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Sparse Bayesian Factor Analysis When the
Number of Factors Is Unknown

Sylvia Frühwirth-Schnatter∗, Darjus Hosszejni† and Hedibert Freitas Lopes‡

Abstract. There has been increased research interest in the subfield of sparse
Bayesian factor analysis with shrinkage priors, which achieve additional sparsity
beyond the natural parsimonity of factor models. In this spirit, we estimate the
number of common factors in the widely applied sparse latent factor model with
spike-and-slab priors on the factor loadings matrix. Our framework leads to a
natural, efficient and simultaneous coupling of model estimation and selection on
one hand and model identification and rank estimation (number of factors) on the
other hand. More precisely, by embedding the unordered generalised lower trian-
gular loadings representation into overfitting sparse factor modelling, we obtain
posterior summaries regarding factor loadings, common factors as well as the fac-
tor dimension via postprocessing draws from our efficient and customized Markov
chain Monte Carlo scheme.
Keywords: hierarchical model, identifiability, point-mass mixture priors,
marginal data augmentation, reversible jump MCMC, prior distribution,
sparsity, Heywood problem, rotational invariance, ancillarity-sufficiency
interweaving strategy, fractional priors.
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1 Introduction
Factor analysis aims at identifying common variation in multivariate observations and
relating it to hidden causes, the so-called common factors, see Thurstone (1947) and,
more recently, Anderson (2003). The common setup consists of a sample y = {y1, . . . ,yT }
of T multivariate observations yt = (y1t, . . . , ymt)′ of dimension m. For a given factor
dimension r, the basic factor model is defined as a latent variable model, involving the
common factors ft = (f1t · · · frt)′:

ft ∼ Nr (0, Ir) , yt = Λft + εt, εt ∼ Nm (0,Σ0) , Σ0 = Diag (σ2
1 , . . . , σ

2
m), (1.1)

where the covariance matrix Σ0 of the idiosyncratic errors εt is a diagonal matrix and Λ
is the m×r matrix of factor loadings Λij with a specific structure that facilitates econo-
metric identification of this model; details follow. Model (1.1) implies that conditional
on ft the m elements of yt are independent and all dependence among these variables
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is explained through the common factors. Assuming independence of ft and εt implies
that, marginally, yt arises from a multivariate normal distribution, yt ∼ Nm (0,Ω),
with zero mean and a covariance matrix Ω with the following structure:

Ω = ΛΛ′ + Σ0. (1.2)

Since r typically is (much) smaller than m, factor models yield a parsimonious repre-
sentation of Ω with (at most) m(r + 1) instead of the m(m + 1)/2 parameters of an
unconstrained covariance matrix. Hence, factor models proved to be very useful for co-
variance estimation, especially if m is large; see Fan et al. (2008), Forni et al. (2009),
Bhattacharya and Dunson (2011) and Kastner (2019), among others.

The zero-mean assumption in model (1.1) can be alleviated. For data with a non-zero
mean μ, the covariance matrix of ut = yt − μ exhibits a factor structure as in (1.2).
In a factor-augmented model with conditional mean μt, the zero-mean innovations
ut = yt − μt (rather than yt) follow model (1.1), while μt is modelled separately.
Examples include factor augmented mixed-outcome regression analysis (Conti et al.,
2014), factor-augmented treatment effect models (Wagner et al., 2023), and mixtures of
factor analyser models (Grushanina and Frühwirth-Schnatter, 2023), among others.

The recent years have seen many contributions in the field of sparse Bayesian factor
analysis (BFA) which achieve additional sparsity beyond the natural parsimonity of
factor models. Shrinkage priors are employed that resolve two major challenges in factor
analysis: First, by introducing column sparsity in an overfitting factor model, they lead
to an automatic selection of the number of factors in situations where the true factor
dimension r is unknown. Second, by introducing row sparsity they allow us to identify
“simple structures” in the sense specified by Thurstone (1947) where in each row only
a few non-zero loadings are present.

Choosing the factor dimension is in general a challenging problem, see Owen and
Wang (2016) for a review. Often, the information criteria introduced by Bai and Ng
(2002) are used also in a Bayesian context (Aßmann et al., 2016; Chan et al., 2018),
other authors employ marginal likelihoods (Lee and Song, 2002; Lopes and West, 2004).
Learning about the factor dimension is intrinsic in sparse BFA under priors that impose
column sparsity in the overfitting model

yt = βHfHt + εt, εt ∼ Nm (0,ΣH) , fHt ∼ NH (0, IH) , (1.3)

where βH is an m×H loading matrix with elements βij and ΣH is a diagonal matrix
with strictly positive diagonal elements.

Bayesian approaches with H = ∞ apriori allow infinitely many columns in βH

which are increasingly pulled toward zero as the column index increases using priors
such as the Indian buffet process prior (Griffiths and Ghahramani, 2006; Ročková and
George, 2017), the multiplicative gamma process prior (Bhattacharya and Dunson, 2011;
Durante, 2017; De Vito et al., 2021), or cumulative shrinkage process priors (Legramanti
et al., 2020; Kowal and Canale, 2023). These prior choices ensure that the number k
of non-zero columns in model (1.3), denoted by βk, is random apriori and takes finite
values smaller than H with probability one.
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Other authors allow H to be a finite number, assumed to be larger than the true
number of factors r (Frühwirth-Schnatter and Lopes, 2010; Conti et al., 2014; Kaufmann
and Schuhmacher, 2019) and we use such an overfitting BFA model in the present paper.
To achieve column sparsity, we exploit a finite version of the two-parameter Beta prior to
define a shrinkage process prior on βH that induces increasing shrinkage of the factor
loadings toward zero as the column index increases (Frühwirth-Schnatter, 2023). We
employ spike-and-slab priors, where the elements βij of βH are allowed to be exactly
zero. Many authors considered spike-and-slab priors, where the identification of the non-
zero factor loadings is treated as a variable selection problem, not only for basic factor
models (West, 2003; Carvalho et al., 2008; Frühwirth-Schnatter and Lopes, 2010) but
also for dedicated factor models with correlated factors (Conti et al., 2014) and dynamic
factor models (Kaufmann and Schuhmacher, 2019). As opposed to continuous shrinkage
priors on βij that are applied often in sparse BFA, spike-and-slab priors allow an explicit
assessment of row sparsity in the loading matrix and identification of irrelevant variables
yit which are uncorrelated with the remaining variables in yt, since the entire row of the
factor loading matrix is zero for these variables (Kaufmann and Schuhmacher, 2017).

A further challenge in sparse BFA is post-processing the posterior draws of βH to
obtain final estimates of the unknown factor dimension r and a unique rotation Λ of the
unknown loading matrix. There is a growing literature in machine learning, statistics,
and applied econometrics where more or less heuristic post-processing procedures are
applied for this purpose (Aßmann et al., 2016; Kaufmann and Schuhmacher, 2019;
Poworoznek et al., 2021; Papastamoulis and Ntzoufras, 2022). Often no constraints are
imposed on βH during sampling; however, leaving βH unconstrained makes it difficult
to recover the true number of factors and to estimate Λ.

In the present paper, we pursue a more mathematical approach which relies on rigor-
ous econometric identification in sparse BFA and also allows uncertainty quantification
by deriving posterior distributions both for r and Λ. Econometric identification yields
a unique decomposition of the covariance matrix Ω in (1.2) into the cross-covariance
matrix ΛΛ′ and the covariance matrix Σ0 of the uncorrelated idiosyncratic errors and
identifies a unique factor loading matrix Λ from ΛΛ′. Even if the decomposition is
unique (which need not be the case), it is well-known that Λ is identified only up to a
rotation. Following the pioneering work of Anderson and Rubin (1956), identification is
achieved by imposing additional conditions (Reiersøl, 1950; Neudecker, 1990; Geweke
and Zhou, 1996; Bai and Ng, 2013). The most popular condition requires Λ to be a
lower triangular matrix with positive diagonal elements; however, such a PLT structure
is rather restrictive (Jöreskog, 1969; Carvalho et al., 2008).

Recently, a new identification strategy based on unordered generalized lower trian-
gular (UGLT) structures (Frühwirth-Schnatter and Lopes, 2018; Frühwirth-Schnatter
et al., 2023) was introduced that addresses not only rotational invariance but also vari-
ance identification to ensure a unique decomposition of Ω into ΛΛ′ and Σ0; a problem
of which the literature is still less aware. By imposing such a UGLT structure on the
non-zero columns of the loading matrix βH in model (1.3), we achieve identification
in the present paper. The UGLT structure only requires the top non-zero elements in
each non-zero column of βH to lie in arbitrary but distinct rows, and is a much weaker
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condition than a PLT structure. As shown in Frühwirth-Schnatter et al. (2023), on
the one hand it is weak enough to ensure that any loading matrix can be rotated into
a UGLT representation, on the other hand it is strong enough to ensure “controlled
unidentifiability” up to column and sign switching which can be easily resolved.

For practical Bayesian inference, we develop a new and efficient Markov chain Monte
Carlo (MCMC) procedure that delivers posterior draws from model (1.3) under point
mass mixture priors, which is known to be particularly challenging (Pati et al., 2014).
As part of our algorithm, we design a (simple) reversible jump MCMC sampler to
navigate through the space of UGLT loading matrices of varying factor dimension.
We achieve mathematically rigorous identification through post-processing the poste-
rior draws and ensuring variance identification through the algorithm of Hosszejni and
Frühwirth-Schnatter (2022). In this way, we recover the factor dimension r, the idiosyn-
cratic variances Σ0 and an ordered GLT representation Λ of the loading matrix from
the posterior draws. Our sampling as well as our identification strategy works under
arbitrary choices for the slab distribution of βij , including fractional priors (Frühwirth-
Schnatter and Lopes, 2010), the horseshoe prior (Zhao et al., 2016) and the Lasso prior
(Ročková and George, 2017). In high-dimensional models, we work with structured
priors with column-specific shrinkage (Legramanti et al., 2020) and employ the triple
gamma prior (Cadonna et al., 2020) to achieve local separation of signal and noise.

The rest of the paper is organized as follows. Section 2 introduces sparse Bayesian
exploratory factor analysis models with UGLT structures, while prior choices are dis-
cussed in Section 3. Section 4 introduces our innovative MCMC sampler for this model
class and discusses post-processing to achieve identification. Section 5 illustrates the
usefulness of the proposed methodology in various simulation settings and considers
applications to exchange rate data and NYSE100 returns. Section 6 concludes.

2 Sparse Bayesian EFA models with UGLT structures
2.1 Model definition

Throughout the paper, we work with the exploratory factor analysis (EFA) model (1.3)
with finite (H < ∞) potential common factors, i.e.

yt = βHfHt + εt, εt ∼ Nm (0,ΣH) , fHt ∼ NH (0, IH) . (2.1)

We impose an exchangeable shrinkage process prior on the columns of βH to achieve
column sparsity with k < H non-zero columns, collected in the m×k submatrix βk, see
Section 3.1 for details. We summarize sparsity by the so-called sparsity matrix δH which
is a binary indicator matrix of 0s and 1s of the same dimension as βH and contains
the information which elements of a factor loading matrix are equal to zero and which
elements are unconstrained, i.e. if δij = 0, then βij = 0, while βij ∈ R if δij = 1.

Let δk be the sparsity matrix corresponding to the non-zero columns βk of βH .
To achieve identification in a sparse EFA model, we assume that δk exhibits a UGLT
structure (Frühwirth-Schnatter et al., 2023). Compared to the common literature, where
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all elements of δH are left unspecified, this imposes the constraint on δH that the
top non-zero element in all non-zero columns δk lie in different rows, see Figure 1 for
examples of such matrices. More formally, let lj denote the row index (also called pivot)
of the top non-zero entry in the jth column of δk (i.e. δij = 0,∀ i < lj). δk is said to be a
UGLT structure, if the pivot elements lk = (l1, . . . , lk) lie in different rows. As discussed
in Frühwirth-Schnatter et al. (2023), this rather weak condition on δH is sufficient for
a mathematically rigorous identification of the parameters (r,Λ,Σ0) in the underlying
basic factor model (1.1) from the overfitting BFA model (2.1).

First, Frühwirth-Schnatter et al. (2023) prove that the so-called 3579 counting rule
is sufficient for variance identification which is easily violated for sparse Bayesian factor
models. A sparsity matrix δk satisfies the 3579 counting rule if the following condition is
satisfied: for each q = 1, . . . , k and for each submatrix consisting of q columns of δk, the
number of nonzero rows in this sub-matrix is at least equal to 2q+1. The 3579 counting
rule states that every column of δk should have at least 3, every pair of columns at least
5, every subset of 3 columns at least 7 elements and so forth. Hosszejni and Frühwirth-
Schnatter (2022) provide an efficient algorithm to verify this rule. If the sparsity matrix
δk obeys the 3579 counting rule, then this implies that Σk and βkβ

′
k are uniquely

identified from the covariance matrix Ω = βkβ
′
k +Σk implied by the non-zero columns

βk of βH and by Σk = ΣH . Since variance identification implies that ΛΛ′ = βkβ
′
k, it

follows that r = k and βr = ΛP for some orthogonal matrix P (Anderson and Rubin,
1956, Lemma 5.1).

Second, Frühwirth-Schnatter et al. (2023) show that imposing a UGLT structure on
βk and Λ leads to rotational identification up to signed permutations βkP±Pρ, where
the permutation matrix Pρ corresponds to one of k! possible column permutations in
βk and the reflection matrix P± = Diag (±1, . . . ,±1) to one of the 2k possibilities
to reverse the signs in a subset of columns. Provided that βk is variance identified,
r = k and Λ is uniquely recovered by reordering the columns of βr such that the pivots
l1 < . . . < lr are increasing, while Σ0 = Σr. These insights are exploited in Section 4.4,
where the posterior draws from a sparse EFA model with UGLT structure are screened
in a post-processing manner to ensure full identification and to learn about the unknown
factor dimension r, the loading matrix Λ as well as Σ0 from the data.

For illustration, we show in Figure 1 three posteriors draws of δk for a sparse EFA
factor analysis with H = 14 for artificial data with m = 30 that are part of an extensive
simulation study in Section 5.1. All posterior draws exhibit k < H non-zero columns as a
result of imposing prior column sparsity. For the posterior draw δk on the left, the num-
ber of non-zero columns k = 5 can be considered a posterior draw of the factor dimension
r, since δk obeys the 3579 counting rule. The pivots (l1, l2, l3, l4, l5) = (24, 6, 12, 18, 1)
can be used to obtain a uniquely rotated posterior draw of Λ, by reordering the columns
of βk such that the pivots (1,6,12,18,24) are increasing. The posterior draw δk in the
middle contains six non-zero columns which violate the 3579 counting rule, since the
12th column has only two non-zero elements. Such posterior draws are rejected during
post-processing, as they do not allow unique identification of Λ from βk. The poste-
rior draw δk on the right also contains six non-zero columns with the 11th column
being a so-called spurious column with a single non-zero factor loading. Such posterior
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Figure 1: Posteriors draws of δk from sparse BFA with m = 30 and H = 14 (zero loadings
are left blank). Left: δk with k = 5 obeying the 3579 counting rule with the pivot rows
(l1, l2, l3, l4, l5) = (24, 6, 12, 18, 1) (marked red); center: δk with k = 6 violating the 3579
counting rule due to a column with only two non-zero elements (marked red); right: δk
with k = 6 containing a spurious column (marked red).

draws obviously violate the 3579 counting rule, nevertheless they carry useful informa-
tion about the factor dimension r and Λ. More specifically, Frühwirth-Schnatter et al.
(2023, Theorem 4) show as a third contribution that imposing a UGLT structure on the
non-zero columns βk of βH in an EFA model favors posterior draws with such spurious
columns, if the number of non-zero columns k overfits the true factor dimension r. For
instance, if k = r + 1, then mathematically βk and Σk take the following form:

βk =
(
Λ Ξ

)
P±Pρ, Ξ =

⎛⎝ 0
Ξlsp

0

⎞⎠, Σk = Diag (σ2
1 , . . . , σ

2
lsp − Ξ2

lsp , . . . , σ
2
m), (2.2)

with a single non-zero factor loading Ξlsp satisfying 0 < Ξ2
lsp

< σ2
lsp

which lies in a pivot
row lsp different from the pivot rows lr = (l1, . . . , lr) in Λ. A similar representation
holds for higher degrees k > r of overfitting, with Ξ containing s = k − r spurious
columns that obey a UGLT structure, i.e. the pivots lΞ of Ξ lie in different rows and
are distinct from the pivots lr of Λ.

