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Deviance Information Criteria for Missing Data

Models

G. Celeux∗, F. Forbes†, C.P. Robert‡ and D.M. Titterington§

Abstract. The deviance information criterion (DIC) introduced by Spiegelhalter et al.
(2002) for model assessment and model comparison is directly inspired by linear
and generalised linear models, but it is open to different possible variations in
the setting of missing data models, depending in particular on whether or not the
missing variables are treated as parameters. In this paper, we reassess the criterion
for such models and compare different DIC constructions, testing the behaviour
of these various extensions in the cases of mixtures of distributions and random
effect models.
Keywords: completion, deviance, DIC, EM algorithm, MAP, model comparison,
mixture model, random effect model.

1 Introduction

When developing their theory of the deviance information criterion (DIC) for the as-

sessment and comparison of models, Spiegelhalter et al. (2002) mostly focussed on the

case of generalised linear models, although they concluded their seminal paper with a

discussion of the possibilities of extending this notion to models like mixtures of distri-

butions. The ensuing discussion in the Journal of the Royal Statistical Society pointed

out the possible difficulties of defining DIC precisely in these scenarios. In particular,

DeIorio and Robert (2002) described some possible inconsistencies in the definition of

a DIC for mixture models, while Richardson (2002) presented an alternative notion of

DIC, again in the context of mixture models.

The fundamental versatility of the DIC criterion is that, in hierarchical models, basic

notions like parameters and deviance may take several equally acceptable meanings,

with direct consequences for the properties of the corresponding DICs. As pointed out

in Spiegelhalter et al. (2002), this is not a problem per se when parameters of interest

(or a “focus”) can be identified but this is not always the case when practitioners

compare models. The diversity of the numerical answers associated with the different

focusses is then a real difficulty of the method. As we will see, these different choices

can produce quite distinct evaluations of the effective dimension pD that is central to

the DIC criterion. (Although this is not in direct connection with our missing data

set-up, nor with the DIC criterion, note that Hodges and Sargent (2001) also describes

the derivation of degrees of freedom in loosely parameterised models.)
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There is thus a need to evaluate and compare the properties of the most natural

choices of DICs: The present paper reassesses the definition and connection of various

DIC criteria for missing data models. In Section 2, we recall the notions introduced in

Spiegelhalter et al. (2002). Section 3 presents a typology of the possible extensions of

DIC for missing data models, while Section 4 constructs and compares these extensions

in random effect models, and Section 5 does the same for mixtures of distributions.

We conclude the paper with a discussion of the relevance of the various extensions in

Section 6.

2 Bayesian measures of complexity and fit

For competing parametric statistical models, f(y|θ), the construction of a generic model-

comparison tool is a difficult problem with a long history. In particular, the issue of

devising a selection criterion that works both as a measure of fit and as a measure of

complexity is quite challenging. In this paper, we examine solely the criteria developed

in Spiegelhalter et al. (2002), including, in connection with model complexity, their

measure, pD, of the effective number of parameters in a model. We refer the reader

to this paper, the ensuing discussion and to Hodges and Sargent (2001) for further

references. This quantity is based on a deviance, defined by

D(θ) = −2 log f(y|θ) + 2 logh(y) ,

where h(y) is some fully specified standardizing term which is function of the data alone.

Then the effective dimension pD is defined as

pD = D(θ) −D(θ̃) , (1)

where D(θ) is the posterior mean deviance,

D(θ) = Eθ[−2 log f(y|θ)|y] + 2 log h(y),

which can be regarded as a Bayesian measure of fit, and θ̃ is an estimate of θ de-

pending on y. The posterior mean θ = E[θ|y] is often a natural choice for θ̃ but the

posterior mode or median can also be justified as an alternative. Note that pD is com-

pletely independent of the choice of the standardizing h. As explicitly pointed out in

Spiegelhalter et al. (2002), the fact that pD does depend on the choice of the estimate

θ̃ and more generaly on the parameterisation of the model is one of the difficulties of

this approach that can only be solved when there is a clear “focus” on the parameter

of interest in the model. In the event of a global model comparison where no particu-

lar parameterisation enjoys a special position, as for instance in the comparison of the

number of components in a mixture of distributions, there is no intrinsic definition to

the dimension pD.

A corresponding Deviance Information Criterion (DIC) for model comparison is
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advanced by Spiegelhalter et al. (2002) from this construction:

DIC = D(θ) + pD

= D(θ̃) + 2pD (2)

= 2D(θ)−D(θ̃)

= −4Eθ[log f(y|θ)|y] + 2 log f(y|θ̃).

For model comparison, we need to set h(y) = 1, for all models, so we take

D(θ) = −2 log f(y|θ). (3)

Provided that D(θ) is available in closed form, D(θ) can easily be approximated using

an MCMC run by taking the sample mean of the simulated values of D(θ). (If f(y|θ)
is not available in closed form, as is often the case for missing data models like (4),

further simulations can provide a converging approximation or, as we will see below,

can be exploited directly in alternative representations of the likelihood and of the DIC

criterion.) When θ = E[θ|y] is used, D(θ) can also be approximated by plugging in the

sample mean of the simulated values of θ. As pointed out by Spiegelhalter et al. (2002),

this choice of θ̃ ensures that pD is positive when the density is log-concave in θ, but it is

not appropriate when θ is discrete-valued since E[θ|y] usually fails to take one of these

values. Also, the effective dimension pD may well be negative for models outside the

log-concave densities. We will discuss further the issue of choosing (or not choosing) θ̃
in the following sections.

