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Warped Dynamic Linear Models for Time
Series of Counts∗

Brian King† and Daniel R. Kowal‡

Abstract. Dynamic Linear Models (DLMs) are commonly employed for time se-
ries analysis due to their versatile structure, simple recursive updating, ability to
handle missing data, and probabilistic forecasting. However, the options for count
time series are limited: Gaussian DLMs require continuous data, while Poisson-
based alternatives often lack sufficient modeling flexibility. We introduce a novel
semiparametric methodology for count time series by warping a Gaussian DLM.
The warping function has two components: a (nonparametric) transformation op-
erator that provides distributional flexibility and a rounding operator that ensures
the correct support for the discrete data-generating process. We develop conjugate
inference for the warped DLM, which enables analytic and recursive updates for
the state space filtering and smoothing distributions. We leverage these results
to produce customized and efficient algorithms for inference and forecasting, in-
cluding Monte Carlo simulation for offline analysis and an optimal particle filter
for online inference. This framework unifies and extends a variety of discrete time
series models and is valid for natural counts, rounded values, and multivariate
observations. Simulation studies illustrate the excellent forecasting capabilities of
the warped DLM. The proposed approach is applied to a multivariate time se-
ries of daily overdose counts and demonstrates both modeling and computational
successes.
Keywords: discrete data, state-space model, particle filter, selection normal.

1 Introduction
Count time series data inherit all the complexities of continuous time series data: the
time-ordered observations may be multivariate, seasonal, dependent on exogenous vari-
ables, and exhibit a wide variety of autocorrelation structures. At the same time, count
data often present uniquely challenging distributional features, including zero-inflation,
over-/underdispersion, boundedness or censoring, and heaping. Additionally, discrete
data require distinct strategies for probabilistic forecasting, uncertainty quantification,
and evaluation. As modern datasets commonly feature higher resolutions and lengthier
time series, computational tools for both online and offline inference and forecasting are
in demand. Fundamentally, the goals in count time series modeling are similar to those in
the continuous setting: forecasting, trend filtering/smoothing, seasonal decomposition,
and characterization of inter- and intra-series dependence, among others.
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In this paper, we develop methods, theory, and computing tools for a broad class
of multivariate state space models that address each of these challenges and objectives.
The core model is defined by warping a Gaussian Dynamic Linear Model (DLM; West
and Harrison, 1997), which we refer to as a warped DLM (warpDLM):

yt = h ◦ g−1(zt) (warping) (1)
{zt}Tt=1 ∼ DLM (see (3) and (4)) (2)

where yt ∈ N
n is the observed count data and zt ∈ R

n is continuous latent data.
The warping has two components: a rounding operator h : T → N

n, which ensures the
correct support for the discrete data-generating process, and a monotone transformation
function g : T → R

n, which endows (possibly nonparametric) flexibility in the marginal
distributions. The latent DLM enables straightforward embedding of familiar dynamic
modeling structures such as local levels, seasonality, or covariates, along with a natural
way of dealing with missing data. Note that this article focuses on modeling counts, but
the framework is easily adaptable for general integer-valued or rounded data.

To isolate the rounding and transformation operations, the warping operation may
be decomposed into yt = h(y∗

t ) and zt = g(y∗
t ) for a latent continuous variable y∗

t . We
emphasize that the warpDLM is fundamentally distinct from the “transformed DLM”
strategy of (i) fitting a Gaussian DLM to (possibly transformed, e.g., logarithmically)
count data and (ii) rounding the resulting (continuous) forecasts. The “transformed
DLM” fails to account for the discreteness of the data in the model-fitting process and
introduces a critical mismatch between the fitted model and the data-generating pro-
cess. If the terminal rounding step is omitted, then the data-generating process is not
discrete; yet unless the rounding step is included within the model-fitting process—as
in the warpDLM—then the fitted model fails to account for crucial features in the data.
In particular, the rounding operation is a nontrivial component of the model: within the
warpDLM, h provides the capability to model challenging discrete distributional fea-
tures, such as zero-inflation, boundedness, or censoring (see Section 2). Transformation-
only models are known to be ineffective in many settings, such as low counts (O’Hara
and Kotze, 2010), yet the warpDLM excels precisely in this case (see Section 5.2).

A key contribution of this article is to develop conjugate inference for the warpDLM.
In particular, we show that the warpDLM likelihood is conjugate to the selection normal
distribution (e.g., Arellano-Valle et al., 2006). Based on this result, we derive analytic
and recursive updates for the warpDLM filtering and smoothing distributions. Cru-
cially, we provide direct Monte Carlo simulators for these distributions—as well as the
count-valued forecasting distribution—and construct an optimal particle filter for online
inference. These models, derivations, and algorithms remain valid in the multivariate
setting, and provide significant advancements over existing latent models for count time
series (e.g., Jia et al., 2021). To the best of our knowledge, these results are unique for
multivariate count time series models.

The warpDLM offers a unified framework for several discrete data models (dynamic
as well as static) and incorporates strategies which have proven successful in other re-
lated methods. In the non-dynamic realm, Siegfried and Hothorn (2020) demonstrated
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the benefits of learned transformations for discrete data linear regression, while Kowal
and Wu (2021) adopted a related transformation and rounding strategy to model heaped
count data. Both took a frequentist approach to estimation. Among Bayesian methods,
Canale and Dunson (2011) and Canale and Dunson (2013) similarly applied rounded
Gaussian and Dirichlet processes, respectively, without the transformation consider-
ations. Kowal and Canale (2020) showcased the advantage of both the rounding and
transformation components within a static regression setting, and Kowal and Wu (2022)
extended this framework to incorporate Bayesian nonparametric estimation of the trans-
formation. Looking to dynamic models, when g is viewed as a copula, the warpDLM
resembles the count time series model proposed by Jia et al. (2021). Unlike Jia et al.
(2021), we do not focus on stationary latent Gaussian processes, but rather incorporate
DLMs to enable nonstationary modeling, dynamic covariates, and Bayesian inference
and forecasting within a familiar setting. The warpDLM also generalizes recent work
done in the binary data space, in particular the dynamic probit model of Fasano et al.
(2021). In doing so, we construct novel theory utilizing a broader class of distributions
and requiring distinct computations of relevant posterior quantities.

The warpDLM framework falls in the category of generalized state space models,
which are traditionally separated into two classes, stemming from Cox et al. (1981):
parameter-driven and observation-driven. In observation-driven models, the state pro-
cess is treated as an explicit function of past data values, and methods often utilize
likelihood-based inference born out of GLM theory (see Fokianos, 2015 for a review).
Bayesian methods, including the warpDLM framework, are more commonly parameter-
driven, which means the latent state parameter is treated as stochastic; model learning
typically proceeds via recursive updating, e.g., using the Kalman filter (Kalman, 1960).
The DLM is the most well-known model in this category, but relies on Gaussian as-
sumptions unmet by count data. Dynamic Generalized Linear Models (DGLMs) were
developed to adapt the state space framework for non-Gaussian data within the expo-
nential family (West et al., 1985). For most count data, Poisson is the only available
observational density that belongs to the exponential family. Binomial DGLMs are ap-
plicable for bounded data, yet perform quite poorly in the case of zero-inflation or
heaping on the boundary (see Section 5.2). The negative binomial distribution with
fixed dispersion parameter is also exponential family, but there is often little guidance
for determining the dispersion parameter. Berry and West (2019) recently extended the
DGLM family by mixing Bernoulli and Poisson DGLMs to better model zero-inflated
and overdispersed count data.