Hence, if a posterior draw βk from the EFA model (2.1) contains s spurious columns
Ξ, then they can be absorbed into the idiosyncratic errors by defining their covariance
matrix as Σr = Σk +ΞΞ′. This leaves r = k−s active columns βr (i.e. columns with at
least two non-zero loadings) in βH , which are extracted and postprocessed as above: if
βr obeys the 3579 counting rule, then Λ is identified up to a signed permutation from
βr = ΛP±Pρ, while Σ0 = Σr, and the number of active columns r provides a posterior
draw of the unknown factor dimension. Otherwise, βr is rejected.
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2.2 Relating exploratory to confirmatory Bayesian factor analysis
The sparsity matrix δH of the loading matrix βH in the EFA model (2.1) allows us to
classify factors into active (the corresponding column of δH has at least two non-zero
loadings), spurious (the corresponding column of δH has a single non-zero loading) and
inactive ones (the corresponding column of δH is zero). This allows us to split δH and
βH into m × r submatrices δr and βr with r active columns, m × rsp submatrices δΞ
and Ξ with rsp spurious columns, and submatrices with j0 = H − r− rsp zero columns,
while the factors fHt are split into f rt , fΞ

t and f0
t .

Exploiting representation (2.2), we extract the following model of factor dimension
r which is embedded in any EFA model with UGLT structure,

f rt ∼ Nr (0, Ir) , yt = βrf rt + εt, εt ∼ Nm (0,Σr) , Σr = ΣH + ΞΞ′, (2.3)

by absorbing the rsp spurious columns Ξ into the idiosyncratic error term. We call (2.3)
the confirmatory factor analysis (CFA) model induced by the active columns βr in the
EFA model. The likelihood function is invariant to moving from the EFA model (2.1) to
the CFA model (2.3), since the implied covariance matrix Ω = βHβ′

H+ΣH = βrβ
′
r+Σr

remains the same. On the other hand, we can move from the CFA model (2.3) to the
EFA model (2.1) without changing the likelihood function by adding rsp ∈ {1, . . . , k−r}
spurious columns δΞ to δr. Moving forth and back between the EFA model (2.1) and
the CFA model (2.3) is the cornerstone of an efficient MCMC algorithm developed in
Section 4. In Section 3, priors are defined that are (largely) invariant to these moves.

For rsp = 1, for instance, a single spurious column δΞ and H − r − 1 zero columns
are added to δr to define an EFA model with H columns. The only non-zero indicator
in δΞ can lie in any row lsp that is different from the pivots lr in δr. A spurious column
Ξ is added to βr to define βH , while the covariance matrix of the idiosyncratic errors
in the EFA model is defined as ΣH = Σr − ΞΞ′. The only non-zero loading Ξlsp in
Ξ can take any value such that the lsp-th diagonal element of ΣH remains positive,
i.e. ΣH,lsp,lsp = σ2

lsp
− (Ξlsp)2 > 0. This entire move only affects the lsp-th row βr,lsp,· of

βr. More specifically, for t = 1, . . . , T :

ylsp,t = βr,lsp,·f
r
t + εlsp,t, εlsp,t ∼ N

(
0, σ2

lsp

)
,

ylsp,t = βr,lsp,·f
r
t + Ξlspf

Ξ
t + ε̃lsp,t, ε̃lsp,t ∼ N

(
0, σ2

lsp − (Ξlsp)2
)
. (2.4)

By integrating model (2.4) with respect to the spurious factor fΞ
t , it can be verified that

both models imply the same distribution p(ylsp,t|βr,lsp,·, f
r
t , σ

2
lsp

), independently of Ξlsp .

3 Prior specifications
3.1 Column sparsity through exchangeable shrinkage process priors

Bayesian inference is performed in the EFA model (2.1) with a finite number H of
potential factors. We start with the description of an unconstrained model and below
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we introduce the UGLT structure as a constraint. Our starting point is the following
Dirac-spike-and-slab prior for the factor loadings βij in βH ,

βij |τj ∼ (1 − τj)Δ0 + τjPslab(βij), (3.1)

where Δ0 is a Dirac-spike at zero and Pslab is a continuous slab distribution. Cumulative
shrinkage where the columns of the loading matrix are increasingly pulled toward zero
can be achieved in a factor model with H < ∞ by placing an exchangeable shrinkage
process (ESP) prior on the slab probabilities τ1, . . . , τH :

τj |H ∼ B (aH , bH) , j = 1, . . . , H. (3.2)

The ESP prior turns model (2.1) into a sparse EFA model, where the number k of
non-zero columns in δH is random apriori, taking values smaller than H with high
probability. As shown by Frühwirth-Schnatter (2023), prior (3.2) has a representation
as a finite cumulative shrinkage process (CUSP) prior (Legramanti et al., 2020). A
prominent example of such an ESP prior is the finite two-parameter-beta (2PB) prior,

τj |H ∼ B
(
γ
α

H
, γ
)
, j = 1, . . . , H, (3.3)

which converges to the 2PB prior (Ghahramani et al., 2007) for H → ∞. For γ = 1,
the finite one-parameter-beta (1PB) prior results which converges to the Indian buffet
process prior (Teh et al., 2007) for H → ∞ and has been employed by Ročková and
George (2017) in sparse Bayesian factor analysis.

To adapt the ESP prior to the data at hand, the hyperparameters α and γ are
equipped with the hyperpriors α ∼ G (aα, bα) and γ ∼ G (aγ , bγ), since they are in-
strumental in controlling prior column sparsity. For the 1PB prior, for instance, the
decreasing order statistics τ(1) > . . . > τ(H) of the slab probabilities can be expressed
by the following stick-breaking representation in terms of independent beta random
variables for j = 1, . . . , H (Frühwirth-Schnatter, 2023):

τ(j) =
j∏

�=1

ν�, ν� ∼ B
(
α
H − 
 + 1

H
, 1
)
, 
 = 1, . . . , H. (3.4)

With the largest slab probability following τ(1) ∼ B (α, 1), subsequent slab probabilities
τ(j) = τ(j−1)νj are increasingly pulled toward zero as j increases and the 1PB prior
induces considerable column sparsity, especially if α < H.

Imposing a UGLT structure For given numbers r and rsp of, respectively, active
and spurious columns in βH , we define a prior p(lΞ|lr, rsp)p(lr|r) on the pivots lr =
(l1, . . . , lr) and lΞ = (lΞ,1, . . . , lΞ,rsp) such that the non-zero columns δk of the sparsity
matrix δH exhibit a UGLT structure. The prior p(lr|r) is defined as follows. Let L(l) =
{i ∈ {1, 2, . . . ,m} : i /∈ l} be the set of all rows that are not used as pivots. Condition
UGLT implies that each lj has to be different from the pivots lr,−j outside of column j
and we assume a uniform prior distribution over all admissible pivots lj ∈ L(lr,−j):

p(lj |lr,−j) = 1
|L(lr,−j)|

= 1
m− r + 1 . (3.5)
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The conditional prior p(lΞ|lr, rsp) is uniform over all admissible values, i.e. lΞ,1|lr is
uniform over L(lr); lΞ,2|lΞ,1, lr is uniform over L(lr ∪ {lΞ,1}), and so forth. Given the
pivots lj in all active columns δr, by definition δlj ,j = 1 and δij = 0 for i < lj , while
the m− lj indicators δij below lj are subject to variable selection,

Pr(δij = 1|lj , τj) =

⎧⎨⎩ 0, i < lj ,
1, i = lj ,
τj , i = lj + 1, . . . ,m,

(3.6)

with column-specific probability τj following the ESP prior (3.2). With dj − 1 successes
and m− lj − dj + 1 failures in the experiment defined in (3.6), where dj =

∑m
i=1 δij is

the number of non-zero indicators in columns j, the prior for the jth column δr·,j of δr
can be expressed both conditionally as well as marginalized w.r.t. τj :

Pr(δr·,j |lj , τj) = τ
dj−1
j (1 − τj)m−lj−dj+1, (3.7)

Pr(δr·,j |lj) = B(aH + dj − 1, bH + m− lj − dj + 1)
B(aH , bH) . (3.8)

3.2 Choosing the slab distribution
To define a prior on the loading matrix βH given δH , we first define a prior p(βr|Σr, δr)
on the loading matrix βr in the CFA model (2.3) containing the active columns of βH ,
conditional on Σr = Diag (σ2

1 , . . . , σ
2
m) and δr. When expanding the CFA model to an

EFA model with rsp columns, we define a prior p(Ξ|βr,Σr, lΞ) on the spurious loadings
conditional on βr, Σr, and lΞ. The spurious factor loadings are assigned a uniform prior
over all values that lead to a positive definite matrix Σk = Σr−ΞΞ′ in the EFA model:

Ξ2
lsp |σ

2
lsp ∼ U

[
0, σ2

lsp

]
. (3.9)

This ensures for all lsp ∈ lΞ that Σk,lsp,lsp = σ2
lsp

−Ξ2
lsp

> 0. By this definition, both the
likelihood and the prior are invariant to moving between the EFA and the CFA model
for a given number of spurious columns rsp, regardless of the chosen slab distribution.1

The Dirac-spike-and-slab prior (3.1) is formulated for the factor loading matrix βr

in the CFA model. A broad range of slab distributions Pslab (which are briefly reviewed
below) has been considered for sparse Bayesian factor analysis and can be combined with
the reversible jump MCMC sampler we introduce in Section 4. Since the conditional
likelihood function factors into a product over all rows of βr, prior independence of all
rows i with qi =

∑
j δij > 0 nonzero elements is assumed. A hierarchical Gaussian prior

for the vector βδ
i· of unconstrained elements takes the form βδ

i·|σ2
i ∼ Nqi

(
0,Bδ

i0σ
2
i

)
,

where Bδ
i0 is a diagonal matrix. The variance of this prior is assumed to depend on the

idiosyncratic variance σ2
i , because this allows joint drawing of βr and σ2

1 , . . . , σ
2
m and,

even more importantly, sampling the sparsity matrix δr without conditioning on the
model parameters during MCMC estimation, see Algorithm 1 in Section 4.

1Note that this is a major improvement compared to Frühwirth-Schnatter and Lopes (2018).
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A common choice for Pslab is to introduce a global shrinkage parameter κ,

βij |δij = 1, κ ∼ N
(
0, κσ2

i

)
, (3.10)

which is either fixed or random with hyperprior κ ∼ G−1 (cκ, bκ) or κ ∼ F (2aκ, 2cκ). A
popular extension are slab distributions with a column specific shrinkage parameter θj ,

βij |δij = 1, θj , σ2
i , κ ∼ N

(
0, κθjσ2

i

)
, (3.11)

where θj ∼ G−1 (cθ, bθ) either follows an inverse gamma prior (Legramanti et al., 2020)
or a triple gamma prior, θj ∼ F

(
2aθ, 2cθ

)
(Cadonna et al., 2020; Frühwirth-Schnatter,

2023). This prior acts as a variance selection prior which pulls all factors fjt, t = 1, . . . , T ,
toward 0 for small values of θj . To achieve additional shrinkage for individual factor
loadings, local shrinkage parameters ωij arising from an F-distribution can be intro-
duced:

βij |δij = 1, ωij , θj , σ
2
i , κ ∼ N

(
0, κθjσ2

i ωij

)
, ωij ∼ F (2aω, 2cω) . (3.12)

Related structured priors are employed in (Zhao et al., 2016; Schiavon et al., 2022),
among others. As an alternative shrinkage prior, Frühwirth-Schnatter and Lopes (2010)
introduced a conditionally conjugate fractional prior p(βδ

i·|σ2
i , b, fr) ∝ p(ỹi|fr,βδ

i·, σ
2
i )b

in the spirit of O’Hagan (1995), see Appendix C.1 for details (Frühwirth-Schnatter et al.
(2024)).

3.3 The prior on the idiosyncratic variances

Finally, we define a prior on the idiosyncratic variances σ2
1 , . . . , σ

2
m in the CFA model

(2.3), taking two aspects into considerations. The first aspect in choosing this prior
is whether the data are standardized, as often is recommended (Schiavon and Canale,
2020). For each variable yit, the loadings βi1, . . . , βir together with σ2

i determine the
communalities R2

i as the proportion of variance explained by the common factors:

R2
i =

∑r
�=1 β

2
i�

Ωii
⇔ σ2

i = (1 −R2
i )Ωii, (3.13)

where Ωii =
∑r

�=1 β
2
i�+σ2

i is the ith diagonal element of Ω. For standardized data, where
Ωii = 1, σ2

i = 1 − R2
i is a scale-free parameter and the popular exchangeable inverse

gamma prior, σ2
i ∼ G−1 (cσ, C0), with constant scale C0 is a sensible choice. However, for

data that are not standardized, scale dependence of σ2
i = (1−R2

i )Ωii is to be expected,
in particular in the presence of strong heterogeneity in the variances Ω11, . . . ,Ωmm. In
this case, it is preferable to use an inverse gamma prior with heterogenous scales C0i:

σ2
i ∼ G−1 (cσ, Ci0) . (3.14)

We may assume that Ci0 = bσi are fixed hyperparameters. Alternatively, assuming
random hyperparameters Ci0 ∼ G (aσ, aσ/bσi ) with E(Ci0) = bσi leads to a more general
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prior which can be expressed as a rescaled F-distribution with the same prior expectation
E(σ2

i ) = bσi /(cσ − 1) as (3.14), provided that cσ > 1:

σ2
i ∼ bσi

cσ
F (2aσ, 2cσ) . (3.15)

Second, a difficulty known as Heywood problem should be considered when choosing this
prior. This problem frequently occurs in ML estimation, with one or more estimators
σ̂2
i s of the idiosyncratic variances being negative, see e.g. (Bartholomew, 1987). Putting

a prior on the idiosyncratic variances within a Bayesian framework naturally avoids
negative values for σ2

i . Nevertheless, there exists a Bayesian analogue of the Heywood
problem which takes the form of multi-modality of the posterior of σ2

i with one mode
lying at 0. Heywood problems typically occur if the constraint 1/σ2

i ≥ (Ω−1)ii is violated
for the covariance matrix of yt (Bartholomew, 1987, p. 54). It is clear from this inequality
that the prior of 1/σ2

i has to be bounded away from 0. For this reason, Heywood
problems might be an issue under improper priors such as p(σ2

i ) ∝ 1/σ2
i (Martin and

McDonald, 1975; Akaike, 1987) and proper priors with cσ > 0 are preferable.

3.4 Choice of hyperparameters
For applications, we reduce the complex structure of the above priors to five hyperpa-
rameters. We summarize our choices in Table 1 and provide details in this section.

A necessary condition for δk to satisfy the 3579 counting rule discussed in Section 2.1
is the following upper bound for k:

k ≤ �(m− 1)/2, (3.16)

Prior distributions Parameters Values
Prior for τj , j = 1, . . . , H
τj |α, γ,H ∼ B

(
γ α
H , γ

)
, aα, bα, H aα = n0, bα = aα(H − Eq)/H/Eq

α ∼ G (aα, bα) , γ ∼ G (aγ , bγ) aγ , bγ aγ = bγ = n0
Priors for σ2

i , i = 1, . . . ,m
σ2
i ∼ G−1 (c0, C0) c0, C0 c0 = 1, C0 = 0.3

σ2
i ∼ G−1 (cσ, bσi ) cσ, bσi bσi = (cσ − 1)(1 − ER)Ω̄ii

σ2
i ∼ (bσi /cσ) F (2aσ, 2cσ) cσ, bσi , a

σ aσ = n0
Slab priors for βij

Fractional prior b b = 1/(mT )
βij |σ2

i , κ ∼ N
(
0, κσ2

i

)
, cκ, bκ cκ = n0

κ ∼ G−1 (cκ, bκ) bκ = cκER/(1 − ER)/Eq

βij |θj , σ2
i , κ ∼ N

(
0, κθjσ2

i

)
, cκ, bκ

κ ∼ G−1 (cκ, bκ), θj ∼ F
(
2aθ, 2cθ

)
aθ, cθ aθ = n0, cθ = 2.5

βij |ωij , θj , σ
2
i , κ ∼ N

(
0, κθjσ2

i ωij

)
, cκ, bκ

κ ∼ G−1 (cκ, bκ), θj ∼ F
(
2aθ, 2cθ

)
, aθ, cθ aω = cω = 0.5 (horseshoe)

ωij ∼ F (2aω, 2cω) aω, cω aω = cω = 0.2 (triple gamma)
Table 1: Prior choices depending on five hyperparameters with default values H =
�(m− 1)/2, Eq = 2, ER = 2/3, cσ = 2.5 and n0 = 6.
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which we use as default for H. As discussed, this choice encourages spurious and zero
columns in δH which are essential for our strategy of recovering the factor dimension
from the EFA model (2.1). If m is large, than choosing H below the upper bound (3.16)
is sensible from a computational viewpoint.

In the vein of Thurstone (1947), we impose a simple structure on βH by assuming
that in each row the number of non-zero loadings qi =

∑H
j=1 δij is much smaller than

H and choosing the hyperparameters in α ∼ G (aα, bα) accordingly. The choice of α
strongly impacts the expected row sparsity Eq = E(qi|α,H), given by

Eq = α

1 + α/H
,

independently of γ. To match a prior guess of Eq with the prior expectation Eα =
E(α|H) = H · Eq/(H − Eq) of α, we bind a given value of aα to the scale parameter
bα = aα/Eα. For large H, this yields Eα ≈ Eq apriori, whereas Eα is larger than Eq

to achieve the same level of row sparsity for smaller values of H. A sensible choice in
the spirit of Thurstone (1947) is Eq = 2. To center the 2PB prior at the 1PB prior
(corresponding to γ = 1), we choose bγ = aγ for a given value of aγ .