3 DICs for missing data models

In this section, we describe alternative definitions of DIC in missing data models, that

is, when

f(y|θ) =

∫
f(y, z|θ)dz , (4)

by attempting to write a typology of natural DICs in such settings. Missing data

models thus involve variables z which are non-observed, or missing, in addition to the

observed variables y. There are numerous occurrences of such models in theoretical and

practical Statistics and we refer to Little and Rubin (1987), McLachlan and Krishnan

(1997) and Cappé et al. (2005) for different accounts of the topic. Whether or not the

missing data z are truly meaningful for the problem is relevant for the construction of

the DIC criterion because the focus of inference may be on the parameter θ, the pair

(θ, z) or on z only, as in classification problems.

The observed data associated with this model will be denoted by y = (y1, . . . , yn)

and the corresponding missing data by z = (z1, . . . , zn). Following the EM terminology,

the likelihood f(y|θ) is often called the observed likelihood while f(y, z|θ) is called the

complete likelihood. We will use as illustrations of such models the special cases of

random effect and mixture models in Sections 4 and 5.
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3.1 Observed DICs

A first category of DICs is associated with the observed likelihood, f(y|θ), under the

assumption that it can be computed in closed form (which is for instance the case for

mixture models but does not always hold for hidden Markov models). While, from (3),

D(θ) = −2Eθ [log f(y|θ)|y]

is clearly and uniquely defined, even though it may require (MCMC) simulation to be

computed approximately, choosing θ̃ is more delicate and the definition of the second

term D(θ̃) in (1) is not unique.

In fact, within missing data models like the mixture model of Section 5, the parame-

ters θ are not always identifiable and the posterior mean θ = Eθ[θ|y] can then be a very

poor estimator. For instance, in the mixture case, if both prior and likelihood are in-

variant with respect to the labels of the components, all marginals (in the components)

are the same, all posterior means are identical, and the plug-in mixture then collapses

to a single-component mixture (Celeux et al. 2000). As a result,

DIC1 = −4Eθ [log f(y|θ)|y] + 2 log f(y|Eθ [θ|y])

is often not a good choice. For instance, in the mixture case, DIC1 quite often leads

to a negative value for pD. (The reason for this is that, even under an identifiability

constraint, the posterior mean borrows from several modal regions of the posterior

density and ends up with a value that is located between modes, see also the discussion

in Marin et al. 2005.)

A more relevant choice for θ̃ is the posterior mode or modes,

θ̂(y) = arg max
θ

f(θ|y) ,

since this depends on the posterior distribution of the whole vector θ, rather than on

the marginal posterior distributions of its elements as in the mixture case. This leads

to the alternative “observed” DIC

DIC2 = −4Eθ [log f(y|θ)|y] + 2 log f(y|θ̂(y)) .

Recall that, for the K-component mixture problem, there exist a multiple of K! marginal

posterior modes. Note also that, when the prior on θ is uniform, so that θ̂(y) is also

the maximum likelihood estimator, which can be computed by the EM algorithm, the

corresponding pD,

pD = −2Eθ [log f(y|θ)|y] + 2 log f(y|θ̂(y)) ,

is necessarily positive. However, positivity does not always hold for other prior distri-

butions, even though it is asymptotically true when the Bayes estimator is convergent.

When non-identifiability is endemic, as in mixture models, the parameterisation by θ
of the model f(y|θ) is often not relevant and the inferential focus is mostly on the density
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itself. In this setting, a more natural choice for D(θ̃) is to select an estimator f̂(y) of

the density f(y|θ), since this function is invariant under permutation of the component

labels. For instance, one can use the posterior expectation Eθ [f(y|θ)|y]. (Note that this

is also independent of the representation (4).) In terms of functional estimation, this

approach provides stable evaluations that are superior to the plug-in estimates f(y|θ̂);

furthermore, the density estimator is easily approximated by an MCMC evaluation. For

instance, for a Gaussian mixture with density

f(y|θ) =

K∑

i=1

piφ(y|µi, σ
2
i ),

we have

f̂(y) =
1

m

m∑

l=1

K∑

i=1

p
(l)
i φ(y|µ(l)

i , σ
2(l)
i ) ≈ Eθ[f(y|θ)|y] ,

where φ(y|µi, σ
2
i ) denotes the density of the normalN (µi, σ

2
i ) distribution, θ = {p, µ, σ2}

with µ = (µ1, . . . , µK)t, σ2 = (σ2
1 , . . . , σ2

K)t and p = (p1, . . . , pK)t, m denotes the

number of MCMC simulations and (p
(l)
i , µ

(l)
i , σ

2(l)
i )1≤i≤m is the result of the l-th MCMC

iteration. This is also the MCMC predictive density, and this leads to another criterion,

DIC3 = −4Eθ [log f(y|θ)|y] + 2 log f̂(y) ,

where f̂(y) =
∏n

i=1 f̂(yi). Note that this is also the proposal of Richardson (2002) in

her discussion of Spiegelhalter et al. (2002). This is quite a sensible alternative, since

the predictive distribution is quite central to Bayesian inference. (See, for instance, the

notion of Bayes factors, which are ratios of predictives, Robert 2001.) Note however

that the relative values of f̂(y), for different models, also constitute the “posterior Bayes

factors” of Aitkin (1991) which came under strong criticism in the ensuing discussion.

