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Prior distributions for variance parameters in

hierarchical models(Comment on Article by

Browne and Draper)

Andrew Gelman∗

Abstract. Various noninformative prior distributions have been suggested for
scale parameters in hierarchical models. We construct a new folded-noncentral-t
family of conditionally conjugate priors for hierarchical standard deviation pa-
rameters, and then consider noninformative and weakly informative priors in this
family. We use an example to illustrate serious problems with the inverse-gamma
family of “noninformative” prior distributions. We suggest instead to use a uni-
form prior on the hierarchical standard deviation, using the half-t family when the
number of groups is small and in other settings where a weakly informative prior
is desired. We also illustrate the use of the half-t family for hierarchical modeling
of multiple variance parameters such as arise in the analysis of variance.
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1 Introduction

Fully-Bayesian analyses of hierarchical linear models have been considered for at least
forty years (Hill, 1965, Tiao and Tan, 1965, and Stone and Springer, 1965) and have
remained a topic of theoretical and applied interest (see, e.g., Portnoy, 1971, Box and
Tiao, 1973, Gelman et al., 2003, Carlin and Louis, 1996, and Meng and van Dyk, 2001).
Browne and Draper (2005) review much of the extensive literature in the course of
comparing Bayesian and non-Bayesian inference for hierarchical models. As part of
their article, Browne and Draper consider some different prior distributions for variance
parameters; here, we explore the principles of hierarchical prior distributions in the
context of a specific class of models.

Hierarchical (multilevel) models are central to modern Bayesian statistics for both
conceptual and practical reasons. On the theoretical side, hierarchical models allow a
more “objective” approach to inference by estimating the parameters of prior distribu-
tions from data rather than requiring them to be specified using subjective information
(see James and Stein, 1960, Efron and Morris, 1975, and Morris, 1983). At a practi-
cal level, hierarchical models are flexible tools for combining information and partial
pooling of inferences (see, for example, Kreft and De Leeuw, 1998, Snijders and Bosker,
1999, Carlin and Louis, 2001, Raudenbush and Bryk, 2002, Gelman et al., 2003).
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A hierarchical model requires hyperparameters, however, and these must be given
their own prior distribution. In this paper, we discuss the prior distribution for hier-
archical variance parameters. We consider some proposed noninformative prior distri-
butions, including uniform and inverse-gamma families, in the context of an expanded
conditionally-conjugate family. We propose a half-t model and demonstrate its use as
a weakly-informative prior distribution and as a component in a hierarchical model of
variance parameters.

1.1 The basic hierarchical model

We shall work with a simple two-level normal model of data yij with group-level effects
αj :

yij ∼ N(µ+ αj , σ
2
y), i = 1, . . . , nj , j = 1, . . . , J

αj ∼ N(0, σ2
α), j = 1, . . . , J. (1)

We briefly discuss other hierarchical models in Section 7.2.

Model (1) has three hyperparameters—µ, σy, and σα—but in this paper we concern
ourselves only with the last of these. Typically, enough data will be available to esti-
mate µ and σy that one can use any reasonable noninformative prior distribution—for
example, p(µ, σy) ∝ 1 or p(µ, log σy) ∝ 1.

Various noninformative prior distributions for σα have been suggested in Bayesian
literature and software, including an improper uniform density on σα (Gelman et al.,
2003), proper distributions such as p(σ2

α) ∼ inverse-gamma(0.001, 0.001) (Spiegelhalter
et al., 1994, 2003), and distributions that depend on the data-level variance (Box and
Tiao, 1973). In this paper, we explore and make recommendations for prior distributions
for σα, beginning in Section 3 with conjugate families of proper prior distributions and
then considering noninformative prior densities in Section 4.

As we illustrate in Section 5, the choice of “noninformative” prior distribution can
have a big effect on inferences, especially for problems where the number of groups J is
small or the group-level variance σ2

α is close to zero. We conclude with recommendations
in Section 7.

2 Concepts relating to the choice of prior distribution

2.1 Conditionally-conjugate families

Consider a model with parameters θ, for which φ represents one element or a subset
of elements of θ. A family of prior distributions p(φ) is conditionally conjugate for φ
if the conditional posterior distribution, p(φ|y) is also in that class. In computational
terms, conditional conjugacy means that, if it is possible to draw φ from this class
of prior distributions, then it is also possible to perform a Gibbs sampler draw of φ
in the posterior distribution. Perhaps more important for understanding the model,
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conditional conjugacy allows a prior distribution to be interpreted in terms of equivalent
data (see, for example, Box and Tiao, 1973).

