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Sensitivity Analysis for Bayesian Hierarchical
Models

Ma�lgorzata Roos∗, Thiago G. Martins†, Leonhard Held‡, and H̊avard Rue§

Abstract. Prior sensitivity examination plays an important role in applied Bayes-
ian analyses. This is especially true for Bayesian hierarchical models, where inter-
pretability of the parameters within deeper layers in the hierarchy becomes chal-
lenging. In addition, lack of information together with identifiability issues may
imply that the prior distributions for such models have an undesired influence on
the posterior inference. Despite its importance, informal approaches to prior sensi-
tivity analysis are currently used. They require repetitive re-fits of the model with
ad-hoc modified base prior parameter values. Other formal approaches to prior
sensitivity analysis suffer from a lack of popularity in practice, mainly due to their
high computational cost and absence of software implementation. We propose a
novel formal approach to prior sensitivity analysis, which is fast and accurate.
It quantifies sensitivity without the need for a model re-fit. Through a series of
examples we show how our approach can be used to detect high prior sensitivities
of some parameters as well as identifiability issues in possibly over-parametrized
Bayesian hierarchical models.

Keywords: Base prior, formal local sensitivity measure, Bayesian robustness,
calibration, Hellinger distance, Bayesian hierarchical models, identifiability,
overparametrisation.

1 Introduction

Today applied statisticians have a wealth of both frequentist and Bayesian procedures
at their disposal. The prominent feature of the latter approach is its ability to incor-
porate prior knowledge in the analysis. This feature, however, is both a benefit and
a challenge. A Bayesian model is said to be sensitive and non-robust with respect to
the prior distribution if its posterior distribution dramatically changes when the base
prior parameter values are altered slightly. Recently, implementation of the hierarchical
framework has led to the development of increasingly intricate models. Unfortunately,
their complexity makes an extensive elicitation of the base prior for each hierarchy
layer practically impossible. Instead, base priors tend to be determined in a rather ca-
sual fashion and without appropriate reflection, so arbitrary and inaccurately specified
parameter values may arise. At the same time, due to model complexity, the impact
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of possibly misspecified prior parameter values on outputs is unclear. In addition, the
adequacy of the sample size needed for a reliable estimation of each layer is, in fact,
unknown. It can happen that models are overparametrized (Carlin and Louis, 1998) and
it may not be obvious to decide which parameters are well identified by the data and
which are not (Dawid, 1979; Gelfand and Sahu, 1999). Hence, development of complex
Bayesian models without any prior robustness diagnostics may be problematic. In order
to ensure reliable and robust results, it is crucial to verify how sensitive the resulting
posteriors are for each prior input.

The relevance of sensitivity and uncertainty analyses for exploring complex models
has been highly emphasized in the literature. Oakley and O’Hagan (2004) and Saltelli
et al. (2008) applied it successfully in the context of frequentist analysis. In Bayesian
statistics the general sensitivity concept treated by Geisser (1992), Clarke and Gustafson
(1998), Millar and Stewart (2007) and Zhu et al. (2011) involves broad issues like influ-
ential observations, uncertainty of the sampling model and prior inadequacy.

1.1 Bayesian formal sensitivity analysis

Sensitivity to the prior parameter specification is a crucial part of the general sensitivity
setting (Berger et al., 2000). Ŕıos Insua et al. (2000) and Ruggeri (2008) argue that
inappropriate prior parameter specifications can lead to distorted findings for both
influential observations and uncertainty of the sampling model. To date, two approaches
to sensitivity analysis can be distinguished: the global and the local one. The global
approach considers the class of all priors compatible with the elicited prior information
and computes the range of the posteriors as the prior varies over the class. This range is
typically found by determining the “extreme” priors in the class that yield maximally
distant posteriors, without explicitly carrying out the analysis for every prior in the
class. In contrast, the local sensitivity approach is interested in the rate of change in
posterior with respect to changes in the prior, and usually uses differential calculus to
approximate it. Despite its desirability the global approach is impractical in the Bayesian
hierarchical framework whereas the local one, recommended by Gustafson (2000) and
Sivaganesan (2000), is the method of choice.

The local sensitivity approach routinely applied in complex Bayesian hierarchical
models can determine which model components are hard to learn from the data. Ele-
vated worst-case sensitivity estimates quickly identify priors that may need more careful
attention. Since at the stage of model construction, the analyst might be interested in
specific directions on the hyperparameter space (Kadane, 1992), there is a strong need
for investigation of the circular sensitivity around particular base prior parameter val-
ues.

Gustafson (2000) distinguishes a variety of frameworks for local Bayesian robust-
ness investigation. They differ with respect to the posterior results (distribution or
summaries), by prior perturbations (geometric or parametric), whether the worst-case
sensitivity is measured in the absolute or relative sense, and by the discrepancy mea-
sure used. In particular, McCulloch (1989) following Cook (1986) approximated prior
worst-case robustness by the principal eigenvalue of an appropriate infinitesimal ratio.
This approach has been further refined by Zhu et al. (2011).
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1.2 Informal approaches and dedicated software

Surprisingly, despite considerable theoretical advances in formal sensitivity analysis, it
is barely used in every-day practice. In the few cases when the extent of prior robust-
ness is assessed, brute force and informal approaches are used instead. An informal
technique consists of repetitive fits of the model with ad hoc modified prior inputs.
If the posteriors subjectively do not differ much, non-sensitivity and robustness are
claimed. The main drawback of such an approach is that it requires several re-fits of
the model, which may be extremely time consuming. The informal approach gives no
guidance about how the input modifications should be performed and how differences in
the results should be judged in a standardized way. Consequently, in order to guarantee
reproducibility of Bayesian robustness considerations, the use of a formal sensitivity
approach is required.

Although the need and importance of a formal prior robustness investigation have
been ubiquitously approved, its lack of popularity in practice seems mainly due to the
non-existence of such a facility in current Bayesian programs (Ruggeri, 2008). Hence,
Berger et al. (2000) and Lesaffre and Lawson (2012) stress that a development of a
formal robustness methodology, which is feasible, fairly quick, operating with low extra
computing effort and provided by default in a dedicated software, is strongly required.
Furthermore, in order to become widely used, its compatibility with the Markov chain
Monte Carlo (Gilks et al., 1996) framework is beneficial.

1.3 Scope of paper

In this paper we suggest the use of a Bayesian formal ε-local sensitivity, which can
be conveniently applied to Bayesian hierarchical models. The novelty of our approach
hinges on the choice of an epsilon grid, a set of base prior parameter specifications
modified in a standardized way. The typical worst-case sensitivity estimates provided
by the infinitesimal local approach are complemented by circular sensitivity summaries.
Our approach guarantees a nearly instantaneous sensitivity assessment without any
need for a model re-fit. Prior and posterior Hessian approximations are not required
any more. Instead, the base prior specification and the corresponding marginal posterior
density alone are used. Because our ε-local sensitivity approach operates without much
additional computational effort, it is a convenient measure for an every-day use.

The remainder of this article is organized as follows: Section 2 defines the ε-local
sensitivity measure and its calibration with respect to the unit-variance normal dis-
tribution. In Section 3, an illustrative and comparative example is discussed. General
approaches for fast numerical computation and epsilon grid search are presented in Sec-
tion 4. Although our local robustness approach is generally applicable, its performance
for a range of applications with increasing complexity and several latent models is pre-
sented in Section 5 and in the Supplementary Material. In these examples we show
how to use the proposed methodology in practice to identify sensitive parameters. Some
concluding remarks are given in Section 6. Appendices A-C provide proofs and discuss
computational issues.
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2 Local sensitivity

2.1 Definition

Given a scalar θ, we denote by πγ0(θ) and πγ0(θ|y) the base prior density with parameter
values fixed at γ0 and the resulting marginal posterior density for θ, respectively. The
corresponding entities indexed by γ originate from a prior distribution with arbitrary
parameter values denoted by γ.