3.2 Complete DICs

The missing data structure makes available many alternative representations of the

DIC, by reallocating the positions of the log and of the various expectations. This is

not simply a formal exercise: missing data models offer a wide variety of interpretations

depending on the chosen representation for the missing data structure.

We can first note that, using the complete likelihood f(y, z|θ), we can set D(θ) as

the posterior expected value (over the missing data) of the joint deviance,

D(θ) = −2Eθ {EZ [log f(y,Z|θ)|y, θ] |y}
= −2EZ {Eθ [log f(y,Z|θ)|y,Z] |y}
= −2Eθ,Z [log f(y,Z|θ)|y] .

In addition to the difficulty of choosing θ̃, already encountered in the previous section,

we now have the problem of defining the fixed point deviance, D(θ̃), in connection
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with the missing data structure. Using the same motivations as for the EM algorithm

(McLachlan and Krishnan 1997), we can first define a complete data DIC, by defining

the complete data estimator Eθ[θ|y, z], which does not suffer from identifiability prob-

lems since the components are identified by z, and then obtain DIC for the complete

model as

DIC(y, z) = −4Eθ [log f(y, z|θ)|y, z] + 2 log f(y, z|Eθ [θ|y, z]) .

As in the EM algorithm, we can then integrate this quantity to define

DIC4 = EZ [DIC(y,Z)|y]

= −4Eθ,Z [log f(y,Z|θ)|y] + 2EZ [log f(y,Z|Eθ [θ|y,Z])|y] .

This requires the computation of a posterior expectation for each value of Z, but this

is usually not difficult as the complete model is often chosen for its simplicity.

A second solution that integrates the notion of “focus” defended in Section 2.1 of

Spiegelhalter et al. (2002) is to consider Z as an additional parameter (of interest) rather

than as a missing variable and to use a pivotal quantity D(θ̃) based on estimates of both

z and θ; that is, informally,

D(θ̃) = −2 log f(y, ẑ(y)|θ̂(y)) .

Once again, we must stress that, in missing data problems like the mixture model, the

choices for these estimators are quite delicate as the expectations of Z, given y, are poor

estimators, being for instance all identical under exchangeable priors (see Section 5.2)

and, besides, most often taking values outside the support of Z, as in the mixture case.

For this purpose, the only relevant estimator (ẑ(y), θ̂(y)) in this setting seems thus to

be the joint maximum a posteriori (MAP) estimator of the pair (z, θ), given y, unless

one is ready to define a proper loss function as in Celeux et al. (2000) which somehow

contradicts the initial purpose of DIC since a loss function should also integrate the

model choice aspects in that case. Note that, in the event of non-identifiability or

simply multimodality, the MAP estimates are not unique but they are all equivalent.

In the case of K-component mixtures, choosing one MAP estimate is then equivalent

to selecting one of the K! possible component orderings.

Given that this estimator is not available in closed form, we can choose to estimate

it by using the best–in terms of the values of the posterior distribution proportional to

f(y, z|θ)f(θ)–pair that arose during the MCMC iterations. Note that the missing data

structure is usually chosen so that the joint distribution f(y, z|θ) is available in closed

form. Thus, even if the MAP estimate cannot be derived analytically, the values of

f(y, z|θ)f(θ) at the simulated pairs (z, θ) can be computed.

The DIC corresponding to this analysis is then

DIC5 = −4Eθ,Z [log f(y,Z|θ)|y] + 2 log f(y, ẑ(y)|θ̂(y)) ,

which, barring a poor MCMC approximation to the MAP estimate, should lead to a

positive effective dimension,

pD5 = −2Eθ,Z [log f(y,Z|θ)|y] + 2 log f(y, ẑ(y)|θ̂(y)) ,
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given that, under a flat prior, the second part of DIC5 is the maximum of the function

integrated in the first part over θ and Z. Note however that DIC5 is somewhat incon-

sistent in the way it takes z into account. The posterior deviance, that is, the first part

of DIC5, incorporates z as missing variables while D(θ̃) and therefore pD5 regard z as

an additional parameter (see Sections 4 and 5 for illustrations).

Another interpretation of the posterior deviance and a corresponding DIC can be

directly derived from the EM analysis of the missing data model. Recall (Dempster et al.

1977; McLachlan and Krishnan 1997; Robert and Casella 2001, §5.3.3) that the core

function of the EM algorithm is

Q(θ|y, θ0) = EZ [log f(y,Z|θ)|y, θ0] ,

where θ0 represents the “current” value of θ, and Q(θ|y, θ0) is maximised over θ in the

“M” step of the algorithm, to provide the following “current” value θ1. The function

Q is usually easily computable, as for instance in the mixture case. Therefore, another

natural choice for D(θ̃) is to take

D(θ̃) = −2Q(θ̂(y)|y, θ̂(y)) = −2EZ[log f(y,Z|θ̂(y))|y, θ̂(y)] ,

where θ̂(y) is an estimator of θ based on f(θ|y), such as the marginal MAP estimator,

or, maybe more naturally, a fixed point of Q, such as an EM maximum likelihood

estimate. This choice leads to a corresponding DIC

DIC6 = −4Eθ,Z [log f(y,Z|θ)|y] + 2EZ[log f(y,Z|θ̂(y))|y, θ̂(y)] .

As for DIC4, this strategy is consistent in the way it regards Z as missing information

rather than as an extra parameter, but it is not guaranteed to lead to a positive effective

dimension pD6, as the maximum likelihood estimator gives the maximum of

log EZ [f(y,Z|θ)|y, θ]

rather than of

EZ [log f(y,Z|θ)|y, θ]

the latter of which is smaller since log is a concave function. An alternative to the

maximum likelihood estimator would be to choose θ̂(y) to maximise Q(θ|y, θ), which

represents a more challenging problem, not addressed by EM unfortunately.