Conditional conjugacy is a useful idea because it is preserved when a model is ex-
panded hierarchically, while the usual concept of conjugacy is not. For example, in the
basic hierarchical normal model, the normal prior distributions on the αj ’s are con-
ditionally conjugate but not conjugate; the αj ’s have normal posterior distributions,
conditional on all other parameters in the model, but their marginal posterior distribu-
tions are not normal.

As we shall see, by judicious model expansion we can expand the class of condition-
ally conjugate prior distributions for the hierarchical variance parameter.

2.2 Improper limit of a prior distribution

Improper prior densities can, but do not necessarily, lead to proper posterior distri-
butions. To avoid confusion it is useful to define improper distributions as particular
limits of proper distributions. For the variance parameter σα, two commonly-considered
improper densities are uniform(0, A), as A→∞, and inverse-gamma(ε, ε), as ε→ 0.

As we shall see, the uniform(0, A) model yields a limiting proper posterior density
as A → ∞, as long as the number of groups J is at least 3. Thus, for a finite but
sufficiently large A, inferences are not sensitive to the choice of A.

In contrast, the inverse-gamma(ε, ε) model does not have any proper limiting poste-
rior distribution. As a result, posterior inferences are sensitive to ε—it cannot simply
be comfortably set to a low value such as 0.001.

2.3 Weakly-informative prior distribution

We characterize a prior distribution as weakly informative if it is proper but is set up
so that the information it does provide is intentionally weaker than whatever actual
prior knowledge is available. We will discuss this further in the context of a specific
example, but in general any problem has some natural constraints that would allow a
weakly-informative model. For example, for regression models on the logarithmic or
logit scale, with predictors that are binary or scaled to have standard deviation 1, we
can be sure for most applications that effect sizes will be less than 10, or certainly less
than 100.

Weakly-informative distributions are useful for their own sake and also as necessary
limiting steps in noninformative distributions, as discussed in Section 2.2 above.

2.4 Calibration

Posterior inferences can be evaluated using the concept of calibration of the posterior
mean, the Bayesian analogue to the classical notion of “bias.” For any parameter θ, we
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label the posterior mean as θ̂ = E(θ|y) and define the miscalibration of the posterior

mean as E(θ|θ̂, y)− θ̂, for any value of θ̂. If the prior distribution is true—that is, if the
data are constructed by first drawing θ from p(θ), then drawing y from p(y|θ)—then the
posterior mean is automatically calibrated; that is its miscalibration is 0 for all values
of θ̂.

For improper prior distributions, however, things are not so simple, since it is im-
possible for θ to be drawn from an unnormalized density. To evaluate calibration in this
context, it is necessary to posit a “true prior distribution” from which θ is drawn along
with the “inferential prior distribution” that is used in the Bayesian inference.

For the hierarchical model discussed in this paper, we can consider the improper
uniform density on σα as a limit of uniform prior densities on the range (0, A), with
A → ∞. For any finite value of A, we can then see that the improper uniform density
leads to inferences with a positive miscalibration—that is, overestimates (on average)
of σα.

We demonstrate this miscalibration in two steps. First, suppose that both the true
and inferential prior distributions for σα are uniform on (0, A). Then the miscalibration
is trivially zero. Now keep the true prior distribution at U(0, A) and let the inferential

prior distribution go to U(0,∞). This will necessarily increase θ̂ for any data y (since
we are now averaging over values of θ in the range [A,∞)) without changing the true
θ, thus causing the average value of the miscalibration to become positive.

This miscalibration is an unavoidable consequence of the asymmetry in the param-
eter space, with variance parameters restricted to be positive. Similarly, there are no
always-nonnegative classical unbiased estimators of σα or σ

2
α in the hierarchical model.

Similar issues are discussed by Bickel and Blackwell (1967) and Meng and Zaslavsky
(2002).

3 Conditionally-conjugate prior distributions for hierar-

chical variance parameters

3.1 Inverse-gamma prior distribution for σ2
α

The parameter σ2
α in model (1) does not have any simple family of conjugate prior

distributions because its marginal likelihood depends in a complex way on the data
from all J groups (Hill, 1965, Tiao and Tan, 1965). However, the inverse-gamma family
is conditionally conjugate, in the sense defined in Section 2.1: if σ2

α has an inverse-
gamma prior distribution, then the conditional posterior distribution p(σ2

α |α, µ, σy, y)
is also inverse-gamma.