We define the ε-local circular sensitivity Sc
γ0
(ε) as the set of ratios

Sc
γ0
(ε) =

{d(πγ(θ|y), πγ0(θ|y))
ε

, for γ ∈ Gγ0(ε)
}
, (1)

with the grid Gγ0(ε) of parameter values defined by

Gγ0(ε) = {γ : d(πγ(θ), πγ0(θ)) = ε}, (2)

where d(·, ·) denotes a convenient discrepancy measure between two densities. We can
also consider Gγ0(ε) as a contour line around γ0. In our definition, the distributional as-
sumption of the prior πγ(θ) for one particular component θ of the Bayesian hierarchical
model is held fixed and only its parameter values γ are allowed to vary.

In practice, we use a fixed small ε for sensitivity evaluation instead of its infinitesimal
approximation. We suggest detailed exploration of the local geometry implied by d(·, ·)
in the space of prior distributions. This is done by a numerical search for the prior
parameter value grid, Gγ0(ε), with center set at γ0 and the distance value fixed to ε as
in Equation (2). Our circular approach naturally adjusts for possible non-orthogonalities
of the prior parametrisation as it examines all directions in the space of prior parameter
values on equal footing.

Circular sensitivity can be conveniently summarized by a single number. For ex-
ample, the worst-case sensitivity Sγ0(ε) is defined to be the maximum of the circular
sensitivity Sc

γ0
(ε)

Sγ0(ε) = max
{
Sc
γ0
(ε)

}
= max

γ∈Gγ0 (ε)

d(πγ(θ|y), πγ0(θ|y))
ε

. (3)

In this paper, we mainly concentrate on the worst-case sensitivity, though alternative
estimates such as mean, median or minimum could be also reported.

For complex Bayesian hierarchical models the sensitivity of each model component
θ is addressed separately. Computations are conducted according to Equations (1)–
(3). The only input required for sensitivity estimation is the base prior distribution
specification πγ0(θ) and the corresponding marginal posterior density πγ0(θ|y). As a
first step, the worst-case robustness Sγ0(ε) is checked. A high value indicates that a
particular prior has to be investigated with more care. It could be caused by a variety
of reasons. One, a misplaced prior distribution leading to a prior-data conflict (Box,
1980; Evans and Moshonov, 2006). Two, an inappropriate prior caused by misspecified
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prior parameter values. Three, an insufficient sample size at the hierarchy level under
consideration. At this step any other circular sensitivity summary such as mean, median
or minimum can be applied.

In the second step, the circular sensitivity Sc
γ0
(ε) in all directions around γ0 can

be referred to. Circular sensitivity can be easily depicted, as will be shown later. The
circular sensitivity plots indicate directions in which the most pronounced sensitivity
value modification was found. The plot’s shape depends on the prior distribution, the
base prior parameter specification and the model assumed. The choice of the base prior
parameter values at the model construction stage can be conveniently guided by circular
sensitivity and its summary values.

As our approach uses posterior and prior densities directly, a convenient discrep-
ancy measure d(·, ·) to quantify the discrepancy between two distributions is required
(Gustafson, 2000). One possible choice is the φ-divergence, also called f -divergence,
between two densities π0 and π1. It is defined as

Dφ(π1, π0) =

∫
π1(θ)φ

(π0(θ)

π1(θ)

)
dθ, (4)

where φ is a smooth convex function (Amari, 1990; Amari and Nagaoka, 2000). The
Kullback-Leibler divergence and Hellinger distance are special cases of the φ-divergence:
with φKL(x) = x log(x) for the Kullback-Leibler divergence and φH(x) = (

√
x − 1)2/2

for the Hellinger distance (Dey and Birmiwal, 1994). Robert (1996) found that the
Kullback-Leibler divergence and the Hellinger distance can frequently be used inter-
changeably but that the Hellinger distance is more natural as a true distribution dis-
tance.

Our preference for the Hellinger distance (Le Cam, 1986) is motivated by conve-
nience. The Hellinger distance is advantageous given marginal posterior distributions
and prior distributions provided numerically and attaining nonzero values only on a
finite discrete set of points (Roos and Held, 2011). It is a symmetric measure of discrep-
ancy between two densities π0 and π1:

H(π1, π0) =

√
1

2

∫ ∞

−∞

{√
π1(θ)−

√
π0(θ)

}2

dθ

=

√
1

2

∫ ∞

−∞

{
π1(θ)− 2

√
π1(θ)π0(θ) + π0(θ)

}
dθ

=

√
1

2

(
2− 2

∫ ∞

−∞

√
π1(θ)π0(θ)dθ

)
=

√
1− BC(π1, π0).

Here, the Bhattacharyya coefficient BC(π1, π0) =
∫∞
−∞

√
π1(θ)π0(θ)dθ measures the

affinity of both densities (Bhattacharyya, 1943). Note that the Hellinger distance is
invariant to any one-to-one transformation (for example logarithmic, inverse or square-
root) of both densities (Jeffreys, 1961; Roos and Held, 2011).
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We assume throughout that the Gaussian distribution is parametrized by mean μ and
precision λ and the gamma distribution with shape α and rate β parameters leading
to expectation α/β and variance α/β2. For both distributions the Hellinger distance
between densities with differing parameter values can be computed analytically.

Rao (1945) and Dawid (1977) discussed the direct correspondence of the Bhat-
tacharyya coefficient and the Fisher information matrix. In the context of differential
geometry, Amari (1990) stated that both the Hellinger distance and the Bhattacharyya
distance are directly related to the Riemannian distance. Indeed, the Hellinger distance
introduces a non-Euclidean geometry on the space of probability distributions. As an ex-
ample, consider the gamma prior assumed in Section 5 for the precision of the structured
intrinsic conditional autoregressive component. Figure 1 shows contour plots of Gγ0(ε) in
Equation (2) based on the Hellinger distance with center set at γ0 = (α0, β0) = (1, 0.34).
Equal scaling of x and y-axes highlights that the contours tend to be ellipses rather than
circles in Euclidean geometry.

Figure 1: Contour plots of Gγ0(ε) for gamma distribution with center γ0 = (α0, β0) =
(1, 0.34) based on the Hellinger distance.

2.2 Calibration and interpretation

Calibration of differences between two distributions has the following advantage: for a
particular reference distribution, the experimenter can assess the relevance of the dis-
crepancy in terms of the natural parameter of the benchmark. Various calibrations have
been suggested by McCulloch (1989), Dey and Birmiwal (1994), Goutis and Robert
(1998) and Roos and Held (2011). Although φ-divergence and Kullback-Leibler diver-
gence have been discussed in the literature, the calibration of the Hellinger distance with
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respect to the unit-variance normal distribution, derived in Lemma 2 in Appendix B4,
seems to be new. It states that for a particular Hellinger distance value h and

μ(h) =
√

−8 log(1− h2)

the Hellinger distance between two unit-variance normal distributions with shifted lo-
cations satisfies

H(N(μ(h), 1),N(0, 1)) = h.

Note that μ(h) is the calibration of the Hellinger distance h, as h between any two
densities is the same as that between N(0,1) and N(μ(h),1). Given the Hellinger distance
h between any two densities, we can quantify discrepancies between them, in terms of the
differences in mean from 0 to μ(h) for normal distribution with unit standard deviation.