For the exchangeable prior σ2
i ∼ G−1 (cσ, C0), a popular choice is cσ = 1 and C0 =

0.3 (Bhattacharya and Dunson, 2011). Following Frühwirth-Schnatter and Lopes (2010,
2018), we select cσ in prior (3.14) and (3.15) large enough to bound the prior of 1/σ2

away from 0. Depending on the data, cσ can be increased if any of the posteriors p(σ2
i |y)

has a second mode at 0. For a given cσ > 1, Frühwirth-Schnatter and Lopes (2018) select
the scale parameter in (3.14) as bσi = (cσ−1)/(Ω̂−1)ii. Alternatively, we choose bσi both
in (3.14) and (3.15) such that (3.13) holds on average, i.e. E(σ2

i ) = E(1 − R2
i ) E(Ωii).

Based on a prior guess ER of the average amount of explained variance, this yields
bσi = (cσ − 1)(1−ER)Ω̄ii, where Ω̄ii = 1 for standardized data and otherwise Ω̄ii = Ω̂ii.
See Appendix C.1 for details on estimating Ω̂−1 and Ω̂.

Regarding the hyperparameters used for the prior βij |δij = 1 in the slab, we choose
b = 1/(mT ) for the fractional prior (C.4) in the spirit of Foster and George (1994). We
use the same prior on the global shrinkage parameter κ for all hierarchical shrinkage
priors and bind a given value of cκ to the scale parameter bκ = cκEκ, where

Eκ = ER

(1 − ER)Eq
(3.17)

takes the prior information Eq and ER used in the previous two priors into account.
This choice is motivated for prior (3.10) by rewriting the coefficient of determination R2

i

given in (3.13) in terms of δij and the standardized loadings β

ij = βij/

√
σ2
i κ ∼ N (0, 1):

R2
i =

κ
∑r

j=1(β

ij)2δij

κ
∑r

j=1(β

ij)2δij + 1

⇒ R2
i = κ(1 −R2

i )χ2
qi .

Using that the sum follows a χ2
qi-distribution, and taking the expectation of both sides

of the second equation yields (3.17). Various priors for the column specific shrinkage
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parameters θj have been suggested, such as aθ = cθ = 0.5 (Zhao et al., 2016) or
(aθ = 2.5, cθ = 0.5) (Kowal and Canale, 2023). Following Frühwirth-Schnatter (2023),
we choose cθ = 2.5 to fix the prior expectation of θj at around 1 and to impose a finite
prior variance. Finally, regarding local shrinkage, for aω = cω = 0.5 the horseshoe prior
employed by Zhao et al. (2016) results; choosing aω = cω < 0.5 yields a triple gamma
(Cadonna et al., 2020) which imposes more aggressive shrinkage than the horseshoe.

This reduces the choice of hyperparameters to cσ controlling Heywood problems, the
prior expectation Eq of row sparsity, the prior expected fraction of explained variance
ER and the hyperparameters aα, aγ , cκ, aθ and, for the rescaled F-prior (3.15), also aσ.
Increasing these latter hyperparameters increases prior concentration around the chosen
prior expectations. In our simulations and applications, we assume the same amount of
prior information n0 for any of these priors, i.e. aα = aγ = cκ = aθ = aσ = n0. We
analyze prior sensitivity in Section 5 by comparing multiple priors.

4 MCMC estimation
MCMC estimation for sparse Bayesian factor models is notoriously difficult, since sam-
pling the sparsity matrix δH corresponds to navigating through an extremely high di-
mensional model space. In the present paper, we develop an innovative MCMC scheme
for sparse Bayesian factor models where the factor dimension is unknown, summarized
in Algorithm 1. To learn the number of factors, we sample from the posterior distri-
bution of the EFA model (2.1), given the priors introduced in Section 3. As opposed
to Carvalho et al. (2008), who operate under a PLT condition on the sparsity ma-
trix δH , and Kaufmann and Schuhmacher (2019), who sample δH without imposing
any constraint, we impose a UGLT structure on δH during MCMC sampling. As dis-
cussed in Section 2.1, this allows us to address identification of the factor model in a
post-processing manner, see Section 4.4. Based on appropriate initial values (see Ap-
pendix A for details), we iterate M times through the various steps of Algorithm 1 and
discard the first M0 draws as burn-in.

Algorithm 1 consists of two main blocks. Block (CFA) operates in the confirmatory fac-
tor analysis model (2.3) corresponding to δr. Due to the prior specification in Section 3,
the number rsp of spurious columns is a sufficient statistic for the remaining columns in
δH and no further information is needed to update the parameters in the CFA model. To
ensure that the loading matrix exhibits a UGLT structure, Step (L) performs MH steps
that navigate through the space of all admissible δr where the pivots lr = (l1, . . . , lr) lie
in different rows, see Section 4.2. Given lr, the hyperparameters aH and bH in the ESP
prior (3.2) are updated in Step (H) using an MH step, see Appendix B. Both Step (L)
and (H) are performed marginalized w.r.t. the slab probabilities τ r = (τ1, . . . , τr). To
sample τj for all columns j, the ESP prior (3.2) is combined with the likelihood (3.7).
In Step (D), variable selection is performed in each column j for all indicators δij below
the pivot row lj . This step potentially turns an active factor into a spurious one and
in this way decreases the number of active factors r, while increasing rsp. All moves in
Step (D) are implemented conditionally on τj (and all shrinkage parameters for hier-
archical Gaussian priors), as this allows efficient multimove sampling of all indicators



14 Sparse Bayesian Factor Analysis

Algorithm 1 MCMC for sparse Bayesian factor models with UGLT structures.
(CFA) Update all unknowns in the CFA model (2.3) corresponding to δr:

(H) Update any unknown hyperparameters in the ESP prior (3.2) without conditioning on the
slab probabilities τ r = (τ1, . . . , τr). For j = 1, . . . , r, sample τj |lj , dj ∼ B(aH + dj − 1, bH
+ m− lj − dj + 1), where dj =

∑m
i=1 δij .

(D) Loop over all columns of the sparsity matrix δr in a random order:
(a) Sample all indicators δij below the pivot lj from p(δij |lj , δr·,−j , fr, τj ,y) conditional

on the remaining columns δr·,−j , the factors fr = (fr1 , . . . , frT ) and τj , without condi-
tioning on βr and σ2

1 , . . . , σ
2
m.

(b) If column δr·,j is spurious after this update, increase rsp by one. Remove the jth
column from δr, the factors fjt, t = 1, . . . , T from fr and τj from τ r to define,
respectively, δr−1, fr−1 and τ r−1 and decrease r by one.

(L) Loop over all columns j of δr in a random order and sample a new pivot row lj from
p(lj |δr·,−j , fr,y) without conditioning on βr, σ2

1 , . . . , σ
2
m and the slab probabilities τ r. If

column δr·,j is spurious after this update, proceed as in Step (D-b).
(P) Sample the model parameters βr and σ2

1 , . . . , σ
2
m jointly conditional on the sparsity matrix

δr and the factors fr = (fr1 , . . . , frT ) from p(βr, σ
2
1 , . . . , σ

2
m|δr, fr,y).

(F) Sample the latent factors fr = (fr1 , . . . , frT ) conditional on the model parameters βr and
σ2
1 , . . . , σ

2
m from p(fr1 , . . . , frT |βr, σ

2
1 , . . . , σ

2
m,y).

(S) For hierarchical Gaussian priors, update the global shrinkage parameter κ, the column-
specific shrinkage parameters θ1, . . . , θr and all local shrinkage parameters ωij (if any) and
recover C01, . . . , C0m for the F-prior (3.15) on σ2

1 , . . . , σ
2
m.

(A) Perform a boosting step to enhance mixing.
(EFA) Move from the current CFA model to an EFA model with rsp spurious columns and try to

change rsp, while holding the number of active factors r fixed:

(R-S) Perform an RJMCMC step to change the number rsp of spurious columns through a split
move on a zero column or a merge move on a spurious column in δH .

(R-L) Given rsp, sample the pivot rows lΞ|lr of all rsp spurious columns sequentially from the
set L(lr), where lr are the pivot rows of the active factors δr. Order the spurious columns
such that lΞ,1 < . . . < lΞ,rsp .

(R-F) Loop over all spurious columns jsp and sample the spurious factors fjsp =
(fjsp,1, . . . , fjsp,T ) independently for all t = 1, . . . , T from fjsp,t|frt ,βr, σ

2
lsp

, ylsp,t ∼
N
(
Ejsp,t, Vjsp

)
, where Ujsp is a draw from a uniform distribution on [−1,1] and

Vjsp = 1 − U2
jsp , Ejsp,t = Ujsp (ylsp,t − βr,lsp,·f

r
t )/

√
σ

2
lsp . (4.1)

(R-H) Sample τjsp |lsp ∼ B (aH , bH + m− lsp) for all spurious columns jsp.
(R-D) Update all spurious columns from the last (with the largest pivot row) to the first (with the

smallest pivot row): sample all (δi,jsp , i ∈ {lsp +1, . . . ,m}) below the pivot lsp conditional
on τjsp , δr, fr and fjsp without conditioning on βr, Ξ and σ2

1 , . . . , σ
2
m. If a spurious column

jsp is turned into an active one, then decrease rsp by 1, increase r by 1, add δ·,jsp to δr
and fjsp to fr. Otherwise, remove δ·,jsp from δΞ and fjsp from fΞ.

Move from the current EFA model back to the CFA model and preserve rsp.

{δij , i ∈ {lj + 1, . . . ,m}}, using Algorithm 2 in Appendix D.2. The remaining steps
are quite standard in Bayesian factor analysis (Geweke and Singleton, 1980; Lopes
and West, 2004). In Step (P), we use an efficient algorithm for multi-move sampling
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of all unknown model parameters βr, and σ2
1 , . . . , σ

2
m, see Appendix C.3. In Step (F),

the conditional posterior p(f r1 , . . . , f rT |βr, σ
2
1 , . . . , σ

2
m,y) factors into independent normal

distributions given by:

f rt |yt,βr,Σr ∼ Nr

(
(Ir + β′

rΣ−1
r βr)−1β′

rΣ−1
r yt, (Ir + β′

rΣ−1
r βr)−1) , (4.2)

where Σr = Diag (σ2
1 , . . . , σ

2
m). For the hierarchical Gaussian priors (3.11) and (3.12),

all unknown shrinkage parameters and, for the rescaled F-prior (3.15) on σ2
1 , . . . , σ

2
m,

also the scaling parameters C01, . . . , C0m are updated in Step (S) (see Appendix E),
since Step (P) is performed conditional on these values. Finally, the boosting Step (A)
is added to improve the mixing of the MCMC scheme, see Section 4.3.

In Block (EFA), the sampler moves from the current CFA model to an EFA model
with rsp spurious columns and performs dimension changing moves in the much larger
space underlying this model. The sampler finally returns to a CFA model with a poten-
tially larger number of active factors r, see Section 4.1 for more details.

4.1 Split and merge moves for overfitting models

Step (EFA) in Algorithm 1 is based on moving from the CFA model (2.3) to an EFA
model (2.1) with rsp spurious factors in βH . Exploiting the results of Section 2.2, spu-
rious columns in δH are added and deleted in Step (R-S) by reversible jump MCMC
(RJMCMC). Very conveniently, this step is independent of the pivots lΞ and the load-
ings Ξ in the spurious columns, since the prior p(δH ,βH ,ΣH |rsp) is invariant to the
specific choice of lΞ and Ξ, given rsp. However, the prior odds that a zero column in
δH can be turned into an additional spurious column are equal to:

Osp(r, rsp) = aH(m− r − rsp)
bH − 1 + m− r − rsp

. (4.3)

For bH = 1, the prior odds (4.3) depend only on aH , independently of the current
number of active and spurious columns. But even in this case, simply adding or deleting
spurious columns would lead to an invalid MCMC procedure and an RJMCMC step that
incorporates Osp(r, rsp) is performed in Step (R-S). As opposed to other applications of
RJMCMC, the acceptance rate is extremely easy to compute, see (4.4) and (4.5).

At each sweep of the sampler, a split or a merge move is performed with, respectively,
probability psplit(r, rsp) or pmerge(r, rsp). A symmetric proposal is applied for all 0 ≤
rsp < H − r with psplit(r, rsp) = pmerge(r, rsp + 1) = ps, where ps ≤ 0.5 is a tuning
parameter, while pmerge(r, rsp) = 0 for rsp = 0 and psplit(r, rsp) = 0 for rsp = H − r. A
split move turns one of the H−(r+rsp) zero columns in δH into a spurious column, with
proposal density qsplit(δnew

H |δH) = ps/(H−r−rsp). A merge move turns one of the rsp >
0 spurious columns in δH into a zero column, with proposal density qmerge(δnew

H |δH) =
ps/rsp. A split move is accepted with probability min(1, Asplit(r, rsp)), where:

Asplit(r, rsp) = qmerge(δH |δnew
H )

qsplit(δnew
H |δH) Osp(r, rsp) = aH(m− r − rsp)(H − r − rsp)

(rsp + 1)(bH + m− r − rsp − 1) , (4.4)
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whereas a merge move is accepted with probability min(1, Amerge(r, rsp)), where

Amerge(r, rsp) = 1
Asplit(r, rsp − 1) = rsp(bH + m− r − rsp)

aH(m− r − rsp + 1)(H − r − rsp + 1) . (4.5)

There is a dynamic feature underlying this RJMCMC algorithm, with acceptance de-
pending on the number of spurious columns rsp. For bH = 1, for instance, Asplit(r, rsp)
is monotonically decreasing and Amerge(r, rsp) is monotonically increasing in rsp.

Once rsp has been updated, Step (R-L) is trying to turn each spurious column into
an active one. Since the likelihood is non-informative about spurious columns, pivots
lsp are sampled uniformly from the prior lΞ|lr, while the spurious factor loadings Ξlsp

are sampled from the prior (3.9). Given lsp, the idiosyncratic variance σ2
lsp

in the CFA
model is split, with the help of a random variable Ujsp ∼ U [−1, 1], between Ξlsp and an
updated idiosyncratic variance σ2,new

lsp
. More specifically:

Ξlsp = Ujsp

√
σ2
lsp

, σ2,new
lsp

= (1 − U2
jsp)σ2

lsp . (4.6)

Given Ξlsp and σ2,new
lsp

, factors fjsp,t are proposed in Step (R-F) for each t = 1, . . . , T from
the conditional density p(fjsp,t|f rt ,βr, σ

2
lsp

, ylsp,t) given in (4.1). The slab probabilities
τjsp are sampled in Step (R-H) as in Algorithm 1, Step (H), using that djsp = 1. Finally,
in Step (R-D) variable selection is performed in each spurious column on all indicators
below lsp as in Step (D) of Algorithm 1, conditional on fjsp,t. Any spurious column that
is turned into an active one is integrated into the CFA model, increasing in this way the
number of active columns r. Further details and proofs are provided in Appendix F.

4.2 Special MCMC moves for unordered GLT structures
Step (L) in Algorithm 1 implements MH-moves to change the current position of the
pivot rows lr = (l1, . . . , lr) in the r columns of the UGLT indicator matrix δr. To change
lj |lr,−j given the remaining pivot rows lr,−j , we use several moves, namely shifting the
pivot, adding a new pivot, deleting a pivot and switching the pivots (and additional
indicators) between column j and a randomly selected column j′; see Figure G.1 for
illustration. All moves are performed marginalized w.r.t. τ r. Changing the pivot from
lj to lnew

j changes the number of unconstrained indicators, whereas the prior ratio
p(lnew

j |lr,−j)/p(lj |lr,−j) = 1. With dnew
j being the new number of non-zero elements in

column j, the prior ratio Rmove can be derived from (3.8):

Rmove =
Pr(δnew

·,j |lnew
j )

Pr(δ·,j |lj)
=

B(aH + dnew
j − 1, bH + m− lnew

j − dnew
j + 1)

B(aH + dj − 1, bH + m− lj − dj + 1) . (4.7)

Further details are provided in Appendix G.