The inverse-gamma(α, β) model for σ2
α can also be expressed as an inverse-χ

2 distri-
bution with scale s2α = β/α and degrees of freedom να = 2α (Gelman et al., 2003). The
inverse-χ2 parameterization can be helpful in understanding the information underlying
various choices of proper prior distributions, as we discuss in Section 4.
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3.2 Folded-noncentral-t prior distribution for σα

We can expand the family of conditionally-conjugate prior distributions by applying a
redundant multiplicative reparameterization to model (1):

yij ∼ N(µ+ ξηj , σ
2
y)

ηj ∼ N(0, σ2
η). (2)

The parameters αj in (1) correspond to the products ξηj in (2), and the hierarchical
standard deviation σα in (1) corresponds to |ξ|ση in (2). This “parameter expanded”
model was originally constructed to speed up EM and Gibbs sampler computations.
The overparameterization reduces dependence among the parameters in a hierarchical
model and improves MCMC convergence (Liu, Rubin, and Wu, 1998, Liu and Wu, 1999,
van Dyk and Meng, 2001, Gelman et al., 2005). It has also been suggested that the
additional parameter can increase the flexibility of applied modeling, especially in hier-
archical regression models with several batches of varying coefficients (Gelman, 2004).
Here we merely note that this expanded model form allows conditionally conjugate
prior distributions for both ξ and ση, and these parameters are independent in the con-
ditional posterior distribution. There is thus an implicit conditionally conjugate prior
distribution for σα = |ξ|ση.

For simplicity we restrict ourselves to independent prior distributions on ξ and ση.
In model (2), the conditionally-conjugate prior family for ξ is normal—given the data
and all the other parameters in the model, the likelihood for ξ has the form of a normal
distribution, derived from

∑J
j=1 nj factors of the form (yij − µ)/ηj ∼ N(ξ, σ

2
y/η

2
j ). The

conditionally-conjugate prior family for σ2
η is inverse-gamma, as discussed in Section

3.1.

The implicit conditionally-conjugate family for σα is then the set of distributions
corresponding to the absolute value of a normal random variable, divided by the square
root of a gamma random variable. That is, σα has the distribution of the absolute value
of a noncentral-t variate (see, for example, Johnson and Kotz, 1972). We shall call this
the folded noncentral t distribution, with the “folding” corresponding to the absolute
value operator. The noncentral t in this context has three parameters, which can be
identified with the mean of the normal distribution for ξ, and the scale and degrees of
freedom for σ2

η. (Without loss of generality, the scale of the normal distribution for ξ
can be set to 1 since it cannot be separated from the scale for ση.)

The folded noncentral t distribution is not commonly used in statistics, and we find it
convenient to understand it through various special and limiting cases. In the limit that
the denominator is specified exactly, we have a folded normal distribution; conversely,
specifying the numerator exactly yields the square-root-inverse-χ2 distribution for σα,
as in Section 3.1.

An appealing two-parameter family of prior distributions is determined by restricting
the prior mean of the numerator to zero, so that the folded noncentral t distribution
for σα becomes simply a half-t—that is, the absolute value of a Student-t distribution
centered at zero. We can parameterize this in terms of scale A and degrees of freedom
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ν:

p(σα) ∝

(

1 +
1

ν

(σα
A

)2
)−(ν+1)/2

.

This family includes, as special cases, the improper uniform density (if ν = −1) and the

proper half-Cauchy, p(σα) ∝
(

σ2
α + s2α

)−1
(if ν = 1).

The half-t family is not itself conditionally-conjugate—starting with a half-t prior
distribution, you will still end up with a more general folded noncentral t conditional
posterior—but it is a natural subclass of prior densities in which the distribution of the
multiplicative parameter ξ is symmetric about zero.

4 Noninformative and weakly-informative prior distribu-
tions for hierarchical variance parameters

4.1 General considerations

Noninformative prior distributions are intended to allow Bayesian inference for param-
eters about which not much is known beyond the data included in the analysis at hand.
Various justifications and interpretations of noninformative priors have been proposed
over the years, including invariance (Jeffreys, 1961), maximum entropy (Jaynes, 1983),
and agreement with classical estimators (Box and Tiao, 1973, Meng and Zaslavsky,
2002). In this paper, we follow the approach of Bernardo (1979) and consider so-called
noninformative priors as “reference models” to be used as a standard of comparison
or starting point in place of the proper, informative prior distributions that would be
appropriate for a full Bayesian analysis (see also Kass and Wasserman, 1996).

We view any noninformative or weakly-informative prior distribution as inherently
provisional—after the model has been fit, one should look at the posterior distribution
and see if it makes sense. If the posterior distribution does not make sense, this implies
that additional prior knowledge is available that has not been included in the model,
and that contradicts the assumptions of the prior distribution that has been used. It is
then appropriate to go back and alter the prior distribution to be more consistent with
this external knowledge.

4.2 Uniform prior distributions

We first consider uniform prior distributions while recognizing that we must be explicit
about the scale on which the distribution is defined. Various choices have been proposed
for modeling variance parameters. A uniform prior distribution on log σα would seem
natural—working with the logarithm of a parameter that must be positive—but it
results in an improper posterior distribution. An alternative would be to define the
prior distribution on a compact set (e.g., in the range [−A,A] for some large value of
A), but then the posterior distribution would depend strongly on the lower bound −A
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of the prior support.