Usually, it is expected that the sensitivity estimates in Equations (1) and (3) attain
values smaller than 1. This indicates that changes in the marginal posteriors are smaller
than changes in priors. Sensitivity close to 1 denotes that differences in marginal pos-
teriors and priors are comparable. However, in practice both the circular Sc

γ0
(ε) and

the worst-case Sγ0(ε) sensitivity estimates can attain values larger than 1 leading to
so-called super-sensitivity (Plummer, 2001). This possibility has been already attested
by McCulloch (1989), Clarke and Gustafson (1998), Pérez et al. (2006) and Zhu et al.
(2011). Müller (2012) truncates at 1 to remove excessively large sensitivity values, but
we prefer to report the unmodified sensitivity estimates.

In order to get an impression about the relevance of sensitivity values, we cali-
brate both the numerator and the denominator of the sensitivity measures defined in
Equations (1) and (3). Interestingly, this ratio of calibrated Hellinger distances can be
conveniently approximated by the ratio of Hellinger distances involved in the sensitivity
estimates themselves as

μ
(
H(πγ(θ|y), πγ0(θ|y))

)
μ(ε)

≈ H(πγ(θ|y), πγ0(θ|y))
ε

. (5)

To see this, apply the following property of the logarithm to the numerator and denomi-
nator of the left hand side: log(1−x) ≈ −x, for −1 ≤ x < 1, with x = h2. Therefore, the
sensitivity estimates obtained in applications can be directly interpreted as an approx-
imation of the ratio of calibrated Hellinger distances with respect to the unit-variance
normal distribution. Although a particular choice of ε anchors our calibration, the above
observation offers an option to interpret the sensitivity magnitude independently of any
particular ε value used for the grid computation. Apart of that, the use of the ratio of
calibrations leads to its applicability for the whole range of sensitivity values including
small and super-sensitivities.

We will show in the illustrative example in Section 3 that calibration with respect
to the unit-variance normal distribution converts sensitivity values obtained under the
Kullback-Leibler divergence and the Hellinger distance and helps to compare them on
an equal footing. Therefore, it is very useful for a unified understanding of sensitivity
estimates obtained by different approaches.
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3 An illustrative and comparative conjugate example

For illustration, we consider an analytical conjugate example which was also discussed
by McCulloch (1989), Zhu et al. (2011) and Box (1980). On the basis of this example we
will compare the infinitesimal local sensitivity method based on the Kullback-Leibler
divergence with the ε-local sensitivity approach suggested in Section 2.1. The latter
approach will be illustrated for both the Kullback-Leibler divergence and the Hellinger
distance. The infinitesimal local sensitivity approach based on the Kullback-Leibler
divergence was originally developed by McCulloch (1989). It is a special case of the more
general methodology suggested by Zhu et al. (2011) when constrained to the Kullback-
Leibler divergence and parametric perturbations of the base prior. Due to the explicit
analytical formulae in the conjugate example, we can provide a software-independent
comparison of the methods.

Assume that observations y1, y2, . . . , yn are realisations of iid N(m,κ−1) random
variables, where κ is fixed and m ∼ N(μ, λ−1). Due to conjugacy the posterior dis-
tribution is also normal with m |y ∼ N

(
(nκȳ + λμ)/(nκ + λ), (nκ + λ)−1

)
. Following

Box (1980), we assume that κ = 1, n = 4, ȳ = 76 and σ̂2 = 3.33. We are interested
in the local sensitivity estimate of θ = m at the base prior parameter specification
γ0 = (μ0, λ0) = (70, 0.5).

3.1 Infinitesimal local sensitivity based on the Kullback-Leibler
divergence

In the following we describe the approach proposed by McCulloch (1989) and Zhu et al.
(2011). Recall the definition of the Kullback-Leibler divergence DKL(π0||π) given in
Equation (4) for an appropriate choice of φKL(x) = x log(x). It is an unbounded, non-
symmetric and directed measure, where the distribution having density π0 is assumed to
be the true probability distribution and the distribution leading to density π is treated as
an arbitrary one. Now apply the Taylor expansion to the numerator and denominator
of the worst-case infinitesimal local sensitivity S at γ0 defined in Equation (6) and
approximate it by the principal eigenvalue of the ratio of two matrices

S = lim
γ→γ0

DKL(πγ0(θ|y)||πγ(θ|y))
DKL(πγ0(θ)||πγ(θ))

≈ max
eigenvalue

{(D2i(γ0))
−1D2d(γ0)}. (6)

Here d(γ) = DKL(πγ0(θ|y)||πγ(θ|y)), i(γ) = DKL(πγ0(θ)||πγ(θ)) and D2f(x) denotes
the second derivative matrix of the function f evaluated at x.

In our conjugate example with unknown θ = m, the analytical formulae in Ap-
pendix B2 for the eigenvalue analysis of the matrix (D2i(γ0))

−1D2d(γ0) can be applied.
The resulting worst-case infinitesimal local sensitivity, which is the principal eigenvalue,
is equal to 3.284 and the corresponding principal eigenvectors lie on the line λ = -2.677μ.
The second eigenvalue is equal to 4e-04 with the corresponding eigenvector lying on the
line λ = 0.093μ. Both eigenvectors are indicated by red and green lines in Figures 2
and 3.
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Figure 2: Comparison of local sensitivity methods in the plane spanned by parameters μ
and λ centered at γ0 = (μ0, λ0) = (70, 0.5). Red and green lines: eigenvectors provided
by the infinitesimal local approach based on the Kullback-Leibler divergence with the
principal eigenvalue (worst-case sensitivity) 3.284. Black curve: circular sensitivity in
each direction provided by the ε-local approach for ε0 = 5e-05 based on the Kullback-
Leibler divergence. Blue curve: circular ε-local sensitivity based on the Hellinger distance
for ε0 = 0.00354. In both cases the choice of ε0 corresponds to a shift in means by
0.01 with respect to the unit-variance normal distribution. The worst-case sensitivities
provided by the ε-local approaches are indicated by a red dot. The scale for sensitivity
values (0.1, 0.2,. . ., 0.9, 1) is indicated by grey circles. Sensitivity equal to 0.5 is marked
by a black circle, whereas the value 1 is marked by a red one.

For a vector θ the method is usually applied to the whole parameter vector of the
base priors. Both matrices D2d(γ0) and D2i(γ0) for numerator and denominator are
usually estimated by the corresponding Fisher information matrices. In practice, for a
large cardinality of θ it may be difficult to determine the direction indicated by the
loadings of the principal eigenvector in the multidimensional space. Only the worst-
case infinitesimal local sensitivity is provided by the principal eigenvalue. Usually, the
matrix (D2i(γ0))

−1D2d(γ0) is non-symmetric. Consequently, complex eigenvalues are
possible. One may use analytical formulae to compute the Fisher information matrices
under base prior and posterior or draw MCMC samples for their approximation.

Equation (6) is an infinitesimal local sensitivity measure expressed by a ratio. Incor-
poration of the denominator in such a measure is crucial. McCulloch (1989) concentrates
on sensitivity of posterior distributions to parametric changes in the base prior param-
eter values quantified by the Kullback-Leibler divergence. In contrast, the methodology
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suggested by Zhu et al. (2011) accounts for three sources of sensitivity: data, model and
prior. Moreover, it is capable of handling additive contamination class perturbations of
the form

ω(t) = p(θ) + t(g(θ)− p(θ)),

with p(θ) and g(θ) denoting the base prior and the contaminating distributions, re-
spectively. Such perturbations are conveniently examined in the context of differential
geometry. Comparison of sensitivity estimates produced by different discrepancy mea-
sures is necessary. Ibrahim et al. (2011) use a parametric bootstrap to indicate sensitivity
‘significance’ in the context of survival models.

