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Approximate Bayesian Inference for Doubly
Robust Estimation

Daniel J. Graham∗, Emma J. McCoy†, and David A. Stephens‡

Abstract. Doubly robust estimators are typically constructed by combining out-
come regression and propensity score models to satisfy moment restrictions that
ensure consistent estimation of causal quantities provided at least one of the com-
ponent models is correctly specified. Standard Bayesian methods are difficult to
apply because restricted moment models do not imply fully specified likelihood
functions. This paper proposes a Bayesian bootstrap approach to derive approx-
imate posterior predictive distributions that are doubly robust for estimation of
causal quantities. Simulations show that the approach performs well under various
sources of misspecification of the outcome regression or propensity score models.
The estimator is applied in a case study of the effect of area deprivation on the
incidence of child pedestrian casualties in British cities.
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1 Introduction

Typical targets of inference in causal studies include average potential outcomes (APOs)
and average treatment effects (ATEs). The former measure average responses under
given treatment regimes and the latter measure differences in average responses under
different treatment regimes. A variety of approaches can be used to estimate such quan-
tities including those that proceed via specification of an outcome regression (OR) model
or a propensity score (PS) model. Doubly robust (DR) approaches combine both OR
and PS models, often via PS weighting or augmentation of the OR model, such that
valid causal estimates can be obtained when only one of the two models is correctly
specified.

Bayesian interest in DR estimation has been subdued. A fully Bayesian interpreta-
tion of the DR approach is challenging because the relevant targets of inference ulti-
mately depend only on the outcome model, and simultaneous modelling of the exposure
and outcome models is problematic (for a recent discussion see Gustafson, 2012). A fur-
ther impediment to the use of standard Bayesian methods arises because DR estimators
are typically expressed as solutions to estimating equations based on a set of moment
restrictions, and restricted moment models do not generally provide fully specified like-
lihood functions.
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In this paper we develop an approximate Bayesian approach for DR estimation
via the Bayesian bootstrap (Rubin, 1981). We derive approximate Bayesian inference
for the parameters of the DR model and use these to construct posterior predictive
distributions for ATE and APO estimation. We estimate a model for the conditional
distribution of treatment given covariates and use the parameter estimates to calculate
PS values. Following Scharfstein et al. (1999), we then specify an OR model, augmented
with inverse PS covariates that is consistent with the DR moment restrictions. We
assume a parametric form for the augmented OR (AOR) model and place an improper
Dirichlet prior distribution on the parameters of that model. By repeatedly estimating
the AOR model weighted by standardised sets of iid unit exponential random variables,
we approximate the posterior distribution of model parameters and use these to form
posterior predictive distribution for ATEs and APOs.

While our approach cannot offer the coherent framework for inference that a fully
Bayesian analysis would provide, it does still offer two features of Bayesian inference
which are particularly useful for causal modelling. First, it provides a natural frame-
work for prediction: estimation of ATEs and APOs necessarily involves prediction over
unobserved data and our posterior predictive distributions incorporate randomness orig-
inating both from estimation of the parameters of the DR model itself and from the
random nature of the unobserved observations used to make predictions. Second, by
generating posterior predictive densities, rather than point estimates, we can make
probability statements about the causal quantities of interest (i.e. ATEs and APOs)
giving greater flexibility in presenting results. For instance, we can discuss findings in
relation to specific hypotheses or in terms of credible intervals which can offer a more
intuitive understanding of treatment effects for practical interpretation.

The paper is structured as follows. Section 2 provides an overview of DR estimation
and explains the principles of inference via the Bayesian bootstrap. Section 3 presents
our Bayesian DR model and explains how to approximate samples from the posterior
predictive distribution for ATEs or APOs. Simulation results are presented in Section 4.
Section 5 applies the Bayesian DR model in a case study of the effect of area deprivation
on the incidence of child pedestrian casualties in British cities. Conclusions are drawn
in the final section.

2 Doubly robust estimation and the Bayesian bootstrap

2.1 Doubly robust estimation

The principles underpinning DR estimation have been reviewed extensively in the lit-
erature (e.g. van der Laan and Robins, 2003; Lunceford and Davidian, 2004; Bang and
Robins, 2005; Kang and Schafer, 2007; Tsiatis and Davidian, 2007). Here we provide
only a brief summary, and focus on the case of a single exposure and outcome.

In causal inference problems the data available for estimation are realisations of
a random vector, Zi = (Yi, Di, Xi), i = 1, . . . , n, where for the ith unit of observation
Yi denotes a response, Di the treatment (or exposure) received, and Xi a vector of
pre-treatment covariates. The treatment can be binary, multi-valued or continuous but
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crucially it is not assigned randomly. This means that simple comparisons of mean
responses across different treatment groups will not in general reveal a ‘causal’ effect
due to potential for confounding.

Confounding can be addressed if the vector of covariates Xi is sufficient to ensure
unconfoundedness, or conditional independence of potential responses and treatment
assignment. In the context of binary treatments, the conditional independence assump-
tion requires that (Yi(0), Yi(1)) ⊥⊥ I1(Di)|Xi, where I1(Di) is the indicator function for
receiving the treatment and Y (1) and Y (0) indicate potential outcomes under treated
or control status, respectively. For continuous or multi-valued treatments weak condi-
tional independence must hold, which requires that Yi(d) ⊥⊥ Id(Di)|Xi for all d ∈ D,
where Id(Di) is the indicator function for receiving dose d and Yi(d) is the poten-
tial outcome associated with that dose (see Imbens, 2000; Hirano and Imbens, 2004).
An additional requirement for valid causal inference is that, conditional on covariates
Xi, the probability of assignment to treatment is strictly positive for all x and d. In
practice this may hold only within some region of treatment C ⊆ D, referred to as the
common support region. A sufficient condition is that for any subset of C, say A ⊆ C,
Pr(Di ∈ A|Xi = x) > 0 for all x and A ⊆ C.

In the case of binary treatments, the APOs of interest are μ(1) = E[Yi(1)] and
μ(0) = E[Yi(0)], and the ATE is defined as τ(1) = μ(1) − μ(0). For multi-valued or
continuous treatments μ(d) = E[Yi(d)] denotes the APO under treatment level d and
the ATE is τ(d) = μ(d)− μ(0).