The problem arises because the marginal likelihood, p(y|σα)—after integrating over
α, µ, σy in (1)—approaches a finite nonzero value as σα → 0. Thus, if the prior density
for log σα is uniform, the posterior distribution will have infinite mass integrating to
the limit log σα → −∞. To put it another way, in a hierarchical model the data can
never rule out a group-level variance of zero, and so the prior distribution cannot put
an infinite mass in this area.

Another option is a uniform prior distribution on σα itself, which has a finite integral
near σα = 0 and thus avoids the above problem. We have generally used this nonin-
formative density in our applied work (see Gelman et al., 2003), but it has a slightly
disagreeable miscalibration toward positive values (see Section 2.4), with its infinite
prior mass in the range σα → ∞. With J = 1 or 2 groups, this actually results in an
improper posterior density, essentially concluding σα =∞ and doing no shrinkage (see
Gelman et al., 2003, Exercise 5.8). In a sense this is reasonable behavior, since it would
seem difficult from the data alone to decide how much, if any, shrinkage should be done
with data from only one or two groups—and in fact this would seem consistent with
the work of Stein (1955) and James and Stein (1960) that unshrunken estimators are
admissible if J < 3. However, from a Bayesian perspective it is awkward for the decision
to be made ahead of time, as it were, with the data having no say in the matter. In
addition, for small J , such as 4 or 5, we worry that the heavy right tail of the posterior
distribution would lead to overestimates of σα and thus result in shrinkage that is less
than optimal for estimating the individual αj ’s.

We can interpret the various improper uniform prior densities as limits of weakly-
informative conditionally-conjugate priors. The uniform prior distribution on log σα is
equivalent to p(σα) ∝ σ−1

α or p(σ2
α) ∝ σ−2

α , which has the form of an inverse-χ
2 density

with 0 degrees of freedom and can be taken as a limit of proper conditionally-conjugate
inverse-gamma priors.

The uniform density on σα is equivalent to p(σ
2
α) ∝ σ−1

α , an inverse-χ
2 density with

−1 degrees of freedom. This density cannot easily be seen as a limit of proper inverse-χ2

densities (since these must have positive degrees of freedom), but it can be interpreted
as a limit of the half-t family on σα, where the scale approaches ∞ (and any value of
ν). Or, in the expanded notation of (2), one could assign any prior distribution to ση
and a normal to ξ, and let the prior variance for ξ approach ∞.

Another noninformative prior distribution sometimes proposed in the Bayesian liter-
ature is uniform on σ2

α. We do not recommend this, as it seems to have the miscalibration
toward higher values as described above, but more so, and also requires J ≥ 4 groups
for a proper posterior distribution.

4.3 Inverse-gamma(ε, ε) prior distributions

The inverse-gamma(ε, ε) prior distribution is an attempt at noninformativeness within
the conditionally conjugate family, with ε set to a low value such as 1 or 0.01 or 0.001
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(the latter value being used in the examples in Bugs; see Spiegelhalter et al., 1994,
2003). A difficulty of this prior distribution is that in the limit of ε → 0 it yields an
improper posterior density, and thus ε must be set to a reasonable value. Unfortunately,
for datasets in which low values of σα are possible, inferences become very sensitive to
ε in this model, and the prior distribution hardly looks noninformative, as we illustrate
in Section 5.

4.4 Half-Cauchy prior distributions

The half-Cauchy is a special case of the conditionally-conjugate folded-noncentral-t fam-
ily of prior distributions for σα; see Section 3.2, which has a broad peak at zero and
a scale parameter A. In the limit A → ∞ this becomes a uniform prior density on
p(σα). Large but finite values of A represent prior distributions which we call “weakly
informative” because, even in the tail, they have a gentle slope (unlike, for example, a
half-normal distribution) and can let the data dominate if the likelihood is strong in that
region. In Sections 5.2 and 6, we consider half-Cauchy models for variance parameters
which are estimated from a small number of groups (so that inferences are sensitive to
the choice of weakly-informative prior distribution).

5 Application to the 8-schools example

We demonstrate the properties of some proposed noninformative prior densities with a
simple example of data from J = 8 educational testing experiments described in Rubin
(1981) and Gelman et al. (2003, Chapter 5 and Appendix C). Here, the parameters
α1, . . . , α8 represent the relative effects of Scholastic Aptitude Test coaching programs
in eight different schools, and σα represents the between-school standard deviations of
these effects. The effects are measured as points on the test, which was scored from 200
to 800 with an average of about 500; thus the largest possible range of effects could be
about 300 points, with a realistic upper limit on σα of 100, say.