3.2 Epsilon local sensitivity based on the Kullback-Leibler
divergence

The first step for the ε-local sensitivity computation consists of finding the epsilon grid
Gγ0(ε) with respect to the chosen discrepancy measure and the base prior distribution
by Equation (2). For a normal prior and the Kullback-Leibler divergence, the epsilon
grid Gγ0(ε) is specified by analytical formulae (16) and (17) derived in Appendix B3.
Additionally, given a specific ε value, the circular ε-local sensitivity Sc

γ0
(ε) defined in

Equation (1) can also be computed analytically for each γ = (μ, λ) ∈ Gγ0(ε).

In particular, for ε0 = 5e-05, the resulting circular sensitivity estimates Sc
γ0
(ε0) at

γ0 = (μ0, λ0) = (70, 0.5) are shown in Figure 2 and the worst-case sensitivity Sγ0(ε0) =
3.304 is indicated by the red dot on the black curve. Note that this plot operates in
three dimensions as it indicates the values of the circular sensitivity in each direction
around γ0. The scale for sensitivity values (0.1, 0.2,. . ., 0.9, 1) is indicated by grey
circles. Sensitivity equal to 0.5 is marked by a black circle, whereas the value 1 is
marked by a red one. The worst-case sensitivity found by the ε-local approach lies on
the red line, which corresponds to the principal eigenvector given by the infinitesimal
local sensitivity approximation. Estimates of both worst-case sensitivity values based
on the Kullback-Leibler divergence are comparable.

In case of the ε-local sensitivity it is interesting to look at its calibration (see Lemma 1
in Appendix B3). In particular, the choice of ε0 = 5e-05 for the Kullback-Leibler diver-
gence corresponds to a shift by 0.01 in means of the unit-variance normal distribution.
Following Equation (18), the calibrated sensitivity values are obtained by taking the
square root of the circular ε-local sensitivity estimates based on the Kullback-Leibler
divergence (Figure 3). The calibrated worst-case sensitivity equals 1.82 as compared to
the calibrated infinitesimal local sensitivity 1.81.

There are two objections towards the use of the Kullback-Leibler divergence as a
discrepancy measure. First, for complex Bayesian hierarchical models prior elicitation
at different hierarchy levels is frequently impossible. Therefore, it is quite premature
to assume a non-elicited base distribution to be a true one, as the directed Kullback-
Leibler divergence actually does. Second, the unboundedness of the Kullback-Leibler
divergence makes it less suitable for dealing with numerical representations of marginal
posterior distributions (Roos and Held, 2011). To overcome both objections the use
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Figure 3: Comparison of calibrated local sensitivity estimates from Figure 2 centered at
γ0 = (μ0, λ0) = (70, 0.5). Red and green lines: eigenvectors provided by the infinitesimal
local approach based on the Kullback-Leibler divergence with the calibrated principal
eigenvalue (worst-case infinitesimal local sensitivity)

√
3.284 = 1.81. Black curve: circu-

lar sensitivity in each direction provided by the ε-local approach for ε0 = 5e-05 based
on the Kullback-Leibler divergence. Blue curve: circular ε-local sensitivity based on the
Hellinger distance for ε0 = 0.00354. In both cases the choice of ε0 corresponds to a shift
in means by 0.01 with respect to the unit-variance normal distribution. The worst-case
sensitivities provided by the ε-local approaches are indicated by a red dot. Both black
and blue curves match well. Scale for sensitivity values (0.1, 0.2,. . ., 0.9, 1) is indicated
by grey circles. Sensitivity equal to 0.5 is marked by a black circle, whereas the value 1
is marked by a red one.

of a symmetric and bounded discrepancy measure might be more appropriate. In the
next subsection we discuss the ε-local sensitivity based on the Hellinger distance, which
exhibits both requested properties.

3.3 Epsilon local sensitivity based on the Hellinger distance

In the case of the normal prior and the Hellinger distance, the epsilon grid is provided by
the analytical Formulae (20) and (21) in Appendix B4. In particular, for ε0 = 0.00354 at
γ0 = (μ0, λ0) = (70, 0.5), circular sensitivity estimates Sc

γ0
(ε0) are computed as shown

by the blue curve in Figure 2. The worst-case sensitivity Sγ0(ε0) indicated by the red
dot on the blue curve attains a value of 1.823. The position of the worst-case sensitivity
in the polar plot indicates that the marginal posterior is affected more by changes in the
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precision λ than in the expectation μ. Further computational aspects of this example
are discussed in Appendix C5. Notably, the ε-local sensitivity estimates are stable for a
wide range of ε value choices.

We apply the calibration of the Hellinger distance with respect to the unit-variance
normal distribution discussed in Section 2.2 and Appendix B4. The use of ε0 = 0.00354
for the epsilon grid search corresponds to a unit-variance normal distribution with mean
equal to 0.01. Furthermore, by Formula (5), the circular ε-local sensitivity estimates
Sc
γ0
(ε0) approximate directly the corresponding sensitivities with respect to the unit-

variance normal distribution. Calibration revealed super-sensitivity for m, as the mean
change in the unit-variance normal distributions for the posteriors is 182.3% of the mean
change in the unit-variance normal distributions for priors.

The calibration facilitates the comparison of sensitivity estimates when different
discrepancy measures are used. Although the ε-local sensitivity estimates based on the
Kullback-Leibler divergence and the Hellinger distance in Figure 2 differ, the corre-
sponding ε-local sensitivity estimates calibrated with respect to the unit-variance nor-
mal distribution in Figure 3 agree well. Both worst-case ε-local sensitivity estimates lie
on the red principal eigenvector line provided by the infinitesimal local approach.

The ε-local sensitivity approach concentrates only on the parametric sensitivity to
the base prior parameter values for one model component θ. It is easier and less general
than the methodology developed by Zhu et al. (2011). However, it is capable of pro-
viding not only the worst-case sensitivity estimate but also other descriptive statistics
of circular sensitivity estimates and circular plots. For example, a circular plot with
the worst-case ε-local sensitivity 0.88, median 0.86 and minimum 0.71 conveys differ-
ent information than the values 0.83, 0.4 and 0.03. Careful investigation of each model
component may provide valuable suggestions at the stage of model building.

Interestingly, the ε-local sensitivity approach suggests that the frequently used ad-
hoc methodology (changing base prior parameter values and re-fitting the model) can
easily be turned into a formal one. In fact, it suggests not to use arbitrary parameter
values but standardized ones contained in the epsilon grid. When doing so, for a small
epsilon value the ε-local sensitivity estimates will be close to the infinitesimal local ones.

4 Numerical computation

We still need to address two vital topics dealing with the instantaneous computation
of posterior density for differing prior parameter values and computation of the sensi-
tivity measure itself. The previous illustrative example is quite optimistic, as both the
marginal posterior distribution and the epsilon grid are accessible analytically. In prac-
tice, however, the estimates of the marginal posteriors (θ(j), π̃γ0(θ

(j)|y)) are obtained
numerically on a finite set j = 1, . . . , J corresponding to a non-negligible probability
mass. In addition, the epsilon grid for any arbitrary prior distribution based on the
Hellinger distance cannot be computed analytically. Below we concentrate on the first
issue, while the general methodology needed for the ε-grid search will be explained in
the next subsection.
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4.1 Fast computation

In general, given the marginal posterior density πγ0(θ|y) computed for the base prior
πγ0(θ), the marginal posterior density πγ(θ|y) for the prior πγ(θ) with a new parameter
specification γ instead of γ0 can be computed instantaneously by

πγ(θ|y) ∝
πγ0(θ|y)
πγ0(θ)

πγ(θ) (7)

as proved in Appendix A. It is an extremely general and useful formula, which is the
basis of, among others, importance sampling (Gelman et al., 2004) and the Laplace
approximation (Tierney and Kadane, 1986). Formula (7) applied to an estimate of the
marginal posterior distribution at the base prior π̃γ0(θ|y), provided by any tool capable
of supplying the marginal posterior density, gives

π̃γ(θ|y) ∝
π̃γ0(θ|y)
πγ0(θ)

πγ(θ).