4.3 Boosting MCMC
Step (F) and Step (P) in Algorithm 1 sample the factors (f r1 , . . . , f rT ) conditional on
(βr,Σr) and (βr,Σr) conditional on (f r1 , . . . , f rT ). Depending on the signal-to-noise ratio,
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such full conditional Gibbs sampling tends to be poorly mixing. In a factor model where
f rt ∼ Nr (0, Ir), the information in the data (the “signal”) can be quantified by the
matrix β′

rΣ−1
r βr in comparison to the identity matrix Ir (the “noise”) in the filter for

f rt |yt,βr,Σr, see (4.2). One would expect that factor models with many measurements
contain ample information to estimate the factors, however, this is true only if the
information matrix β′

rΣ−1
r βr increases with m and most of the factor loadings are

nonzero. Sparse factor models contain many columns with only a few non-zero loadings,
leading to a low signal-to-noise ratio and, consequently, to a poorly mixing sampler. For
such models, boosting steps are essential to obtain efficient MCMC schemes. Several
papers (Ghosh and Dunson, 2009; Frühwirth-Schnatter and Lopes, 2010; Conti et al.,
2014) apply marginal data augmentation (MDA) in the spirit of van Dyk and Meng
(2001); others (Kastner et al., 2017; Frühwirth-Schnatter and Lopes, 2018) exploit the
ancillarity-suffiency interweaving strategy (ASIS) introduced by Yu and Meng (2011).

Boosting is based on moving from the CFA model (2.3) where f rt ∼ Nr (0, Ir) to an
expanded model with a more general prior:

yt = β̃r f̃ rt + εt, εt ∼ Nm (0,Σr) , f̃ rt ∼ Nr (0,Ψ) , (4.8)

where Ψ = Diag (Ψ1, . . . ,Ψr) is diagonal. The two systems are related by the transfor-
mations f̃ rt = (Ψ)1/2f rt and β̃r = βr(Ψ)−1/2, where the nonzero elements in β̃r have the
same position as the nonzero elements in βr and the sparsity matrix δr is not affected
by the transformation. The main difference between MDA and ASIS lies in the choice of
Ψ. While Ψj is sampled from a working prior for MDA, Ψj is chosen in a deterministic
fashion for ASIS. For illustration, Figure 2 shows posterior draws of tr(β′

rΣ−1
r βr) for

the exchange rate data to be discussed in Section 5.2 without boosting (left-hand panel)
and illustrates the considerable efficiency gain when a boosting strategy such as ASIS
(middle panel) or MDA (right-hand panel) is applied in Step (A).

For the hierarchical priors (3.11) and (3.12) we found it particularly useful to apply
column boosting and interweave the column specific shrinkage parameter θj into the
state equation by choosing Ψj = θj . For the F-prior (3.15) on σ2

1 , . . . , σ
2
m, another

useful strategy is row boosting, based on moving the random scales C0i from the prior
σ2
i to the observation equation in all rows of the basic factor model. Full details for all

boosting steps are provided in Appendix H.

Figure 2: Exchange rate data (standardized, fractional prior and prior (3.14) for σ2
i );

posterior draws of tr(β′
rΣ−1

r βr) without boosting (left-hand side), boosting through
ASIS with

√
Ψj equal to the largest loading (in absolute values) (middle) and through

MDA based on the working prior Ψj ∼ G−1 (1.5, 1.5) (right-hand side).
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4.4 Post-processing posterior draws

Algorithm 1 delivers posterior draws (δr,βr,Σr) in a CFA model with a varying number
r of active columns. Our sampler imposes the (mild) condition that the pivots (the first
non-zero loading in each column) lie in different rows, ensuring that all posterior draws
of the loading matrix exhibit a UGLT structure. As discussed in Section 2.1, this allows
identification during post-processing.

We use the 3579 counting rule and the algorithm of Hosszejni and Frühwirth-
Schnatter (2022) to check for each draw δr whether the variance decomposition is
unique, and remove all draws that are not variance identified. Quantities that can be
inferred from variance identified posteriors draws with varying factor dimension r in-
clude the covariance matrix Ω = βrβ

T
r + Σr, the idiosyncratic variances σ2

1 , . . . , σ
2
m,

the modelsize d =
∑

i,j δij , and the communalities R2
1, . . . , R

2
m defined in (3.13). Most

importantly, variance identified posterior draws are instrumental for identifying the
number of factors and the factor loading matrix. The number of nonzero columns of
all variance identified draws δr can be regarded as posterior draws of the unknown
factor dimension r. The posterior distribution p(r|y) derived from these draws yields
uncertainty quantification and the posterior mode r̃ serves as an estimator of r.

Due to the UGLT structure imposed on βr, rotational invariance reduces to sign
and column switching. βr is rotated into a loading matrix Λ with GLT structure by
ordering the columns such that the pivots are increasing, and the sign is reversed in
all columns with a negative leading factor loading. The GLT draws Λ still exhibit a
varying factor dimension r and posterior variation in l1, . . . , lr. To estimate the factor
loading matrix, further inference is performed conditionally on the posterior mode r̃
and an estimator l̂r̃ = (l̂1, . . . , l̂r̃) of the pivots given by the sequence visited most often
across all draws with factor dimension r = r̃. Bayesian model averaging over all GLT
draws Λ with pivot l̂r̃ yields the posterior mean E(Λ|y, l̂r̃). The marginal posterior
p(Λij |y, l̂r̃) and the marginal inclusion probability Pr(δΛ

ij = 1|y, l̂r̃) allow uncertainty
quantification for individual elements Λij and δΛ

ij in Λ and corresponding the sparsity
matrix δΛ. Alternative estimators such as the sequence of pivots l
 visited most often
among all variance identified draws and more details are provided in Appendix I.

5 Applications
We discuss applications both to simulated as well as real data sets. For each data set,
whether simulated or real, Algorithm 1 is used to generate and post-process M posterior
draws after a burn-in of M0 draws.2 We choose a 2PB prior to ensure column sparsity,
combine various slab distributions for βij with various priors on σ2

i , and use the default
hyperparameters introduced in Table 1, namely H = �(m− 1)/2, cσ = 2.5, ER = 2/3,
Eq = 2 and aα = aγ = cκ = aθ = aσ = n0 = 6.

2Tuning in Step (R) and Step (L) relies on ps = 0.5, pshift = pswitch = 1/3 and pa = 0.5. Boosting
in Step (A) relies on ASIS with

√
Ψj being the largest loading (in absolute value) in column j.
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5.1 Simulation study
We perform an extensive simulation study and summarize the main findings in this
section. Full details on the simulation settings, the performance measures and additional
results are provided in Appendix K. We assume m = 30, T = 100, and rtrue = 5 factors
and consider six sparsity patterns Λ, namely a dedicated factor model, a dedicated factor
model with overlap, a two-block factor model, a sparse factor model with 50% overall
sparsity, a model with a market factor that loads on all measurements and exhibits 60%
sparsity in the remaining columns and a dense factor model with no zero loadings. 50
data sets are generated for each scenario from the basic factor model (1.1) under Σ0 = I.
Note that H = 14. Prior (3.14) for σ2

i is combined with the following slab distributions
Pslab for βij : a fractional prior (F), prior (3.10) with global shrinkage (G), prior (3.11)
with column shrinkage (C), and prior (3.12), where local shrinkage with aω = cω = 0.5
relies on the horseshoe (H) and on a triple gamma with aω = cω = 0.2 (T). MCMC is
performed with M0 = M = 4,000 for all 300 data sets under each of these five priors,
starting either with r = 3 or r = 8 active and rsp = 2 spurious factors.

For each simulated data set, the variance identified posterior draws under a specific
prior yield estimates of the posterior mode r̃, the posterior ordinate Ptrue = Pr(r̃ =
rtrue|y), the posterior risk measures RΩ = E(L(Ωr,Ω0)|y), RΣ = E(L(Σr,Σ0)|y) and
RΩ−1 = E(L(Ω−1

r ,Ω−1
0 )|y) in recovering the true matrices Ω0, Σ0, and Ω−1

0 , where
L is the entropy (or Stein) loss (Yang and Berger, 1994), the true positive rate TPΩ
for non-zero and the false positive rate FPΩ for zero correlations in Ω0, the bias Bd =
E(dr|y) − dtrue in model size, and the true positive rate TPδ and the false positive
rate FPδ for the true sparsity pattern δΛ. Tables 2 and K.1 report the average and
Figures K.2 to K.7 the entire sampling distribution for these performance measures for
all sparsity patterns and slab distributions Pslab.

In general, sparse UGLT Bayesian factor analysis has a high hit rate and correctly
recovers the true number of factors through the posterior mode for most of the 1500 runs
of our sampler, with 76 and, respectively, 14 under- and overfittings occurring mainly
for the block and the market sparsity patterns. The choice of Pslab has considerable
impact on recovering the true sparsity pattern δΛ in Λ and Ω0. The fractional prior has
the smallest false positive rates FPδ and FPΩ both for δΛ and Ω0 which is considerably
smaller than for hierarchical shrinkage priors for all sparsity patterns. At the risk of
higher false positive rates, the true positive rates TPδ and TPΩ both for δΛ and Ω0
are larger for hierarchical shrinkage priors than for the fractional prior, for which they
are still high with a few exceptions. Overall, the fractional prior leads to the sparsest
solutions with the smallest model size d, resulting in strong underfitting of d for the
dense pattern but also in the smallest bias in d for other sparsity patterns. Regarding
the estimates for Ω0, Ω−1

0 and Σ0, hierarchical shrinkage priors have a smaller average
loss L than the fractional prior, even if the differences are significant only for the dense
sparsity pattern.

For comparison, we perform for each of the sparsity patterns under each slab dis-
tribution sparse BFA under the PLT condition, assuming that the number of factors
r = 5 is known and equal to the true value. Priors are the same as under UGLT with
H = 5. MCMC is implemented by a simplification of Algorithm 1, see Appendix J.
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r̃ Ptrue RΩ RΩ−1 RΣ TPΩ FPΩ Bd TPδ FPδ

Dedicated
UGLT F 5 0.998 1.41 1.47 0.98 94.3 9.56 0.5 96.1 5.3

G 5.04(0,2) 0.933 1.49 1.62 0.94 97.3 37.9 7.48 96.2 21.6
T 5 0.962 1.48 1.58 0.94 97.1 59.4 17.3 95.4 38.3

PLT F – – 2.66 2.98 1.67 85.3 34.5 3.25 28.2 75.2
G – – 2.35 2.17 1.18 91.2 58.1 13.8 37.2 74.7
T – – 2.29 2.24 1.26 93.1 72.9 28 44.4 77.1

Overlap
UGLT F 5.02(0,1) 0.985 1.61 1.64 0.95 96.3 8.31 1.02 97.7 4.6

G 5 0.939 1.68 1.75 0.88 97.4 33.7 9.33 96.5 21.5
T 5 0.972 1.72 1.83 0.92 98.8 53.7 22.2 98.2 37.2

PLT F – – 2.56 2.49 1.29 88.8 28.6 3.83 37.5 66.1
G – – 2.55 2.43 1.12 94.4 50.7 16.3 42.6 70.2
T – – 2.83 2.62 1.4 95.9 64.9 33.4 53.6 71.5

Block
UGLT F 4.60(18,0) 0.636 3.00 2.78 1.34 88.7 7.25 −25.0 64.0 5.63

G 4.90(6,1) 0.848 2.53 2.56 1.00 95.5 24.8 −8.17 78.5 12.9
T 4.78(11,0) 0.764 2.64 2.61 1.13 97.5 42.2 3.49 82.5 23.6

PLT F – – 4.05 4.19 1.69 83.5 19.2 −23.0 42 39.6
G – – 3.04 3.85 1.18 92.7 37.2 −6.31 59.4 35.2
T – – 4.01 4.59 1.79 95.1 49.1 11.8 61.6 47.5

Sparse
UGLT F 4.84(4,0) 0.92 2.64 2.43 1 93 7.85 0.06 90.6 9.9

G 5.02(0,1) 0.94 2.32 2.44 0.88 98.6 27.5 17 94.5 26.7
T 4.8(2,0) 0.94 2.31 2.4 0.94 95.6 38.1 35.4 96.5 41.0

PLT F – – 3.67 3.59 1.33 91 18.4 3.7 56.6 47.0
G – – 2.66 2.87 0.95 98.3 32.6 20.8 74.0 45.4
T – – 2.83 2.74 1.13 98.9 42.4 41.2 82.0 52.6

Market
UGLT F 4.86(4,0) 0.919 2.78 2.43 1.03 96 0 −1.04 93.0 5.89

G 5.02(0,1) 0.951 2.28 2.39 0.87 99.6 0 10.6 95.1 17.7
T 4.84(6,1) 0.86 2.54 2.59 0.98 99.7 0 24 96.5 30.2

PLT F – – 4.5 4.48 1.38 89.3 0 0.79 61.2 40.3
G – – 2.55 2.62 0.92 99 0 14.4 76.4 38.1
T – – 3.13 2.93 1.08 98.7 0 30 78.2 46.6

Dense
UGLT F 4.98(1,0) 0.976 5.94 4.45 1.07 94.1 0 −60.8 56.7 0

G 5 0.989 3.79 3.72 0.85 98.9 0 −26.0 81.4 0
T 5 0.99 4.26 3.99 0.99 99.4 0 −14.8 89.4 0

PLT F – – 6.35 4.98 1.16 94.5 0 −58.1 58.6 0
G – – 3.84 3.71 0.87 98.9 0 −27.4 80.4 0
T – – 4.50 4.07 1.06 99.3 0 −17.1 87.8 0

For each performance measure, the average across 50 simulated data sets is reported. If r̃ �= 5, (a,b)
report, respectively, cases of under- and overfitting.

Table 2: Performance of sparse Bayesian factor analysis under a UGLT condition with
r unknown in comparison to a PLT condition with r = rtrue = 5 known for all sparsity
pattern.
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Figure 3: Comparing the true loading matrix Λ (left) with the estimated loading matrix
Λ̂ under the UGLT condition with r unknown (middle) and under the PLT condition
with r = 5 known (right-hand side) for a randomly selected data set under the dedicated
with overlap scenario (fractional prior in the slab).

Eight performance measures are determined from these draws and compared to sparse
BFA under the UGLT condition in Tables 2 and K.1 and Figures K.2 to K.7. Despite
assuming the true number of factors, PLT shows worse performance with respect to
recovering the true sparsity pattern in Λ and Ω0, but also exhibits a higher loss L in
estimating Ω0, Ω−1

0 and Σ0 with the exception of dense factor models which is the
only sparsity pattern where the PLT pivots (l1, . . . , l5) = (1, . . . , 5) coincide with the
true pivots. For all other sparsity patterns, the PLT condition imposed on Λ does not
really solve rotational invariance, but imposes an ordering on the columns of Λ that is
in conflict with the GLT ordering, see Figure 3 for illustration.

5.2 Sparse Bayesian factor analysis for exchange rate data
As a first exercise on real data, we analyze log returns spanning T = 96 months from
m = 22 exchange rates against the Euro.3 The data are demeaned and standardized.
Note that H = 10. We combine the fractional prior (C.4) with the following priors on
σ2
i : prior (3.14) (HIG) and (3.15) (HF) with default settings, prior (3.14) with bσi chosen

as in Frühwirth-Schnatter and Lopes (2018) (FSL) and σ2
i ∼ G−1 (1, 0.3) (Bhattacharya

and Dunson, 2011) (BD). Algorithm 1 is run for each prior for M = 50,000 iterations,
after a burn-in of 50,000. To verify convergence, independent MCMC chains are started
with r = 7 active and rsp = 3 spurious columns. The sampler shows good mixing across
models of different dimension, with the inefficiency factor for model size d ranging from
7 (FSL) to 22 (HF). For illustration, Figure 4 shows all posterior draws of r and d
including burn-in for the HIG prior.

3The data were obtained from the European Central Bank’s Statistical Data Warehouse and range
from January 3, 2000, to December 3, 2007. Table L.2 in Appendix L lists the 22 currencies. We derived
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Figure 4: Exchange rate data (standardized); posterior draws of the factor dimension
r (left) and model size d (right) including burn-in (fractional prior combined with the
HIG prior).

p(r|y)
Prior 0-2 3 4 5 6 7-10 100pV E(d|y) E(α|y) E(γ|y)
HF 0 0.137 0.834 0.029 ≈ 0 0 90.3 28 2.3 1.1
HIG 0 0.110 0.874 0.016 ≈ 0 0 92.5 28 2.3 1.1
FSL 0 0.033 0.954 0.013 0 0 93.5 28 2.3 1.1
BD 0 0.033 0.954 0.013 0 0 93.6 28 2.2 1.1

Note: non-zero probabilities smaller than 10−3 are indicated by ≈ 0.

Table 3: Exchange rate data (standardized); posterior distribution p(r|y) of the number
of factors, fraction 100pV of variance identified draws, posterior means of model size d
and the hyperparameters α and γ under the fractional prior and various priors for σ2

i .

Pr(qi = 0|y)
Prior on σ2

i CHF CZK MXN NZD RON RUB remaining
HF 0.88 0.74 0.81 0.47 0.61 0.61 0
HIG 0.88 0.73 0.82 0.46 0.55 0.61 0
FSL 0.88 0.75 0.81 0.49 0.61 0.61 0
BD 0.87 0.72 0.82 0.48 0.62 0.64 0

Table 4: Exchange rate data (standardized); posterior probability of the event Pr(qi =
0|y), where qi is the row sum of δr, for various currencies.