3.3 Conditional DICs

A third category of constructions of DICs in the context of missing variable models is to

adopt a different inferential focus and consider z as an additional parameter. The DIC

can then be based on the conditional likelihood, f(y|z, θ). This approach has obvious

asymptotic and coherency difficulties, as discussed in previous literature (Marriott 1975;

Bryant and Williamson 1978; Little and Rubin 1983), but it is computationally feasible

and can thus be compared with the other solutions above. (Note in addition that DIC5
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is situated between the complete and the conditional approaches in that it uses the

complete likelihood but similarly estimates z. As we will see below, it appears quite

naturaly as an extension of DIC7.)

A natural solution in this framework is then to apply the original definition of DIC

to the conditional distribution, which leads to

DIC7 = −4Eθ,Z [log f(y|Z, θ)|y] + 2 log f(y|ẑ(y), θ̂(y)) ,

where again the pair (z, θ) is estimated by the joint MAP estimator, (ẑ(y), θ̂(y)) ap-

proximated by MCMC. This approach leads to a positive effective dimension pD7, under

a flat prior for z and θ, for the same reasons as for DIC5.

Note that there is a strong connection between DIC5 and DIC7 in that

DIC5 = DIC7 +
{
−4Eθ,Z [log f(Z|y, θ)|y] + 2 log f(ẑ(y)|y, θ̂(y)) ,

}

the additional term being similar to the difference between Q(θ|y, θ0) and the observed

log-likelihood in the EM algorithm. The difference between DIC5 and DIC7 is not

necessarily positive even though it appears as a DIC on the conditional distribution,

given that D(θ̃) is evaluated at the joint MAP estimate.

An alternative solution is to separate θ from Z, taking once more the missing data

perspective, as in DIC4; that is, to condition first on Z and then integrate over Z
conditional on y, giving

DIC8 = −4Eθ,Z [log f(y|Z, θ)|y] + 2EZ

[
log f(y|Z, θ̂(y,Z))|y

]
,

where θ̂(y, z) is an estimator of θ based on f(y, z|θ), such as the posterior mean (which

is now a correct estimator because it is based on the joint distribution) or the MAP

estimator of θ (conditional on both y and z). Here Z is dealt with as missing variables

rather than as an additional parameter. The simulations in Section 5.5 illustrate that

DIC8 actually behaves differently from DIC7 when estimating the complexity through

pD.

4 Random effect models

In this section we list the various DICs in the context of a simple random effect model.

Some of the details of the calculations are not given here but are available from the

authors. The model was discussed in Spiegelhalter et al. (2002), but here we set it up

as a missing data problem, with the random effects regarded as missing values, because

computations are feasible in closed form for this model and allow for a better comparison

of the different DICs. More specifically, we focus on the way these criteria account for

complexity, i.e. on the pDs, since there is no real model-selection issue in this setting.

Suppose therefore that, for i = 1, . . . , p,

yi = zi + εi,
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where zi ∼ N (θ, λ−1) and εi ∼ N (0, τ−1
i ), with all random variables independent and

with λ and the τi’s known. We use a flat prior for θ. Then

log f(y, z|θ) = log f(y|z) + log f(z|θ)

= −p log 2π +
1

2

∑

i

log (λτi)−
1

2

∑

i

τi(yi − zi)
2

−1

2
λ

∑

i

(zi − θ)2.

Marginally, yi ∼ N (θ, τ−1
i + λ−1) ∼ N (θ, 1/(λρi)), where ρi = τi/(λ + τi). Thus

log f(y|θ) = −p

2
log 2π +

1

2

∑

i

log (λρi)−
λ

2

∑

i

ρi(yi − θ)2.

4.1 Observed DICs

For this example

θ|y ∼ N
(∑

i ρiyi∑
i ρi

,
1

λ
∑

i ρi

)
,

and therefore the posterior mean and mode of θ, given y, are both equal to θ̂(y) =∑
i ρiyi/

∑
i ρi. Thus

DIC1 = DIC2 = p log 2π −
∑

i

log(λρi) + λ
∑

i

ρi(yi − θ̂(y))2 + 2.

Furthermore, pD1 = pD2 = 1.

For DIC3 it turns out that

f̂(y) = Eθ[f(y|θ)|y]

= 2−1/2 f(y|θ̂(y)), (5)

so that

DIC3 = DIC1 − log 2

and pD3 = 1− log 2.

Surprisingly, the relationship (5) is valid even though both f(·|θ̂(y)) and f̂(·) are

densities. Indeed, this identity only holds for the particular value y corresponding to

the observations. For other values of z, f̂(z) is not equal to f(z|θ̂(y))/
√

2. Note also

that it makes sense that pD3 is smaller than pD2 in that the predictive distribution is

not necessarily of the same complexity as the sum of the dimensions of its parameters.
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4.2 Complete DICs

For the random effect model,

D(θ) = −2Eθ,Z [log f(y,Z|θ)|y]

= −2EZ {Eθ [log f(y,Z|θ)|y,Z] |y}
= 2p log 2π −

∑

i

log(λτi)

+EZ

[
∑

i

τi(yi − zi)
2 + λ

∑

i

(zi − z̄)2 + 1|y
]

= −2EZ [log f(y,Z|Eθ [θ|y,Z])|y] + 1,

since θ|y, z ∼ N (z, 1
λp ). As a result, pD4 = 1.