The Poisson DGLM and extensions provide “data coherent” (Freeland and McCabe,
2004) inferences and forecasts, in the sense that predictions are appropriate to the type
of data (count time series), but the closed-form Kalman filtering results are generally
unavailable. In most DGLM specifications, the evolution equation is assumed Gaussian
(see (4)), which necessitates linearized approximations or MCMC algorithms for smooth-
ing, filtering, and forecasting. West et al. (1985) prioritized closed-form and conjugate
recursions, yet require approximate and moment-based (rather than distributional) up-
dates for state parameters. Fahrmeir (1992) designed an extended Kalman Filter to
estimate posterior modes in a multivariate setting. Durbin and Koopman (2000) used
importance sampling based on a linear approximation. Frühwirth-Schnatter and Wagner
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(2006) constructed an approximate Gibbs sampler using data augmentation and mixture
sampling. Another strategy is to replace the Gaussian evolution equation. Gamerman
et al. (2013) used a Poisson model with a multiplicative state update to preserve an-
alytic and recursive inference. However, this updating structure has limited dynamic
flexibility, for example to include seasonality or covariates. Aktekin et al. (2018) pro-
posed a multivariate extension of this multiplicative model, but the analytic updating
results were not preserved and the multivariate structure only accommodated positive
correlations among the series. Another exception is Bradley et al. (2018), who proposed
log-Gamma processes that are conditionally conjugate to the Poisson distribution. This
model still requires Gibbs sampling for all state smoothing, filtering, and forecasting
distributions.

The common limitations among existing state space models for count data are (i) a
lack of exact, coherent, and recursive updates for filtering, smoothing, and forecasting
distributions and (ii) restricted options for count-valued distributions. The warpDLM
framework directly addresses and overcomes both limitations.

The paper is organized as follows. Section 2 introduces DLMs, the proposed model,
and examples for the rounding and transformation. In Section 3, we derive the smooth-
ing, filtering, and forecasting distributions for the warpDLM. We discuss computing
strategies for online and offline inference in Section 4. Finally, we present forecasting re-
sults on simulated data as well as a real-data application in Section 5 before concluding.
Supplementary Material (King and Kowal, 2023) includes proofs of presented theorems,
additional simulations, and further details on the application data and model specifica-
tion. Code to reproduce all findings is also available on GitHub. warpDLM functionality
is included in the R package countSTAR (King and Kowal, 2023), which is available on
CRAN and documented in an online vignette.

2 Dynamic Linear Models and Time Series of Counts
The broad success of Bayesian time series analysis has largely been driven by Dynamic
Linear Models (DLMs), also known as linear state space models. The DLM framework
subsumes ARIMA models and provides decomposition of time series, dynamic regression
analysis, and multivariate modeling capabilities. Additionally, the sequential updating
structure provides a simple way to deal with missing observations (cf. Durbin and Koop-
man, 2012, Section 2.7). DLMs are widely popular not only because of their versatility,
but also because the filtering, smoothing, and forecasting distributions are available in
closed-form via the recursive Kalman filter.

A DLM is defined by two equations: (i) the observation equation, which specifies
how the observations are related to the latent state vector and (ii) the state evolution
equation, which describes how the states are updated in a Markovian fashion. We present
the Gaussian DLM for an observable continuous n-dimensional time series {zt}Tt=1, but
note that these continuous variables are latent (i.e., unobservable) within the warpDLM:

zt = Ftθt + vt, vt ∼ Nn(0,Vt) (3)
θt = Gtθt−1 + wt, wt ∼ Np(0,Wt) (4)

https://github.com/bking124/warpDLM-reproducible-code
https://CRAN.R-project.org/package=countSTAR
https://bking124.github.io/countSTAR/articles/countSTAR.html
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for t = 1, . . . , T , where {vt,wt}Tt=1 are mutually independent and θ0 ∼ Np(a0,R0).
Depending on the DLM specification, the p-dimensional state vector θt could describe a
local level, regression coefficients, or seasonal components, among other features. Com-
mon choices of the n × p observation matrix Ft include the identity (n = p), a matrix
of indicators that selects certain elements of θt (e.g., for structural time series models),
and covariate values (e.g., for dynamic regression analysis). The p × p state evolution
matrix Gt is frequently the identity but can be more complex, for example to cap-
ture seasonality. The observation and evolution covariance matrices are Vt (n× n) and
Wt (p× p), respectively. Taken together, the quadruple {Ft,Gt,Vt,Wt}Tt=1 defines the
DLM. Often, these matrices will be time-invariant.

The Gaussian DLM (3)–(4) is data-incoherent for discrete time series: the forecast-
ing distribution does not match the support of the data. DGLMs offer one resolution by
replacing the Gaussian observation equation with an exponential family distribution.
However, the primary option for count data is the Poisson distribution, which is often
inadequate and requires additional modeling layers for common discrete data features
such as zero-inflation, over/underdispersion, boundedness or censoring, and heaping.
These additional layers introduce significant modeling and computational complexity.
By comparisons, the warpDLM is capable of modeling each of these distributional fea-
tures under default specifications via the warping (rounding and transformation) oper-
ation, yet maintains the useful and familiar state space formulation through the latent
DLM. By leveraging Gaussian state space models, the warpDLM builds on the long
history of theoretical and computational tools (West and Harrison, 1997; Petris et al.,
2009; Prado et al., 2021), and operates within a familiar setting for practitioners.

The warpDLM framework links count data yt with a (latent) Gaussian DLM for zt
in (3)–(4) via the warping operation (1). The rounding operation h : T → N

n serves as
the connection mechanism between the real-valued latent space and the non-negative
integers, setting h(y∗) = j for any y∗ ∈ Aj . These pre-image sets Aj form a disjoint
partition of the space T . In the univariate setting, Aj = [aj , aj+1) is simply an interval.
The warpDLM likelihood can thus be written as

P(yt = j|θ) = P{zt ∈ g(Aj)|θ}, t = 1, . . . , T (5)

for j ∈ N
n, where zt ∈ g(Aj) is defined elementwise when yt is multivariate.

Both components of the warping operation serve important purposes that lead di-
rectly to desirable model properties. The rounding function ensures that the warpDLM
has the correct support for the (possibly bounded or censored) count data. For simplic-
ity, suppose n = 1; generalizations occur by applying these specifications elementwise.
By default, we take the rounding function to be the floor function, so Aj = [j, j + 1).
In addition, we include the zero modification g(A0) = (−∞, 0) so that yt = 0 whenever
zt < 0. This specification maps much of the latent space to zero, with persistence of zeros
determined by the DLM (3)–(4), for example, P(yt = 0|yt−1 = 0) = P(zt < 0|zt−1 < 0).
Similarly, when there is a known upper bound ymax due to natural bounds or censoring,
we may simply set Aymax = [ymax,∞) so that the warpDLM has the correct support,
P(yt ≤ ymax|θ) = 1. These useful rounding operation properties are formalized in Kowal
and Canale (2020) and Kowal and Wu (2021). Importantly, the rounding operator does
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not require any modification to the computing algorithms: once it is specified, inference
proceeds the exact same way for all choices of h.