5.1 Noninformative prior distributions for the 8-schools problem

Figure 1 shows the posterior distributions for the 8-schools model resulting from three
different choices of prior distributions that are intended to be noninformative.

The leftmost histogram shows the posterior inference for σα (as represented by 6000
simulation draws from a model fit using Bugs) for the model with uniform prior density.
The data show support for a range of values below σα = 20, with a slight tail after
that, reflecting the possibility of larger values, which are difficult to rule out given that
the number of groups J is only 8—that is, not much more than the J = 3 required to
ensure a proper posterior density with finite mass in the right tail.

In contrast, the middle histogram in Figure 1 shows the result with an inverse-
gamma(1, 1) prior distribution for σ2

α. This new prior distribution leads to changed
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σα
0 5 10 15 20 25 30

8 schools:  posterior on σα  given
uniform prior on σα

σα
0 5 10 15 20 25 30

8 schools:  posterior on σα  given
inv−gamma (1, 1) prior on σα

2

σα
0 5 10 15 20 25 30

8 schools:  posterior on σα  given
inv−gamma (.001, .001) prior on σα

2

Figure 1: Histograms of posterior simulations of the between-school standard deviation,
σα, from models with three different prior distributions: (a) uniform prior distribution
on σα, (b) inverse-gamma(1, 1) prior distribution on σ

2
α, (c) inverse-gamma(0.001, 0.001)

prior distribution on σ2
α. Overlain on each is the corresponding prior density function

for σα. (For models (b) and (c), the density for σα is calculated using the gamma
density function multiplied by the Jacobian of the 1/σ2

α transformation.) In models (b)
and (c), posterior inferences are strongly constrained by the prior distribution. Adapted
from Gelman et al. (2003, Appendix C).

inferences. In particular, the posterior mean and median of σα are lower and shrinkage
of the αj ’s is greater than in the previously-fitted model with a uniform prior distribution
on σα. To understand this, it helps to graph the prior distribution in the range for which
the posterior distribution is substantial. The graph shows that the prior distribution
is concentrated in the range [0.5, 5], a narrow zone in which the likelihood is close to
flat compared to this prior (as we can see because the distribution of the posterior
simulations of σα closely matches the prior distribution, p(σα)). By comparison, in
the left graph, the uniform prior distribution on σα seems closer to “noninformative”
for this problem, in the sense that it does not appear to be constraining the posterior
inference.

Finally, the rightmost histogram in Figure 1 shows the corresponding result with
an inverse-gamma(0.001, 0.001) prior distribution for σ2

α. This prior distribution is
even more sharply peaked near zero and further distorts posterior inferences, with the
problem arising because the marginal likelihood for σα remains high near zero.

In this example, we do not consider a uniform prior density on log σα, which would
yield an improper posterior density with a spike at σα = 0, like the rightmost graph in
Figure 1, but more so. We also do not consider a uniform prior density on σ2

α, which
would yield a posterior distribution similar to the leftmost graph in Figure 1, but with
a slightly higher right tail.

This example is a gratifying case in which the simplest approach—the uniform prior
density on σα—seems to perform well. As detailed in Gelman et al. (2003, Appendix
C), this model is also straightforward to program directly using the Gibbs sampler or
in Bugs, using either the basic model (1) or slightly faster using the expanded parame-
terization (2).

The appearance of the histograms and density plots in Figure 1 is crucially affected
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σα
0 50 100 150 200

3 schools:  posterior on σα  given
uniform prior on σα

σα
0 50 100 150 200

3 schools:  posterior on σα  given
half−Cauchy (25) prior on σα

Figure 2: Histograms of posterior simulations of the between-school standard deviation,
σα, from models for the 3-schools data with two different prior distributions on σα:
(a) uniform (0,∞), (b) half-Cauchy with scale 25, set as a weakly informative prior
distribution given that σα was expected to be well below 100. The histograms are
not on the same scales. Overlain on each histogram is the corresponding prior density
function. With only J = 3 groups, the noninformative uniform prior distribution is too
weak, and the proper Cauchy distribution works better, without appearing to distort
inferences in the area of high likelihood.

by the choice to plot them on the scale of σα. If instead they were plotted on the scale
of log σα, the inverse-gamma(0.001, 0.001) prior density would appear to be the flattest.
However, the inverse-gamma(ε, ε) prior is not at all “noninformative” for this problem
since the resulting posterior distribution remains highly sensitive to the choice of ε. As
explained in Section 4.2, the hierarchical model likelihood does not constrain log σα in
the limit log σα → −∞, and so a prior distribution that is noninformative on the log
scale will not work.