This general observation allows for an instantaneous computation of the Hellinger dis-
tance between two marginal posteriors π̃γ0(θ|y) and π̃γ(θ|y), arising from two slightly
shifted prior parameter values γ0 and γ ∈ Gγ0(ε). Note that

H(π̃γ(θ|y), π̃γ0(θ|y)) =
√
1− BC(π̃γ(θ|y), π̃γ0(θ|y)),

with

BC(π̃γ(θ|y), π̃γ0(θ|y)) ≈
∫ √

π̃γ(θ|y)π̃γ0(θ|y)dθ

leads directly to the circular sensitivity estimates Sc
γ0
(ε) and the worst-case sensitivity

Sγ0(ε) in Equations (1) and (3). In general, for the computation of BC(π̃γ(θ|y), π̃γ0(θ|y))
numerical integration is used. Although the true BC(πγ(θ|y), πγ0(θ|y)) is restricted to
the unit interval, the numerical approximation occasionally gives values slightly larger
than one making truncation at 1 necessary. In such a case, minimal circular ε-local
sensitivity estimates equal 0 and non-smooth circular sensitivity plots would indicate
this numerical inaccuracy.

The above approach to instantaneous computation of the posterior for differing prior
parameter specifications makes the model re-fit unnecessary. Similar computations can
be carried out within any framework supporting marginal posterior density πγ0(θ|y)
estimation and capable of providing (θ(j), π̃γ0(θ

(j)|y)), for j = 1, . . . , J , numerically.
We recommend, however, that for marginal posterior densities of precisions their log-
transformed representations are used.

4.2 Grid search

For a fixed, small ε the search for the grid Gγ0(ε) defined in Equation (2) requires explo-
ration of the geometry around the prior parameter values γ0 in the space of distributions
πγ(θ) (Figure 1). The goal is to find the set of prior parameter specifications γ such
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that Hellinger distance between πγ(θ) and the base prior πγ0(θ) is equal to ε fulfilling
Gγ0(ε) = {γ : H(πγ(θ), πγ0(θ)) − ε = 0}. In order to find an ε grid for a base prior
distribution in, say, two dimensions, a suitable transformation of the Cartesian coordi-
nates (γ(1), γ(2)) to the polar coordinates (φ, r) is used, where φ and r denote the angle
in radians and modulus, respectively. For sake of stability of the algorithm log(r) = z is
considered. We use a scaling factor (exp(z) cos(φ), exp(z) sin(φ)) which transforms the

base prior parameter values (γ
(1)
0 , γ

(2)
0 ) into an ε-distant pair (γ(1), γ(2)) by finding the

roots of the analytical equation numerically. Further details on the back-transformation
used can be found in Appendix C3.

The polar coordinates approach guarantees that each direction is treated equally as
the angles φ run through an equidistant grid on the [−π, π] interval. It also implies a
natural ordering of the grid points. This polar approach is applied to both normal and
gamma priors used in applications in Section 5 and in the Supplementary Material but
could easily be applied to any other two-parameter prior distribution of interest or even
extended to higher dimensions.

5 Application: Disease mapping

In this section we demonstrate the use of the circular and worst-case ε-local sensitivity
for a Bayesian hierarchical model. Additional examples for data sets with increasing hi-
erarchical model complexity are discussed in the Supplementary Material. Marginal pos-
terior densities necessary for the ε-local sensitivity computation have been contributed
by inla (Appendix C).

The analysis of spatial variation of lip cancer in Scotland is based on a non-conjugate
hierarchical model (Breslow and Clayton, 1993). Here, we consider observed (y) and
expected (e) cases of lip cancer registered between 1975 and 1980 in each of the n = 56
counties in Scotland. We include an intercept α; a covariable x denoting the proportion
of individuals who are employed in agriculture, fishing or forestry scaled by 1/10; a
known offset log e; and spatial components v and u.

The unstructured region specific random effects in the vector v consist of inde-

pendent Gaussian distributed random variables vi
iid∼ N(0, τ−1

v ) with precision τv,
for which the gamma prior is assumed. A more involved structured intrinsic condi-
tional autoregressive model (Besag et al., 1991) in component u assumes that condi-
tions for neighbouring random effects tend to be similar. The Gaussian random field
u = (u1, u2, . . . , un) is defined as

ui|uj , i �= j, τu ∼ N(
1

ni

∑
i∼j

uj ,
1

niτu
),

where i ∼ j indicates that two random effects i and j are neighbours and ni is the
number of neighbouring entities of the ith object. In order to guarantee the identifiability
of the intercept, a sum-to-zero constraint on each connected component is used. For the
precision τu a gamma prior is assumed.
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Let yi be realisations of Yi |μi
ind∼ Po(μi), i = 1, . . . , n and consider the following six

models:

logμi = log ei + α + vi (8)

logμi = log ei + α + ui (9)

logμi = log ei + α + vi + ui (10)

logμi = log ei + α+ βx + vi (11)

logμi = log ei + α+ βx + ui (12)

logμi = log ei + α+ βx + vi + ui. (13)

Table 1: Worst-case sensitivity estimates for model components α, β, τv and τu in
Section 5 for ε0 = 0.00354.

Model α β τv τu

(8) 0.004 0.244
(9) 0.002 0.245
(10) 0.002 1.587 0.274
(11) 0.005 0.004 0.237
(12) 0.004 0.004 0.268
(13) 0.005 0.005 1.568 0.355

As Fong et al. (2010, Supplementary Material) provided a very careful probabilistic
elicitation of prior values, we have adopted their choices here. For the intercept α and
the regression coefficient of the covariate β, we assumed normal priors with base prior

parameter specification set at γ
(α),(β)
0 = (0, 0.001). For the unstructured and structured

components we assumed gamma priors for τv and τu with base prior parameter values

set to γ
(v)
0 = (1, 0.14) and γ

(u)
0 = (1, 0.34), respectively. Table 1 reports the worst-

case sensitivities for each component in all six models for the base prior parameter
values defined above. As an example, consider the sensitivity values in the last row of
Table 1. For the structured component u, a worst-case sensitivity of 0.355 was found.
This value means that the mean change in the unit-variance normal distributions for
posteriors is 35.5% of the mean change of unit-variance normal distributions in the
prior. In contrast, super-sensitivity of 1.568 for the unstructured component v shows
that the mean change in the unit-variance normal distributions for posteriors is 156.8%
of the mean change in the unit-variance normal distributions for priors. Figure 4 shows
for precisions v and u in model (13) the polar circular sensitivity plot centered at γ0

and rolled out on the line. Note that the left panel plots operate in three dimensions as

they indicate the values of the circular sensitivity in each direction around γ
(v)
0 (top)

and γ
(u)
0 (bottom).

Fong et al. (2010, Supplementary Material) prefer to always include both the un-
structured v and the structured u components together. They argue that since the u
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Figure 4: Polar sensitivity plots (left) centered at γ0 and sensitivity plots rolled out
on the line (right) in each polar direction of the circular Sc

γ0
(ε0) together with the

worst-case sensitivity Sγ0(ε0) (red dot) for τv at γ
(v)
0 (top) and τu at γ

(u)
0 (bottom)

components in model (13) in Section 5 for ε0 = 0.00354. The scale for sensitivity values
(0.1, 0.2,. . ., 0.9, 1) is indicated by grey circles and lines, respectively. Sensitivity equal
to 0.5 is marked by a black colour, whereas the sensitivity value 1 is marked by a red
one.

model contains only a single parameter to govern both the spatial extent of depen-
dence and the strength of this dependence, there is no place for pure randomness to
be accommodated. Their models (0.3), (0.5), (0.4) and (0.6) are complemented with
worst-case sensitivity estimates in rows corresponding to Equations (8), (10), (11) and
(13) in Table 1. We conclude that for the lip cancer in Scotland data, having both v
and u components at the same time in the model leads to super-sensitive marginal
posteriors for the precision of the unstructured component with respect to the base
prior parameter values choice. Apparently, a simultaneous inclusion of both latent com-
ponents ends in an overparametrized model and the unstructured component becomes
nearly non-identifiable (Eberly and Carlin, 2000).