While the rounding operation matches the discreteness and support of the data, the
transformation enables (nonparametric) distributional flexibility. We apply the transfor-
mation elementwise, g(y∗

t ) = (g1(y∗1,t), . . . , gn(y∗n,t))′, and again present the n = 1 case
for simplicity. The only requirement of the transformation g is that it be strictly mono-
tonic, which preserves ordering in the latent data space and ensures an inverse exists.
We present both parametric and nonparametric modeling strategies. Parametric exam-
ples include classical transformations of count data, such as logarithmic, square-root,
or identity transformations, and introduce no additional parameters into the model.

The nonparametric strategy uses a flexible and data-driven approach to infer the
transformation based on the marginal distribution of each component of y. Specifically,
let Aj = [aj , aj+1) as above and consider n = 1. The cumulative distribution function
(CDF) of y and z are linked via Fy(j) = Fz{g(aj+1)}, which suggests the transformation

ĝ0(aj+1) = ȳ + ŝyΦ−1{F̃y(j)}, (6)

where F̃y is an estimate or model for Fy and ȳ and ŝy are the sample mean and
sample standard deviation, respectively, of {yt}Tt=1, to match the marginal moments
of y and z (Kowal and Wu, 2021). We smoothly interpolate (yt, ĝ0(ayt+1)) using a
monotonic spline, which ensures that the warpDLM is supported on N instead of only
the observed data values. Hence, a (nonparametric) model for g may be equivalently
specified by a (nonparametric) model for Fy. We adopt the (rescaled) empirical CDF
F̃y(j) = (T + 1)−1 ∑T

t=1 I(yt ≤ j), which implies a semiparametric model for the
warpDLM. Many other models for Fy are compatible within the warpDLM, including
Bayesian nonparametric models and parametric distributions (e.g., Poisson or Negative
Binomial marginals). By design, the model for the transformation g is decoupled from
both the rounding operator h and the DLM (3)–(4), so the subsequent derivations and
algorithms require only trivial modifications for distinct choices of g.

The nonparametric transformation serves as a reasonable default across a variety
of scenarios, as suggested by our results in Section 5 and further confirmed in other
(non-time series) settings (e.g. Kowal and Wu, 2021). To compare models with different
transformations, there are a variety of choices. In the simulation study of Section 5.2,
we select the best model based on out-of-sample forecasting performance using leave-
future-out cross-validation. However, in practice, any Bayesian model comparison metric
could be used, such as the widely applicable or Watanabe-Akaike information criterion
(WAIC, Watanabe, 2010) or approaches more specifically tailored to time series analysis
(Bürkner et al., 2020).

3 Exact Filtering and Smoothing
In this section, we derive the recursive updates for the warpDLM filtering, smoothing,
and forecasting distributions. Currently, these exact results stemming from a coherent
joint distribution (1)–(2) are unique among state space models for multivariate count
(or rounded) data, and crucially enable MCMC-free inference and forecasting.
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3.1 Selection Distributions and the warpDLM

Consider the first time step t = 1 of the warpDLM. Here, we omit the time subscripts
for simplicity. The latent data (2) are described by the two DLM equations (3)–(4),
which can be rewritten as a single equation

z = Fθ + v, v ∼ Nn(0,V ) (7)

with θ := θ1 and the prior θ ∼ Np(μθ = Ga0,Σθ = GR0G
′ + W ). Using the likeli-

hood (5), the posterior distribution is

p(θ|y) = p(θ|z ∈ C) = p(θ)p{z ∈ C|θ}
p{z ∈ C} (8)

which is also the first-step filtering distribution. Within the warpDLM, conditioning
on y is equivalent to conditioning on z belonging to a set C = g(Ay). Although the
representation is general, this set is typically simple: the default floor operator for h
implies that Ay = [y1, y1 + 1) × · · · × [yn, yn + 1), so that z ∈ C implies that each
element of z belongs to a (transformed) interval.

A distribution of the form (8) is known as a selection distribution (Arellano-Valle
et al., 2006). When the two variables θ and z are jointly normal—as in the warpDLM—
the resulting distribution is a selection normal (SLCT-N). More formally, given the joint
distribution (

z
θ

)
∼ Nn+p

{(
μz

μθ

)
,

(
Σz Σzθ

Σ′
zθ Σθ

)}

we denote the conditional random variable [θ|z ∈ C] ∼ SLCT-Nn,p(μz,μθ,Σz,Σθ,
Σzθ, C) for constraint region C. This random variable has density

p(θ|z ∈ C) = φp(θ;μθ,Σθ)
Φ̄n(C;ΣzθΣ−1

θ (θ − μθ) + μz,Σz − ΣzθΣ−1
θ Σ′

zθ)
Φ̄n(C;μz,Σz)

(9)

where φp(·;μ,Σ) denotes the Gaussian density function of a Gaussian random variable
with mean μ and covariance Σ and Φ̄n(C;μ,Σ) =

∫
C φn(x;μ,Σ)dx. The density (9)

is somewhat unwieldy in practice, but there is also a constructive representation which
allows for direct Monte Carlo simulation from the posterior density p(θ|y) (see Sec-
tion 4).

For the first-step model (7) with prior θ ∼ Np(μθ,Σθ), we report the exact posterior
distribution:

Theorem 1. Under (7), the posterior distribution is [θ|y] ∼ SLCT-Nn,p(μz = Fμθ,μθ,
Σz = FΣθF

′ + V ,Σθ,Σzθ = FΣθ, C = g(Ay)).

The Gaussian prior in Theorem 1 is conjugate: Gaussian distributions can be viewed
as a limiting case of a SLCT-Nn,p where n = 0. However, the conjugacy suggests a more
general prior for θ, namely, the SLCT-N distribution:
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Lemma 1. Consider the prior θ ∼ SLCT-Nn0,p(μz0 ,μθ,Σz0 ,Σθ,Σz0θ, C0) with the
latent-data observation equation (7). The posterior is

[θ|y] ∼ SLCT-Nn0+n,p

{
μz1 =

(
μz0

Fμθ

)
,μθ,Σz1 =

(
Σz0 Σz0θF

′

FΣ′
z0θ

FΣθF
′ + V

)
,Σθ,

Σz1θ =
(

Σz0θ

FΣθ

)
, C1 = C0 × g(Ay)

}
.

Thus the selection normal distribution is conjugate with the warpDLM likelihood.
Moreover, since the Gaussian distribution is closed under linear transformations, this
property is preserved for the selection normal distribution (Arellano-Valle et al., 2006).
These results link the selection normal distribution with the warpDLM prior-to-posterior
updating mechanism, and provide the key building blocks for deriving the warpDLM
filtering and smoothing distributions.