5.2 Weakly informative prior distribution for the 3-schools problem

The uniform prior distribution seems fine for the 8-school analysis, but problems arise if
the number of groups J is much smaller, in which case the data supply little information
about the group-level variance, and a noninformative prior distribution can lead to
a posterior distribution that is improper or is proper but unrealistically broad. We
demonstrate by reanalyzing the 8-schools example using just the data from the first 3
of the schools.

Figure 2 displays the inferences for σα from two different prior distributions. First we
continue with the default uniform distribution that worked well with J = 8 (as seen in
Figure 1). Unfortunately, as the left histogram of Figure 2 shows, the resulting posterior
distribution for the 3-schools dataset has an extremely long right tail, containing values
of σα that are too high to be reasonable. This heavy tail is expected since J is so low
(if J were any lower, the right tail would have an infinite integral), and using this as a
posterior distribution will have the effect of undershrinking the estimates of the school
effects αj , as explained in Section 4.2.

The right histogram of Figure 2 shows the posterior inference for σα resulting from a
half-Cauchy prior distribution of the sort described at the end of Section 3.2, with scale
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parameter A = 25 (a value chosen to be a bit higher than we expect for the standard
deviation of the underlying θj ’s in the context of this educational testing example, so
that the model will constrain σα only weakly). As the line on the graph shows, this prior
distribution is high over the plausible range of σα < 50, falling off gradually beyond this
point. This prior distribution appears to perform well in this example, reflecting the
marginal likelihood for σα at its low end but removing much of the unrealistic upper
tail.

This half-Cauchy prior distribution would also perform well in the 8-schools problem;
however it was unnecessary because the default uniform prior gave reasonable results.
With only 3 schools, we went to the trouble of using a weakly informative prior, a
distribution that was not intended to represent our actual prior state of knowledge
about σα but rather to constrain the posterior distribution, to an extent allowed by the
data.

6 Modeling variance components hierarchically

6.1 Application to a latin square Anova

We next consider an analysis of variance problem which has several variance components,
one for each source of variation. Gelman (2005) analyzes data from a 5×5×2 split-plot
latin square with five full-plot treatments (labeled A, B, C, D, E), and with each plot
divided into two subplots (labeled 1 and 2).

Source df
row 4
column 4
(A,B,C,D,E) 4
plot 12
(1,2) 1
row × (1,2) 4
column × (1,2) 4
(A,B,C,D,E) × (1,2) 4
plot × (1,2) 12

Each row of the table corresponds to a different variance component, and the
split-plot Anova can be understood as a linear model with nine variance components,
σ2

1 , . . . , σ
2
9—one for each row of the table. A default Bayesian analysis assigns a uniform

prior distribution, p(σ1, . . . , σ9) ∝ 1 (Gelman, 2005).

More generally, we can set up a hierarchical model, where the variance parameters
have a common distribution with hyperparameters estimated from the data. Based on
the analyses given above, we consider a half-Cauchy prior distribution with peak 0 and
scale A, and with a uniform prior distribution on A. The hierarchical half-Cauchy model
allows most of the variance parameters to be small but with the occasionally large σα,



526 Comment on Article by Browne and Draper

Source df
Estimated superpopulation sd’s

(with flat priors)
0 20 40 60 80 100

row 4
column 4

(A,B,C,D,E) 4
plot 12

(1,2) 1
row * (1,2) 4

column * (1,2) 4
(A,B,C,D,E) * (1,2) 4

plot * (1,2) 12

0 20 40 60 80 100

Source df
Estimated superpopulation sd’s
(with hier. half−Cauchy priors)

0 20 40 60 80 100

row 4
column 4

(A,B,C,D,E) 4
plot 12

(1,2) 1
row * (1,2) 4

column * (1,2) 4
(A,B,C,D,E) * (1,2) 4

plot * (1,2) 12

0 20 40 60 80 100

Figure 3: Posterior medians, 50%, and 95% intervals for standard deviation parameters
σk estimated from a split-plot latin square experiment. The left plot shows inferences
given uniform prior distributions on the σk’s, and the right plot shows inferences given a
hierarchical half-Cauchy model with scale fit to the data. The half-Cauchy model gives
much sharper inferences, using the partial pooling that comes with fitting a hierarchical
model.

which seems reasonable in the typical settings of analysis of variance, in which most
sources of variation are small but some are large (Daniel, 1959, Gelman, 2005).

6.2 Superpopulation and finite-population standard deviations

Figure 3 shows the inferences in the latin square example, given uniform and hierarchical
half-Cauchy prior distributions for the standard deviation parameters σk. As the left
plot shows, the uniform prior distribution does not rule out the potential for some
extremely high values of the variance components—the degrees of freedom are low, and
the interlocking of the linear parameters in the latin square model results in difficulty
in estimating any single variance parameter. In contrast, the hierarchical half-Cauchy
model performs a great deal of shrinkage, especially of the high ranges of the intervals.
(For most of the variance parameters, the posterior medians are similar under the two
models; it is the 75th and 97.5th percentiles that are shrunk by the hierarchical model.)
This is an ideal setting for hierarchical modeling of variance parameters in that it
combines separately imprecise estimates of each of the individual σk’s.