After further detailed calculations we obtain

DIC4 = 2p log 2π −
∑

i

log(λτi) +
∑

i

λρi(1− ρi)(yi − θ̂(y))2

+λ
∑

i

ẑ2
i − λp θ̂(y)2 + 2 + p

= DIC2 + p log 2π + p +
∑

i

log
ρi

τi
.

We also obtain pD5 = 1 + p, pD6 = 1,

DIC5 = DIC4 + p,

and

DIC6 = DIC5 − p = DIC4.

The value of pD5 is not surprising since, in DIC5, z is regarded as an extra parameter

of dimension p. This is not the case in DIC6 since, in the computation of D(θ̃), z is

then treated as missing variables.

4.3 Conditional DICs and further remarks

DIC7 and DIC8 involve f(y|z, θ). In the random effect model, this quantity does not

depend on parameter θ so that computing the pDs and therefore the DICs does not

really make sense. For instance, pD8 would be 0 and pD7, although different from 0,

because z is considered as an additional parameter, would not take θ into account either

(unless indirectly through z).

Note however that

DIC7 = p log 2π −
∑

i

log τi + λ
∑

i

ρi(1− ρi)(yi − θ̂(y))2

+2[
∑

r

ρr + {
∑

r

ρr(1− ρr)}/(
∑

r

ρr)],
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which appears at the end of Section 2.5 of Spiegelhalter et al. (2002), corresponding to

a ‘change of focus’.

The DICs (DIC1,2,4,6) leading to the same measure of complexity through pD = 1

but to different posterior deviances show how the latter can incorporate an additional

penalty by measuring the amount of missing information, corresponding to z, in DIC4

and DIC6. DIC5 incorporates the missing information in the posterior deviance while

pD5 regards z as an extra p-dimensional parameter (pD5 = 1 + p). This illustrates the

unsatisfactory inconsistency in the way DIC5 takes z into account, as pointed out in

Section 3.2.

5 Mixtures of distributions

As suggested in Spiegelhalter et al. (2002) and detailed in the ensuing discussion, an

archetypical example of a missing data model is the K-component normal mixture in

which

f(y|θ) =

K∑

j=1

pjφ(y|µj , σ
2
j ),

K∑

j=1

pj = 1 ,

with notation as defined in Section 3.1. Note at this point that, while mixtures can be

easily handled by winBUGS 1.4, the use of DIC for these models is not possible in the

current version (see Spiegelhalter et al. 2004).

The observed likelihood of a mixture is

f(y|θ) =

n∏

i=1

K∑

j=1

pjφ(yi|µj , σ
2
j ) .

This model can be interpreted as a missing data model problem if we introduce the

membership variables z = (z1, . . . , zn), a set of K-dimensional indicator vectors, denoted

by zi = {zi1, . . . , ziK} ∈ {0, 1}K, so that zij = 1 if and only if yi is generated from

the normal distribution φ(.|µj , σ
2
j ), conditional on zi, and P (Zij = 1) = pj . The

corresponding complete likelihood is then

f(y, z|θ) =

n∏

i=1

K∏

j=1

{
pjφ(yi|µj , σ

2
j )

}zij
. (6)

5.1 Observed DICs

Since f(y|θ) is available in closed form, the missing data z can be ignored and the

expressions (2) and (3) for the deviance and DIC can be computed using m simulated

values θ(1), . . . , θ(m) from an MCMC run. (We refer the reader to Celeux et al. (2000)

and Marin et al. (2005) for details of the now-standard implementation of an MCMC

algorithm in mixture settings.) The first term of DIC1, DIC2 and DIC3 is therefore
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approximated by an MCMC algorithm as

D(θ) ≈ − 2

m

m∑

l=1

log f(y|θ(l))

= − 2

m

m∑

l=1

n∑

i=1

log





K∑

j=1

p
(l)
j φ(yi|µ(l)

j , σ
2(l)
j )



 ,

where m is the number of iterations and (p
(l)
j , µ

(l)
j , σ

2(l)
j )1≤j≤k are the simulated values

of the parameters.

For DIC1, the posterior means of the parameters are computed as the MCMC sam-

ple means of the simulated values of θ, but, as mentioned in Section 3.1 and further

discussed in Celeux et al. (2000), these estimators are not meaningful if no identifiabil-

ity constraint is imposed on the model (see also Stephens 2000), and even then they

often lead to negative pD’s. For instance, for the Galaxy dataset (Roeder 1990) dis-

cussed below in Section 5.5, we get pD1 equal to −1.8, 5.0,−77.7,−69.1,−82.9,−65.5,

for K = 2, . . . , 7, respectively, using 5000 iterations of the Gibbs sampler. In view of

this considerable drawback, the DIC1 criterion is not to be considered further for this

model.

5.2 Complete DICs

The first terms of DIC4, DIC5 and DIC6 are all identical. In view of this, we can use the

same MCMC algorithm as before to come up with an approximation to Eθ,Z [log f(y,Z|θ)|y],

except that we also need to simulate the z’s.

