterior for (μA, γ1, . . . , γn,Γ1, . . . ,Γn) is

π(μA, γ1, . . . , γn,Γ1, . . . ,Γn|q1, . . . , qn) ∝

κnp/2e−κ
∑n

i=1 ‖μA−q∗i ‖2

π(μA)π(γ1, . . . , γn)π(Γ1, . . . ,Γn)π(κ),

with warps, rotations and κ independent a priori. Sampling from the posterior distri-
bution is carried out through exactly the same procedure as when m = 1 but with an
extra Metropolis–Hastings update for rotation angles.

4.6 Alternative Bayesian approaches

An earlier Bayesian method for curve registration is Bayesian hierarchical curve regis-
tration (BHCR) of Telesca and Inoue (2008) where B-splines were used to approximate
both the mean functional curve E[f(t)] and the alignment function γ(t), with a mono-
tonicity assumption. Rather than modeling coefficients of basis functions, our model
uses discrete realizations of stochastic processes (Gaussian and Dirichlet), and we work
with the derived function q(t) and the alignment function γ(t), with monotonicity built-
in with a cumulative distribution function and linear interpolation. The key difference
is that working with the q function enables the method to be invariant under simulta-
neous warping of all the curves, but this is not the case with the BHCR method. Both
methods use MCMC simulation for posterior inference.
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As an extension for further work we could also use a basis function approach, which
would introduce more smoothness. In the case of high dimensional data, such as the
mass spectrometry data of Koch et al. (2014) which has a large number of spikes,
it is relatively expensive to approximate the original curve using B-splines. A recent
Bayesian approach of Zhou et al. (2014) also uses B-splines for the warping function
but with individual curves having different time domains. The same restrictions on the
coefficients for monotonicity and a similar model to the BHCR approach is used, and
an underlying common mean function applied to degradation signals of engineering
components. A further Bayesian approach is introduced by Claeskens et al. (2010),
where multi-resolution warping functions are considered. The warping functions are
rather different, with multiresolution properties as in wavelets. MCMC methods are
again used with both methods, but the key difference again is that the mean function
f(t) is used which is not invariant to simultaneous warping, unlike q(t) that we use in
our case.

5 Properties

5.1 Asymptotic properties

Let us write φ for the vector of all the parameters in {(γi,Γi), i = 1, . . . , n.}, and consider
μA to be represented by a piecewise linear function connecting a finite number k points
given by km-vector μA([t]). The marginal posterior density for ambient space inference
is given by

πA(μA([t]), κ|X) =

∫
φ

π(μA([t]), κ, φ|X)dφ. (6)

The posterior mode estimator of (μA([t]), κ) is written as (μ̂A([t]), κ̂) and is obtained by
maximizing (6). If the prior distribution of (μA([t]), κ) is uniform then (μ̂A([t]), κ̂) is the
maximum likelihood estimator. If the prior is absolutely continuous in a neighborhood
of μA([t]) with continuous positive density at μA([t]) and the distribution satisfies cer-
tain regularity conditions (including differentiable in quadratic mean with non-singular
Fisher information matrix IμA([t])), then consistency and asymptotic normality follow.
Subject to the conditions of the Bernstein–von Mises theorem (van der Vaart, 1998,
p. 141), we have

√
n(μ̂A([t])− μA([t])) → N(

1√
n

n∑
i=1

I−1
μ 
̇μA([t])(Xi), I

−1
μA([t]))

in total variation norm as n → ∞, where 
̇μA([t])(Xi) is the derivative of the log-
likelihood corresponding to observation i. If μ̂A is a piecewise linear function obtained
from the vector μ̂A([t]), because μ̂A([t]) is consistent for μA([t]) we can state that
μ̂A → μA in probability as n → ∞, and hence the ambient space mean is consis-
tent. Allassonnière et al. (2007) and Allassonnière et al. (2010) give detailed discussion
of consistency in ambient space models, in particular for deformable templates in image
analysis.
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The sample Fréchet mean vector μ̂Q([t]) is consistent for the population Fréchet
mean vector μQ([t]) (Kendall, 1990; Le, 1991) provided the distribution has support
within a regular geodesic ball, and if μ̂Q is a piecewise linear function obtained from the
vector μ̂Q([t]) and because μ̂Q([t]) is consistent for μQ([t]), we can state that μ̂Q → μQ

in probability as n → ∞.