Posterior inference as summarized in Table 3 is robust to the chosen prior. The
fraction pV of variance identified draws is in general very high and the posterior distri-
bution p(r|y) is highly concentrated at four factors. The indicator matrix δr is sparse,
with an average posterior model size of 28. The variance identified draws are used to
explore if some measurements are uncorrelated with the remaining measurements. This
is investigated in Table 4 through the posterior probability Pr(qi = 0|y), where qi is the
ith row sum of δr. The Swiss franc (CHF), the Mexican peso (MXN) and the Czech
koruna (CZK) have considerable probability to be uncorrelated with the rest, while the

the returns based on the first trading day in a month.
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Figure 5: Exchange rate data (standardized); left hand side: sparsity matrix δ4 cor-
responding to the median probability model (identical for all four priors); right hand
side: estimated loading matrix E(Λ|̂l4,y) with l̂4 = (1, 2, 5, 7) for the HIG prior (nearly
identical for all four priors).

situation is less clear for the New Zealand dollar (NZD), the Romania fourth leu (RON),
and the Russian ruble (RUB). The remaining currencies are clearly correlated.

All posterior draws βr are rotated into a GLT structure Λ by ordering the pivots
such that l1 < . . . < lr. The sequence of pivots visited most often among all draws
with r = r̃ = 4 is equal to l̂4 = (1, 2, 5, 7) for all priors and coincides with the sequence
of pivots l
 visited most often among all variance identified draws. Sign switching is
resolved by imposing the constraint Λ11 > 0, Λ22 > 0, Λ53 > 0, and Λ74 > 0 on Λ. All
GLT draws where the pivots l4 coincide with l̂4 = (1, 2, 5, 7) are used to identify the GLT
representation of the factor loading matrix Λ and the marginal inclusion probabilities
Pr(δij = 1|y, l̂4). The analysis reveals a factor model with considerable sparsity, with
many factor loadings being shrunk toward zero, see Figure 5 for illustration. Factor 2
is a common factor among the correlated currencies, while the remaining factors are
three group specific, for the most part dedicated factors. Further results are reported in
Appendix L.

5.3 Sparse factor analysis for NYSE stock returns

As a second application, we consider monthly log returns from m = 63 firms from the
NYSE observed for T = 247 months from February 1999 till August 2019.4 Note that

4T = 247 monthly returns (determined on the last trading day in each month) starting from
February, 1999, of the largest 150 companies listed on the NYSE were downloaded from Bloomberg
on September 13, 2019. After removing all companies with missing data, 103 firms remained. For our
study, we consider the 63 firms belonging to the following five sectors: basic industries (1-7), non-durable
consumer goods (8-17), energy (18-27), finance (28-45) and health care (46-63).
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Figure 6: NYSE data; from left to right: posterior draws of the total number of non-zero
columns r + rsp, the number of spurious columns rsp, the extracted number of factors
r and the model dimension d.

p(r|y)
0-14 15 16 17 18 19 20 21-31 E(d|y) E(α|y) E(γ|y)

0 0.066 0.363 0.317 0.212 0.038 ≈ 0 0 269 4.4 1.1
Note: non-zero probabilities smaller than 10−2 are indicated by ≈ 0.

Table 5: NYSE data; posterior distribution p(r|y) of the number of factors; posterior
means of model size d and the hyperparameters α and γ under prior (3.12) with aω =
cω = 0.2 and the hierarchical F-prior (3.15) on σ2

i .

H = 31. Since the data are not standardized, we fit an extended EFA model

yt = μ + βHfHt + εt, εt ∼ Nm (0,ΣH) , fHt ∼ NH (0, IH) ,

with unknown mean μ, see Appendix M for details. As in the previous sections, we
tried to apply a fractional prior as slab distribution, however, the fraction of variance
identified posterior draws was extremely low (less than 1%). Instead, a hierarchically
structured Gaussian shrinkage prior (3.12) is chosen, with local scaling parameters fol-
lowing a triple gamma prior with aω = cω = 0.2, and combined with the hierarchical
F-prior (3.15) on σ2

i . The fraction pV of variance identified MCMC draws under this
prior is roughly 32%. Algorithm 1 was applied to obtain M = 50,000 posterior draws af-
ter a burn-in of 50,000 draws, starting with r = 20 factors and rsp = 3 spurious columns.
The MCMC scheme shows relatively good mixing, despite the high dimensionality, as
illustrated by Figure 6 showing posterior draws of the total number of non-zero columns,
r+ rsp, the number of spurious columns rsp, the extracted number of factors r, and the
model dimension d.

As shown in Table 5, the posterior distribution p(r|y) derived from the variance
identified draws yields a posterior mode of r̃ = 16, but also 17 or 18 factors receive
considerable posterior evidence. For further inference, all posterior draws βr are rotated
into a GLT structure Λ by ordering the pivots such that l1 < . . . < lr. The sequence
of pivots visited most often among all draws of varying dimension r is equal to l
 =
(1, 2, 3, 4, 5, 8, 9, 11, 13, 15, 18, 19, 20, 32, 46, 48) which implies that the estimator r
 = 16
is identical with the posterior mode r̃ = 16. Furthermore, the sequence of pivots l̂16
visited most often among all draws of dimension r = 16 coincides with l
.



S. Frühwirth-Schnatter, D. Hosszejni, and H. F. Lopes 25

Figure 7: NYSE data; estimated GLT representation of the factor loading matrix Λ.

Figure 8: NYSE data; estimated marginal correlation matrix E(Ω
|y), where Ω

i� =

Corr((yit − Λi1f1t)(y�t − Λ�1f1t)).

All GLT draws where the pivots lr coincide with l
 = l̂16 are used to identify the
GLT representation of the factor loading matrix Λ, see Figure 7. The analysis reveals a
factor model with extreme sparsity. The first factor is a market factor that loads on all 63
firms. Several sector-specific factors emerge and capture industry specific correlations.
Other factors capture cross-sectional correlations between specific firms. The remaining
factors are weak factors with very sparse loadings; see also the estimated marginal
correlation matrix Ω
 that remains after extracting the first factor in Figure 8.
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6 Concluding remarks
We have estimated a fairly important and highly implemented class of sparse factor
models when the number of common factors is unknown. Our framework leads to a
natural, efficient and simultaneous coupling of model estimation and selection on one
hand and model identification and rank estimation (number of factors) on the other
hand. More precisely, by combining point-mass mixture priors with overfitting sparse
factor modelling in an unordered generalised lower triangular loadings representation
(Frühwirth-Schnatter et al., 2023), we obtain posterior summaries regarding factor load-
ings, common factors as well as the factor dimension via post-processing draws from
our highly efficient and customised MCMC scheme. The new framework is readily avail-
able for some straightforward extensions. The reversible jump MCMC algorithm, for
instance, can be applied to other factor models with minor modifications, in particular,
to structures where all elements δij in the sparsity matrix δH are left unconstrained,
see the studies in Frühwirth-Schnatter et al. (2023). The assumptions underlying the
basic factor model can be substituted by idiosyncratic errors from Student-t distri-
butions, by factors following Laplace (Grushanina and Frühwirth-Schnatter, 2021) or
more general Gaussian mixtures priors (Piatek and Papaspiliopoulos, 2018) or by con-
sidering dynamic sparse factor models with stationary common factors (Kaufmann and
Schuhmacher, 2019). A further interesting extension which is not built into the current
analysis is to design a prior on the sparsity matrix that a priori distinguishes between
pervasive factors that load on most measurements, group specific factors that load on
selected measurements and factors that capture weak cross-sectional heterogeneity. Such
approximate factor models are very popular in frequentist factor analysis (Chamberlain
and Rothschild, 1983; Bai and Ng, 2002) and would deserve more attention from the
Bayesian community. However, we leave this interesting idea for future research.

Supplementary Material
Supplementary material for: “Sparse Bayesian factor analysis when the number of fac-
tors is unknown” (DOI: 10.1214/24-BA1423SUPP; .pdf).
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Gonzalo García-Donato∗

1 Introduction
A common and challenging feature of factorial models is ignorance of the number k of
latent variables. This parameter has a structural nature, with a huge effect on the final
likelihood assumed. For example, if k = 0, the number of parameters in the factor model
is m (the dimension of yt), while if k = 1, the underlying (unconstrained) factor model
doubles its complexity with 2m parameters. The scenario is that of a model selection
problem as opposed to an estimation problem where a single model (k in this context)
is treated as known.

In this paper, the uncertainty about k is treated explicitly by assuming that k is
unknown but lies in a pre-specified interval 0 ≤ k ≤ H. Once this is properly subsumed
within a Bayesian framework, the need to fix this parameter has been circumvented and
we will be able to infer a posteriori about k and any other quantity of interest. The task
is far from straightforward and poses extraordinary challenges that the authors address
with skill. The result is a thorough addition to the literature on factor models, greatly
expanding our understanding of these very popular tools in econometric applications.

A crucial aspect of this paper is the use of (Dirac) spike and slab priors (hereafter
DSS) for the factor coefficients βH = (βij)ij with 1 ≤ i ≤ m and 1 ≤ j ≤ H. The (i, j)
component of the associated binary matrix δH is zero if βij = 0 (a possible event because
of the positive – the spike – mass at zero). These special priors are the key ingredient
to substantiate the desired uncertainty about the number of factors and subsequent
relational aspects over their components. For example, k becomes the number of non-
zero columns in δH , and so on.

DSSs are one of the many priors that have emerged from the model selection lit-
erature. An unambiguous feature that reveals their model selection nature is that the
slab component (usually a Gaussian density) is proper. If such a component were im-
proper or would be a vague density, the results would be essentially arbitrary (Berger,
2006). Among the alternatives, DSS have the main distinction of assuming indepen-
dence (perhaps conditional on hyperparameters) among their components. For variable
selection, this leads to suboptimal priors (Bayarri et al., 2012), but their usefulness
in solving complex problems like the one in this paper is unquestionable. Because of
this independence, DSS obscures the existing differences between model selection and
estimation. This is because each model prior is implicitly defined by integration, but
this is not generally true for model selection priors (and the prior for a model nested
in a particular model does not coincide with the marginal of the larger model). The
surprising consequence is that the progress made in Bayesian model selection has had
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little impact on the progress made in DSS priors (and vice versa!). In a sense, the two
lines of research have evolved in isolation from each other over the past decades. In this
regard, the effort in this paper to incorporate more sophisticated model selection priors,
such as the fractional priors, is a solid step towards reconciliation.

My discussion aims to revisit aspects of this work from a model selection perspective,
trying to stimulate the possible benefits of such interactions.

2 Reconciling terms
Model selection (also called model choice or model uncertainty) is a branch of statistics
that explicitly assumes that the model generating the data is unknown. Usually, this
flexibility is limited to the assumption that the true model belongs to a fixed set of
possibilities known as model space (M); the so-called M-closed perspective. Within
the Bayesian paradigm, and given its intrinsic ability to handle all kinds of uncertainty,
many important problems in statistics have been approached through the lens of model
selection. This was the route taken by H. Jeffreys (Jeffreys, 1961) for the paradigmatic
case of testing, where each hypothesis entertained is made equivalent to a competing
model. Another very popular example is variable selection, where each subset of the
originally considered variables defines a possible model, and where we find one of the
origins of DSS priors (Mitchell and Beauchamp, 1988).

Almost automatically, Bayesian model selection procedures are parsimonious, in ac-
cordance with Occam’s razor postulate (Berger and Pericchi, 2001). In modern language,
we say that it induces sparsity, a desirable property exploited in the present work. Spar-
sity is a consequence of i) explicitly considering all models as plausible alternatives, and
ii) a proper prior over the additional parameters, which has the effect of penalizing
complexity.

The simplest model (say M0) in M occupies a relevant place in model selection –
in this work, M0 is the model with only idiosyncratic variances, σ2

i , and μ –. M0 al-
lows us to distinguish between common parameters and new parameters. For common
parameters the literature suggests (see e.g. Bayarri et al., 2012) that, under convenient
reparameterizations, we can use objective (perhaps improper) priors, justifying limiting
distributions of Eq. 3.14. This way avoids the need to manage additional hyperparame-
ters; is completely objective and would likely counteract the reported Heywood problem.
Of course, the devil is in the details and finding a reparameterization that makes all
models invariant under the same group (Berger et al., 1998) is challenging. For new
parameters – βij – the prior distribution must be a proper prior. The fact that this
prior is usually centered on zero (cf. Eqs. 3.10–3.12) is also related to the importance of
M0 and leads to the second observation about its important role. The simplest model
must be a sensible model, usually requiring an intercept (μ) that can be replaced by
standardization (as is done in this paper).

Inference under model uncertainty is a complex problem called model averaging
(MA) (which recognizes the fact that reports are the result of weighting inferences from
different models). A highly recommended recent review of the topic with an emphasis
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on economics is Steel (2020). For prediction, MA is safe, but for estimation (e.g., to
infer about βij or Λ), we must be convinced that the parameters being weighted have
a compatible meaning across models. Further, we must be prepared to aggregate pos-
terior distributions that mix discrete and continuous distributions. For this reason, the
Bayesian model selection software (García-Donato and Forte, 2018) returns MA in a
way that takes into account the idiosyncratic nature of these parameters.

In this paper, because H is fixed, we are in an M-closed problem (allowing H = ∞
has similarities to the M-open perspective). The cardinality of the model space without
restrictions is 2mH , a number that grows easily with m and H. For example, for the
application in Section 5.2, M has 2220, a number of the order of 1066. In the present
paper, a very promising MCMC scheme is proposed to study such challenging M,
which has a reversible jump engine. The design of specific algorithms able to handle
very large model spaces has been a fruitful area of research in model selection in recent
years (Zanella, 2020; Zhou et al., 2022, see for example). Broadly speaking, the idea
is to sample δij in a way that prioritizes the best models and preserves the essential
properties of an MCMC.

3 Sparsity vs. multiplicity
In model selection settings, the prior on δH usually has a large impact on the results,
especially when M has a large cardinality. In the case of factor models with an un-
known number of factors, such potential sensitivity is perhaps more worrisome given
the dependence on H, a parameter that is fixed with some degree of arbitrariness.

Without constraints, the prior adopted here assumes that δij ∼ Ber(τj) and the
probability of success, τj , follows a beta distribution that depends on two hyperparam-
eters that have independent gamma densities (Table 1). This prior induces both column
and row sparsity. For the NYSE example with H = 31 and m = 63, this choice would
lead to the prior on dimensionality k shown in Figure 1 (left) in this discussion. In
the right side, I have plotted the distribution on k obtained with the constant prior
δij ∼ Ber(.5).

There is no consensus in the literature on the exact role of the prior over model
space. As in the present paper, a large majority of authors have used this prior to
incorporate an additional sparsity effect (but recall that Bayesian model selection is
already parsimonious). Castillo et al. (2015) is a prominent example in variable selection.
Other authors have argued that such a prior should be responsible for controlling for
multiplicity: the fact that more populated dimensions artificially increase their influence
for purely combinatorial reasons (Scott and Berger, 2010). A clear message in Scott
and Berger (2010) is that the constant prior does not provide control in this sense
and should be avoided. This last hypothesis is the one assumed in García-Donato and
Paulo (2022) for the closely related case of variable selection with qualitative variables
(factors). There, the prior for δH is assigned in such a way that it adjusts for column
multiplicity – as opposed to column sparsity –, since all column dimensions receive
the same probability (it is inversely proportional to

(
H
k

)
). This prior has the attractive

additional property of being completely objective, independent of any parameter. The
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Figure 1: For m = 63 and H = 31, the prior on k induced by the prior on δH without
constraints. On the left, the authors’ proposal; on the right, the constant prior. The
dashed line shows a prior that adjusts for multiplicity.

dashed line in Figure 1 corresponds to this prior. Note that it is constant over the
dimensions.

For each of the above possibilities, it is difficult to assess what the final prior would be
once the relevant constraints in the present problem are incorporated. In the examples
in the paper, the posterior distribution of k seems to be concentrated near H

2 (the most
populated dimensions), which does not seem a strong sparse response. It also makes
me think about the issue of multiplicity (this would be a revealing symptom in variable
selection) and whether the proposed prior behaves similarly to the constant prior (as
the similarities shown in Figure 1 seem to indicate).
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Invited Discussion

Niko Hauzenberger∗ and Gary Koop†

Introduction
Conditional on knowing the number of factors, r, analysis in static and dynamic factor
models is straightforward for the Bayesian. However, inference on r is challenging. A
Bayesian could use marginal likelihoods to select the number of factors (see Geweke,
1996). But in the standard big data setups nowadays (which involve a large number of
variables/measurements m), this is computationally cumbersome, requiring the estima-
tion of a large set of models that vary in r (≤ m).