As discussed in Gelman (2005, Section 3.5), the σk’s are superpopulation parameters
in that each represents the standard deviation of an entire population of effects, of which
only a few of which were sampled for the experiment at hand. In estimating variance
parameters estimated from few degrees of freedom, it can be helpful also to look at the
finite-population standard deviation sα of the corresponding linear parameters αj .

For a simple hierarchical model of the form (1), sα is simply the standard deviation
of the J values of αj . More generally, for more complicated linear models such as
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Figure 4: Posterior medians, 50%, and 95% intervals for finite-population standard de-
viations sk estimated from a split-plot latin square experiment. The left plot shows
inferences given uniform prior distributions on the σk’s, and the right plot shows infer-
ences given a hierarchical half-Cauchy model with scale fit to the data. The half-Cauchy
model gives sharper estimates even for these finite-population standard deviations, indi-
cating the power of hierarchical modeling for these highly uncertain quantities. Compare
to Figure 3 (which is on a different scale).

the split-plot latin square, sα for any variance component is the root mean square of
the coefficients’ residuals after projection to their constraint space (see Gelman, 2005,
Section 3.1). In any case, this finite-population standard deviation s can be calculated
from its posterior simulations and, especially when degrees of freedom are low, is more
precisely estimated than the superpopulation standard deviation σ.

Figure 4 shows posterior inferences for the finite-population standard deviation pa-
rameters sα for each row of the latin square split-plot Anova, showing inferences given
the uniform and hierarchical half-Cauchy prior distributions for the variance parame-
ters σα. The half-Cauchy prior distribution does slightly better than the uniform, with
the largest shrinkage occurring for the variance component that has just one degree of
freedom. The Cauchy scale parameter A was estimated at 1.8, with a 95% posterior
interval of [0.5, 5.1].

7 Recommendations

7.1 Prior distributions for variance parameters

In fitting hierarchical models, we recommend starting with a noninformative uniform
prior density on standard deviation parameters σα. We expect this will generally work
well unless the number of groups J is low (below 5, say). If J is low, the uniform
prior density tends to lead to high estimates of σα, as discussed in Section 5.2. This
miscalibration is an unavoidable consequence of the asymmetry in the parameter space,



528 Comment on Article by Browne and Draper

with variance parameters restricted to be positive. Similarly, there are no always-
nonnegative classical unbiased estimators of σα or σ

2
α in the hierarchical model.

A user of a noninformative prior density might still like to use a proper distribution—
reasons could include Bayesian scruple, the desire to perform prior predictive checks (see
Box, 1980, Gelman, Meng, and Stern, 1996, and Bayarri and Berger, 2000) or Bayes
factors (see Kass and Raftery, 1995, O’Hagan, 1995, and Pauler, Wakefield, and Kass,
1999), or because computation is performed in Bugs, which requires proper distributions.
For a noninformative but proper prior distribution, we recommend approximating the
uniform density on σα by a uniform on a wide range (for example, U(0, 100) in the SAT
coaching example) or a half-normal centered at 0 with standard deviation set to a high
value such as 100. The latter approach is particularly easy to program as a N(0, 1002)
prior distribution for ξ in (2).

When more prior information is desired, for instance to restrict σα away from very
large values, we recommend working within the half-t family of prior distributions,
which are more flexible and have better behavior near 0, compared to the inverse-
gamma family. A reasonable starting point is the half-Cauchy family, with scale set to
a value that is high but not off the scale; for example, 25 in the example in Section
5.2. When several variance parameters are present, we recommend a hierarchical model
such as the half-Cauchy, with hyperparameter estimated from data.

We do not recommend the inverse-gamma(ε, ε) family of noninformative prior dis-
tributions because, as discussed in Sections 4.3 and 5.1, in cases where σα is estimated
to be near zero, the resulting inferences will be sensitive to ε. The setting of near-zero
variance parameters is important partly because this is where classical and Bayesian
inferences for hierarchical models will differ the most (see Draper and Browne, 2005,
and Section 3.4 of Gelman, 2005).

Figure 1 illustrates the generally robust properties of the uniform prior density on
σα. Many Bayesians have preferred the inverse-gamma prior family, possibly because
its conditional conjugacy suggested clean mathematical properties. However, by writing
the hierarchical model in the form (2), we see conditional conjugacy in the wider class
of half-t distributions on σα, which include the uniform and half-Cauchy densities on σα
(as well as inverse-gamma on σ2

α) as special cases. From this perspective, the inverse-
gamma family has nothing special to offer, and we prefer to work on the scale of the
standard deviation parameter σα, which is typically directly interpretable in the original
model.