With a covariate vector sufficient to ensure conditional independence several esti-
mators for ATEs are available, but three are of particular interest here. First, we could
model the expectation of the conditional density of the response given the covariates
and treatment, E[Yi|Xi, Di], using an OR model Ψ−1{m(Xi, Di; ξ)}, for known link
function Ψ, regression function m(), and unknown parameter vector ξ. If the OR model
is correctly specified for E[Yi|Xi, Di] it can be used to generate consistent estimates
of ATEs. Second, we could assume a model for fD|X(d|x), the conditional density of
the treatment given the covariates and use this model to estimate propensity scores,
which we denote π̂(Di|Xi; α̂) with parameter vector α. PS weighting estimators of the
form attributed to Horvitz and Thompson (1952) can then be used to estimate ATEs
consistently if the PS model is correctly specified. Finally, we could assume both an
OR and PS model and construct a DR estimator which yields a consistent estimate of
ATEs provided either the OR or PS model is correctly specified.

The DR property requires one of two moment restrictions to hold. Either the OR
model Ψ−1{m(Xi, Di; ξ)} consistently estimates E[Yi|Di, Xi]; or the PS estimator
π̂(Di|Xi; α̂) is consistent for the true PS, E [Id(Di)|Xi = x] for each x. These two mo-
ment restrictions can be successfully combined for DR estimation by either weighting
or augmenting the OR model with a function of the inverse PS values. In this paper
we use augmented outcome regression because it allows us to derive an approximate
Bayesian DR estimator with relative ease.

The augmented outcome regression (AOR) approach adds ‘inverse PS covariates’ to
the OR model to correct for bias from misspecification. In the binary setting, Scharfstein
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et al. (1999) include the reciprocal of the covariate

h (I1(Di)|Xi;α) = I1(Di) · π̂(Di|Xi; α̂) + [1− I1(Di)] · {1− π̂(Di|Xi; α̂)},

and derive a DR ATE estimator as

τ̂DR(1) =
1

n

n∑
i=1

[
Ψ−1

{
m(1, Xi; β̂) +

ϕ̂

h (1|Xi;α)

}
−Ψ−1

{
m(0, Xi; β̂) +

ϕ̂

h (0|Xi;α)

}]
,

where ϕ is the coefficient of the inverse PS covariate. For continuous or multi-valued
treatments Graham et al. (2012) include a set of inverse PS covariates to induce bias
correction for distinct strata of the treatment. Defining Q, q = (1, . . . , Q), strata over
the range of d, and using Dq to denote treatment stratum q (Dq ⊂ D ⊆ R), they
suggest a point estimate of the mean APO for each treatment stratum using a four step
approach:

1. Use the observed data to estimate PS values and form a set of Q inverse PS
covariates

Iq(Di)

π̂(Di|Xi; α̂)

where the indicator Iq(Di) denotes membership of treatment stratum q (i.e. Di ∈
Dq).

2. Estimate the AOR model

e {Di, Xi, Iq(Di);β, ϕ} = Ψ−1

{
m (Di, Xi;β) +

Q∑
q=1

ϕqIq(Di)

π̂(Di|Xi; α̂)

}
,

where ϕ = (ϕ1, . . . , ϕQ) is a Q dimensional parameter vector for the inverse PS
covariates.

3. For each distinct treatment dqj , j = (1, . . . , J), in stratum q calculate the mean
of the predicted values from the AOR model evaluated at dqj :

1

n

n∑
i=1

Ψ−1

{
m(dqj , Xi; β̂) +

ϕ̂q

π̂ (dqj |Xi; α̂)

}
.

4. Take the average of these mean predicted values over all J treatment levels in q

μ̂DR(Dq) =
1

J

J∑
j=1

[
1

n

n∑
i=1

Ψ−1

{
m(dqj , Xi; β̂) +

ϕ̂q

π̂ (dqj |Xi; α̂)

}]

to obtain an estimate of the mean APO for treatment stratum q.
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The AOR has a DR property when estimates of β and ϕ are obtained as solutions
to estimating equations of the form

n∑
i=1

∂e {Di, Xi, Iq(Di);β, ϕ}
∂ (βT, ϕT)

1

φ
[Yi − e {Di, Xi, Iq(Di);β, ϕ}] = 0 (1)

where φ is a scale parameter in Var[Yi|Di, Xi, Iq(Di)]. The DR bias correction property
arises via the Q score equations for the inverse PS covariates for which we have by
construction

n∑
i=1

Iq(di)

π̂(di|xi; α̂)
·
[
yi −Ψ−1

{
m(di, xi; β̂) +

Q∑
q=1

ϕ̂qIq(di)

π̂(di|xi; α̂)

}]
= 0. (2)

If the propensity score model is correctly specified, and the assumption of conditional
independence holds, this procedure provides asymptotic bias correction for each stratum
of the treatment under misspecification of the OR model; if the OR model is correctly
specified, the parameter estimates ϕ̂q will converge to zero, and inclusion of inverse
PS covariates simply adds noise to the AOR model without affecting its consistency
properties. If the PS model is correct, but the OR is not, the augmented regression has
a bias correction property which allows us to consistently estimate ATEs or APOs (for
proofs see Scharfstein et al., 1999; Graham et al., 2012).

Many parametric or nonparametric optimisation routines could yield estimating
equations consistent with the form shown in (1). In the parametric setting the score (or
quasi-score) equations of Maximum Likelihood Estimation (MLE), Maximum Quasi-
Likelihood (MQL), Restricted MLE (REML) for linear mixed models (LMMs), and
Penalised Quasi-Likelihood (PQL) for generalised linear mixed models (GLMMs) all
provide optimisation solutions consistent with the DR property.

In this paper we focus on the use of maximum likelihood based estimators for DR
estimation, although the way we derive our approximate Bayesian inference could be
easily adapted for other optimisation routines. The DR estimating equations are solved,
and at least one of the moment restrictions satisfied, when the likelihood is maximised
but not necessarily otherwise. Consequently, we do not have a fully specified likelihood
function since parameter vectors other than that corresponding to the MLE estimates
may not produce estimating equations of the form given in (1), and thus may not have
the DR property. In the absence of a fully specified likelihood, Bayesian inference via
the posterior distribution is not straightforward.