Frühwirth-Schnatter et al. (2024) address this issue using an elegant combination
of an identified factor model and a shrinkage prior which can select the number of
factors (column-wise shrinkage) and shrink the factor loadings on active factors (row-
wise shrinkage). Their strategy involves starting with an overfitting model — as is
often done in the literature on mixture models, see e.g., Malsiner-Walli et al. (2016)
and Grushanina and Frühwirth-Schnatter (2023) — then eliminating spurious factors
(columns) and introducing additional sparsity in loadings (rows) of active factors. These
additional exact zero factor loadings (achieved through row sparsification) not only make
a parsimonious factor model even more parsimonious but also facilitate identification of
the remaining active factors. In terms of computation, Frühwirth-Schnatter et al. (2024)
use a novel and efficient reversible jump Markov chain Monte Carlo (MCMC) sampler
that allows for the number of (active) factors r to vary during sampling. All in all, this
paper is a valuable addition to the Bayesian factor literature.

There are three directions that paper differs from conventional approaches to Bayesian
factor analysis: identification, prior choice and computation. We will organize our dis-
cussion around these three aspects. We will conclude with some thoughts on potential
extensions of this model.

Identification
It is well known that without further restrictions, the static factor model is unidenti-
fied. The restrictions selected by the unordered generalized lower triangular (UGLT)
structure used by the authors are estimated agnostically from the data, rather than
imposed ad hoc or a priori. As explained in Frühwirth-Schnatter et al. (2024) and also
in earlier work by the authors, Frühwirth-Schnatter et al. (2023), UGLT identification
has advantages over the conventional identification scheme which involves assuming the
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factor loading matrix to be lower triangular with positive numbers on the diagonal
(they refer to this identification scheme as PLT). UGLT is much more flexible and is
likely to be as good an identification restriction that is possible in the class of schemes
that achieve identification through zero restrictions on the factor loadings. However,
UGLT — similar to other more conventional zero restriction schemes such as PLT —
can have the drawback that it does not necessarily always guarantee order invariance.
Although, in terms of order invariance, freeing up the exact positions of the zero factor
loadings constitutes a substantial improvement upon PLT and other ad hoc zero re-
striction schemes, UGLT still requires a minimal number of zero restrictions to ensure
identifications of the r factors through r linearly independent rows in the factor loading
matrix. This can make UGLT prone to a lack of order invariance as well.

But why is order invariance relevant for a Bayesian in the first place? Order invari-
ance implies that posterior and predictive results depend on the way the variables are
ordered. In the large Bayesian Vector Autoregression (VAR) literature there is a grow-
ing recognition that standard approaches are not order invariant and that the empirical
effect of a lack of order invariance can be substantial. For instance, two different order-
ings of the variables might lead to almost identical point forecasts, but substantially
different predictive variances and thus substantially different log predictive likelihoods,
see Arias et al. (2023) and Chan et al. (2024).

As noted by Frühwirth-Schnatter et al. (2024), there are other identification schemes
used in factor models. Chan et al. (2018), referred to as CLS herafter, achieve identifica-
tion without using zero restrictions on the factor loadings. CLS consider the static factor
model directly as a reduced-rank regression and develop a fully invariant specification
of that regression model. The details of their identification scheme are not germane to
the present discussion other than to note that it leads to order invariance. However,
their empirical work suggests ordering issues are potentially important in factor mod-
els. In an empirical illustration involving six variables, CLS show how two different
orderings can lead to log marginal likelihoods that differ by about 142 when using the
PLT identification scheme. Of course, the log marginal likelihood is the same for every
possible ordering using the identification scheme they suggest. CLS therefore strongly
recommend using an order-invariant specification. Alternatively, researchers could also
estimate the variable ordering from the data, similar to Wu and Koop (2023) in the VAR
context, or average over all possible orderings. However, the latter strategy is feasible
only when working with small m.

CLS provide theoretical/formal derivations and discussion about issues that arise
when using zero restrictions on factor loadings. Let Λ1 be the r × r matrix containing
the r rows of the factor loading matrix that are restricted to ensure identification. CLS
show that the lack of order invariance arises with any identification scheme, such as
the UGLT one, which restricts Λ1 to be non-singular, imposing r linearly independent
rows in the factor loading matrix. This non-singularity rules out points where |Λ1| = 0
and this leads to a discontinuity which plays a key role in the transformation between
different orderings. CLS show how their approach, which does not rule out |Λ1| = 0,
allows for straightforward evaluation of marginal likelihoods for different choices of
r using the Savage-Dickey density ratio. Thus, choosing the number of factors using
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marginal likelihoods is easy to do unlike in conventional approaches such as PLT and
UGLT. Of course, Frühwirth-Schnatter et al. (2024) have an alternative method of
choosing the number of factors using a clever hierarchical prior. But it is worth noting
that the identification scheme of CLS has one good property that UGLT may lack
when |Λ1| → 0 (i.e., order invariance). And therefore it might be worth comparing
UGLT with the CLS approach for extreme cases where |Λ1| ≈ 0, and to investigate how
UGLT behaves in the presence of discontinuities when the ordering of variables is most
influential (as discussed in Section 3 of CLS).

Some Bayesians are happy working with unidentified models (at least when fore-
casting) since combining a proper prior with an unidentified likelihood will typically
lead to a proper posterior and predictive. This allows us to speculate that, even with-
out the UGLT identification restrictions, the model developed in Frühwirth-Schnatter
et al. (2024) could be a very interesting one. Furthermore, in the recent VAR literature,
identification can be achieved through relaxing the homoskedasticity and Normality as-
sumptions for the VAR errors. This can be done, e.g., by allowing for stochastic volatil-
ity, regime-switching, or fat-tailed errors (see Rigobon, 2003; Lewis, 2022; Bertsche and
Braun, 2022) instead of imposing exact zero restrictions on the error covariance matrix.
Relaxing some assumptions in the Normal and homoskedastic static factor model of
Frühwirth-Schnatter et al. (2024) might be one way (of many ways) forward, thereby
combining UGLT with the identification through heteroskedasticity approach proposed
by Sentana and Fiorentini (2001) for the static factor model.

In summary, the UGLT identifying structure of Frühwirth-Schnatter et al. (2024)
does have some very nice properties as outlined in their paper. This makes it a useful
addition to the Bayesian factor literature. However, other approaches exist with different
properties which may have different advantages, especially as related to order invariance.
When choosing identifying restrictions, the Bayesian must weigh the pros and cons of
each. And it may not even be necessary to make a choice of identifying restrictions on
the factor loadings if working with an unidentified model suffices or if identification is
achieved in other ways (e.g., via heteroskedasticity).

Prior
Frühwirth-Schnatter et al. (2024) propose an exchangeable shrinkage process prior that
does have many attractive properties. Specifically, this prior allows a researcher to effec-
tively let the data decide on the number of (active) factors r in an almost tuning-free,
automatic manner. In addition, it achieves row sparsity in the relevant block of the factor
loading matrix associated with the active factors. Shrinkage along these two dimensions
naturally leads to the quest of the desired/optimal level of column sparsity (which re-
lates to the overall parsimony of the factor model) and row sparsity (which relates to the
simplicity of the remaining structures according to terminology of Frühwirth-Schnatter
et al. (2024)).

When working with exploratory factor models, researchers would most likely agree
that it is desirable to obtain a column sparse specification with a small number of active
factors only (i.e., where r is rather small) and where this small set of factors may even
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be sensible to interpret. Frühwirth-Schnatter et al. (2024) achieve column sparsity by
combining a Dirac spike and slab prior on each factor loading with an exchangeable
shrinkage process on column-specific inclusion probabilities, which increasingly pushes
columns towards zero and thus automatically eliminates superfluous factors.

However, it is less obvious whether row sparsity is a generally desirable feature.
This depends of course on the specific time series data at hand, but in macroeconomics
the illusion of sparsity has recently received considerable attention (Giannone et al.,
2021; Fava and Lopes, 2021; Gruber and Kastner, 2022). Giannone et al. (2021) list
factor models as a typical dense statistical technique. But what about sparse factor
models that aggressively induce row sparsity? In some applications, it may be desirable
to have all these few factors load on many time series and thus be able to explain
most of the variation in the measurements. This would be associated with a row-dense
factor loading matrix and — according to Giannone et al. (2021) — such a row-dense
but column-sparse factor model may be indeed considered dense overall, since most
measurements load on at least one (common) factor. Frühwirth-Schnatter et al. (2024)
consider two applications: one application uses monthly exchange rate data and the
other uses monthly stock market returns. What both applications have in common is
that the factors that tend to load on many time series are easier to interpret, while the
more idiosyncratic factors (with only a very few associated non-zero factor loadings)
tend to be more difficult to interpret. For example, in the financial application using
stock market returns, the market factor (which loads (equally) on almost every single
firm return and acts like a cross-sectional average or first principal component) and the
industry-specific factors (which load on almost every firm within a given industry) can
be labelled and interpreted relatively straightforwardly.

In the VAR context, Gruber and Kastner (2022) discuss the sparsity-inducing prop-
erties of various popular shrinkage priors using a sparsity measure proposed in Hoyer
(2004). In the context of a static factor model and given a specific factor, this measure
defines the sparsest possible estimate as having only one non-zero loading, while the
densest estimate is defined as having all measurements load equally on this factor. It
could be worthwhile to use such a sparsity measure to assess the a priori imposed overall
degree of sparsity of the shrinkage prior.

Sampling and Computation
Frühwirth-Schnatter et al. (2024) propose an efficient reversible jump MCMC sam-
pler. To substantially improve the sampling efficiency of the sparse factor model, they
use MCMC boosting by considering either ancillarity-sufficiency interweaving strategy
(ASIS) or marginal data augmentation (MDA) steps. In applications of Frühwirth-
Schnatter et al. (2024), m is of moderate size (m = 22 in the exchange rate application
and m = 63 in the stock return application) and a static factor model is assumed. In
the static case, the proposed algorithm likely scales well even in higher dimensions using
hundreds of variables. But what if a researcher wishes to use a dynamic factor model,
where the state equation of the factors evolves according to a VAR. For example, in
the case of m = 201, this would amount for an upper bound for the number of factor
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r∗ = m−1
2 = 100 in their overfitting model. Is the proposed reversible jump MCMC

computationally efficient in such a case? Probably yes, but only if the true number of
dynamic factors is low.

Furthermore, Frühwirth-Schnatter et al. (2024) highlight the fact that working with
an unidentified model and leaving the factor loading matrix fully free and unrestricted
may harm posterior inference and sampling efficiency. Even in the unidentified case,
post-processing might still be a valid option, particularly relying on the methods pro-
posed in Kaufmann and Schumacher (2019), Chakraborty et al. (2020) or Bolfarine
et al. (2024). For example, Bolfarine et al. (2024) represents a straightforward yet effec-
tive approach for ex-post sparsification of the factor loading matrix. This method aims
to obtain a sparse posterior representation of posterior estimates and to decide on the
number of factors r based on a loss measure. As argued by Bolfarine et al. (2024), it
is not necessarily a competing approach but rather a complementary device and could
be used for any overfitting model equipped with hierarchical shrinkage priors, as it just
needs the posterior as input.

Potential Extensions from a Practitioner’s View
In this section, we will discuss potential extensions from a practitioner’s view, working
in the field of macroeconomics or finance. Frühwirth-Schnatter et al. (2024) is about the
Normal, homoskedastic, static factor model. Any of these assumptions could be relaxed
or changed. Our discussion will mainly center on the question of what desirable features
a factor model — used off the shelf for analyzing macroeconomic and financial time
series data — should have.

The empirical macroeconomist would probably find the dynamic factor model the
most interesting extension of the model of Frühwirth-Schnatter et al. (2024) since most
macroeconomic data exhibits dependence over time. This would be straightforward to
do although, as noted above, it could potentially cause problems for computation unless
the number of (active) factors is small.

A second extension, commonly done with both macroeconomic and financial times
series data, would involve adding stochastic volatility. This, too, would be straightfor-
ward to add. However, the recent Covid-19 pandemic, geopolitical tensions and earlier
financial and Eurozone crises, raise the issue as to whether simply adding stochastic
volatility is enough. These events caused severe economic shocks and turbulence on the
financial markets. It is possible that the fundamental relationships between the r la-
tent factors and the m observed measurements may have changed in response to these
events. Accounting for this would require a very flexible model that not only allows the
variance of the factors and/or idiosyncratic shocks to vary over time but also allows for
time-varying factor loadings. Relating this discussion to that on sparsity, such a model
would imply dynamic row sparsity and dynamic column sparsity (i.e., time-varying di-
mensions of the factor loading matrix). Such extensions would not be difficult to add
and may be necessary when working with macroeconomic or financial data sets which
include crisis periods.
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Summary and Conclusions
Frühwirth-Schnatter et al. (2024) is an exceptionally fine paper and the methods de-
scribed therein should belong in any practitioner’s toolbox. In this discussion, we have
offered some thoughts about identification in their model, highlighting the issue of or-
der invariance. We have also discussed the prior and computational issues. The prior of
Frühwirth-Schnatter et al. (2024) has attractive properties and, as their title empha-
sizes, their approach is about “sparse” Bayesian factor models. But the title of another
paper we cite, Gruber and Kastner (2022), ends with the “Sparse or dense? It depends!”
and we offer some thoughts on their prior in light of the sparse versus dense debate.
The methods of Frühwirth-Schnatter et al. (2024) could be adapted to allow for row
density instead of sparsity.

On computation, our comments relate to computational efficiency with larger m or
r. We speculate that their methods would work well in the static factor model of any
dimension, and in the dynamic factor model if r is small. But there may be worries with
large r or in more complicated models. Furthermore, we offer some additional thoughts
on the use of post-processing methods.

There are a myriad of interesting extensions of the static factor model and we dis-
cuss a few of them likely to be of most interest to the practitioners and argue that
extending the methods of Frühwirth-Schnatter et al. (2024) to handle them would be
straightforward.
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Contributed Discussion

Alejandra Avalos-Pacheco∗,†, Roberta De Vito‡ and Gregor Zens§

Introduction We congratulate the authors on their significant contributions to Bayes-
ian factor analysis, not only in the present paper, but also in a series of prior works
including Conti et al. (2014), Kastner et al. (2017), Frühwirth-Schnatter et al. (2023),
and Frühwirth-Schnatter (2023). In this discussion, we highlight several issues that arise
when extending the proposed framework to a more general multi-study setting, where
study-specific factors are considered in addition to ‘global’ factors and loadings.

Multi-study factor models have wide applications, especially in biostatistics and
medical research, where integrating data from multiple studies is a common challenge
(De Vito et al., 2019, 2021). Similar approaches are also used in multi-population de-
mography (Li and Lee, 2005). Regardless of the field, the appropriate number of global
and study-specific factors is often unknown, and model selection is typically based on ad
hoc criteria. The proposed framework, therefore, has considerable potential to inform
discussions in these research areas. However, when considering multi-study extensions,
two key questions arise: (1) how do the authors’ identification strategies adapt to a
multi-study setting? and (2) how does the computational implementation extend and
scale within multi-study frameworks?

Multi-Study Settings Recently, several factor model extensions for multi-study set-
tings have been developed, including multi-study factor models (De Vito et al., 2019,
2021), perturbed factor models (Roy et al., 2021), joint factor regression and batch ef-
fect correction models (Avalos-Pacheco et al., 2022), subspace factor models (Chandra
et al., 2023), combinatorial factor models (Grabski et al., 2023) and multi-study factor
regression models (De Vito and Avalos-Pacheco, 2023). Our focus here is on a basic
multi-study factor model due to its flexibility, simplicity, and similarity to the authors’
framework. Following the authors’ notation, a sample ys = (y1s, . . . ,yTs)′ from study
s (s = 1, . . . , S) of T (t = 1, . . . , T ), multivariate observations yts of dimension m is
modeled as

yts = βHfHts + ΦHs l
Hs
ts + εts,

εts ∼ Nm(0,Σs) fHts ∼ NH(0, IH) lHs
ts ∼ NHs(0, IHs),

(1)

with a finite number of common and study-specific factors, H < ∞ and Hs < ∞.
Marginally, each study has a covariance matrix Cov(ys) = Ωs = βkβ

�
k + ΦjsΦ

�
js + Σs,

where βk and Φjs are formed by the non-zero columns of βH and ΦHs respectively, and
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Σs is a diagonal matrix with strictly positive diagonal elements. The ‘global’ covari-
ance component βkβ

�
k encodes reproducible biological pathways that traditional factor

analysis approaches may miss due to batch effects (De Vito et al., 2019, 2021; Hansen
et al., 2024).

Identification Issues Factor analysis typically encounters several identifiability issues,
including a potential indeterminacy of the covariance decomposition, rotational invari-
ance, and the more trivial issues of invariance with respect to column and sign per-
mutations of the factors and the loading matrices. For standard factor models, these
identifiability issues have been elegantly resolved by the authors using unordered gen-
eralized lower triangular (UGLT) loading structures and the 3579 counting rule, in
combination with post-processing steps to reorder the posterior draws.