This example illustrates that, ideally, the local sensitivity estimates should be in-
vestigated prior to the release of the final model. We suggest that the sensitivity values
should be openly disclosed to the readers. In cases where a model with an included
super-sensitivity is released, its justification or all measures aiming for its impact miti-
gation should be discussed.
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6 Discussion

We introduced and utilized a new formal local robustness measure, which was able
to automatically handle both circular and worst-case sensitivities in complex Bayesian
hierarchical models. It hinged on two essential ingredients. Firstly, on an appropriately
generated grid, which provided a well standardized way for modification of the base prior
parameter values. Secondly, on an instantaneous computation of the marginal posterior
density for priors with parameter values contained in the grid without any model re-fit.

It is a formal local robustness approach which dispenses with Taylor-expansion ap-
proximation and infinitesimal asymptotics. Instead, the circular sensitivity is computed
for each polar direction chosen equidistantly on [−π, π] around γ0. It can be both plot-
ted and summarized by a single number. Whereas infinitesimal methods restrict their
output to the worst-case value, the deeper insight offered by the circular sensitivity and
its versatile summaries seems to be new.

We provided a careful and extensive investigation of the properties of the introduced
ε-local sensitivity and comparison with the infinitesimal local sensitivity on conjugate
examples, where estimation of exact analytical sensitivity estimates was possible. Due
to limited space we reported mostly on the worst-case values. However, for all of the
examples, polar plots of the circular sensitivity estimates and other summaries were
available for more careful investigation.

As expected, a strong influence of the sample size on the prior sensitivity esti-
mates emerged (Appendix C and Supplementary Material). Indeed, we observed that
our measure automatically adjusts for increasing sample size by returning smaller prior
sensitivity estimates. The choice of the ε for the grid search did not have much influ-
ence on sensitivity estimates but anchored calibration in terms of unit-variance normal
distribution with shifted means. Our novel calibration use gave rise to a convenient in-
terpretation of sensitivity estimates independent of the actual ε choice. It also provided
a device to compare the sensitivity estimates obtained under both the Kullback-Leibler
divergence and the Hellinger distance assumptions.

We identified several model components and base parameter values requiring more
careful attention. Sensitivity estimates in Section 5 indicated clear identifiability prob-
lems when both unstructured and structured models were included in the model simul-
taneously. We believe that inclusion of both latent models at the same time leads to an
overparametrized model.

One possible drawback of our approach is that we investigated ε-local sensitivity
for each model component separately while keeping all other model component prior
parameters fixed at their base values. It can happen, however, that a model is insensitive
to changes in only one input at time, while being sensitive to simultaneous changes
in more than one input. We believe, however, that ε-local sensitivity for each model
component separately is actually what we are able to interpret in practice.

Another possible drawback of our approach is that it hinges on the choice of ε for the
grid search surrounding the base prior parameter values. Fortunately, we were able to
show in Appendix C and in the Supplementary Material that sensitivity estimates stay
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numerically stable over a wide range of ε values leaving much freedom for its choice.
We stress, however, that it is essential to apply the same ε for all model components
for which local sensitivity is examined in order to provide well standardized robustness
comparisons.

MCMC methodology is often not directly compatible with many of the robust
Bayesian techniques that had been developed (Berger et al., 2000). Lesaffre and Lawson
(2012) admit that a routine use of sensitivity procedures in MCMC cannot be afforded
due to a substantial computational burden. In contrast, our fast ε-local sensitivity es-
timation technique has a potential to be implemented without much extra cost by any
framework capable of estimating of marginal posterior densities. In particular, when
the marginal posterior densities are obtained from MCMC samples followed by Rao-
Blackwellization (Gelfand and Smith, 1990) or a dynamic exploration of posteriors by
means of importance sampling (Narasimhan, 2005), our approach can be directly used.

The formal ε-local sensitivity measure gave a novel, reasonable, easy to interpret
and useful piece of information about the marginal posterior distribution sensitivity
to base prior parameter values. Its use was not restricted to conjugate examples but
was easily extended to complex Bayesian hierarchical models giving new insight into
the identifiability of model components given the data at hand. Additionally, we were
able to determine in applications which model components were hard to learn from the
data and identified several base prior parameter specifications requiring more careful
attention. Therefore, we believe that thanks to our formal sensitivity measure checking
for local robustness in complex Bayesian hierarchical models will become a part of
routine statistical practice.

Appendix A (Proof)

Proof of the general Formula (7) used for instantaneous computation of the
slightly shifted posterior in Section 4.1

Denote by γ0 the base prior parameter values and by γ the shifted prior parameter
values. Reformulate

πγ0(θ|y) =
π(y|θ)πγ0(θ)

πγ0(y)

to obtain

π(y|θ) = πγ0(θ|y)πγ0(y)

πγ0(θ)
.

Consequently,

πγ(θ|y) =
π(y|θ)πγ(θ)

πγ(y)
=

πγ0(θ|y)πγ0(y)πγ(θ)

πγ(y)πγ0(θ)

can be rewritten as

πγ(θ|y) =
c(y)πγ0(θ|y)πγ(θ)

πγ0(θ)
∝ πγ0(θ|y)πγ(θ)

πγ0(θ)
,

with c(y) = πγ0(y)/πγ(y).



Ma�lgorzata Roos, Thiago G. Martins, Leonhard Held, and H̊avard Rue 339

Appendix B (Sensitivity)

B1 Additional literature about sensitivity

Saltelli et al. (2004) and Cacuci et al. (2005) are prominent advocates for uncertainty
analyses with respect to influential observations and the sampling distribution in com-
plex frequentist models. In Bayesian statistics an additional source of uncertainty due
to prior inadequacy has to be accounted for. The general sensitivity concept studied by
Lavine (1992), Geisser (1993) and Gustafson and Wasserman (1995) involves consid-
eration of influential observations, uncertainty of the sampling distribution and prior
inadequacy at the same time. Zhu et al. (2007) develop the differential geometric ap-
proach to deal with this topic via geometric contamination of the prior distribution. The
earlier advances by Van der Linde (2007) become special cases of this general method-
ology. The robustness analysis deals with the sensitivity of the results with respect to
the prior distribution only. Weiss and Cook (1992) suggested a graphical approach for
assessing posterior influence. In particular, the local approach is discussed by Gustafson
(1996). Other advances to local Bayesian robustness can be found in Kass et al. (1989)
and Weiss (1996).