2.2 Model diagnostics

It should be emphasised that DR ATE estimates are asymptotically unbiased if one of
the two models is misspecified, but not both. Ideally, we would conduct diagnostic tests
for specification of the two component models, but standard goodness-of-fit based di-
agnostics may not be particularly informative for model selection. The key requirement
of causal models is that they provide sufficient adjustment for confounding between
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treatment and response such that conditional independence holds. The fit of PS or OR
models could be improved by conditioning on non-confounding covariates, but doing
so can have adverse consequences for estimation of causal parameters in terms of both
bias and efficiency (see, for example, Pearl, 2009, 2010). While the assumption of un-
confoundedness is typically made in existing applied work, it is essentially untestable.
Recent Bayesian work has focussed on sensitivity analysis approaches to adjustment in
the presence of missing confounding variables (McCandless et al., 2012), rather than
methods for diagnosing the possible influence of such variables.

In this paper we use the following diagnostic approaches for model specification

(i) Comparison of estimated parameters – Robins and Rotnitzky (2001) propose a
goodness of fit test based on comparison of the DR, OR and PS weighting esti-
mators. They argue that if the estimate of the parameter of interest from the DR
model differs from the PS and OR estimates by much more than can be explained
by sampling variation, it indicates that the PS and OR models have both been
badly specified and thus all three estimators may be unreliable. If the DR and PS
estimates are close, but the OR is not, it indicates that the OR model may be
badly specified. Similarly, if the DR and OR estimates are close, but the PS is not,
it indicates that the PS model may be badly specified. A formal test for parameter
μ can be constructed as follows. Denote the empirical variances of (μ̂DR − μ̂OR)
and (μ̂DR − μ̂PS) as s2DR−OR and s2DR−PS respectively calculated via bootstrap
re-sampling. Then the tests with rejection regions: |(μ̂DR− μ̂OR)/sDR−OR| > 1.96
and |(μ̂DR − μ̂PS)/sDR−PS | > 1.96 are large sample 0.05 level tests of the null-
hypotheses that the OR and PS models are correctly specified (for details see Bang
and Robins, 2005). We implement Bayesian versions of these diagnostic checks.

(ii) Test for balancing of the PS – under conditional independence, the PS has a
balancing property in that in the binary case Xi ⊥⊥ I1(Di)|π(Di|Xi;α), or for
multi-valued or continuous treatments Xi ⊥⊥ Id(Di)|π(Di|Xi;α) – see the ap-
pendix. The balancing property of the PS is testable in the observed data, and
provides a useful diagnostic which we employ in the case study below.

(iii) Box plots for inverse PS covariates – if estimates of the coefficients of the inverse
propensity score covariates (i.e. ϕq) are significantly different from zero, that in-
dicate that the OR model may not provide a universally good model specification
over all doses of interest. We examine samples from the posterior distributions for
these parameters and construct box-plots to identify obvious misspecification of
the OR model.

2.3 Approximate Bayesian inference via the Bayesian bootstrap

We use the Bayesian bootstrap approach introduced by Rubin (1981) to approximate the
posterior density of parameters consistent with the DR estimating equations and then
derive posterior predictive distributions for ATEs and APOs. The Bayesian bootstrap
has been applied previously for likelihood models by Newton and Raftery (1994) and
for instrumental variables and quantile regression by Chamberlain and Imbens (2003).
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Let data z, with observations zi, i = (1, . . . , n), be distributed according to a family
of probability distributions that are regular for likelihood inference from the class P =
{f(z; θ), z ∈ Z, θ ∈ Ωθ}, where Z = {z : f(z; θ) > 0} is the sample space in which the
data lie. We define ak, k = (1, . . . ,K), as the possible discrete values that z can take and
θ = (θ1, . . . , θK) as the associated probabilities for vector a = (a1, . . . , aK) such that
Pr(Z = ak|θ) = θk, thus effectively treating the data as a sample from a multinomial
distribution. If nk =

∑n
i=1 1(zi = ak) is the number of observations equal to the kth

distinct value of the data, the likelihood for z is

L(θ) =

K∏
k=1

θnk

k .

Under an improper Dirichlet prior on the probability of observing each of the distinct
values

π(θ) ∝
K∏

k=1

θ−1
k ,

then the posterior density is also a Dirichlet distribution

p(θ|v) ∝
K∏

k=1

θnk−1
k .

For Bayesian inference for θ, we consider a weighted likelihood

L̃(θ) =

n∏
i=1

f(zi; θ)
wi ,

in which the weights w = (w1, . . . , wn) are distributed according to the uniform Dirichlet
distribution and simulated as n independent standard exponential (i.e. gamma(1,1))
variates and standardised. The weighted likelihood reduces to

L̃(θ) =

n∏
i=1

{
K∏

k=1

θ
Ik(zi)
k

}wi

=

K∏
k=1

θ

n∑
i=1

wiIk(zi)

k =

K∏
k=1

θnγk

k ,

say, where nγk is the sum of the weights wi for which zi = ak. Since the vector γ =
(γ1, . . . , γK) has a Dirichlet distribution with parameters nk = (n1, . . . , nK),

p(γ) ∝
K∏

k=1

γnk−1
k

and since at the point of maximisation of L̃(θ) is θ̃ = γ, then the solutions to the max-
imised weighted likelihood function with repeatedly sampled uniform Dirichlet weights
w(l) represent a sample from the posterior of θ under the improper prior

∏
k θ

−1
k . Note

that this is in effect a semiparametric model, since although we require a paramet-
ric form for the weighted likelihood, the Dirichlet prior imposes no restrictions on the



54 Bayesian Doubly Robust Estimation

distribution of z other than θk ≥ 0 and
∑K

k=1 θk = 1. Newton and Raftery (1994) pro-
vide asymptotic results for weighted likelihood bootstrapped models. They show that
this class of model are first order correct under rather general conditions and suggest
improvements in accuracy through the application of sampling-importance resampling
methods.