The results in the subsection concern the asymptotic normality of a finite set of
points on functions. Detailed consideration of similar results for the estimators of entire
functions is a topic for further work.

5.2 Comparison of the quotient and ambient space methods

In general, the population Fréchet mean μQ in the quotient space and the ambient space
mean μA do not have the same amplitude/shape, and hence the sample Fréchet mean
can be inconsistent for the ambient space mean. Likewise, the sample ambient space
mean can be inconsistent for the population Fréchet mean. It is most natural therefore
to use the appropriate estimators given the choice of mean that is to be estimated. If
we are interested in the amplitude/shape of the population ambient space mean then
we use ambient space inference, while if we are interested in the population Fréchet
mean then we use the sample Fréchet mean. As we see below there are situations where
the sample ambient space and Fréchet estimators are very similar, and so our choice
between them may be made on other grounds in this case, such as ease of computation.

When the prior distributions are uniform in the parameters an identical estimator
to the sample Fréchet mean μ̂Q is obtained from the posterior mode in the Bayesian
model of the previous section. If the priors are not uniform then the posterior mode is
in fact a penalized quotient estimator, with the objective function

μ̂pen = arg inf
μ∈Q

n∑
i=1

inf
γi∈G,Γi∈SO(m)

{− log π(μ, κ, γi,Γi|q1, . . . , qn)}

for the curve case.

Note that in many practical situations the ambient space estimator and penalized
quotient space estimators are quite similar, although they do not have to be. One
reason for the similarity in practice is due to a Laplace approximation, and the marginal
posterior density (for ambient space inference) is given by

πA(μ, κ|X) =

∫
φ

π(μ, κ, φ|X)dφ. (7)

whereas the penalized quotient space estimator is obtained by maximization of

πQ(μ, κ|X) ∝ sup
φ

π(μ, κ, φ|X). (8)

where X = {q1, . . . , qn}. Often we can consider πQ(μ, κ|X) in (8) to be a good approx-
imation to the marginal density (7) where the integral is approximated using Laplace’s
method:
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∫
φ

π(μ, κ, φ|X)dφ =

∫
φ

b(φ) exp{−Ar(φ)}dφ

≈ b(φ̂)

(
2π

A

)p/2

|Σφ̂|
1/2 exp{−Ar(φ̂)}

∝ sup
φ

b(φ) exp{−Ar(φ)}

∝ πQ(μ, κ|X),

where the gradient of r(φ) is zero at φ̂, Σφ̂ is the inverse of the positive definite Hessian

matrix of r(φ) at φ̂ and A is a constant. This approximation will be reasonable when
the underlying distribution (φ|μ, κ) is unimodal. Laplace’s approximation is exact when
(φ|μ, κ) is multivariate Gaussian, i.e., r(φ) is a quadratic form in φ and b(φ) is constant.
For further discussion on similar comparisons for unlabeled landmark shape analysis,
see Kenobi and Dryden (2012). In cases where the Laplace approximation does not
hold, e.g., under multimodality, then one should not rely on the quotient estimator as
a reasonable estimate of the ambient space mean.

5.3 Multimodality

Multimodality of the posterior distribution can often be an issue with registration of
functions and curves. Simulated tempering (Geyer and Thompson, 1995) is a powerful
simulation technique designed to overcome problems in moving between local modes
of the posterior. The key idea is to first jump from the “cold” temperature (target
distribution), where it is difficult to move out of a local mode to a “hot” temperature
where movement between modes is easier and then jump back to the “cold” temper-
ature. Using this procedure, the MCMC algorithm can explore the sample space in a
more efficient manner. Further details are given in Appendix F in the Supplementary
Materials (Cheng et al., 2015).