7.2 Generalizations

The reasoning in this paper should apply to hierarchical regression models (including
predictors at the individual or group levels), hierarchical generalized linear models (as
discussed by Christiansen and Morris, 1997, and Natarajan and Kass, 2000), and more
complicated nonlinear models with hierarchical structure. The key idea is that parame-
ters αj—in general, group-level exchangeable parameters—have a common distribution
with some scale parameter which we label σα. Some of the details will change—in
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particular, if the model is nonlinear, then the normal prior distribution for the multi-
plicative parameter ξ in (2) will not be conditionally conjugate, however ξ can still be
updated using the Metropolis algorithm. In addition, when regression predictors must
be estimated, more than J = 3 groups may be necessary to estimate σα from a noninfor-
mative prior distribution, thus requiring at least weakly informative prior distributions
for the regression coefficients, the variance parameters, or both.

There is also room to generalize these distributions to variance matrices in multi-
variate hierarchical models, going beyond the commonly-used inverse-Wishart family
of prior distributions (Box and Tiao, 1973), which has problems similar to the inverse-
gamma for scalar variances. Noninformative or weakly informative conditionally-con-
jugate priors could be applied to structured models such as described by Barnard,
McCulloch, and Meng (2000) and Daniels and Kass (1999, 2001), expanded using mul-
tiplicative parameters as in Liu (2001) to give the models more flexibility.

Further work needs to be done in developing the next level of hierarchical models, in
which there are several batches of exchangeable parameters, each with their own variance
parameter—the Bayesian counterpart to the analysis of variance (Sargent and Hodges,
1997, Gelman, 2005). Specifying a prior distribution jointly on variance components at
different levels of the model could be seen as a generalization of priors on the shrinkage
factor, which is a function of both σy and σα (see Daniels, 1999, Natarajan and Kass,
2000, and Spiegelhalter, Abrams, and Myles, 2004, for an overview). In a model with
several levels, it would make sense to give the variance parameters a parametric model
with hyper-hyperparameters. This could be the ultimate solution to the difficulties of
estimating σα for batches of parameters αj where J is small, and we suppose that the
folded-noncentral-t family could be useful here, as illustrated in Section 6.

Appendix: R and Bugs code for the hierarchical model
with half-Cauchy prior density

Computations for the hierarchical normal model are most conveniently performed using
Bugs (Spiegelhalter et al., 1994, 2003) as called from R (R Development Core Team,
2003), or by programming the Gibbs sampler directly in R. Both these strategies are
described in detail in Gelman et al. (2003, Appendix C). Here we give an Bugs imple-
mentation of the 8-schools model with the half-Cauchy prior distribution (that is, the
half-t with degrees-of-freedom parameter ν = 1).

We put the following Bugs code in the file schools.halfcauchy.bug:

# Bugs model: a half-Cauchy prior distribution on sigma.theta is induced

# using a normal prior on xi and an inverse-gamma on tau.eta

model {

for (j in 1:J){ # J = the number of schools

y[j] ~ dnorm (theta[j], tau.y[j]) # data model: the likelihood

theta[j] <- mu.theta + xi*eta[j]
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tau.y[j] <- pow(sigma.y[j], -2)

}

xi ~ dnorm (0, tau.xi)

tau.xi <- pow(prior.scale, -2)

for (j in 1:J){

eta[j] ~ dnorm (0, tau.eta) # hierarchical model for theta

}

tau.eta ~ dgamma (.5, .5) # chi^2 with 1 d.f.

sigma.theta <- abs(xi)/sqrt(tau.eta) # cauchy = normal/sqrt(chi^2)

mu.theta ~ dnorm (0.0, 1.0E-6) # noninformative prior on mu

}

We can then set up the data and call the Bugs model from R (using the bugs.R
routines at Gelman, 2003). The scale parameter in the half-Cauchy distribution is
prior.scale, which we set to the value 25 in the R code.

# R code for calling the Bugs 8-schools model with half-Cauchy prior dist

schools <- read.table ("schools.dat", header=T)

J <- nrow (schools)

y <- schools$estimate

sigma.y <- schools$sd

prior.scale <- 25

data <- list ("J", "y", "sigma.y", "prior.scale")

inits <- function (){

list (eta=rnorm(J), mu.theta=rnorm(1), xi=rnorm(1), tau.eta=runif(1))}

parameters <- c ("theta", "mu.theta", "sigma.theta")

schools.sim <- bugs (data, inits, parameters, "schools.halfcauchy.bug",

n.chains=3, n.iter=1000)
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