3 Approximate Bayesian doubly robust estimation

3.1 Approximate Bayesian inference

We now show how the Bayesian bootstrap approach can be used to generate posterior
predictive distributions that have the DR property for estimation of ATEs and APOs.
For the purposes of illustration we derive an approximate Bayesian DR model in the
context of MLE for exponential family GLMs. Let Z = (Y,X,D) be a random sample
from the discrete distribution with support on observed data z = (z1, . . . , zn). To gen-
eralize notation we write κ̂i(d, x) to denote inverse PS values estimated from observed
data and evaluated at d. In the binary case there is a single inverse PS covariate that
we use in the AOR model so that

κ̂i(Di, Xi) =
I1(Di)

π̂(Di|Xi; α̂)
+

[1− I1(Di)]

1− π̂(Di|Xi; α̂)
,

and for multi-valued and continuous treatments κ̂i(Di, Xi) is an (n × Q) matrix each
column of which contains a covariate for treatment stratum q

Iq(Di)

π̂(Di|Xi; α̂)
.

We specify a weighted AOR GLM as

e (Di, Xi, κ̂i(Di, Xi); ξ) = Ψ−1

{
m (Xi, Di;β) +

Q∑
q=1

ϕqIq(Di)

π̂(Di|Xi, α̂)

}
= Ψ−1 {mA (Xi, Di, κ̂i(Di, Xi); ξ)}

say, where ξ = (β, ϕ) and in which the weights feature as a prior weight in the dispersion

parameter a(φ) = φ/w. The maximiser of L̃(ξ), which we denote ξ̃, implies a solution
to

n∑
i=1

w
(l)
i

1

φ

∂e (di, xi, κ̂i(di, xi); ξ)

∂ξT
[yi − e (di, xi, κ̂i(di, xi); ξ)] = 0, (3)

which as noted in relation to (1) has a bias correction property via the inclusion of inverse

PS covariates. We repeatedly draw sets of random weights {w(l)
i }ni=1 as n standardised

independent standard exponential variates and solve (3) to build up a posterior density

of ξ̃, denoted pn(ξ̃), from which the sampled values ξ̃(l) are consistent with the DR
estimating equations.
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3.2 Approximate Bayesian prediction

Our final objective is to use the posterior distribution pn(ξ̃) to construct posterior
predictive intervals for ATEs or APOs with the double robust property. An iid sample
from the posterior predictive of interest can be obtained by repeatedly computing

Ŷ (l) = Ψ−1{mA(d, x, κ̂i(d, x); ξ̃
(l))

for appropriately chosen d and x. The posterior predictive distribution for ATEs can be
obtained via the same principle applying the calculations outlined in Section 2.1.

The marginal (over covariates) posterior predictive distribution of new response

variable Ŷ computed for fixed exposure d is defined by

p̂n(y|d,Data) =

∫ {∫
f(y|d, x, κ̂(d, x); ξ̃) pn(ξ̃) dξ̃

}
p̂n(x) dx, (4)

where p̂n(x) is a posterior predictive distribution on the covariates x; in a non-infor-
mative and non-parametric specification, this distribution can be taken to be the em-
pirical distribution of the covariate values. We note that by iterated expectation, the
marginal posterior predictive expectation may be computed as∫ {∫

Ψ−1{mA(d, x, κ̂(d, x); ξ̃)} pn(ξ̃) dξ̃
}
p̂n(x) dx

and also note that within this calculation, the order of integration may be reversed. In
this calculation, we treat the quantity

κ̂(d, x) =
Iq(d)

π̂(d|x; α̂)
as a function of (d, x) for fixed α = α̂. Alternatively, it is possible to make the calcula-
tions over the posterior distribution of α. Sections 3.3 and 3.4 provide a discussion of
this point.

For different treatment types, we proceed as follows:

• For a binary treatment, we re-sample V values of our covariate vector uniformly
over the observed values, and a single vector ξ(l), and form the averages

μ̂(l)(1) =
1

V

V∑
v=1

Ψ−1{mA(1, xv, κ̂i(1, xv); ξ̃
(l))},

μ̂(l)(0) =
1

V

V∑
v=1

Ψ−1{mA(0, xv, κ̂i(0, xv); ξ̃
(l))}.

We then use these to form a sampled value of the ATE random variable

τ
(l)
BDR(1) = μ̂(l)(1)− μ̂(l)(0).

We repeat this procedure this L times, l = (1, . . . , L), to obtain the predictive
distribution of the ATE.
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• For continuous (or multi-valued) treatments we randomly sample V values of

ŷ(l)v (dqj) = Ψ−1{mA(dqj , xv, κ̂i(dqj , xv); ξ̃
(l))}

for j = (1, . . . , J) fixed treatment levels in stratum q and form the random variable

μ̂
(l)
BDR(Dq) =

1

J

J∑
j=1

[
1

V

V∑
v=1

ŷ(l)v (dqj)

]
.

We do this L times to obtain the posterior predictive distribution of the mean
APO for treatment stratum q. We repeat this process for all strata of interest.

3.3 Fixing the parameters of the PS model

The posterior inference described above is conditional on fixed estimates of α = α̂ and
we avoid making joint inference on the parameters of the outcome and PS models. This
conditional approach provides a first order approximation to the mean of the posterior
predictive distribution of APOs, and is justified on the following grounds.

(i) Recall that the assumed conditional mean response model is Ψ−1{m(d, x;β)}
rather than Ψ−1{mA(d, x, κ̂; ξ)}. Recall also that π(d|x, α) is a parametric rep-
resentation, akin to the parametric submodel in the terminology of frequentist
semiparametric inference (see, for example, Tsiatis, 2006) of the treatment as-
signment mechanism encapsulated in π(d|x).

(ii) Under the unconfoundedness assumption, the response is conditionally indepen-
dent of treatment allocation given the confounders. Consequently, in any likeli-
hood-based inference, the observed treatment allocations cannot be informative
about the parameters β from the OR model, and we should treat the estimated PS
quantities π̂(d|x) as fixed functions of d and x. The only exception to this case in a
Bayesian calculation would arise if the parameters (α, β) were considered a priori
dependent; however, in the absence of specific knowledge there is no compelling
reason to make such an assumption.