6 Simulations and applications

6.1 1D data analysis

Simulation study

We consider now a simulation study to compare estimation properties of the quotient
and ambient space estimators. The quotient space estimator μ̂Q is obtained by mini-
mizing Σn

i=1‖μ −
√
γ̇i(qi ◦ γi)‖22 using dynamic programming while the ambient space

estimator μ̂A is obtained using the pointwise mean of posterior samples from MCMC
iterations after convergence. The detailed algorithm for dynamic programming is given
in Appendix A of the Supplementary Materials; and the MCMC algorithm is described
in greater detail in Appendix B of the Supplementary Materials (Cheng et al., 2015).

In a single Monte Carlo simulation repetition, a sample of q-functions in one di-
mension is generated through the model qi([t]) =

√
γ̇iμA(γi([t])) + ei([t]), where ei ∼

N(0k,Σk×k),Σ = σ2Ik×k and γi ∼ Dirichlet(1) for i = 1, . . . , n.
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Figure 2: The true μA(t) functions used for simulation study. From left to right we
denote the functions as Example I, II, III and IV, respectively.

Both μ̂Q and μ̂A are computed and their Fisher–Rao distances to the underlying
true μA are calculated. Note that since the goal is to estimate μA in the ambient space,
it is expected that μ̂A will be more appropriate than μ̂Q. The MCMC algorithm for
μ̂A is run for 50,000 iterations with a 25,000 iteration burn-in period. The prior for
γ in the Bayesian model is taken as Dirichlet with a = 1, i.e., uniform. Given specific
combinations of sample size n ∈ {5, 10, 20, 30, 50, 100, 200} and error standard deviation
σ ∈ {0.1, 0.3, 0.5, 1}, 100 Monte Carlo repetitions are run and the arithmetic means of
squared Fisher–Rao distances from both estimators to μA are recorded.

Four examples for μA are considered, which are all scaled to have unit length and
unit time. The functions μA in Examples I, II, III, IV given in Figure 2 are evaluated at k
equal to 51, 51, 101, 51 points, respectively, and the warping functions are parameterized
using M + 1 points, where M is equal to 10, 10, 20, 10, respectively. The underlying μA

functions in Examples I and IV are piecewise linear, Example II is a mixture of three
normal densities, and Example III is the derivative of the difference of two Gamma
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Figure 3: The logarithm of the mean square Fisher–Rao distance to the true mean μA

versus logarithm of sample size n. The full line is the ambient space estimator and the
dotted line is the quotient space estimator. The colors are red (σ = 0.1), green (σ = 0.3),
blue (σ = 0.5) and cyan (σ = 1).

functions (in fact, it is the derivative of the canonical haemodynamic response function
often used to model the blood oxygen level dependent signals in fMRI (Glover, 1999)).
The corresponding distances from both estimators are given in Figure 3.

From Figure 3 we that see that when σ is smaller, the average squared distance
between the estimate and true value is smaller, and as n increases in general the average
squared distance becomes smaller. When σ is small (0.1), the performance of both
estimators is almost equivalent. However, for larger σ in nearly all cases there is an
advantage in using the ambient space estimator. One possible explanation could be
over-warping of the quotient estimator to the noisy data due to the optimization over
warpings, compared to the integration over warpings in the ambient space estimator.
For large σ ≥ 0.5 both procedures are clearly biased for these values of n, but it must
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be borne in mind that the signal to noise ratio is very low in these cases and so the
estimation is very challenging and the discrete implementation will have an important
effect.

It is also worth pointing out that the quotient estimator we obtained here should
be the same as that from Srivastava et al. (2011a) in theory although we use a quite
different Dynamic Programming (DP) implementation to search the optimal warping
function. To avoid the potential bias caused by different DP methods, we also perform
a similar simulation study using their implementation for the quotient estimator for
comparison. The observed pattern is almost the same, i.e., our ambient estimator has
comparable performance to quotient counterpart for smaller σ while a better perfor-
mance for larger σ.