B2 Formulae for the infinitesimal local sensitivity based on the
Kullback-Leibler divergence in Section 3.1

Denote by πγ0 and πγ the densities of the N(μ0, λ
−1
0 ) (true) and N(μ, λ−1) (arbitrary)

distributions, respectively. The value of the Kullback-Leibler divergence

DKL(πγ0 ||πγ) =

∫
πγ0(θ) log

(πγ0(θ)

πγ(θ)

)
dθ

between both distributions reads as follows:

DKL(πγ0 ||πγ) = λ(μ0 − μ)2/2 +
(
λ/λ0 − 1− log(λ/λ0)

)
/2. (14)

For a fixed value of γ0 = (μ0, λ0) it is a function with respect to two arbitrary
parameters (μ, λ) = γ. In the illustrative example in Section 3 the model compo-
nent of interest is a scalar θ = m. Equation (14) leads to an explicit expression for
i(γ) = DKL(πγ0(m)||πγ(m)). Due to conjugacy, Equation (14) can be re-used for an-
alytical computation of the Kullback-Leibler divergence between two normal posteri-
ors with parameters (nκȳ + λ0μ0)/(nκ + λ0), nκ + λ0, (nκȳ + λμ)/(nκ + λ), nκ + λ
instead of μ0, λ0, μ and λ, respectively. This provides an analytical expression for
d(γ) = DKL(πγ0(m|y)||πγ(m|y)). Additionally, the entries of the matrices D2i(γ0) and
D2d(γ0) can be derived analytically by differentiating functions i(γ) and d(γ) twice
with respect to the parameters μ and λ and evaluating the result at γ0 = (μ0, λ0). This
leads to

D2i(γ0) =

(
λ0 0
0 (2λ2

0)
−1

)
and

D2d(γ0) =

(
λ2
0/(nκ+ λ0) nκλ0(μ0 − ȳ)/(nκ+ λ0)

2

nκλ0(μ0 − ȳ)/(nκ+ λ0)
2 (2(nκ+ λ0)

2)−1 + (nκ(μ0 − ȳ))2/(nκ+ λ0)
3

)
.
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The observation that D2i(γ0) and D2d(γ0) are Fisher information matrices for the prior
and posterior families of distributions evaluated at γ0 leads to an identical analytical
finding. The resulting matrix (D2i(γ0))

−1D2d(γ0) = A has the following entries:

a11 = λ0/(nκ+ λ0),

a12 = nκ(μ0 − ȳ)/(nκ+ λ0)
2,

a21 = 2nκλ3
0(μ0 − ȳ)/(nκ+ λ0)

2,

a22 = λ2
0/(nκ+ λ0)

2 + 2λ2
0(nκ(μ0 − ȳ))2/(nκ+ λ0)

3.

The eigenvalues can be also computed analytically by using Equation (15) with entries
from matrix A:

eigenvaluemax, eigenvaluemin =
(
a11 + a22 + /−

√
(a11 − a22)2 + 4a21a12

)
/2. (15)

B3 Formulae for ε-local sensitivity based on the Kullback-Leibler
divergence in Section 3.2

Epsilon grid based on the Kullback-Leibler divergence

For normal prior distribution, following equation (14), the search for the epsilon grid

Gγ0(ε) = {γ : DKL(πγ0 ||πγ) = ε}

corresponds to finding roots of

DKL(πγ0 ||πγ)− ε = 0,

which is equivalent to finding roots μ of

λ(μ0 − μ)2/2 +
(
λ/λ0 − 1− log(λ/λ0)

)
/2− ε = 0

for λ, μ0 and λ0 kept fixed. For normal prior the roots themselves

μmin, μmax = μ0 − /+
√
−(λ/λ0 − 1− log(λ/λ0)− 2ε)/λ (16)

and an approximate range of λ, in which roots exist,

λmin, λmax = λ0

(
1 + ε− /+

√
ε(2 + ε)

)
(17)

can be found analytically.

Calibration of the Kullback-Leibler divergence with respect to the normal
distribution

Calibration of the Kullback-Leibler divergence with respect to the normal distribution
has been already discussed by Goutis and Robert (1998). For sake of completeness, we
provide the formulae explicitly below. They follow directly from Equation (14).
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Lemma 1. Calibration of the Kullback-Leibler divergence k between two normal densi-
ties N(0,1) and N(μ,1), respectively, can be computed as follows:

k(μ) = μ2/2

μ(k) =
√
2k

Proof. Assume μ0 = 0, μ1 = μ with precisions λ0 = λ1 = 1 in Equation (14) to
obtain k(μ) = k = μ2/2. Solve this equality with respect to μ to obtain μ(k) =

√
2k.

Note that μ(k) is the calibration of the Kullback-Leibler divergence k with respect
to the unit-variance normal distribution, as k between any two densities is the same
as that between N(0,1) and N(μ(k),1). If the Kullback-Leibler divergence k between
any two densities is known, then we can quantify discrepancies between them in terms
of the differences in mean from 0 to μ(k) for normal distribution with unit standard
deviation. In particular, if we are interested in a mean shift μ = 0.01, then the value
of the ε for the epsilon grid based on the Kullback-Leibler divergence can be fixed by
k(μ) = k(0.01) = ε0 = 5e-05. In such a case, the choice of ε0 = 5e-05 corresponds to the
shift in means by 0.01 for unit-variance normal distribution as μ(ε0) =

√
2ε0 = 0.01.

Moreover,

μ
(
DKL(πγ0(θ|y)||πγ(θ|y))

)
μ(ε)

=

√
DKL(πγ0(θ|y)||πγ(θ|y))

ε
. (18)

Consequently, the square root of the ε-local sensitivity based on the Kullback-Leibler
divergence corresponds to the ε-local sensitivity in terms of unit-variance normal distri-
butions.

B4 Formulae for ε-local sensitivity based on the Hellinger distance in
Section 3.3

Hellinger distance between two normal distributions

Denote by πγ0 and πγ the densities of the N(μ0, λ
−1
0 ) and N(μ, λ−1) distributions,

respectively. The value of the Hellinger distance

H(πγ , πγ0) =

√
1

2

∫ ∞

−∞

{√
πγ(θ)−

√
πγ0(θ)

}2

dθ

between both distributions reads as follows:

H(πγ , πγ0) =

√√√√
1−

√
2
√
λ0λ

λ0 + λ
exp

(
−λ0λ(μ0 − μ)2

4(λ0 + λ)

)
. (19)
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Epsilon grid based on the Hellinger distance

For normal prior distribution, following equation (19), the search for the epsilon grid

Gγ0(ε) = {γ : H(πγ , πγ0) = ε}

corresponds to finding roots of

H(πγ , πγ0)− ε = 0,

which is equivalent to finding roots μ of√
2
√
λ0λ

λ0 + λ
exp

(
−λ0λ(μ0 − μ)2

4(λ0 + λ)

)
− (1− ε2) = 0

for λ, μ0 and λ0 kept fixed. For normal prior not only the range of λ, in which roots
exist,

λmin, λmax = λ0

(
1− /+

√
1− (1− ε2)4

)2
(1− ε2)−4 (20)

but also roots themselves

μmin, μmax = μ0 − /+

√√√√−4(λ0 + λ)

λ0λ
log

(
(1− ε2)

√
λ0 + λ

2
√
λ0λ

)
(21)

can be found analytically.

Given the grid Gγ0(ε) specified by equations (20) and (21) the circular ε-local sen-
sitivity Sc

γ0
(ε) defined in Equation (1) based on the Hellinger distance can be obtained

analytically. The Hellinger distance between two priors can be directly computed ana-
lytically using Equation (19). Due to conjugacy, Equation (19) can be used again for
analytical computation of the Hellinger distance between two posteriors with parame-
ters (nκȳ + λ0μ0)/(nκ+ λ0), nκ+ λ0, (nκȳ + λμ)/(nκ+ λ), nκ+ λ instead of μ0, λ0,
μ and λ, respectively.