(iii) In a fully Bayesian calculation, the terms π̂(d|x) should themselves be computed
as posterior predictive quantities, as in Bayesian density estimation: that is, we
compute

π̂(d|x) =
∫

π(d|x, α)pn(α) dα (5)

where pn(α) is the posterior distribution for α computed from the observed treat-
ment and confounder data and an appropriate prior distribution. The quantity
π̂(d|x) is the posterior predictive expectation of π(d|x, α) computed with respect
to pn(α).

(iv) In the limit as n −→ ∞, under standard conditions, pn(α) converges to a degen-
erate distribution at some value α∗, and for all (d, x),

π̂(d|x) −→ π(d|x, α∗).
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Therefore, a reasonable finite sample approximation to π̂(d|x) is π(d|x, α̂) for a
suitable consistent estimator α̂ of α such as the ML estimate, or Bayesian posterior
mean.

3.4 Variance correction to accommodate uncertainty in estimation
of the PS model

A drawback in fixing the parameters of the PS model, using MLE or Bayesian posterior
means, is that such conditional inference does not account for uncertainty in estimation
of the PS model (for a discussion of this problem in the context of parametric empirical
Bayes models see Kass and Steffey, 1989). The posterior variance of the parameters of
the AOR model given the data is

Var(ξ|zi) = Eα {Var(ξ|zi, α)}+Varα {E(ξ|zi, α)} . (6)

Applying the weighted likelihood approach to simulate the posterior of the AOR model,
with fixed estimate α̂ plugged in, yields an estimate of Var(ξ|zi, α̂) for the posterior
variance, which approximates only the first term in (6).

To incorporate uncertainty in estimation of the PS model we can make the weighted
likelihood calculations for the AOR model over a sample from the posterior of α rather
than for a fixed value. To do so we suggest the following approach.

(i) Use weighted likelihood to simulate the posterior of α, which we denote pn(α̃),

by repeatedly drawing random weights {w(m)
i }ni=1 as n standardised independent

exponential variates and estimating the weighted PS model (as explained in Sec-
tion 2.3).

(ii) Repeatedly sample single vectors from pn(α̃), α̃
(m), and form

κ̂
(m)
i

(
di, xi; α̃

(m)
)
=

Iq(di)

π̂
(
di|xi; α̃(m)

) ,
for each stratum q, thus generating sets of inverse PS covariates which vary across
values of α̃(m) for fixed xi.

(iii) Draw a single set of random weights {w(l)
i }ni=1 for the AOR model

Ψ−1
{
mA

(
di, xi, κ̂

(m)
i

(
di, xi; α̃

(m)
)
; ξ(l)

)}
and repeatedly estimate it for all values of κ̂

(m)
i

(
di, xi; α̃

(m)
)
generated in set (ii).

(iv) Repeatedly compute (iii) using new weights.

In this way we build up a posterior density for ξ̃ which has variance within distinct
values of α and between different values of α, thus approximating both components
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of (6). In the application section of the paper, we demonstrate the effects of this variance
correction.

It is worth noting that while we are able to make such a correction to account for
uncertainty in estimation of the PS model, for practical purposes the fixed version of
the PS model with MLE estimates is still useful. In particular, in order to make viable
comparisons of potential outcomes at different treatment levels we require common sup-
port, and this has to be evaluated empirically according to some defined criterion prior
to specification of the outcome model. Here we we follow the convention in the causal
literature of using the PS model π(d|x, α̂) with MLE estimates to evaluate common
support.

4 Simulations

In this section we present simulations to demonstrate the DR properties of the approx-
imate Bayesian approach. To provide comparison with frequentist results, we follow
exactly the simulations of Graham et al. (2012) which test models to estimate the
dose-response of a continuous treatment. Continuous treatment D is assigned as a func-
tion of covariates X1, X2, and U . The dose–response function is quadratic in D with
confounding from X1 and X2.

X1, X2 ∼ N (μX1 = 4, μX2 = 8, σ2
X1

= 1, σ2
X2

= 2, ρ = −0.5), U ∼ N (10, 4),

D|X1, X2, U ∼ N (0.5 + 0.5X1 + 0.25X2 + U, σ2
D = 10),

Y |X1, X2, D ∼ N (1 + 3D − 0.11D2 + 0.5X1 + 2X2 − 0.5X2
2 , σ

2
Y = 4).

The correct OR model is

E[Y |D,X1, X2] = β0 + β1D + β2D
2 + β3X1 + β4X2 + β5X

2
2 ,

and the correct PS model is

π̂−1
T =

∫ D+δ

D−δ

1√
2πσ̂2

D

exp

(
− 1

2σ̂2
D

(t− μ̂D)2
)
dt,

where μD and σ2
D are estimated via the model with E[D|X1, X2] = α0 + α1X1 + α2X2

that omits the non-confounder, U . The following models are tested:

1. μ̂(Dq)ABOR1 – an approximate Bayesian OR model (ABOR). Our point estimate
is taken at the mean of the APO posterior predictive distributions from the cor-
rectly specified OR model, with predicted values for doses (dqj) averaged over
j = (1, . . . , J) treatment levels within each stratum q, i.e.

μ̂OR(Dq) =
1

L

L∑
l=1

⎡⎣ 1

J

J∑
j=1

[
1

V

V∑
v=1

Ψ−1
{
m(dqj , xv;β

(l))
}]⎤⎦ .
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2. μ̂(Dq)ABOR2 – same estimate as μ̂(Dq)OR1 but based on an incorrectly specified
OR model, with X1 assumed as sole confounder.

3. μ̂(Dq)ABDR1 – an approximate Bayesian DR estimator (ABDR) calculated at the
mean of the posterior predictive distributions for APOs, i.e.

μ̂
(l)
BDR(Dq) =

1

L

L∑
l=1

⎡⎣ 1

J

J∑
j=1

[
1

V

V∑
v=1

Ψ−1
{
mA(dqj , xv, κ̂(dqj , xv); ξ̃

(l))
}]⎤⎦ .

The model has an incorrectly specified OR model (X1 as sole confounder) aug-
mented with correctly estimated inverse PS (π̂T ) covariates for defined strata of
the treatment.