Overall, from the above examples it does seem that there is an advantage in using
the ambient space estimator as we expect, although this is at the cost of longer compu-
tational time. In Appendix C of the Supplementary Materials (Cheng et al., 2015), we
report some computational times.

Growth rate curves

We consider the Berkeley growth study girls dataset (Tuddenham and Snyder, 1954;
Ramsay and Silverman, 2005), where the smoothed growth rate curves of 54 girls over
the period 1 to 18 years are displayed in Figure 4 (top left panel), with time rescaled
to unit length, as well as the original q-functions (top right panel).

We apply our Bayesian methodology in order to align the full set of curves, and we use
prior parameter a = 50 and M = 20 with 200,000 MCMC iterations and 100,000 burn-
in. Convergence of the MCMC algorithm was monitored by trace plots in Figure D.1 of
the Supplementary Materials (Cheng et al., 2015). In Figure 4 (bottom left panel), we
display the registered q-functions using maximum a posteriori (MAP) estimates of the
warping functions. In the same figure (bottom left panel), we plot the posterior mean
and 95% credibility intervals for the mean q-function μA, calculated from the 100,000
MCMC iterations after burn-in.

Note that because μA is an equivalence class it can be helpful for interpretation to
plot a particular member of the class, which is called an icon in shape analysis (Goodall,
1991). The mean and credibility intervals for the icon curves can be constructed using
the inverse relationship (Srivastava et al., 2011a)

f(t) =

∫ t

0

q(s)|q(s)|ds, (9)

and then a suitable scaling and translation is chosen for the icon on the scale of the
original curves. We translate and scale so that the posterior mean icon curve matches
the mean of the data curves at t = 0 and t = 1. Also, for each constructed icon curve
after burn-in a Gaussian height shift is added with standard deviation given by the
average of the standard errors of the sample mean curve, in order to plot the icons on
the scale of the original data.
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Figure 4: Growth rate curves from the girls in the Berkeley growth study (top left)
and their unregistered q-functions (top right). In the bottom left figure, we display the
aligned, scaled q-functions from our Bayesian procedure (using MAP estimated warps)
together with the posterior mean of μA in blue and pointwise 95% credibility intervals
as dashed red lines. In the bottom right figure, we display the registered curves and
posterior mean (blue) and pointwise 95% credibility intervals (dashed red) as icons
of μA. The prior parameter is a = 50 here. In each plot the x-axis represents time from
1 to 18 years, and has been rescaled to unit length.

The posterior mean and pointwise 97.5% and 2.5% quantiles of the 100,000 icons

after burn-in are displayed, together with the registered curves, in the bottom right

plot of Figure 4. There is good alignment of the curves, and we see clearly that there

are two growth spurts in the posterior mean: the smaller mid-growth spurt around

t = 0.3, and the strong pubertal growth spurt around t = 0.6. These two growth
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spurts have been well-documented in the literature (e.g., Molinari et al., 1980; Gasser
et al., 1985; Tang and Müller, 2008). Our method has also provided an indication of the
uncertainty in the mean, which is relatively small due to the large sample size (n = 54).
We consider a sensitivity analysis of the choice of prior parameter a in Appendix D of the
Supplementary Materials (Cheng et al., 2015). Also, note that the posterior standard
deviation of the mean curve is similar for different values of t. An extension of the model
could be to have the covariance of the q-function given by a more general parameter
matrix, e.g., with a Wishart prior, which could be considered in further work.

Comparison with other methods

We compare our method with some other existing methods (Ramsay and Silverman,
2005; Srivastava et al., 2011b) and we conduct an alignment comparison using four
datasets: (1) Berkeley growth data – boys, (2) Berkeley growth data – girls, (3) Hand-
writing data, (4) Mass Spectrometry data. The first three datasets (1)–(3) are from
Ramsay and Silverman (2005), and the mass spectrometry dataset is from Koch et al.
(2014). The evaluation criteria used are:

• The synchronization (Sync) coefficient defined in James (2007),

Sync =
1

N

N∑
i=1

||f∗
i − 1

N−1

∑
j �=i f

∗
j ||2

||fi − 1
N−1

∑
j �=i fj ||2

.