3.2 Filtering and Smoothing for Warped DLMs

We now proceed to the most general setting for warpDLM, using the conjugacy and
closure under linear transformation results to derive the exact forms of the filter-
ing, smoothing, and forecasting distributions. Throughout, we assume the quadruple
{Ft,Gt,Vt,Wt} for t = 1, . . . , T is known. Estimation of variance parameters is ad-
dressed in Section 4.

Filtering

Adding back the appropriate subscripts to Theorem 1, the first-step filtering distribution
is (θ1|y1) ∼ SLCT-Nn,p(μz1 = F1a1,μθ = a1,Σz1 = F1R1F

′
1 + V1,Σθ = R1,Σz1θ =

F1R1,C1 = g(Ay1)), where a1 = G1a0 and R1 = G1R0G
′
1 +W1. Given the first-step

filtering distribution, we proceed inductively for time t:

Theorem 2. Let (θt−1|y1:t−1) ∼ SLCT-Nn(t−1),p(μzt−1|t−1 ,μθt−1|t−1 ,Σzt−1|t−1 ,
Σθt−1|t−1 ,Σ(zθ)t−1|t−1 , Ct−1|t−1) be the filtering distribution at time t − 1 under the
warpDLM. Then the one-step-ahead state predictive distribution at t is

(θt|y1:t−1) ∼ SLCT-Nn(t−1),p(μzt|t−1 ,μθt|t−1 ,Σzt|t−1 ,Σθt|t−1 ,Σ(zθ)t|t−1 , Ct|t−1) (10)

with μzt|t−1 = μzt−1|t−1 , μθt|t−1 = Gtμθt−1|t−1 , Σzt|t−1 = Σzt−1|t−1 , Σθt|t−1 =
GtΣθt−1|t−1G

′
t + Wt, Σ(zθ)t|t−1 = Σ(zθ)t−1|t−1G

′
t, and Ct|t−1 = Ct−1|t−1. Furthermore,

the filtering distribution at time t is

(θt|y1:t) ∼ SLCT-Nn(t),p(μzt|t ,μθt|t ,Σzt|t ,Σθt|t ,Σ(zθ)t|t , Ct|t) (11)

with μzt|t =
( μzt|t−1

Ftμθt|t−1

)
, μθt|t = μθt|t−1 , Σzt|t =

(
Σzt|t−1 Σ(zθ)t|t−1F

′
t

FtΣ′
(zθ)t|t−1

FtΣθt|t−1F
′
t+Vt

)
, Σθt|t =

Σθt|t−1 , Σ(zθ)t|t =
(

Σ(zθ)t|t−1
FtΣθt|t−1

)
, and Ct|t = Ct|t−1 × g(Ayt).
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The state predictive distribution updating in (10) is analogous to that of the Kalman
filter, but the filtering distribution update in (11) has a different form. In the Kalman
filter, the filtering distribution parameters are updated by taking the previous best
estimate for the states (from the state predictive distribution) and “correcting” them
using information gained from the new observation. Under the warpDLM, the previous
parameters are not corrected; instead, the dimension of the new filtering distribution
increases, with the latest data point controlling the bounds over which the latent state
can vary. The growing dimension ensures we are retaining all the information about the
states, although it also means that sampling can become demanding for longer time
series (see Section 4 for discussion). The selection region C also grows in size with each
update, but from a storage perspective this is not burdensome: the region Ct|t adds
an interval for each component of yt, which simply requires appending a row to two
(t−1)×n matrices. Importantly, the parameter updates depend on the new observation
only through C, which implies that the system matrices do not need to be updated
recursively. This point is better clarified by considering the smoothing distribution.

Smoothing

The joint smoothing distribution is p(θ1:T |y1:T ) where T is the terminal time point. Most
commonly, the smoothing distribution in a DLM is obtained by first filtering “forward”
recursively and then smoothing “‘backward” in time (Rauch et al., 1965). This strategy
targets the marginal smoothing distributions p(θt|y1:T ) and requires modifications to
access the joint smoothing distribution (e.g., Durbin and Koopman, 2002).

Within the warpDLM, we instead target the joint smoothing distribution directly
and analytically. Crucially, this process does not require any preliminary passes through
the data: all smoothing parameters can be constructed a priori through matrix multi-
plications. Let G1:t = GtGt−1 · · ·G1 and μθ = (G1:1a0, . . . ,G1:Ta0), a pT -dimensional
vector. Now, let Rt = GtRt−1G

′
t +Wt for t = 1, . . . , T . Then the covariance matrix of

θ is a pT ×pT matrix with p×p diagonal block entries of Σθ[t, t] = Rt = G1:tR0G
′
1:t +∑t

q=2 Gq:tWq−1G
′
q:t+Wt and cross covariance entries (for t > q) Σθ[t, q] = Σθ[q, t]� =

G(q+1):tΣθ[q, q]. We also define two block diagonal matrices, F and V, with diagonal
entries of Ft and Vt, respectively, for t = 1, . . . , n, so F is a nT × pT matrix and V is
a nT × nT matrix. Finally, let C1:T = (g(Ay1), . . . , g(AyT

)) be the matrix of selection
intervals through time T . The joint smoothing distribution is given below.

Theorem 3. Under the warpDLM, the joint smoothing distribution is

(θ1:T |y1:T ) ∼ SLCT-NnT,pT {μz=Fμθ,μθ,Σz=V + FΣθF
′,Σθ,Σzθ=FΣθ, C=C1:T }.

(12)

These results can be applied to the time s filtering distribution p(θ1:s|y1:s) to provide
a more concise representation. Using the analogous smoothing parameters but applied
up to time s instead of T , we can rewrite the parameters of the filtering distribution
as μzs|s = Fμθ,μθs|s = Gs

1a0,Σzs|s = V + FΣθF
′,Σ(zθ)s|s = FΣθ,Σθs|s = Rs. Al-

though these covariance terms are quite complex in terms of notation, constructing such
matrices is computationally straightforward via matrix multiplications and additions.
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The marginal smoothing distribution p(θt|y1:T ) at each time t is readily available
from Theorem 3. In particular, the SLCT-N family is closed under marginalization, so
parameters for the observations stay the same as in the joint case, and we simply pick
off the correct block of the state parameters. This is formalized in the corollary below.

Corollary 1. Under the warpDLM, the marginal smoothing distribution at time t is

(θt|y1:T ) ∼ SLCT-NnT,p{μzt|T = Fμθ,μθt|T = μθ[t],Σzt|T = V + FΣθF
′,

Σθt|T = Σθ[t, t],Σ(zθ)t|T = Σzθ[, t], C = C1:T },
(13)

where Σzθ[, t] refers to the t-th block of p columns in Σzθ.

The joint smoothing distribution also enables direct computation of the warpDLM
marginal likelihood:

Corollary 2. Under the warpDLM, the marginal likelihood is

p(y1:T ) = Φ̄nT (C1:T ;μz = Fμθ,Σz = V + FΣθF
′). (14)

The marginal likelihood is useful for marginal maximum likelihood estimation of the
variance parameters in (3)–(4) and other model comparison metrics.