4. μ̂(Dq)ABDR2 – an approximate Bayesian DR estimator based on a correctly spec-
ified OR model augmented with incorrectly estimated inverse PS covariates (π̂F ),
with X1 assumed as sole confounder, for defined strata of the treatment.

5. μ̂(Dq)ABDR3 – an approximate Bayesian DR estimator based on an incorrectly
specified OR model augmented with incorrectly estimated inverse PS covariates.

The results are derived from 1000 runs on generated datasets of size 10,000. The
mean of d is 14.5 and the range approximately 1 to 30. Estimates are presented for the
following treatment strata: (10,12], (12,14], (14,16], (16,18], (18,20]. Mean values and
variances of the point estimates (i.e. means and variances of the APO distributions)
obtained from the simulations and the mean squared error (MSE) are reported.

Table 1 shows results for the simulations. The correctly specified ABOR model,
ABOR1, provides a good estimate of the quadratic dose–response as expected. The APO
estimates from the incorrectly specified ABOR2 model produce a poor representation
of the dose–response curve indicating a linear decreasing effect with relatively large bias
and MSE. The ABDR1 model, which augments the incorrect OR model with inverse PS
covariates, produces a good approximation to the true dose–response by correcting for
bias from confounding and from functional misspecification of the treatment covariate.
The ABDR2 model demonstrates that the inclusion of addition irrelevant PS covariates
in the OR model does not induce bias, but it does appear to increase variance and
MSE relative to ABOR1. The results for ABDR3 show large bias in estimation of the
dose–response, demonstrating that at least one of the OR or PS models must be correct
for the DR property to hold.

Table 2 compares parameter estimates for the correctly specified PS model, α =
(α0, α1, α2), derived via MLE, the Bayesian Bootstrap, and a full Bayesian model for
d|x ∼ N (α0+α1x1+α2x2, σ

2
d|x) with the following priors: αk ∼ N (0, 10002) and σd|x ∼

Unif(0, 0.01). Mean estimates and variances of the estimates are very similar. Thus,
the Bayesian Bootstrap estimates appear to be approximately normally distributed
with mean α̂ = (XTX)−1XTY and variance σ2(XTX)−1, as we would expect in a
Bayesian analysis of the normal linear model with noninformative priors for n large. The
results demonstrate that with reasonably large n, and in the absence of specific prior
information, the MLE estimates, mean Bayesian Bootstrap estimates, and Bayesian
posterior means will offer similar approximations to π̂(d|x).
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treatment intervals
(10,12] (12,14] (14,16] (16,18] (18,20]

Truth 5.919 6.416 6.037 4.782 2.646

ABOR1
Av Est 5.927 6.423 6.042 4.784 2.650
Emp Var 0.011 0.010 0.010 0.010 0.012
MSE 0.011 0.010 0.010 0.010 0.012

ABOR2
Av Est 5.856 5.156 4.457 3.757 3.057
Emp Var 0.015 0.010 0.011 0.016 0.026
MSE 0.019 1.598 2.451 1.067 0.195

ABDR1
Av Est 5.912 6.420 6.034 4.769 2.646
Emp Var 0.052 0.039 0.038 0.046 0.077
MSE 0.052 0.039 0.038 0.046 0.077

ABDR2
Av Est 5.921 6.416 6.031 4.783 2.655
Emp Var 0.017 0.016 0.015 0.017 0.030
MSE 0.017 0.016 0.015 0.017 0.030

ABDR3
Av Est 6.376 6.579 5.869 4.289 1.847
Emp Var 0.051 0.037 0.039 0.052 0.091
MSE 0.260 0.063 0.067 0.295 0.728

Table 1: Simulation results for Gaussian dose-response GLM with quadratic treatment
effect.

α0 α1 α2

Likelihood Av Est 10.437 0.504 0.256
Likelihood Emp Var 1.377 0.020 0.009

Bayesian Bootstrap Av mean Est 10.436 0.504 0.256
Bayesian Bootstrap Emp Var 1.376 0.020 0.009

Full Bayes Av posterior mean 10.437 0.504 0.256
Full Bayes Emp Var 1.380 0.020 0.009

Table 2: A comparison of Likelihood, Full Bayes and Bayesian Bootstrap estimates of
the Propensity Score model.

5 Application: quantifying the marginal effect of
socioeconomic deprivation on child pedestrian
casualties

A positive association between socio-economic deprivation and the incidence of child

pedestrian casualties (CPCs) has frequently been reported in the literature (for reviews

see Christie, 1995; Graham and Stephens, 2008). Statistical work appears to show that

children from deprived backgrounds have a substantially higher chance of being involved

in a pedestrian accident. Graham et al. (2013) argue that the relationship is likely
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confounded and conduct a frequentist area-based analysis of the effect of exposure to
area based socio-economic deprivation on the incidence of CPCs in British cities. In
this section we apply the Bayesian DR estimator to the same British data to derive
predictive posterior distributions of mean APOs for different strata of deprivation.

This case study does not represent a typical causal inference problem as deprivation
is a composite measure depending on several factors, and the precise mechanisms via
which these factors might affect CPC rates are not well understood. Nevertheless, it
does share the same basic features in that the available data allow us to represent three
key dimensions of our problem: response, exposure, and confounding covariates; and our
objective is to quantify themarginal effect of the exposure on the response. It is certainly
conceivable that one may devise an intervention to alter ‘deprivation’. Hence our results
will represent an unconfounded estimate of the impact of such an intervention.

The data and the logic underpinning covariate construction are described in full in
Graham et al. (2013). Here, we provide only a brief summary. The response variable Y
comprises annual counts of child (< 16) pedestrian casualties (CPCs) over the period
2001 to 2007 for small spatial units of British cities (based on census wards). The
exposure variable D is a measure of poverty based deprivation for zones calculated as
the natural logarithm of number of residents in receipt of Government benefits. The
mean of D is 6.496, the minimum and maximum values are 4.007 and 8.738, and the
standard deviation is 0.643.