• The inverse of pairwise correlation (IPC),

IPC =

∑
i �=j r(fi, fj)∑
i �=j r(f

∗
i , f

∗
j )

,

where r(·, ·) is the pairwise Pearson’s correlation between functions, and f denotes the
original curve function while f∗ denotes the aligned version. For both measures, smaller
values indicates better alignment.

In the experimental setup, for Datasets 1 and 2, for the spline based method of Ram-
say and Silverman (2005) we directly use the alignment result provided in the R package
fda for males (Ramsay et al., 2013) and MATLAB code for females (Ramsay, 2013).
For Datasets 3 and 4 we tune the model parameters in order to make the comparison as
fair as possible. For the Square Root Velocity Function (SRVF) method of Srivastava
et al. (2011b), we used the R package fdasrvf (Tucker, 2014) with its default setting for
all four datasets. For our Bayesian version of SRVF (B-SRVF), we also use the default
setting with the prior of warping function to be Dirichlet(1) and the iteration number
for MCMC is fixed at 50,000 without further fine-tuning. For B-SRVF the posterior
mean is used as the estimator in its standardized form (i.e., with the Karcher mean of
the deformations equal to the identity).

From the table we can see that for Datasets 1 and 2, even though they are similar
in nature (both are growth data), the relative performance of the methods is different.
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1D Alignment Comparison
Dataset 1 Dataset 2 Dataset 3 Dataset 4

Methods Sync IPC Sync IPC Sync IPC Sync IPC
Spline 0.74 0.95 0.54 0.95 0.56 0.59 0.80 0.41
SRVF 0.67 0.93 0.68 0.95 0.54 0.57 0.26 0.18

B-SRVF 0.64 0.90 0.61 0.95 0.56 0.57 0.26 0.17

Table 3: 1D alignment result evaluation using four data sets with smallest values high-
lighted in bold.

Notice that for Dataset 1 the spline method performs the worst, while in Dataset 2 it
performs the best. In this sense, there is some sensitivity in the relative performance
of the methods to the datasets we use. In Dataset 4, where there are many spikes, we
can see that our method does much better than the spline method, but it is compara-
ble to the SRVF approach. Overall, our method generally has an advantage over the
spline whereas it is comparable to SRVF in all four datasets. Although the performance
in alignment between SRVF and B-SRVF is quite similar here, the advantage of the
Bayesian approach is that assessment of the uncertainty is also provided via credibility
intervals and prior information can be incorporated as desired.

6.2 2D data analysis

Mouse vertebrae

A two-dimensional application is the study of the shape of the second thoracic (T2)
vertebrae in mice (Dryden and Mardia, 1998). Three groups of mouse vertebrae are
available: 30 Control, 23 Large and 23 Small bones. The Large and Small group under-
went genetic selection for large/small body weight, whereas the Control group consists
of unselected mice. Each bone is represented by a curve consisting of 60 points which are
determined through a semi-automatic procedure. Six landmarks are placed at points of
high absolute curvature and then nine pseudo-landmarks are equally-spaced in-between
each pair of landmarks. The main interests here include carrying out pairwise regis-
tration, obtaining mean shapes and credibility intervals, and carrying out classification
based on the registered shapes. It is very common in many application areas to clas-
sify objects using shape information (Dryden and Mardia, 1998), and, for example, in
studying the fossil record there is a need to classify bones from individuals into groups
using size and/or shape as there is usually little or no other information available.

We start our analysis by performing a pairwise comparison from the ambient space
model, and we use the MCMC algorithm for pairwise matching with 50,000 iterations.
The q-functions are obtained by initial smoothing, and then normalized so that ‖q‖2 = 1.
The registration is carried out using rotation through an angle θ about the origin, and a
warping function γ. The original and registered pair (using a posterior mean) are shown
in Figure 5 and the pointwise correspondence between the curves and a pointwise 95%
credibility interval for γ(t) are shown in Figure 6. The start point of the curve is fixed and
is given by the left-most point on the curve in Figure 6 that has a red line connecting
the two bones. The narrower regions in the credibility interval correspond well with
high curvature regions in the shapes. We also applied the multiple curve registration, as
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Figure 5: Unregistered curves on left and registration through γ̂(t)A on right.