Extending these solutions to the multi-study setting is likely to present additional
challenges. For example, obtaining a unique solution to the decomposition Ωs = βkβ

�
k +

ΦjsΦ
�
js + Σs is more difficult due to the additive covariance decomposition into more

than two terms (De Vito et al., 2019, 2021). While rotational invariance is expected to
be resolved by independent UGLT structures for the global and study-specific loadings
matrices, it is likely that an extension of the 3579 counting rule or additional con-
straints and postprocessing steps will be needed for a unique variance decomposition.
Hence, further investigation into extensions to the identification strategy proposed by
the authors is needed to ensure a unique solution in multi-study factor models.

Computational Considerations In multi-study contexts, the number of loadings in-
creases rapidly with each additional study, making model space exploration via MCMC
more challenging and raising questions about computational scalability. A key issue is
whether a conditional posterior sampling strategy would be feasible, in which ‘global’
quantities are updated conditionally on study-specific quantities, and so on. While this
is arguably the simplest and most direct extension of the proposed MCMC scheme, it
could potentially severely reduce sampling efficiency. This concern is particularly rel-
evant given that the current MCMC scheme already involves updating global factors
one at a time, conditional on all the others. An alternative approach might involve
marginalized sampling strategies, where sets of factors and loadings are updated in
model representations where all other factors are integrated out instead of conditioned
on. While this could significantly improve MCMC efficiency, it likely also introduces
significant computational overhead due to the need to sample from potentially high-
dimensional posterior densities.

Three potential extensions of the proposed computational toolkit that could improve
scalability include the use of 1) continuous shrinkage priors and post-processing methods
to achieve sparsity (Hahn and Carvalho, 2015); 2) more efficient algorithms for model
space exploration (Zanella and Roberts, 2019; Griffin et al., 2021) and 3) approximate
Bayesian methods for factor models (Hansen et al., 2024). Of course, pursuing any of
these avenues raises several new questions, particularly regarding theoretical guarantees
and how to effectively combine them with the identification strategies proposed by the
authors.
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Contributed Discussion

Francesco Denti∗ and Stefano Rizzelli†

1 Introduction
We congratulate the authors for their valuable contributions to Bayesian factor anal-
ysis. Such a well-thought-out paper highlights that, while linear factor models may
seem fairly simple, they require careful evaluation of numerous aspects to ensure model
interpretability, effective signal recovery, and feasible posterior simulation (see also Bol-
farine et al., 2024). We hereafter focus on methodological and computational aspects of
signal-noise separation and sparsity induction, drawing connections between factor anal-
ysis and mixture modeling. Notably, techniques for ensuring parsimony in the Bayesian
analysis of high-dimensional models have been the subject of a vast literature over the
past two decades (see, e.g., Bhattacharya et al., 2015; Bhadra et al., 2019; Chandra
et al., 2023). In this work, sparsity on the matrix of factor loadings is imposed by
spike-and-slab priors, mixing a point mass at 0 and a diffuse distribution.

2 Handling Sparsity in Factor Analysis: Much to Learn
from Mixtures?

Of particular interest is the incorporation of shrinkage through the slab distribution, de-
vised as a continuous scale mixture of normal distributions (Bai et al., 2022). Specifically,
the authors suggest employing global, column-specific, and local scale hyperparameters,
assigning them inverse-gamma or F distributions. This choice reminisces continuous
shrinkage priors used in Boss et al. (2024) for regression with grouped covariates, includ-
ing global, group- and predictor-specific scale hyperparameters endowed with Cauchy,
gamma, and inverse-gamma hyperpriors. Such an approach trades flexibility in the de-
sign of shrinkage profiles with a large number of hyperparameters to update in posterior
computations.

A convenient, more parsimonious alternative could be to use a sparse discrete mix-
ture of continuous mixtures as in Denti et al. (2023a), postulating that, a priori, the
factor loadings have the following conditional distribution (cfr. Equation (3.12)):

(
βij | δij = 1,πj , {ω∗

lj}Ll=1, κ, θj , σ
2
i

)
∼

L∑
l=1

πljN
(
0, κ · θj · σ2

i · ω∗
lj

)
(1)

where πj is a vector of column-specific mixture weights modeled with a prior on a
L-dimensional simplex. Moreover, {ω∗

lj}Ll=1 ∼ ν denote the mixture component shrink-
age parameters, for j = 1, . . . , r. The base measure ν can be selected according to the
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problem at hand and the desired degree of sparsity; e.g., ν can be a half-Cauchy dis-
tribution to obtain a finite mixture of horseshoe priors (Carvalho et al., 2010). The
model is augmented using column-specific categorical membership labels, denoted with
zij ∈ {1, . . . , L}, obtaining:(

βij | δij = 1, zij = l, ω∗
lj , κ, θj , σ

2
i

)
∼ N

(
0, κ · θj · σ2

i · ω∗
lj

)
, (2)

such that P [zij = l | πj ] = πlj . Adopting this prior structure in a factor model would
(i) allow the sharing of information in posterior computation of shrinkage factors and
(ii) segment the factor loadings in column-specific tiers of magnitude, which would help
the interpretability of the model. For example, if in a generic column j a specific ω∗

lj has
posterior mode close to zero, then all the coordinates of yt assigned to the l-th cluster
can be regarded as unaffected by the j-th factor. To achieve an even more parsimonious
parameterization in terms of scale parameters, a common atoms structure could be
introduced across the columns of β following Denti et al. (2023b); D’Angelo and Denti
(2024), setting ω∗

lj = ω∗
l , for each l = 1, . . . , L, j = 1, . . . , r, and {ω∗

l }Ll=1 ∼ ν.

In this work, factor loadings are further pulled towards zero by assigning to slab
probability weights a beta distribution with shape hyperparameters γα/H and γ. When
adopting a hierarchical Bayesian approach, the choice of the hyperprior of α is delicate,
given the important role this hyperparameter plays in controlling the degree of sparsity.
In particular, conditionally on γ and α, the number r of nonzero columns in the sparsity
matrix δH (see Section 3.1 of the paper) or, in other words, the number of active factors,
is a priori a binomial random variable of parameters H and α/(α + H), respectively.
A way to bypass hyperprior specification might be to fix hyperparameter α in an empir-
ical Bayes fashion, as done in the context of mixture models with Dirichlet prior (see,
e.g., Liu, 1996; Rizzelli et al., 2024). This could be done by maximising with respect to
α the marginal likelihood arising from the unconstrained factor model and the priors
in Equations (2.1), (3.1)–(3.3), and (3.14) of the paper. Assuming for simplicity that
γ = 1 and a generic slab density pslab, such marginal likelihood boils down to

m(y|α) =
H∑
r=0

(
H

r

)(
α

H + α

)r (
H

H + α

)H−r

p(y|r)

where, denoting ξr = (f , β1,1, . . . , βr,m) and by ϕ and tν the standard Gaussian and
ν-degrees of freedom Student-t probability densities, the term p(y|r) is proportional to∫ T∏

t=1

⎡⎣ m∏
l=1

t2cσ

(√
cσ

Ci0

(
ytj −

∑r
j=1βijftj

)) r∏
j=1

N (ftj ; 0, 1)

⎤⎦ m∏
i=1

r∏
j=1

pslab(βij)dξr.

It is easy to see that the first derivative (∂/∂α)m(y|α) equals zero whenever the hyper-
parameter α is such that the posterior mean of the number of active factors r (under
the unconstrained model) equals its prior expectation Hα/(H + α). It would thus be
interesting to investigate whether one could mutuate techniques in McAuliffe et al.
(2006), Section 3, for calculating the maximiser. Data-dependent selections of α of the
form α̂ = Hr̂/(H − r̂) may also be considered, where r̂ is a frequentist estimator of
the number of active factors (see, e.g., Bai and Ng, 2002; Bai, 2003; Cragg and Donald,
1997; Barigozzi and Cho, 2020), as they yield an empirical Bayes prior on r with mean
r̂ (provided that r̂ < H).



F. Denti and S. Rizzelli 51

References
Bai, J. (2003). “Inferential theory for factor models of large dimensions.” Econo-

metrica, 71(1): 135–171. MR1956857. doi: https://doi.org/10.1111/1468-0262.
00392. 50

Bai, J. and Ng, S. (2002). “Determining the number of factors in approximate fac-
tor models.” Econometrica, 70(1): 191–221. MR1926259. doi: https://doi.org/10.
1111/1468-0262.00273. 50

Bai, R., Moran, G. E., Antonelli, J. L., Chen, Y., and Boland, M. R. (2022). “Spike-
and-slab group lassos for grouped regression and sparse generalized additive mod-
els.” Journal of the American Statistical Association, 117(537): 184–197. MR4399078.
doi: https://doi.org/10.1080/01621459.2020.1765784. 49

Barigozzi, M. and Cho, H. (2020). “Consistent estimation of high-dimensional factor
models when the factor number is over-estimated.” Electronic Journal of Statistics,
14(2): 2892–2921. MR4134347. doi: https://doi.org/10.1214/20-EJS1741. 50

Bhadra, A., Datta, J., Polson, N. G., and Willard, B. (2019). “Lasso meets horseshoe: a
survey.” Statistical Science, 34(3): 405–427. MR4017521. doi: https://doi.org/10.
1214/19-STS700. 49

Bhattacharya, A., Pati, D., Pillai, N. S., and Dunson, D. B. (2015). “Dirichlet–
Laplace priors for optimal shrinkage.” Journal of the American Statistical Association,
110(512): 1479–1490. MR3449048. doi: https://doi.org/10.1080/01621459.2014.
960967. 49

Bolfarine, H., Carvalho, C. M., Lopes, H. F., and Murray, J. S. (2024). “Decoupling
shrinkage and selection in Gaussian linear factor analysis.” Bayesian Analysis, 19(1):
181–203. MR4692547. doi: https://doi.org/10.1214/22-ba1349. 49

Boss, J., Datta, J., Wang, X., Park, S. K., Kang, J., and Mukherjee, B. (2024). “Group
inverse-gamma gamma shrinkage for sparse linear models with block-correlated re-
gressors.” Bayesian Analysis, 19(3): 785–814. MR4770323. doi: https://doi.org/
10.1214/23-ba1371. 49

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010). “The horseshoe estimator
for sparse signals.” Biometrika, 97: 465–480. MR2650751. doi: https://doi.org/10.
1093/biomet/asq017. 50

Chandra, N. K., Canale, A., and Dunson, D. B. (2023). “Escaping the curse of dimen-
sionality in Bayesian model-based clustering.” Journal of Machine Learning Research,
24(144): 1–42. MR4596091. 49

Cragg, J. G. and Donald, S. G. (1997). “Inferring the rank of a matrix.” Journal of
Econometrics, 76(1): 223–250. MR1435888. doi: https://doi.org/10.1016/0304-
4076(95)01790-9. 50

D’Angelo, L. and Denti, F. (2024). “A finite-infinite shared atoms nested model
for the Bayesian analysis of large grouped data.” Bayesian Analysis (to appear).
doi: https://doi.org/10.1214/24-BA1458. 50

https://mathscinet.ams.org/mathscinet-getitem?mr=1956857
https://doi.org/10.1111/1468-0262.00392
https://doi.org/10.1111/1468-0262.00392
https://mathscinet.ams.org/mathscinet-getitem?mr=1926259
https://doi.org/10.1111/1468-0262.00273
https://doi.org/10.1111/1468-0262.00273
https://mathscinet.ams.org/mathscinet-getitem?mr=4399078
https://doi.org/10.1080/01621459.2020.1765784
https://mathscinet.ams.org/mathscinet-getitem?mr=4134347
https://doi.org/10.1214/20-EJS1741
https://mathscinet.ams.org/mathscinet-getitem?mr=4017521
https://doi.org/10.1214/19-STS700
https://doi.org/10.1214/19-STS700
https://mathscinet.ams.org/mathscinet-getitem?mr=3449048
https://doi.org/10.1080/01621459.2014.960967
https://doi.org/10.1080/01621459.2014.960967
https://mathscinet.ams.org/mathscinet-getitem?mr=4692547
https://doi.org/10.1214/22-ba1349
https://mathscinet.ams.org/mathscinet-getitem?mr=4770323
https://doi.org/10.1214/23-ba1371
https://doi.org/10.1214/23-ba1371
https://mathscinet.ams.org/mathscinet-getitem?mr=2650751
https://doi.org/10.1093/biomet/asq017
https://doi.org/10.1093/biomet/asq017
https://mathscinet.ams.org/mathscinet-getitem?mr=4596091
https://mathscinet.ams.org/mathscinet-getitem?mr=1435888
https://doi.org/10.1016/0304-4076(95)01790-9
https://doi.org/10.1016/0304-4076(95)01790-9
https://doi.org/10.1214/24-BA1458


52 Contributed Discussion

Denti, F., Azevedo, R., Lo, C., Wheeler, D. G., Gandhi, S. P., Guindani, M., and Shah-
baba, B. (2023a). “A horseshoe mixture model for Bayesian screening with an applica-
tion to light sheet fluorescence microscopy in brain imaging.” Annals of Applied Statis-
tics, 17: 2639–2658. MR4637684. doi: https://doi.org/10.1214/23-aoas1736. 49

Denti, F., Camerlenghi, F., Guindani, M., and Mira, A. (2023b). “A common atoms
model for the Bayesian nonparametric analysis of nested data.” Journal of the Amer-
ican Statistical Association, 118(541): 405–416. MR4571130. doi: https://doi.org/
10.1080/01621459.2021.1933499. 50

Liu, J. S. (1996). “Nonparametric hierarchical Bayes via sequential imputations.” The
Annals of Statistics, 24(3): 911–930. MR1401830. doi: https://doi.org/10.1214/
aos/1032526949. 50

McAuliffe, J., Blei, D., and Jordan, M. (2006). “Nonparametric empirical Bayes for the
Dirichlet process mixture model.” Statistics and Computing, 16: 5–14. MR2224185.
doi: https://doi.org/10.1007/s11222-006-5196-2. 50

Rizzelli, S., Rousseau, J., and Petrone, S. (2024). “Empirical Bayes in Bayesian learning:
understanding a common practice.” arXiv:2402.19036. 50

https://mathscinet.ams.org/mathscinet-getitem?mr=4637684
https://doi.org/10.1214/23-aoas1736
https://mathscinet.ams.org/mathscinet-getitem?mr=4571130
https://doi.org/10.1080/01621459.2021.1933499
https://doi.org/10.1080/01621459.2021.1933499
https://mathscinet.ams.org/mathscinet-getitem?mr=1401830
https://doi.org/10.1214/aos/1032526949
https://doi.org/10.1214/aos/1032526949
https://mathscinet.ams.org/mathscinet-getitem?mr=2224185
https://doi.org/10.1007/s11222-006-5196-2
https://arxiv.org/abs/2402.19036


L. Vrotsos and M. West 53

Contributed Discussion

Luke Vrotsos∗ and Mike West†

We applaud the authors on innovative contributions to Bayesian factor modelling and
computation. Their creative developments are of broad importance in model uncertainty
analysis, particularly in the use of encompassing models within which data-supported
submodels can be explored. New sparsity priors on factor loadings neatly extend prior
approaches (going back at least to West, 2003), and their MCMC algorithms will en-
hance access by users. Our comments address three themes: goals, factor model assump-
tions, and connections between factor models and graphical models.

A. Goals When do we care about the number of factors as anything but a nuisance
parameter? In what applications is the number of factors of primary interest with respect
to inferential or decision goals? In financial examples, prediction and decisions are what
matter. The traditional parameter-focussed approach scores models on purely statistical
metrics, with no real regard for broader forecast or decision goals. In contrast, fully
subjective Bayesian predictive decision synthesis (e.g. Tallman and West, 2023, 2024)
stresses articulation of goals and model scoring modulo goals; its application to the
setting of uncertain numbers of factors would seem to represent practical opportunities.

B. Dependent Factor Models Much of the literature continues to insist on models
with uncorrelated factors. However, sparsity of factor loadings provides opportunity to
exploit dependent factor models. This was recognised by Zhou et al. (2014) in time
series, emphasising forecasting superiority of models with (often high and time-varying)
dependencies among factors, and by Conti et al. (2014) in traditional random sampling
models as noted in the current paper. It would be interesting to hear more from the
authors on this, and on potential extensions of their machinery for dependent factors.

C. Graphical Models and Factor Models A sparse factor model defines a 0/1 sparsity
pattern in the covariance matrix. In contrast, a sparse (normal) graphical model has
a conditional independence graph underlying all dependencies, corresponding to a 0/1
sparsity pattern in the precision matrix (e.g. Jones et al., 2005; Jones and West, 2005;
Cron and West, 2016). These are different approaches to parsimonious modelling while
– in a very real sense – graphical models are more general. They “compete” as inverting
a sparse covariance matrix typically yields a full precision matrix, and vice-versa. One
existing approach to reconciliation (the only one to our knowledge) is that of Yoshida
and West (2010); the authors’ methodology could apply to that framework.