We suspect that exposure to deprivation is confounded with area-based characteris-
tics. Specifically, we hypothesise the following sources of confounding:

i. Child population – deprived families may tend to have more children creating a
larger supply of potential victims. We include a covariate measuring resident child
population.

ii. Traffic generation potential and nature of the urbanised environment – deprived
zones may tend to experience greater volumes of traffic. We construct a form of
‘gravity’ trip generation model to represent potential traffic flows at the zone level.

iii. Variation in the nature of the built environment – we expect road safety and
zone deprivation to be associated with the nature of land use and the degree of
urbanisation. For instance, children living in suburban residential environments
may be more affluent with less exposure to traffic risk than those living in dense
inner city mixed use locations. To represent such factors we include measures of
zone population and employment density.

iv. Scale of the road network – high capacity networks tend to depress land values
which in turn will influence the socio-economic profile of the people that live in
close proximity. Using GIS software we generated longitudinal data on network
capacity for each zone including a breakdown by road type: A-road, B-road, minor
road, and motorway.

v. Road network density – with the available GIS data we were also able to represent
the road network density in each zone using a measure of the number of network
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nodes per unit of area. A network node is defined as the meeting point of two or
more links. Deprived zones may tend to have more extensive dense networks.

In estimating the exposure model we found that a log transformation yields data that
approximately follow a Gaussian distribution. We estimated the conditional density of
exposure given covariates using a Gaussian Generalised Linear Model (GLM) estimated
by MLE. We then used a calculated the PS values using a normal distribution.

To test our PS specification we check for balancing. In a similar manner to Hirano
and Imbens (2004) and Flores et al. (2012), we regress the exposure on the covariates,
the PS, and a set of indicator variables corresponding to a range discretisation of the
exposure variable in ten strata. The BIC values obtained from the linear regression
models with and without covariates are −35304 and −35367, respectively, indicating
that the inclusion of covariates leads to a deterioration in model adequacy. We also
conducted an F-test between the restricted (without covariates) and unrestricted models
and obtained an F statistic (p-value) of 0.439 (0.508). These results suggest that the
balancing property has been achieved for our PS specification.

The AOR model we use is a Poisson GLM estimated by MLE. To derive the pos-
terior predictive distributions for APOs based on PS and OR model results we use the
approach described in Section 3 and demonstrated in the simulations above. We use
the following treatment discretisation for strata between 6.6 and 7.6 of width 0.1. The
APOs are averages of mean predicted values from the AOL model over treatment levels
within each stratum. Posterior variance estimates and credible intervals are calculated
via the variance correction approach described in Section 3.4. Estimates of the mean
and variance (corrected and uncorrected) of the posterior predictive distributions and
95% credible intervals for 10 treatment levels are shown in Table 3 along with Likelihood
point estimates for comparison. Kernel density fits to posterior predictive distributions
for four treatment levels are shown in Figure 1 below.

Bayesian bootstrap Likelihood bootstrap
posterior uncorrected

mean d ∈ k mean s.d. s.d. 95% cred. int. Est. s.e.
6.61 2.061 0.137 0.123 (1.793, 2.330) 2.055 0.041
6.75 2.478 0.126 0.118 (2.232, 2.725) 2.466 0.039
6.85 2.879 0.120 0.110 (2.644, 3.114) 2.893 0.032
6.95 2.759 0.108 0.093 (2.548, 2.970) 2.755 0.028
7.05 2.845 0.105 0.085 (2.639, 3.051) 2.860 0.028
7.15 2.889 0.105 0.085 (2.683, 3.095) 2.919 0.026
7.25 3.190 0.124 0.086 (2.948, 3.432) 3.190 0.030
7.35 3.407 0.127 0.096 (3.158, 3.655) 3.399 0.036
7.45 3.809 0.133 0.112 (3.548, 4.071) 3.831 0.043
7.55 4.130 0.192 0.154 (3.754, 4.506) 4.150 0.062

Table 3: Bayesian and likelihood bootstrapped estimates of mean average potential
outcomes by treatment level.
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Diagnostic tests were conducted to identify obvious instances of model misspecifica-
tion. Using the approach of Robins and Rotnitzky (2001) described in Section 2.2 above,
we find little evidence of PS model misspecification for APO estimates at each dose of
interest but we do find that the OR model may not provide a universally good specifi-
cation over all doses of interest, although we cannot reject the null that the OR model
is correctly specified for most doses. Similarly, box plots of our ϕq estimates indicate
values significantly different from zero, again potentially indicative of some deficiency
of the OR model. These diagnostic results underline the usefulness a DR approach in
correcting for sources of model misspecification.

The results indicate a positive increasing effect of deprivation on CPCs having ad-
justed for measured confounders. Over the range of exposure considered, the predicted
number of CPC is almost twice as large in zones exposed to the highest dose of depri-
vation than the lowest. We therefore find compelling evidence of a deprivation gradient.
Note the flexibility in presentation of results offered via the approximate Bayesian ap-
proach. We are able to present our APOs as distributions rather than point estimates,
and we can discuss our results in terms of central 95% credible intervals. If there was
interest in some particular hypotheses regarding the regions within which the ATEs lie,
it would also be possible to test these using our approach but not using the likelihood
point estimates.

The dose–response estimates obtained from the Bayesian and Likelihood bootstrap-
ped approaches are similar in magnitude, but the variance of the Bayesian bootstrap
estimates is larger. As discussed in Section 3.4, accounting for uncertainty in estimation
of the PS model inflates the variance of the posterior predictive distributions and this
is illustrated in the comparison of corrected and uncorrected posterior variances. The
kernel density fits shown in Figure 1 indicate that the posterior predictive distributions
for ATEs are approximately normally distributed.

6 Conclusions

This paper has presented an approach that can be used to derive approximate Bayesian
inference for doubly robust estimation of causal quantities. This is a useful extension to
existing methods for two reasons. First, doubly robust ATE estimation typically involves
prediction and extrapolation over unobserved covariate distributions and a Bayesian
approach provides a natural framework for prediction in which both the unobserved
covariates and the parameters have random status. Second, in constructing approximate
posterior predictive densities our approach allows results to be presented in terms of
probability statements about key causal quantities of interest, which can offer greater
flexibility for practical interpretation than point estimates.