Recall that Eθ,Z [log f(y,Z|θ)|y] = Eθ {EZ [log f(y,Z|θ)|y, θ] |y} (Section 3.2). Given

that, for mixture models, EZ[log f(y,Z|θ)|y, θ] is available in closed form as

EZ[log f(y,Z|θ)|y, θ] =

n∑

i=1

K∑

j=1

P (Zij = 1|θ,y) log(pjφ(yi|µj , σ
2
j )) ,

with

P (Zij = 1|θ,y) =
pjφ(yi|µj , σ

2
j )

∑K
k=1 pkφ(yi|µk, σ2

k)

def
= tij(y, θ) ,

this approximation is obtained from the MCMC output θ(1), . . . , θ(m) as

1

m

m∑

l=1

n∑

i=1

K∑

j=1

tij(y, θ(l)) log{p(l)
j φ(yi|µ(l)

j , σ
2(l)
j )} . (7)

Then the second term in DIC4,

2EZ[log f(y,Z|Eθ [θ|y, z]|y] ,
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can be approximated by

2

m

m∑

l=1

n∑

i=1

K∑

j=1

z
(l)
ij log{p(l)

j φ(yi|µ(l)
j , σ

2(l)
j )} (8)

where θ
(l)

= θ(y, z(l)) = E[θ|y, z(l)], which can be computed exactly, as shown below,

using standard results in Bayesian analysis (Robert 2001). The prior on θ is assumed

to be a product of conjugate densities,

f(θ) = f(p)

K∏

j=1

f(µj , σj) ,

where f(p) is a Dirichlet densityD(. |α1, . . . , αK), f(µj |σj) is a normal density φ(. |ξj , σ
2
j /nj)

and f(σ2
j ) is an inverse gamma density IG(. |νj/2, s2

j/2). The quantities α1, . . . , αK , ξj ,

nj , νj and s2
j are fixed hyperparameters. It follows that

p̄
(l)
j = Eθ[pj |y, z(l)] =

{
αj + m

(l)
j

} / K∑

k=1

αk + n

µ̄
(l)
j = Eθ[µj |y, z(l)] =

{
njξj + m

(l)
j µ̂

(l)
j

} /
(nj + m

(l)
j )

σ̄
2(l)
j = Eθ[σ

2
j |y, z(l)] =

{
s2

j + ŝ
2(l)
j +

njm
(l)
j

nj + m
(l)
j

(µ̂
(l)
j − ξj)

2

} /
(νj + m

(l)
j − 2),

with

m
(l)
j =

n∑

i=1

z
(l)
ij , µ̂

(l)
j =

1

m
(l)
j

n∑

i=1

z
(l)
ij yi , ŝ

2(l)
j =

n∑

i=1

z
(l)
ij (yi − µ̂

(l)
j )2 ,

and with the z(l) = (z
(l)
1 , . . . , z

(l)
n ) simulated at the `th iteration of the MCMC algorithm.

If we use approximation (7), the DIC criterion is then

DIC4 ≈ − 4

m

m∑

l=1

n∑

i=1

K∑

j=1

tij(y, θ(l)) log{p(l)
j φ(yi|µ(l)

j , σ
2(l)
j )}

+
2

m

m∑

l=1

n∑

i=1

K∑

j=1

z
(l)
ij log{p(l)

j φ(yi|µ(l)
j , σ

2(l)
j )} .

Similar formulae apply for DIC5, with the central deviance D(θ) being based instead

on the (joint) MAP estimator.

In the case of DIC6, the central deviance also requires less computation, since it is
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based on an estimate of θ that does not depend on z. We then obtain

− 4

m

m∑

l=1

n∑

i=1

K∑

j=1

tij(y, θ(l)) log(p
(l)
j φ(yi | µ(l)

j , σ
2(l)
j ))

+ 2

n∑

i=1

K∑

j=1

tij(y, θ̄) log(p̄jφ(yi | µ̄j , σ̄
2
j )),

as an approximation to DIC6.

5.3 Conditional DICs

Since the conditional likelihood f(y|z, θ) is available, we can also use criteria DIC7 and

DIC8. The first term can be approximated in a similar fashion to the previous section,

namely as

D(Z, θ) ≈ − 2

m

m∑

l=1

n∑

i=1

K∑

j=1

tij(y, θ(l)) log φ(yi|µ(l)
j , σ

2(l)
j ) .

The second term of DIC7, D(z, θ), is readily obtained, while the computations for DIC8

of

EZ[log f(y|Z, θ̂(y,Z))|y]

are very similar to those proposed above for the approximation of DIC6.

Note however that the weights pj are no longer part of the DIC factor, except through

the posterior weights tij , since f(y|z, θ) does not depend on p.

5.4 A relationship between DIC2 and DIC4

We have

DIC2 = −4Eθ [log f(y|θ)|y] + 2 log f(y|θ̂(y)) ,

where θ̂(y) denotes a posterior mode of θ, and

DIC4 = −4Eθ,Z [log f(y,Z|θ)|y] + 2EZ [log f(y,Z|Eθ [θ|y,Z])|y] .

We can write

Eθ,Z [log f(y,Z|θ)|y] = Eθ [EZ {log f(y,Z|θ)|y, θ} |y]

= Eθ [EZ {log f(y|θ)|y, θ} |y]

+Eθ [EZ {log f(Z|y, θ)|y, θ} |y] .

Then

Eθ,Z [log f(y,Z|θ)|y] = Eθ [log f(y|θ)|y)]− Eθ [Ent {f(Z|y, θ)} |y] , (9)
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where the entropy,

Ent {f(Z|y, θ)} = −EZ {log f(Z|y, θ)|y, θ} > 0

is a measure of the mixture overlap. When the mixture components are well separated

this entropy term is near 0 and it is far from 0 when the mixture components are poorly

separated.