Forecasting

A primary advantage of the warpDLM is the availability of discrete and correctly-
supported forecasting distributions. Let μzt+1|t+1 and Σzt+1|t+1 denote parameters of
p(y1:(t+1)) analogous to (14), and let C1:t be the vector of selection intervals up to the
known time t. Then the one step forecasting distribution is

p(yt+1|y1:t) =
p(y1:(t+1))
p(y1:t)

=
Φ̄n(t+1){C1:t × g(Ayt+1);μzt+1|t+1 ,Σzt+1|t+1}

Φ̄nt(C1:t;μzt|t ,Σzt|t)
. (15)

The h-step ahead forecasting distribution can be defined similarly. In most applications,
the forecasting distribution is defined over all non-negative integers, and thus evaluating
it at every point is not possible. However, in practice most time series of counts take
values in a small range (especially locally), and thus the forecasting distribution only has
significant mass on a small range of values. For short to medium time series applications,
evaluating these probabilities is quite fast and does not pose a computational burden.

More directly, it is straightforward to simulate from the forecasting distribution
given draws from the filtering distribution. Specifically, let θ∗

t ∼ p(θt|y1:t) denote a
draw from the filtering distribution. By passing this draw through the DLM, the evolu-
tion equation (4) samples θ∗∗

t+1 ∼ Np(Gt+1θ
∗
t ,Wt+1) and the observation equation (3)

samples z∗
t+1 ∼ Nn(Ftθ

∗∗
t+1,Vt+1), which equivalently yields a draw from (zt+1|y1:t).

By retaining ỹt+1 = h ◦ g−1(z∗
t+1), we obtain a draw from the one-step forecasting

distribution of the warpDLM; multi-step forecasting proceeds similarly. Hence, the pri-
mary computational cost is the draw from the filtering distribution, which is detailed
in Section 4.
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Missing Data

The warpDLM seamlessly handles missing data in any component of yt at any time t.
Notably, the filtering, smoothing, and forecasting distributions depend on yt only
through the implied constraint region (i.e., the collection of intervals). Hence, the ab-
sence of an observation yjt implies that the interval, such as [g(yjt), g(yjt+1)), is simply
replaced by the interval (−∞,∞): there is no information about yjt and therefore no
constraint for the latent zjt. As a result, the modifications for the filtering, smoothing,
and forecasting distributions in the presence of missingness are trivial both analytically
and computationally. This result also suggests that the warpDLM is readily applicable
to discrete time series data observed at mixed frequencies.

4 Computing
We develop computing strategies for offline and online inference and forecasting. For
offline inference, we propose direct Monte Carlo sampling from the relevant filtering or
smoothing distributions. We also introduce a Gibbs sampler for offline inference, which
decreases raw computing time for large T , but sacrifices some Monte Carlo efficiency
due to the autocorrelated samples. Online inference is enabled by an optimal particle
filter. The Monte Carlo sampler and the optimal particle filter are uniquely available as
a consequence of the results in Section 3.

4.1 Direct Monte Carlo Sampling

The analytic filtering and smoothing distributions for the warpDLM unlock the po-
tential for direct Monte Carlo sampling. This task requires sampling from a selection
normal distribution. Crucially, the selection normal distribution admits a constructive
representation using a multivariate normal distribution and a multivariate truncated
normal distribution (Arellano-Valle et al., 2006), which is converted to a sampler in Al-
gorithm 1. We then apply Algorithm 1 to obtain Monte Carlo draws from the warpDLM
state predictive distribution (10), filtering distribution (11), joint smoothing distribu-
tion (12), marginal smoothing distribution (13), or forecasting distribution (Section 3.2).
This computing strategy avoids the need for MCMC, which often requires lengthy sim-
ulation runs and various diagnostics.

Algorithm 1: Sampling from Selection Normal Distribution.
Result: One sample θ from SLCT-N distribution
Given [θ] ∼ SLCT-Nd1,d2(μz,μθ,Σz,Σθ,Σzθ, C)

1. Sample truncated multivariate normal: Sample V0 from Nd1(0,ΣZ)
truncated to region C − μz

2. Sample multivariate normal: Sample V1 from Nd2(0,Σθ − Σ′
zθΣ−1

z Σzθ)
3. Combine results: Compute θ = μθ + V1 + Σ′

zθΣ−1
z V0
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These distributions treat the variance components Vt and Wt as fixed and known.
Unknown variance components may be accommodated using point estimates (e.g.,
marginal maximum likelihood estimators using (14)) or within a blocked Gibbs sampler
that iterates draws of the state parameters (Algorithm 1) and the variance components.

The computational bottleneck of the Monte Carlo sampler is the draw (a) from the
multivariate truncated normal. Efficient sampling from multivariate truncated normal
distributions is an active area of research; we apply the minimax tilting strategy from
Botev (2017), which is implemented in the R package TruncatedNormal. This method
is highly efficient and accurate for dimensions up to about d1 ≈ 500. For the warpDLM,
the dimension d1 corresponds to nt for the filtering distribution at time t or nT for
the smoothing distributions. Hence, when the combined data dimension (nT ) is very
large, other computational approaches are needed; we provide these in the subsequent
sections.

4.2 Gibbs Sampling

For lengthy time series, we develop a Gibbs sampler for offline inference that circumvents
the computational bottlenecks of direct Monte Carlo sampling. The Gibbs sampler
iterates between a latent data augmentation draw and a state parameter draw (plus the
variance components ψ, if unknown). This is represented in Algorithm 2. Although not
shown, one can also easily sample from the posterior predictive and forecast distributions
for zt in each pass. Draws from the corresponding distributions for yt are given by
computing h

(
g−1(zt)

)
.

Algorithm 2: Gibbs Sampler for WarpDLM.
1. Sample the latent data: draw [zt|{yt,θt}Tt=1, ψ] from Nn(Ftθt,Vt)

truncated to zt ∈ g(Ayt) for t = 1, . . . , T
2. Sample the states: draw [θ1:T |z1:T ,ψ]
3. Sample the parameters: draw [ψ|{zt,θt}Tt=1] (from the appropriate full

conditionals depending on priors)

Crucially, the first step of latent data augmentation can be decomposed into T
independent draws from an n-dimensional truncated normal distribution; hence the
Gibbs sampling approach doesn’t suffer from the same dimensionality problems as the
direct sampling method. Furthermore, the latent state parameter full conditional in
step 2 is exactly the smoothing distribution for a Gaussian DLM, and we can thus
rely on already-developed Kalman filter-based simulation techniques such as forward
filtering backward sampling (FFBS; Frühwirth-Schnatter, 1994; Carter and Kohn, 1994)
or the simulation smoother (Durbin and Koopman, 2002). Importantly, these sampling
steps are linear in the length of the time series T . Additionally, both methods have R
implementations which can be readily leveraged: the package dlm (Petris, 2010) performs
FFBS and the KFAS package (Helske, 2017) applies the simulation smoother.
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In a fully Bayesian framework, we place priors on all variances, and sample from the
appropriate full conditionals in step 3. For univariate models, we put a Uniform(0, A)
prior with A large on all standard deviations, leading to relatively simple Gibbs updates.
In the multivariate context, we place independent inverse-Wishart priors on variance
matrices as in Petris et al. (2009).