Our case study indicates a positive relationship between exposure to deprivation and
the incidence of child pedestrian casualties, having adjusted for confounding via outcome
regression and propensity score adjustment. Tests for model misspecification indicate
that the outcome regression model may not provide a universally good specification for
our case study analysis, but the propensity score model appears to perform well overall.
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Figure 1: Predictive posterior densities for mean average potential outcomes at doses
6.61, 6.95, 7.25 and 7.55.

This underlines the usefulness of a doubly robust approach which combines the two
model to adjust for sources of misspecification.

Appendix A: Balancing and conditional independence
given Propensity scores

Propensity score (PS) estimators require that conditional independence holds given the
PS (i.e. Yi(0), Yi(1)) ⊥⊥ I1(Di)|π(Di|Xi;α) for binary treatment and Yi(d) ⊥⊥ Id(Di)|
π(Di|Xi;α) for all d ∈ D for multi-valued or continuous treatments). A necessary con-
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dition for conditional independence to hold is that the PS has a balancing property:
Xi ⊥⊥ I1(Di)|π(Di|Xi;α) in the binary case and Xi ⊥⊥ Id(Di)|π(Di|Xi;α) for multi-
valued or continuous treatments. Proofs showing why balancing is needed are given
below. For further details see Imbens (1999) and Hirano and Imbens (2004).

Balancing and conditional independence given the binary propensity
score

Lemma 1. (Balancing of pre-treatment covariates given the propensity score). If π(Di|
Xi;α) is the propensity score, then

Xi ⊥⊥ I1(Di)|π(Di|Xi;α).

Proof. First, by the result for expectation of indicator functions and the pull-through
property

Pr[I1(Di) = 1|Xi, π(Di|Xi;α)] = E[I1(Di) = 1|Xi, π(Di|Xi;α)]

= E[I1(Di) = 1|Xi] = π(Di|Xi;α).

Second,

Pr[I1(Di) = 1|π(Di|Xi;α)] = E[I1(Di) = 1|π(Di|Xi;α)]

= EX [E {I1(Di) = 1|Xi, π(Di|Xi;α)} |π(Di|Xi;α)]

= E[π(Di|Xi;α)|π(Di|Xi;α)]

= π(Di|Xi;α)

Thus, Pr[I1(Di) = 1|Xi, π(Di|Xi;α)] = Pr[I1(Di) = 1|π(Di|Xi;α)].

Next we show that, given balancing, conditional independence can be established on
the PS rather than covariate vector Xi.

Lemma 2. (Conditional independence given the propensity score). Given (Yi(0), Yi(1))⊥⊥
I1(Di)|Xi and the propensity score π(Di|Xi;α), then

(Yi(0), Yi(1)) ⊥⊥ I1(Di)|π(Di|Xi;α).

Proof. First,

Pr[I1(Di) = 1|Yi(1), π(Di|Xi;α)]

= E[I1(Di) = 1|Yi(1), π(Di|Xi;α)]

= E [E [I1(Di) = 1|Yi(1), Xi, π(Di|Xi;α)] |Yi(1), π(Di|Xi;α)]

= E[π(Di|Xi;α)|Yi(1), π(Di|Xi;α)]

= π(Di|Xi;α)

Second, from the proof for Lemma 1 we know that Pr[I1(Di) = 1|π(Di|Xi;α)] = π(Di|
Xi;α), and therefore Pr[I1(Di) = 1|Yi(1), π(Di|Xi;α)] = Pr[I1(Di) = 1|π(Di|Xi;α)]
implying that Yi(1) ⊥⊥ I1(Di) = 1|π(Di|Xi;α). The same logic yields an analogous
proof under control rather than treated status.
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Balancing and conditional independence given the propensity score
for multivalued and continuous treatments

Lemma 3. (Balancing of pre-treatment covariates given the generalised propensity
score). If π(d,Xi;α) is the PS defined with respect to the marginal distribution of Xi

for fixed d, then
IDi(d) ⊥⊥ Xi|π(d,Xi;α).

This follows because π(d,Xi;α) is a function of Xi alone and so conditioning on Xi

adds no additional information

E [IDi(d)|Xi, π(d,Xi;α)] = E [IDi(d)|π(d,Xi;α)] .

Given balancing, we can establish weak conditional independence (i.e. conditional in-
dependence for each value of the treatment but not joint independence of all potential
outcomes) using the PS.

Theorem 1. (Weak conditional independence given the propensity score). If assignment
to the treatment is weakly conditionally independent given pre-treatment characteristics
Xi, then for all Di = d

Yi(d) ⊥⊥ IDi(d)|π(d,Xi;α).

Proof. To prove that Yi(d) is conditionally independent of IDi(d), given the generalised
propensity score π(d,Xi;α) and the assumption of weak conditional independence, it is
sufficient to show that fD|π,Y (d|π(d, xi;α), Yi(d)) = fD|π (d|π(d, xi;α)). Let X be the
sample space in which covariates Xi lie, then

fD|π (d|π(d, xi;α)) =

∫
X
fD,X|π (d, xi|π(d, xi;α)) dxi

=

∫
X
fD|X,π (d|xi, π(d, xi;α)) fX|π (xi|π(d, xi;α)) dxi

=

∫
X
fD|X(d|xi)fX|π (xi|π(d, xi;α)) dxi

=

∫
X
π(d, xi;α)fX|π (xi|π(d, xi;α)) dxi,

= π(d, xi;α) = fD|X(d|xi).

Thus,fD|π (d|π(d, xi;α)) = fD|X(d|xi). Furthermore,

fD|π,Y (d|π(d, xi;α), Yi(d))

=

∫
X
fD,X|π,Y (d, xi|π(d, xi;α), Yi(d)) dxi

=

∫
X
fD|X,π,Y (d|xi, π(d, xi;α), Yi(d)) fX|π (xi|π(d, xi;α), Yi(d)) dxi

=

∫
X
fD|X(d|xi)fX|π (xi|π(d, xi;α), Yi(d)) dxi
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=

∫
X
π(d, xi;α)fX|π (xi|π(d, xi;α), Yi(d)) dxi

= π(d, xi;α) = fD|X(d|xi).

Therefore, for all d, fD|π(d|π(d, xi;α)) = fD|π,Y (d|π(d, xi;α), Yi(d)) and we have weak
conditional independence given π(d,Xi;α).
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