It follows that

DIC4 = DIC2 + 4Eθ [Ent {f(Z|y, θ)} |y]

+2EZ [log f(y,Z|Eθ[θ|y,Z])|y] − 2 log f(y|θ̂(y),

Now, we assume that

EZ [log f(y,Z|E[θ|y,Z])|y] ≈ EZ

[
log f(y,Z|θ̂(y))|y

]
.

This approximation should be valid provided that

E[θ|y, ẑ(y)] = θ̂(y)

where

ẑ(y) = arg max
z

f(z|y) .

The last two terms can be further written as

2EZ [log f(y,Z|Eθ [θ|y,Z])|y] − 2 log f(y|θ̂(y) ≈
2EZ

[
log f(Z|y, θ̂(y))|y

]
.

Then

Eθ [Ent {f(Z|y, θ)} |y] = −Eθ [EZ {log f(Z|y, θ)|y, θ} |y]

= −Eθ,Z [log f(Z|y, θ)|y]

≈ −EZ

[
log f(Z|y, θ̂(y))|y

]
.

The last approximation should be reasonable when the posterior for θ given y is suffi-

ciently concentrated around its mode.

We therefore have

DIC4 ≈ DIC2 + 2Eθ [Ent {f(Z|y, θ)} |y] , (10)

from which it follows that DIC4 > DIC2 and that the difference between the two crite-

ria is twice the posterior mean of the mixture entropy. This inequality can be verified

in the experiments that follow. The important point to note about this inequality is

that DIC4 and DIC2 are of different natures, with DIC4 penalizing poorly separated

mixtures. Note also that van der Linde (2004) provides an alternative entry to DIC

via entropy and information representations, although her paper is focussed on vari-

able selection. (Using the Fisher information in the context of mixtures is also quite

challenging (McLachlan and Krishnan 1997).)
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5.5 A numerical comparison

When calculating the various DICs for the Galaxy dataset (Roeder 1990), now used in

most papers on mixture estimation, we obtain the results presented in Table 1. As one

can see, DIC5 and DIC6 do not behave satisfactorily: the former leads to excessively

large and non-increasing pD’s, presumably because of its inconsistency in dealing with Z
and to poor MCMC approximations to the MAP estimates. The results from DIC6 are

not reliable because of computational problems in the computation of the marginal MAP

estimates. DIC7 leads to larger pD’s too, presumably as a side effect of incorporating

Z as a parameter, whereas DIC8 behaves satisfactorily with respect to pD, considering

that for a K-component mixture the number of parameters is 3K−1. Finally, note that

all DICs indicate K = 3 as the appropriate number of components. In addition, the

effective dimension for DIC3 stabilises after K = 3, indicating that the extra components

do not greatly contribute to the deviance of the model, which may not be so appropriate.

The same is observed for DIC4 to a lesser extent. DIC2 gives reasonable results until

K = 4. The subsequent degradation for K = 5 and K = 6 may come from the instability

in the plug-in estimate f(y|θ̂(y)). The adequacy of the plug-in estimates is shown in

Figures 1 and 2.

DIC2 DIC3 DIC4 DIC5 DIC6 DIC7 DIC8

K (pD2) (pD3) (pD4) (pD5) (pD6) (pD7) (pD8)

2 453 451 502 705 501 417 410

(5.56) (3.66) (5.50) (207.88) (4.48) (11.07) (4.09)

3 440 436 461 622 471 378 372

(9.23) (4.94) (6.40) (167.28) (15.80) (13.59) (7.43)

4 446 439 473 649 482 388 382

(11.58) (5.41) (7.52) (183.48) (16.51) (17.47) (11.37)

5 447 442 485 658 511 395 390

(10.80) (5.48) (7.58) (180.73) (33.29) (20.00) (15.15)

6 449 444 494 676 532 407 398

(11.26) (5.49) (8.49) (191.10) (46.83) (28.23) (19.34)

7 460 446 508 700 571 425 409

(19.26) (5.83) (8.93) (200.35) (71.26) (40.51) (24.57)

Table 1: Results for the Galaxy dataset and 20,000 MCMC simulations: observed, com-

plete and conditional DICs and corresponding effective dimensions pD.

We also analysed a dataset of 146 observations simulated from the normal mixture

0.288N (0, .22) + 0.260N (−1.5, .52) + 0.171N (2.2, 3.42) + 0.281N (3.3, .52) .

The simulation results are available in Table 3. Figure 3 represents the corresponding

estimates after 20, 000 MCMC iterations for K = 2. For this number of components,

the differences between the estimates are negligible. The same applies to Figure 3, for

K = 3. The differences start to appear for K = 4 in Figure 3. Since the correct number

of components is indeed 4, we compare the various estimates with the true values in
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Figure 1: Galaxy dataset of 82 observations with K = 2 components fitted: average

density, plug-in density with mean parameters, plug-in density with marginal MAP

parameters, and plug-in density with joint MAP parameters, The number of iterations

is 10,000 (burn-in) plus 10,000 (main).
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Figure 2: Galaxy dataset of 82 observations with K = 3, 4, 5, 6 components fitted:

average density, plug-in density with average parameters, plug-in density with marginal

MAP parameters, and plug-in density with joint MAP parameters. The number of

iterations is 10,000 (burn-in) plus 10,000 (main).
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Figure 3: Simulated dataset of 146 observations with K = 2, 3, 4, 5, 6, 7 components

fitted: average density (gold and full), plug-in density with average parameters (tomato

and dots), plug-in density with marginal MAP parameters (forest green and dots-and-

dashes), and plug-in density with joint MAP parameters (chocolate and dashes). The

number of iterations is 10,000 (burn-in) plus 10,000 (main).
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p1 p2 p3 p4 µ1 µ2 µ3 µ4 σ2
1 σ2