Figure 6: Correspondence based on γ̂(t)A and 95% credibility interval for γ(t). One of
the bones is drawn artificially smaller in order to better illustrate the correspondence.

shown in Figure 7. Convergence of the MCMC schemes were monitored by trace plots,
which can be seen in Appendix D, Figure D.2 of the Supplementary Materials (Cheng
et al., 2015).

In order to investigate the differences between the new Bayesian method and the
classic Procrustes analysis on the 60 landmarks we consider a classification study. For
classification method A, the three group means are obtained through classical general-
ized Procrustes analysis (Goodall, 1991) using the shapes package in R (Dryden, 2014)
and each test curve is assigned to the trained group which is closest in terms of Pro-
crustes distance. The Procrustes distance is calculated by minimizing the Euclidean sum
of squares between the landmark configurations using translation, rotating and scale.
For method B, the three group means are obtained using the posterior mean from the
Bayesian model and each test curve is classified based on the elastic distance to the
mean (i.e., using amplitude variability). For method C, all training dataset curves are
registered in one pooled group using generalized Procrustes analysis and the Procrustes
registered curves are used as the training data. Each test curve is aligned to the mean by
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Figure 7: The original curves from Small group, without and with registration. The blue
curve in the right panel is the estimated μA and red color shows the credible region given
by 10,000 samples of mean.

ordinary Procrustes analysis. A Support Vector Machine (SVM) (Chang and Lin, 2001)
is then trained on the registered training curves and applied to the registered test curves.
For method D, all training dataset curves are registered through the Bayesian model
and their warped, registered versions are used as the training data. Each test curve is
aligned to the mean by pairwise registration using MCMC. An SVM is then trained on
the MCMC registered training curves and applied to the registered test curves.

A total of 100 Monte Carlo repetitions are run for each exercise, where the training
data and test data are sampled from each group without replacement. In a single Monte
Carlo repetition, 16 curves from the Small group, 20 from the Control group and 16 from
the Large group (about two-thirds of the original data) are randomly selected as the
training data, while the remaining 24 curves are used as the test data. Method A gives
an 80% correct classification rate for the test data, and method B gives 83% correct
classification. In method C, the classification rate increases to 87% while method D has
the highest classification rate of 92%. Under both A vs B and C vs D circumstances,
we see some improvement in classification by using Bayesian alignment while we also
notice an overall improvement in methods C and D compared to A and B by using
SVM. The main reason for the improvement is that SVM is using hyperplanes to classify
between distributions for each group, rather than shape distances which are isotropic
in nature. Both method B and D demonstrate the advantage in using the Bayesian
MCMC method for registration with warping, rather than just using the equally spaced
pseudo-landmarks with no warping.

2D simulation and comparison

We now compare our method to generalized Procrustes analysis in the shapes package
in R (Dryden, 2014) using the 60 points around the outline without warping. The Pro-
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crustes alignment is carried out over translation, rotation and scale. We first begin with
a simulation study, where independent isotropic Gaussian noise is added and uniform
random rotations are also applied in order to generate the random curves. Four curves
are selected at random from the T2 mouse vertebrae dataset and their q functions are
used as the true μ process, and n = 30 curves are generated from the model. Multiple
alignment is carried out and the Procrustes mean shape and the Bayesian SRVF stan-
dardized posterior mean are calculated. The comparisons are given in Table 4, where
FR is the squared of Fisher–Rao distance while L2 is standard Euclidean norm and the
measures are averaged over 50 Monte Carlo simulations.