Calibration of the Hellinger distance with respect to the normal distribution

Lemma 2. Calibration of the Hellinger distance h between two normal densities N(0,1)
and N(μ,1), respectively, can be computed as follows:

h(μ) =
√

1− exp(−μ2/8)

μ(h) =
√

−8 log(1− h2)

Proof. Assume μ0 = 0, μ1 = μ and precisions λ0 = λ1 = 1 in Equation (19) to
obtain h(μ) = h =

√
1− exp(−μ2/8). Solve this equality with respect to μ to obtain

μ(h) = μ =
√
−8 log(1− h2).
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Table 2: Normal calibration of the Hellinger distance. Left: equal μ = 1 increment,
Right: equal h = 0.1 increment.

h = h(μ) μ(h) = μ h = h(μ) μ(h) = μ
0.000 0.000 0.000 0.000
0.343 1.000 0.100 0.284
0.627 2.000 0.200 0.571
0.822 3.000 0.300 0.869
0.930 4.000 0.400 1.181
0.978 5.000 0.500 1.517
0.994 6.000 0.600 1.890
0.999 7.000 0.700 2.321
1.000 8.000 0.800 2.859
1.000 9.000 0.900 3.645

Table 2 demonstrates the values obtained by calibration. In particular, if we are

interested in a mean shift μ = 0.01, then the value of the ε for the epsilon grid based on

the Hellinger distance can be fixed by h(μ) = h(0.01) = ε0 = 0.00354. By Equation (5)

the ε-local sensitivity based on the Hellinger distance approximates the calibrated ratio

with respect to the unit-variance normal distribution directly.

Appendix C (Computations)

C1 R-INLA review

A wide range of Bayesian problems are covered by the latent Gaussian models frame-

work and therefore effectively handled by INLA (Rue et al., 2009). An R package

(http://www.r-inla.org) called INLA serves as an interface to the inla program.

Its usage is similar to the familiar user-friendly glm function in R. The inla program

allows the user to conveniently perform approximate Bayesian inference in latent Gaus-

sian models. It is a fast and very versatile program, providing full Bayesian analysis

of generalized linear mixed models (Fong et al., 2010; Martins et al., 2013). Computa-

tionally expensive models on high-dimensional data within stochastic partial differential

equations (SPDEs) framework (Lindgren et al., 2011) can be tackled by inla as well.

As output marginal posterior densities of all parameters in the model together with

summary characteristics are offered by default. Although inla provides diagnostics

for outlying observations via the conditional predictive ordinate (CPO) (Pettit, 1990;

Geisser, 1993) default prior sensitivity diagnostics are still missing. Here, we closed this

gap and provided a ready to use priorSens package in R facilitating the use of sensitivity

measure described here.

http://www.r-inla.org
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C2 The priorSens package in R

We developed a handy package priorSens for routine, every-day sensitivity computa-
tion. It can be used with practically no extra programming effort needed for default
sensitivity investigations within inla or to obtain standardized grids for any alterna-
tive robustness considerations. Currently, normal and gamma priors are supported by
the package covering already a great amount of possible models. Further extensions to
support other priors are possible. The priorSens package can be obtained upon request
from the authors. We plan to include it as a default option in the R-INLA framework.
All sensitivity estimates presented in Section 5 and in the Supplementary Material were
evaluated by the priorSens package in R. The required input for the ε-local sensitivity to
be computed are the base prior distribution πγ0(θ) with parameter specification γ0 and
the corresponding marginal posterior density (θ(j), π̃γ0(θ

(j)|y)) obtained numerically on
a finite set j = 1, . . . , J .

C3 Back-transformation for grid search

As discussed in Section 4.2 the scaling factor (exp(z) cos(φ), exp(z) sin(φ)) is trans-
formed back to Cartesian coordinates using[

γ
(1)
0 + r cos(φ)cx(φ)

]
and [

γ
(2)
0 + r sin(φ)cy(φ)

]
,

where

cx(φ) =

{
r∗(0) if φ ∈ [−π/2, π/2],
r∗(π) if φ ∈ [π/2,−π/2]

and

cy(φ) =

{
r∗(π/2) if φ ∈ [0, π],

r∗(−π/2) if φ ∈ [π, 0],

with r∗(δ), for radian values δ = −π/2, 0, π/2, π, denoting the modulus values obtained
at δ angles during a pre-exploration of the polar coordinate space. The factors cx(φ)
and cy(φ) are necessary to scale the problem so that r is close to 1 across different prior
distributions. This practice standardizes the task of computing Gγ0(ε), which makes
the numerical algorithm more stable and generally applicable. The priorSens package
relies on the above general approach for epsilon grid search.

C4 Epsilon local sensitivity in R-INLA

Our fast general ε-local sensitivity methodology based on the Hellinger distance can be
implemented without much extra cost by any technique capable of computing marginal
posterior distributions, in particular, by the R-INLA framework. In practice, however,
two settings for the cardinality of the grid Gγ0(ε) and the value of ε have to be fixed
(Section 4.2). In applications shown below we consider 400 polar directions and use one
particular ε0 = 0.00354 for the grid search, which corresponds to a unit-variance normal
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distribution with mean equal to 0.01 with respect to the Hellinger distance (Section 2.2
and Appendix B4). The continued illustrative example in Appendix C5 and several ex-
amples in the Supplementary Material indicate that the exact sensitivity estimates stay
stable over a wide range of ε values. Therefore, there is some room for a tolerable ε choice.

Our inla computations were run for default settings: simplified Laplace strategy
for the marginal posterior approximation and central composite design (CCD) for in-
tegrating out the hyperparameters. In general, for precisions log-transformed marginal
posterior densities were used. In addition, for precisions of latent components in R-INLA

such as unstructured (“iid”), structured (“ICAR”), the latent Gaussian random walk of
the first (“rw1”) and the second (“rw2”) order an appropriate tuning for their marginal
posteriors provided by the function inla.hyperpar() was utilized.

C5 Epsilon local sensitivity based on the Hellinger distance
(continued)

Reconsider the model and data introduced in the illustrative example in Section 3.
We studied the ε-local sensitivity values, when the exact analytical marginal posterior
density estimate was replaced by the approximate one provided by inla. The worst-case
sensitivity Sinlaγ0

(ε0) = 1.82 for the inla-driven approach and the analytically computed

estimate Sexactγ0
(ε0) = 1.82 agreed perfectly well. Absolute and relative error ranges of

the inla-driven circular sensitivity estimates with respect to the analytical ones were
equal to (-2e-04, 0.0015) and (-0.006, 0.006), respectively.

In addition, we varied the grid epsilon values and computed both the corresponding
analytical and inla-driven sensitivities. Table 3 shows good agreement of exact and
inla-driven sensitivity estimates for the small sample at hand. Besides, we assumed
in the example a larger sample size n = 100 instead of n = 4 keeping all other model
parameters fixed. We expected less sensitivity to the prior parameter values when much
evidence is provided by the data. Again exact and inla-driven sensitivity estimates
agreed very well. Lower estimates of sensitivity obtained for n = 100 in Table 3 indicated
that our measure reacts reasonably to increased sample size. Interestingly, even if the
prior is clearly displaced but there is enough evidence in the data (n = 100), sensitivity
can be small.

Table 3: Worst-case sensitivity estimates for mean as a function of ε for n = 4 and
n = 100 in the example in Section 3 and Appendix C5 at γ0 = (μ0, λ0) = (70, 0.5).

ε Sexactγ0
(ε), n = 4 Sinlaγ0

(ε), n = 4 Sexactγ0
(ε), n = 100 Sinlaγ0

(ε), n = 100

0.0001 1.81 1.81 0.43 0.43
0.0005 1.81 1.82 0.43 0.43
0.0010 1.82 1.82 0.43 0.43
0.0050 1.83 1.83 0.43 0.43
0.0100 1.84 1.84 0.44 0.44
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For several additional examples discussed in the Supplementary Material we once
again detected an excellent agreement of the inla-driven and exact sensitivity estimates.
As expected, a strong influence of the sample size on the prior sensitivity estimates
emerged. Indeed, we observed that our measure automatically adjusts for increasing
sample size by returning smaller prior sensitivity estimates.

Supplementary Material

Supplementary Material: Sensitivity Analysis for Bayesian Hierarchical Models (DOI:
10.1214/14-BA909SUPP; .pdf).
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