2 σ2
3 σ2

4

True .26 .29 .17 .28 -1.5 0 2.2 3.3 .25 .04 11.6 .25

Map .22 .39 .37 .027 -1.38 -.13 3.30 7.02 .09 .13 .53 1.64

Mean .23 .35 .35 .061 -1.27 -.02 3.19 6.33 .17 .14 .56 2.99

Mmap .21 .34 .14 .31 -1.35 -.08 3.12 3.46 .13 .11 7.04 .38

Table 2: Estimation results for the simulated dataset with 146 observations, K = 4 and

10, 000 MCMC simulations.

DIC2 DIC3 DIC4 DIC5 DIC6 DIC7 DIC8

K (pD2) (pD3) (pD4) (pD5) (pD6) (pD7) (pD8)

2 581 582 598 579 602 409 398

(5.10) (6.25) (5.12) (-13.48) (9.20) (15.73) (4.13)

3 554 557 569 481 584 317 319

(11.44) (15.08) (6.76) (-81.67) (21.56) (7.23) (8.42)

4 539 534 572 393 541 260 228

(17.0) (11.4) (9.1) (-170.2) (-21.8) (42.6) (10.0)

5 540 529 610 432 657 280 219

(21.6) (11.1) (12.0) (-165.7) (59.3) (74.7) (13.4)

6 537 527 653 486 730 251 215

(19.6) (10.3) (16.4) (-150.9) (93.0) (52.8) (16.7)

7 534 526 687 550 739 248 210

(17.86) (9.84) (20.73) (-116.62) (72.32) (58.54) (20.12)

Table 3: Results for the simulated dataset with 146 observations and 20, 000 MCMC

simulations: observed, complete and conditional DICs (first line) and corresponding

effective dimensions pD (second line).

Table 2. Figure 3 shows larger differences for K = 5, K = 6 and K = 7. Note that,

after K = 4, the predictive density hardly changes. The same phenomenon occurs in

Figure 2 for the Galaxy dataset.

Turning to Table 3, we see that DIC2 and DIC3 behave similarly as for the galaxy

dataset, except that pD3 is decreasing from K = 3 and pD2 from K = 5. DIC5 and

DIC6 are not satisfactory, since they are producing negative pD’s. (For DIC5, this is

not inconsistent with the remark on its positivity in Section 3.2 since for the mixture

example the prior is not flat.) DIC7 produces non-increasing and highly fluctuating

pD’s. Only DIC4 and DIC8 give reasonable pD’s close to 3K − 1 with DIC4 selecting

K = 3 (with K = 4 being a close second-best choice) while DIC8 is selecting K = 7.

Note that DIC5 and DIC6 select the right number of components! After 10, 000 more

MCMC iterations, we observed that DIC5 and DIC6 were still selecting K = 4 with

negative pD’s, DIC4 was selecting K = 4 too and the others were selecting K = 7.
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6 Conclusion

This paper has shown that the deviance information criterion of Spiegelhalter et al.

(2002) and the corresponding effective dimension allow for a wide range of interpre-

tations and extensions outside exponential families, as was already apparent from the

published discussion of the paper. What we have found in addition through theoretical

and experimental studies is that some of these extensions, while as “natural” as the

others, are simply not adequate for evaluating the complexity and fit of a model, either

because they give negative effective dimensions or because they exhibit too much vari-

ability from one model to the next. While Spiegelhalter et al. (2002) argue that negative

pD’s are indicative of a possibly poor fit between the model and the data, there is no

explanation of that kind in our cases: for the same data and the same model, some

DICs are associated with positive pDs and others are not.

Among the various criteria, DIC3 and DIC4 stand out as being the most reliable of

the DICs we studied: they are more resistant to poor estimates in that DIC3 does not

depend on estimates (in the classical sense) and DIC4 relies on a conditional estimate

that gets averaged over iterations. However, the behaviour of DIC3 in terms of the

corresponding pD is questionable. If one of these two DICs needs to be picked out as

the DIC for missing data models, it is undoubtedly DIC4, as it builds on the missing

data structure rather naturally, starting from the complete DIC and integrating over

the missing variables. However, DIC4 is not invariant to the choice of Z, whereas

DIC3 is. This DIC takes into account the missing data structure but it favors models

minimizing the missing information (as shown in Section 5.4). While a sensible choice

and focussing on the missing data structure, DIC4 does not necessarily lead to the most

suitable model. For instance, in the mixture case, it chooses the mixture model with

the cluster structure for which there is the greatest evidence, and this model can be

different from the most relevant model. Nonetheless, DICs can be seen as a Bayesian

version of AIC and, as pointed out by several discussants in Spiegelhalter et al. (2002),

they may underpenalize model complexity: DIC4 can therefore be expected to reduce

this tendency in a sensible way.

The fact that DIC7 may produce increasing pDs for increasing complexity is not very

surprising, but it points out a drawback with this kind of criterion, because considering

Z as an additional parameter makes the (conditional) model too adaptive to be well-

discriminating. Similarly, DIC8 is not very discriminating but it may warrant further

investigation: it is rather stable for varying Ks and it leads to pD values close to the

number of parameters in the model, at least in the case of the mixture model.
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