2D Estimation Comparison
Dataset 1 Dataset 2 Dataset 3 Dataset 4

Methods FR L2 FR L2 FR L2 FR L2
Procrustes σ = 0 0.076 0.039 0.092 0.042 0.075 0.039 0.077 0.038

σ = 0.3 0.168 0.078 0.151 0.072 0.169 0.074 0.154 0.072
σ = 0.5 0.228 0.088 0.211 0.085 0.227 0.088 0.220 0.085

B-SRVF σ = 0 0.052 0.035 0.041 0.032 0.041 0.031 0.045 0.031
σ = 0.3 0.086 0.074 0.075 0.070 0.077 0.071 0.079 0.070
σ = 0.5 0.118 0.087 0.118 0.089 0.110 0.088 0.111 0.086

Table 4: 2D estimation result evaluation using four functional curves.

From Table 4 we notice that Bayesian model is generally better than Procrustes
method when a certain amount of warping effects truly exist in the dataset (as in
this simulation study) and this is not surprising since the Procrustes method does not
take warping effect into account. For datasets where alignment is not necessary, the
performance of both methods is similar.

In the alignment comparison of real data sets, we use the T2 Small mouse vertebrae
dataset plus three other 2D datasets which are used in Thakoor et al. (2007) (C. Subset
of MPEG-7 CE Shape-1 Part-B, Datasets 4,5,6, respectively), available at:
http://visionlab.uta.edu/shape_data.htm

The alignment results are given in Table 5. It is clear again and not surprising that
Bayesian model is an improvement on Procrustes in alignment, as warping is not taken
into account in the Procrustes analysis.

2D Alignment Comparison
T2 Small Mice Thakoor 4 Thakoor 5 Thankoor 6

Methods Sync IPC Sync IPC Sync IPC Sync IPC
Procrustes 0.064 0.972 0.218 0.989 0.144 0.873 0.160 0.523
B-SRVF 0.043 0.967 0.073 0.974 0.069 0.849 0.136 0.467

Table 5: 2D alignment result evaluation using 4 data sets with smallest values high-
lighted.

7 Discussion

In this paper we state the distinctions between three spaces of interest: the original,
ambient and quotient space. We compare the ambient space estimator and quotient

http://visionlab.uta.edu/shape_data.htm
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space estimator in simulation studies as well as real data analysis and demonstrate a
small improvement in performance in several examples. We also explain the similarity
between the estimators in certain situations through a Laplace approximation.

An important component is that we incorporate prior information about the amount
of warping, which is particularly useful in the growth curve application, where too much
warping is not desirable. Naturally the choice of prior is important and will, of course,
be problem specific; however, in the growth curve data it was clear the prior weighted
towards translations was beneficial.

The methodology can be used for datasets with equally spaced points or non-equally
spaced points on each curve or outline. However, there is a choice in whether to param-
eterize the warping function with equally spaced points or not. For our examples we
did use equally spaced points in the warping function and this was reasonable in our
applications. However, non-equally spaced points in the parameterization could also be
used. One possible extension would be to estimate an initial warping function by equally
spaced points and then identify the region where there exists a large change of slope in
successive segments. More points can then be placed in those regions and a new MCMC
run carried out. The choice of equal or non-equal points ought not to be crucial, except
in more extreme cases.

Although some transformations such a translations (which are not 1–1 and onto)
are not included in the family of deformations, a translation for most of the domain
with non-linear kinks at each end will give practically the same warp and so our method
retains flexibility without being restrictive.

Note that for matching between two functions we also can use multiple alignment,
which also involves estimating the mean function, instead of the pairwise method. Al-
though the multiple alignment method appears to be a less efficient approach due to
the need for the mean function as parameters, it does have the property that the prior
would be invariant under a common reparameterization of both curves.

Although we have focused on 1D and 2D applications the Bayesian methodology
can be extended to higher dimensions, for example, analyzing the shape of 3D surface
shapes using the square root normal fields (Jermyn et al., 2012).

Supplementary Material

Supplementary Materials: Bayesian Registration of Functions and Curves
(DOI: 10.1214/15-BA957SUPP; .pdf).
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