The sampler for the warpDLM framework is similar to that developed in Kowal and
Canale (2020) for the static count regression scenario. The Bayesian dynamic probit
sampler (Albert and Chib, 1993; Fasano et al., 2021) can be regarded as a special case.
In particular, if our data yt were binary, we could let our transformation g be the identity
while defining our rounding operator such that Ayt=0 = (−∞, 0) and Ayt=1 = (0,∞),
thus recovering the probit Gibbs sampling algorithm.

Overall, the Gibbs sampler provides scalable offline inference for the warpDLM in
the case of large T , although at the expense of Monte Carlo efficiency; naturally, the
direct Monte Carlo sampler (Algorithm 1) is preferred when the data dimension permits.

4.3 Optimal Particle Filtering
We design an optimal particle filter for online inference with the warpDLM. The key
sampling steps do not depend on T , which provides scalability for lengthy time series.
Online particle filtering algorithms for state space models usually apply Sequential Im-
portance Sampling with or without resampling (Doucet et al., 2000). For each time
point, sample trajectories or particles are drawn from an importance function, and each
particle has an associated importance weight. For the resampling step, draws from the
filtering distribution are obtained via a weighted resampling from the previously drawn
particles. The purpose of this step is to slow the effect of particle degeneration.

A well-known drawback of particle filtering methods is that the variance of the im-
portance weights grows over time, and thus the trajectories will degenerate, eventually
leaving only one particle with nonzero weight. To avoid quick degeneration, it is impor-
tant to choose a good importance function; the optimal function is that which minimizes
the conditional variance of weights. Applying Doucet et al. (2000) to the warpDLM, the
optimal importance function is p(θt|θt−1,yt) with weights given by p(yt|θt−1). For
many state space models, this function is not known analytically; however, our results
from Section 3 produce an exact form for the warpDLM, formalized in the following
corollary.
Corollary 3. Under the warpDLM, we have

(θt|θt−1,yt) ∼ SLCT-Nn,p(μz = FtGtθt−1,μθ = Gtθt−1,Σz = Vt + FtWtF
′
t ,

Σθ = Wt,Σzθ = FtWt, C = g(Ayt))
(16)

and
p(yt|θt−1) = Φ̄n(g(Ayt);μz = FtGtθt−1,Σz = Vt + FtWtF

′
t ) (17)

We apply Corollary 3 to design an optimal particle filter for the warpDLM in Algo-
rithm 3. Crucially, the draw from the selection normal in (16) is not dependent on the
length of the time series, which provides scalability in T .
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Algorithm 3: Optimal Particle Filter for warpDLM.
Result: Draws (θ(1)

t , . . . ,θ
(S)
t ) from filtering distribution p(θt|y1:t) for

t = 1, . . . , T
Given S particle trajectories at time t = 0 denoted by θ

(s)
0 ;

for t ← 1 to T do
for s ← 1 to S do

Sample θ̃
(s)
t from (16) conditional on θt−1 = θ

(s)
t−1;

Calculate weight up to normalizing constant using (17):
w

(s)
t ∝ p(yt|θ(s)

t−1)
end
Normalize importance weights: w̃t

(s) = w
(s)
t∑S

s=1 w
(s)
t

;

Obtain final draws θ
(1)
t , . . . ,θ

(S)
t by resampling θ̃

(1)
t , . . . , θ̃t

(S) with weights
w̃t

(s)

end

The (unnormalized) weights can be used to estimate the marginal likelihood p(y1:T ):

p̂(y1:T ) := p̂(y1)
T∏

t=2
p̂(yt|y1:t−1) (18)

where p̂(y1) = 1
S

∑S
s=1 w

(s)
1 and p̂(yt|y1:t−1) = 1

S

∑S
s=1 w

(s)
t . As with equation (14),

this can be used for model comparisons or estimation of unknown parameters (Kantas
et al., 2015). Such an approximation is also key when designing more complex sequential
Monte Carlo schemes or sampling based on particle methods (Andrieu et al., 2010).

As both the cross-section dimension n and the length of the time series T increase,
we expect that the quality of the particles will decline, despite the optimality of our
transition density. This effect is typically more pronounced for the smoothing distribu-
tion than the filtering distribution. In that case, we may seek to improve the particle
filter (Algorithm 3) by applying relevant techniques from sequential Monte Carlo sam-
pling, such as a mutation step, or resort to particle smoothing (Doucet et al., 2009)
when T is especially large. However, we show empirically that the proposed particle
filter is capable of accurate inference for n = 5 and T = 4000 (see the Supplementary
Material).

5 Warped DLMs in Action
In this section, we showcase several facets of the warpDLM framework. We first perform
a forecasting analysis on simulated data, showing that the warpDLM offers better dis-
tributional forecasting than competing Bayesian methods. We then apply the warpDLM
to model a bivariate time series of drug overdose counts in Cincinnati, and highlight
both the offline and online computing capabilities.
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5.1 Evaluating Probabilistic Forecasts

A prominent advantage of the warpDLM is that it provides a forecasting distribution
that matches the (discrete) support of the data. Distributional forecasts are especially
important for discrete data, whereas point forecasts are less informative. Evaluation of
probabilistic forecasts should first and foremost verify that forecast distributions are
calibrated in the sense that observed values are consistent with samples from the distri-
bution (Czado et al., 2009). To assess calibration, we apply the randomized Probability
Integral Transform (rPIT). Let Ht denote the true (discrete) cumulative forecasting
distribution, from which a count yt is observed. Each model produces an estimate Ĥt of
the forecasting distribution. The rPIT is drawn from p̃t

iid∼ Uniform[Ĥt(yt − 1), Ĥt(yt)].
If the model is well-calibrated, then Ĥt ≈ Ht and consequently p̃t

iid∼ Uniform(0, 1).
Thus, forecasts are evaluated by (i) drawing p̃t for each t and (ii) comparing the draws
to a standard uniform distribution.

Among calibrated forecasts, we evaluate the sharpness of the forecasting distribution,
such as the tightness of the prediction intervals. Czado et al. (2009) propose to evaluate
the sharpness via scoring rules, in particular the logarithmic scoring rule − log(px) where
px is the probability mass of the predictive distribution at the observed count x. We
will utilize these diagnostics to evaluate various warpDLMs and DGLM competitors.

5.2 Forecasting on Simulated Data

Existing models for count time series are often unable to capture multiple challenging
discrete distributional features, such as zero-inflation, boundedness, and heaping. By
comparison, the warpDLM is particularly well-suited for these features. At the same
time, the warpDLM is sufficiently flexible to model simpler count data settings for which
existing models have been designed, such as Poisson data. To showcase this breadth of
modeling, we designed simulation experiments for both scenarios and compared the
forecasting performance of various warpDLMs against Bayesian competitors.

In the first experiment, we simulated zero-inflated and bounded count time series
data. One real-world example of such data is analyzed in Ensor et al. (2014), where the
quantity of interest is the number of hours per day which exceed a certain pollutant
threshold. Many days show no pollution, leading to zero-inflation, but occasionally every
hour in a day exceeds the threshold, resulting in heaped values at the upper bound of 24.
Specifically, we sampled from a zero-inflated Poisson with time varying mean λt, where
λ1 ∼ Uniform(5, 15) and λt+1 ∼ N(λt, 0.2) for t = 2, . . . , T . The zero-inflation com-
ponent was drawn uniformly from [0.1, 0.3]. Any sampled value above 24 was rounded
down to the bound.

In the second scenario, we simulated data from the INGARCH class using the R
package tscount (Liboschik et al., 2017). An INGARCH(p, q) model assumes yt ∼
Poisson(λt) with λt = β0 +

∑p
k=1 βkYt−k +

∑q
�=1 α�λt−�. In our simulation, we chose

relatively simple dynamics of p = 1 and q = 1 and set β0 = 0.3, β1 = 0.6, and α1 = 0.2,
with coefficients selected such that simulated series were low-count time series.
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For both simulation scenarios, 30 time series of length T = 200 were simulated.
Among all competing state space models, we applied the same evolution equation: a
local level DLM with the univariate state θt and the time-invariant system {1, 1, V,W}
with initial state θ0 ∼ N(0, 3). The warpDLMs included parametric transformations
(identity and square-root) and the nonparametric transformation (6). In each case,
the variance components V and W were estimated via maximization of the marginal
likelihood (14) and then Monte Carlo samples from the joint smoothing distribution (12)
were drawn using Algorithm 1. These draws were used to simulate from the forecasting
distribution, as outlined in Section 3.2. Competing methods included Poisson, negative
binomial, and (for the bounded data scenario) binomial DGLMs, as implemented in
the R package KFAS (Helske, 2017). We estimated variance components with maximum
likelihood and used the KFAS default value of the dispersion parameter for the negative
binomial DGLM.

For the DGLM models, it took several attempts to identify an initial value that
resulted in convergence for the maximum likelihood estimation. In general, the likeli-
hoods of state space models often have complex landscapes which can make parameter
estimation difficult and sensitive to starting inputs (Helske, 2017). For the warpDLM
methods, a suitable starting point was found by running a Gibbs sampler for 2000 it-
erations (treating the first 500 as burn-in) and then using the posterior means as the
input to the optimization algorithm.

In order to evaluate the forecasting performances, we used time series cross-validation
for one-step-ahead predictions. Starting at t = 100, each of the five methodologies (three
warpDLM methods and two DGLM methods) were fitted and one-step-ahead forecasts
were drawn. For 50 equally dispersed time points from t = 100 to t = 200, the pro-
cess of training and drawing one-step ahead forecasts was repeated. Thus, we have 50
observations to compare to 50 one-step-ahead forecasts for each of the 30 time series.

Since we evaluate a multitude of series, we follow Kolassa (2016) in testing the
uniformity of the rPIT values using the data-driven smooth test of Ledwina (1994).
Hence, the output is a p-value, where small values indicate poor calibration. We then
consider the sharpness by evaluating the logarithmic scoring rule. Our output for these
models is 5000 draws from the predictive distribution, so we approximate the probability
mass by calculating the proportion of draws which predicted that value. If a value was
not sampled in any posterior draw, but was observed, then the logarithmic scoring rule
would be infinite. To avoid this, we instead set the mass in that case to 0.0001. For each
series, we find the mean log score across the 50 time points and compute the percent
difference over a baseline method, chosen to be the Poisson DGLM. The logarithmic
scoring rule is negatively oriented, so a negative percent difference equates to improved
forecasting.

Figure 1 presents the calibration and sharpness across simulations for the zero-
inflated and bounded Poisson example. The binomial DGLM exhibited extremely poor
forecasting performance and is omitted for clarity of presentation; results including the
binomial DGLM are in the Supplement. A clear takeaway is that the warpDLM with
nonparametric transformation is well-calibrated. The identity warpDLM is also reason-
ably well-calibrated for many simulations, highlighting the importance of the rounding
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Figure 1: Zero-inflated Poisson simulations; Left: p-values measuring calibration (larger
is better) across simulations, with a line at p = 0.05; Right: percent difference in log score
compared to baseline (negative values imply improved forecasting relative to Poisson
DGLM).

operator. The competing models produce extremely low p-values for almost every sim-
ulation, which decisively shows that these models are not well-calibrated; Czado et al.
(2009) argue that such poor calibration should automatically disqualify these models.
The results for sharpness are consistent: the warpDLM with nonparametric transforma-
tion produces the best distributional forecasts (on average 30% better than the Poisson
DGLM), while the warpDLM with identity transformation is the second best. Modifi-
cations for the Poisson and negative binomial DGLMs to enforce the upper bound of 24
on forecasts did not substantively change the results. Clearly, the warpDLM offers sig-
nificant forecasting gains over competing methods, and advertises both good calibration
and maximal sharpness.

The second simulation scenario is presented in Figure 2. This simpler scenario should
be more favorable for the Poisson DGLM. Nonetheless, the warpDLM has the flexibility
to match or improve upon the DGLM forecasts. All five models show proper calibration
for nearly all simulations. Each of warpDLMs exhibits sharpness similar to the Poisson
DGLM, and the warpDLM with square-root transformation actually appears to improve
on the forecasting for the majority of the series. The negative binomial DGLM performs
uniformly worse than all other methods.

Additional simulation results for higher-dimensional data (n = 5, T = 4000) are
included in the Supplementary Material.

5.3 Real Data Analysis

We apply the warpDLM to a multivariate time series of drug overdose (OD) counts
in Cincinnati. The OD reports are contained within a dataset of all fire and EMS
incidents in the city’s open access data repository, and include daily counts of EMS
calls for heroin and non-heroin ODs from January 1st, 2018 to January 31st, 2021;
see the Supplement for data wrangling and cleaning details. Notably, Cincinnati has

https://data.cincinnati-oh.gov/Safety/Cincinnati-Fire-Incidents-CAD-including-EMS-ALS-BL/vnsz-a3wp
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Figure 2: INGARCH simulations; Left: p-values measuring calibration (larger is bet-
ter) across simulations, with a line at p = 0.05; Right: percent difference in log score
compared to baseline (negative values imply improved forecasting relative to Poisson
DGLM).

struggled with a severe problem of drug ODs in the city, and in particular heroin (Li
et al., 2019). From a statistical modeling perspective, these data are discrete, time-
ordered, multivariate (n = 2), and moderately lengthy (T = 1127); see Figure 3.

We specify a warpDLM with the nonparametric transformation from (6), the default
rounding operator, and a linear growth model for each series i ∈ {1, 2}:

zi,t = μi,t + vi,t (19)
μi,t = μi,t−1 + βi,t−1 + wμ

i,t−1 (20)

βi,t = βi,t−1 + wβ
i,t−1 (21)

where μi,t is a local level, βi,t is a slope, and (20)–(21) comprise the DLM evolution
equation (4). The linear growth model allows for more flexibility than the local level
specification previously introduced, but also can effectively reduce to the simpler local
level if the data supports it (i.e. if the slope variance parameters are estimated to be
very small). Dependence between the n = 2 series is induced by the observation error
distribution vt ∼ N2 (0,V ) and the state error distributions wμ

t ∼ N2 (0,Wμ) and
wβ

t ∼ N2 (0,Wβ) for vt = (v1,t, v2,t)′, wμ
t = (wμ

1,t, w
μ
2,t)′, and wβ

t = (wβ
1,t, w

β
2,t)′, with

V ,Wμ,Wβ assigned inverse-Wishart priors. Model (19)–(21) is expressed in the usual
DLM form of (3)–(4) in the Supplement. As an alternative approach, we also constructed
a seasonal warpDLM, but its performance was indistinguishable from the linear growth
model (see the Supplementary Material).

We highlight the capabilities of the warpDLM for both offline and online analysis of
multivariate count time series data. Specifically, we perform an offline analysis for the
years of 2018 and 2019 (T = 730) and switch to an online particle filter for the 2020
and January 2021 data (T = 397). Given the lengthy time series, offline inference was
conducted using the Gibbs sampler (Algorithm 2), which returned 10,000 draws from
the state filtering distribution of θt for t = 730 and the posterior means of the variance
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Figure 3: Bivariate time series of daily counts of EMS calls for heroin (larger values)
and non-heroin ODs. The dotted vertical line represents the transition between the
online and offline datasets. The solid lines are the median smoothed predictions from
the warpDLM.

components. These quantities were input into the particle filter of Algorithm 3 and run
sequentially through each of the T = 397 time points in the online dataset, resulting
in 10,000 sequential paths of the smoothed states. These smoothed states were iterated
one step ahead to obtain draws from the one-step forecasting distribution as in Sec-
tion 3.2. We also considered longer forecast horizons (see the Supplementary Material).
Unsurprisingly, the forecast distribution accuracy decreased for longer horizons.

To summarize the trends in Figure 3, we compute the pointwise medians of the
smoothing predictive distributions p(ỹt|y1:T ) under the warpDLM. For each sampled
path of states θ∗

1:T ∼ p(θ1:T |y1:T ), we draw a corresponding path z̃1:T via the DLM
observation equation (3), and set ỹ1:T = h ◦ g−1(z̃1:T ), similar to the forecasting proce-
dure in Section 3.2. Notably, this quantity provides a count-valued point estimate that
“smooths” each time series conditional on the complete data y1:T . The heroin ODs ex-
hibit both higher values and greater variability over time, although the two time series
appear to converge to similar levels in early 2021.

To evaluate the fitness of the warpDLM, we report calibration of the one-step fore-
casts in Figure 4. The sorted rPIT values of both series are plotted against standard
uniform quantiles; the 45 degree line indicates calibration. Since the rPIT values are
random quantities, some variation is natural. We illustrate this inherent variability by
sampling 100 draws of size 396 from a standard uniform distribution, and plot their
sorted values against the uniform quantiles.

The warpDLM one-step forecasts are well-calibrated for non-heroin ODs. For the
heroin ODs, the calibration shows minor deviations from uniformity. The histogram
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Figure 4: rPIT plots from one-step-ahead particle filter forecasts for both OD count
series. The dashed 45 degree line indicates perfect calibration. Gray lines are computed
from standard uniform draws, to illustrate inherent variability in the randomized metric.

of the rPIT values (not shown here) shows a slightly inverse-U shape, which implies
forecasts are overdispersed relative to the actual values. A closer investigation of the
data shows that the online dataset showed considerably less variation than the offline
dataset. Since the nonparametric transformation (6) was inferred using only the offline
dataset, this result suggests the need to occasionally update the transformation during
online inference, for example by updating the estimate of the marginal CDF Fy.

Lastly, we evaluate the computational performance of the optimal particle filter,
both for Monte Carlo efficiency and raw computing time. Figure 5 presents the effective
sample size, ESS = 1/

∑S
s=1(w̃t

(s))2 using the normalized weights w̃t, along with the
number of seconds needed to update the model at each time point (on a laptop with
an Intel Core i5-6200U CPU with 8 GB RAM). The optimal particle filter—uniquely
obtained via the warpDLM distributional results from Section 3—produces consistently
large ESS values. Crucially, the computation time does not increase with the time
index and hovers around 13–14 seconds for most updates. Given this computation time,
the warpDLM may be applied to more demanding streaming data, such as minute-by-
minute data. In all, the optimal particle filter for the warpDLM enabled (i) modeling
of multivariate count time series data, (ii) well-calibrated forecasts, and (iii) sufficient
scalability for moderate- to high-frequency online analysis.

6 Conclusion
We introduced a state space modeling framework for a multivariate time series of counts
by warping a dynamic linear model (warpDLM). The warpDLM advertises (i) a data-
coherent model (and forecasting distribution) that matches the discrete support of the
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Figure 5: Effective sample sizes (left; maximum is 10,000) and raw computing time in
seconds (right) for each time point in the online dataset.

data; (ii) semiparametric modeling capabilities via an inferred transformation; (iii) the
familiarity and dynamic flexibility of DLMs, including the ability to handle missing
data; (iv) analytic filtering and smoothing recursions; and (v) customized algorithms for
forecasting and inference, including direct Monte Carlo sampling and a Gibbs sampler
for offline inference and an optimal particle filter for online inference. These results and
methods also apply for integer-valued and rounded data.

Using simulated data, we showed that the warpDLM offers better distributional fore-
casting than Bayesian competitors, particularly when the count data exhibit multiple
complexities such as zero-inflation and boundedness. Finally, we showcased the online
inference and forecasting capabilities of the warpDLM for a multivariate time series of
drug overdose counts.

The generality of the warpDLM enables several useful extensions. Successful tools
from (Gaussian) DLMs, such as scale-free variance modeling or discount factors, may
be incorporated into the warpDLM framework. These specifications often result in t-
distributed state updates and predictions, which may be linked to our results via the
selection-t distribution. Similarly, other increases in modeling complexity can be ac-
companied by appropriate algorithmic advancements, such as sequential Monte Carlo
methods that sample both the unknown parameters and the states concurrently (Chopin
et al., 2012). Despite the inherent challenges in these more complex modeling and com-
puting environments, the analytic and recursive updates derived for the warpDLM offer
a promising pathway for efficient and perhaps optimal implementations.

The warpDLM can also be thought of as a (nonlinear) hierarchical state-space model
(HSSM; Gamerman and Migon, 1993), with the latent data zt introducing a first-level
hierarchy. In particular, connections may be made to the very general HSSM struc-
ture presented in Katzfuss et al. (2020), with the warping operation presented here
acting as the transformation layer in their setup. Exploring this relationship further
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might open up new possibilities for applying the warpDLM in high-dimensional prob-
lems.

Supplementary Material
Supplement to “Warped Dynamic Linear Models for Time Series of Counts” (DOI:
10.1214/23-BA1394SUPP; .pdf).
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