However, our main interest here is in deeper theoretical connections between sparse
graphical and factor models. New theory in Vrotsos and West (2024) reconciles some
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classes of sparse factor models with inherently sparse graphical models, advancing un-
derstanding of how the number of factors and sparse factor structures relate to explicit
assumptions about multivariate conditional independencies. Importantly, the sparse fac-
tor models are not primary, but are implied by specification of the more fundamental
graphical structures. Further, these implied sparse factor models can have strong factor
dependencies as well as dependence between factors and residuals.

These new theoretical connections arose from our interests in simultaneous graphical
dynamic linear models (SGDLMs: Gruber and West, 2016, 2017), a rich, flexible and
scalable class of multivariate time series models. In the simpler framework and nota-
tion of the current authors, the essential structure for a single m-dimensional vector
observation y involves the simultaneous equation specification y = μ+Γy+ν where: μ
may involve exogenous predictors; ν is zero mean normal with diagonal precision ma-
trix Δ; and the m ×m simultaneous coefficient matrix Γ is sparse with zero diagonal
entries. Given a pattern of zeros in Γ, each variable yi is regressed on only those other
yj for which the (i,j) element of Γ is non-zero. This is reflected in the implied directed
(but usually not acyclic) graph where this set of the yj are simultaneous parents of yi;
correspondingly, this yi is a child variable of each of its parents. The implied normal
distribution of y has mean vector (I − Γ)−1μ and precision matrix (I − Γ)′Δ(I − Γ).
With high levels of sparsity in Γ, this precision matrix will be sparse with off-diagonal
zeros representing the unique, underlying conditional independence graph.

The new theory in Vrotsos and West (2024) uses the sparse singular value decompo-
sition Γ = ΛDS to give the equivalent model form y = μ+ Λf + ν with r-dimensional
factor vector f = DSy, the r× r diagonal matrix D of positive singular values, and the
m× r loadings matrix Λ. The factor vector f is a direct linear combination of elements
of y; in the time series setting, there are evident connections with so-called “linear scalar
components” (e.g. Tiao and Tsay, 1989). Typically, both Λ and S are sparse, with spar-
sity patterns inherited from the sparsity pattern of Γ. Hence each factor depends on a
subset of the yi (through S) while each variable yi loads on only a subset of the factors
(through Λ). The new results on sparsity and structure of this factor representation
exploit linear algebra and graph theory to show the following.

The number of factors r ≤ m cannot exceed – and typically equals – rank(Γ). A very
sparse Γ will have low rank and small implied factor dimension. The theory is sharper
in typical cases when rank(Γ) is the number of columns with at least one non-zero entry.
A zero column j implies that yj is not a parental predictor at all, so then the number
of factors is the number of the yj that are parents of at least one other variable. This is
a property of the graph and sparsity pattern of Γ, not at all dependent on the values of
non-zero elements. Coupled with this are results about the precise patterns of non-zero
entries in Λ and S, underpinning the definitions of factors. Non-zero elements in rows of
S – defining the factors – relate to subsets of variables with intersecting child sets; non-
zero elements in columns of Λ – defining the variables loaded on factors – are defined
by subsets of variables with intersecting parental sets. A macroeconomic application in
Vrotsos and West (2024) explores these concepts and the theory fully detailed there,
with what we regard as illuminating examples with detailed contextual interpretation
of inferred factor processes. There are technical details of factor identification within
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subsets of factors defined on common parental sets, directly resolved by a version of the
authors’ “pivot” series that follows the earlier use of “founder” variables (Carvalho et al.,
2008). These connections seem to offer opportunities to extend Bayesian sparse factor
analysis in new ways, linking intimately to the main concern of the current authors in
uncertainty about the number of factors, in particular.
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Contributed Discussion

Ihnwhi Heo∗ , Julius M. Pfadt† , and Eric-Jan Wagenmakers†

Identifying the number of factors has remained a fundamental challenge in factor analy-
sis research. We commend and congratulate Frühwirth-Schnatter et al. (2024) for their
inspiring work in addressing this methodological issue. Their approach to achieving
sparsity in overfitting exploratory factor analysis models is supported by two computa-
tional strategies. First, the authors introduce an unordered generalized lower triangular
(UGLT) representation of the factor loading matrix to address rotational invariance.
Second, they develop a customized reversible jump Markov chain Monte Carlo (MCMC)
algorithm for efficient posterior inference of the number of factors and other model pa-
rameters. Their contributions are substantial and have been well summarized in invited
discussions. The thorough theoretical exposition, supplemented by empirical examples,
positions this work as a stepping stone for further exploration.

In this contributed discussion, we point out avenues for expanding upon the ideas of
Frühwirth-Schnatter et al. (2024). The methods proposed by the authors implicitly as-
sume the homogeneity of the population of interest. Put differently, the estimated factor
structure is assumed to apply uniformly across the entire population. However, this as-
sumption often needs to be relaxed due to the inherent heterogeneity in the population.
One approach to account for population heterogeneity and consider differences between
qualitatively distinct subpopulations—termed latent classes—is the mixture modeling
framework (Frühwirth-Schnatter, 2010; McLachlan and Peel, 2000). With this consid-
eration in mind, we suggest that an interesting direction is the incorporation of the
mixture modeling framework to induce sparsity across different latent classes.

Within the mixture modeling framework, one important consideration is that the
number of latent classes is typically predetermined using statistical criteria such as
information criteria. Afterward, the factor structure for each latent class is estimated
conditional on the estimated group membership. The next step will be to examine
whether estimating separate factor structures for each latent class based on the UGLT
representation is computationally feasible. Here, the label switching problem must be
addressed. Common solutions include adding order constraints to parameters during
estimation or post-processing the chains using some permutation techniques to reorder
the MCMC output. Developing a scalable MCMC algorithm is essential in this context.

Another direction of research regards the estimation of the number of latent classes
without resorting solely to information criteria. Instead of predetermining the dimen-
sionality of factors based on information criteria, the dimension can be solely determined
based on the data. A related idea can arise by borrowing the principles of Bayesian non-
parametrics (Gershman and Blei, 2012; Ghahramani, 2013). Relatedly, Grushanina and
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Frühwirth-Schnatter (2023) developed an automatic inference process to assign a non-
parametric prior for estimating the dimension of factors. The development of MCMC
algorithms that integrate the data-driven estimation of factor dimensionality and induce
sparsity warrants further research.

An important parameter in implementing mixture models is the mixing proportion.
In the Bayesian framework, Dirichlet distributions are commonly used as prior distri-
butions for this parameter, with hyperparameters representing the prior proportion of
individuals in each class. Implementing this prior alongside the spike and slab priors for
simultaneously imposing row and column sparsity while establishing factor structures
could be an important contribution to future research.

We believe that expanding the ideas of Frühwirth-Schnatter et al. (2024) into the
factor mixture modeling framework can reveal important and nuanced details about
population heterogeneity, particularly with regard to the factor dimensions within each
latent class. Looking ahead, the integration of their approach, along with its mixture
extensions, into open-source statistical software such as JASP (JASP Team, 2024) could
augment the accessibility and dissemination of these methods. We are confident that
the work of Frühwirth-Schnatter et al. (2024) represents a substantial contribution that
will inspire further advancements in both methodological and applied research. We once
again commend the authors for their outstanding work.
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Contributed Discussion

Szymon Urbas∗,§ , Kate Finucane†,
Isobel Claire Gormley†,‡ , and Keefe Murphy∗,§

We congratulate the authors on their innovative contributions to the area of sparse factor
analysis. Their work tackles the long-standing challenge of estimating the number of
common factors that give rise to high-dimensional data, a challenge that has hampered
the more widespread practical usage of factor-analytic models. The work advances the
state of the art and provides an elegant, theoretically sound basis for inference on the
number of common factors. We feel the proposed model has rich utility — in biological
and chemical science applications especially — as its column and row sparsity features
lend themselves to interpretable analyses of large datasets. Row sparsity is of particular
interest in areas that use high-throughput data, such as spectral data, where methods
that identify and remove extraneous variables (e.g., Casa et al., 2022; Urbas et al.,
2024) are especially useful due to the typically high numbers of redundant variables
encountered in high-dimensional settings.

We have a number of comments and queries related to computational efficiency,
other aspects of practical utility, and potential model extensions. Firstly, we commend
the authors on their well-formulated reversible-jump algorithm, particularly where ‘split’
proposals are concerned. Its self-stabilising behaviour is evident from the corresponding
MH ratio (4.4). By substituting in the authors’ suggestions of aH = α/H, bH = 1, and
H = �(m−1)/2, letting m be odd (for presentation clarity), and further assuming that
rsp = λm, with λ ∈ [1/m, 1/2 − r/m), we arrive at a (roughly) constant approximate
proportion of column splits at each iteration:

(H − r− rsp)×min
{
1, Asplit(r, rsp)

}
= min

{(
1
2 − λ

)
m− r− 1

2 ,
α(1 − 2λ− 2r+1

m )2

2(λ− 1−λ
m − 1

m2 )

}
.

This expression does not blow up or reduce to zero as m increases, suggesting desirable
mixing properties even for challenging problems involving many variables. Interestingly,
this all depends on the shrinkage prior hyperparameters used and possibly may not hold
for other choices. While the authors have endeavoured to increase accessibility of their
work to applied practitioners by requiring only five hyperparameters to be specified, it
is noted in Section 3.4 that the recommended default setting for H is computationally
inefficient for large m and advised that a smaller value below this upper limit should be
chosen. As we also have concerns about the effect of H on Eq (the expected number of
non-zero row elements) and whether the suggested default Eq = 2 remains sensible when
H is large, at which point Eq converges to α, we would appreciate further guidance.

∗Department of Mathematics and Statistics, Maynooth University, szymon.urbas@mu.ie
†School of Mathematics and Statistics, University College Dublin, kate.finucane@ucdconnect.ie
‡VistaMilk and Insight SFI Research Centres, University College Dublin, claire.gormley@ucd.ie
§Hamilton Institute, Maynooth University, keefe.murphy@mu.ie

https://orcid.org/0000-0002-8488-6667
https://orcid.org/0000-0001-7713-681X
https://orcid.org/0000-0002-7709-3159
mailto:szymon.urbas@mu.ie
mailto:kate.finucane@ucdconnect.ie
mailto:claire.gormley@ucd.ie
mailto:keefe.murphy@mu.ie


60 Contributed Discussion

Another area of interest is the discarding of post-burn-in samples. Table 3 reports
that roughly 6–10% of samples are removed. We are curious to know whether or not this
proportion remains constant as m increases. If so, this bodes well for high-dimensional
applications. If not, we worry that chains may require many iterations in order to obtain
reliable posterior inference. Additionally, were the method to be extended to the realm of
mixture models, there is ambiguity in how the post-processing would be carried out. We
are especially interested in how the method would behave in mixture settings since it has
been shown that clustering performance tends to improve when the number of factors is
allowed to vary across components (Murphy et al., 2020). Would the loading matrices of
all mixture components each need to satisfy the 3579 rule for a sample to be accepted,
or could the post-processing be conducted separately for each component? If the former
case is true, we conjecture that mixtures with many components would require more
discarded samples. Specifically, if we let pg denote the component-specific proportion
of valid posterior samples, then only

∏G
g=1 pg samples would be retained in a mixture

with G components. Our broader query about discarding samples is also pertinent to
potential model extensions for which the per-iteration computational costs would be
more expensive, such as the adoption of truncated distributional assumptions, under
which rejection sampling or Gibbs steps involving auxiliary variables are common, albeit
computationally demanding sampling approaches. These assumptions are required in
settings where negative values are not meaningful, such as when modelling non-negative
biological quantities (D’Angelo et al., 2021) or imputing positively constrained data
(Finucane et al., 2024), where sampling from truncated multivariate distributions can
be particularly costly. Overall, we suspect that requiring a large proportion of discarded
samples could impact the method’s utility, particularly in large m settings, and hamper
efforts to embed the approach within more complex modelling extensions.

Finally, we would like to stress that the issue of rotational invariance, which is so
elegantly addressed via the imposition of UGLT structures on the loadings, is a direct
consequence of the assumption that ft ∼ Nr(0, Ir). An alternative modelling strategy
is to assume heteroscedastic latent factors by replacing Ir with Σf , a diagonal matrix
with non-identical entries. This yields a marginal covariance Ω = ΛΣfΛ� + Σ0 which
is no longer invariant under arbitrary rotations. It has been shown by Roy et al. (2021)
that this simple modification can help to efficiently recover the true loading structure
without requiring Procrustean post-processing to rotationally align the samples. It is
well-known that (Λ, f) and (ΛP,P�f) have equivalent likelihood for any orthonormal
matrix P under a traditional factor model. This is not the case under a heteroscedastic
factor model, however, unless P = P±Pρ is specifically a signed permutation matrix.
As this matches the identifiability conditions given in Section 2.1, we are eager to learn
the implications (if any) of imposing UGLT structures in the presence of heteroscedastic
factors. Are there additional benefits, such that imposing such structures would still be
worthwhile? Would incorporating Σf simplify matters, or perhaps offset the need to
discard samples which are not variance-identified? Relatedly, although steps to post-
process Λ to address rotation, sign, and permutation invariance have been proposed
(Papastamoulis and Ntzoufras, 2022), we wish to highlight that there is also a need to
post-process f if posterior summaries of the factor scores are of interest, as is often the
case, for example, in psychology (Cattell, 1978). It is unclear if the proposed strategies
for ensuring identifiability of the loadings also ensure validity of the draws of f .
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Alessandro Casa∗, Michael Fop‡, and Silvia D’Angelo†

We would like to congratulate the authors on their valuable contribution to the Bayesian
factor analysis framework. The paper combines different ideas, simultaneously address-
ing identifiability issues and performing estimation and inference on the number of
factors r. Moreover, the proposed approach builds nicely on the sparse Bayesian factor
analysis literature, with a clever elicitation of suitable shrinkage priors paired with a
tailored MCMC estimation procedure. We wish to raise a few discussion points and hear
the authors perspectives on them.

Loading Matrix Structure The proposal relies on an identification strategy based on
unordered generalized lower triangular structures (UGLT, Frühwirth-Schnatter et al.,
2023) which impose fewer restrictions compared to other common strategies. However,
since the pivots must lie in different rows, this approach still requires that at least
the first r − 1 variables are represented as a combination of fewer than r factors. In
fact, the j-th variable, for j = 1, . . . , r − 1 is constrained to have at most j non-zero
loadings. Therefore, UGLT structures potentially exacerbates one of the limitations of
the PLT by introducing an ordering of the m original variables, with at least the first
r − 1 ones being described in terms of fewer common factors fHt . Although this can
be addressed by permuting the rows of βH , in applied frameworks where the observed
variables follow a natural ordering, this may conflict with the one imposed by the
UGLT structure thus preventing row permutations. For example, Casa et al. (2022)
consider Bayesian factor analysis to model high-dimensional spectroscopy data where
the variables are often redundant. Here, alterations of their order would compromise
the chemical interpretation of the analysis. Moreover, highly correlated variables are
expected to share similar representations as functions of the latent factors. In their
work, Casa et al. (2022) devise a strategy where rows of βH are clustered and forced
to be equal to cluster-specific values to account for redundancies. However, the UGLT
structure makes it more difficult for the first r − 1 rows (at least) of βH to share a
similar pattern with the remaining m − r + 1 rows. This might hinder the detection
of redundancies in the observed variables, a common and to some extent overlooked
phenomenon in high-dimensional scenarios. It would be interesting to gather authors’
thoughts on the possibility of generalizing their procedure to scenarios where the nature
of the data influences the structure of the loading matrix.

Row Sparsity The proposed approach cleverly adopt shrinkage priors imposing col-
umn sparsity, helping to identify the number of active factors. On the other hand, on
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the row level the induced sparsity seems to be less structured. Nonetheless, in high-
dimensional settings factor analysis can be helpful also to identify irrelevant variables
being uncorrelated with the other ones as the corresponding row of βH is equal to
0. From a frequentist perspective, Hirose and Konishi (2012) resort to a penalized es-
timation procedure which enforces entire rows of the loading matrix to be equal to
0. Although this behavior seems to appear naturally in the real data applications in
the paper, it may be worthwhile to reflect on the potential for a more structured
approach to impose sparsity on the rows. Additionally, it is important to consider if
and how this might conflict with the 3579 counting rule, which necessitates a spe-
cific number of non-zero loadings for submatrices consisting of subsets of the columns
in βH .

Prior on γ The hierarchical prior structure defines a scheme that allows the generation
of sparse δk matrices respecting the UGLT structure. The slab probabilities τj have
an impact on the sparsity of δk and are assumed to arise from a 2PB distribution,
τj ∼ B(γ α

H , γ). Ghahramani et al. (2007) show that in such context the expected number
of active latent features is k̄ ∼ Pois(α

∑m
j=1

γ
γ+j−1 ), and that k̄ grows as αγ logm as m

increases. The authors assume the prior γ ∼ G(αγ , βγ), setting αγ = βγ = 6, implying
E[γ] = 1. Interestingly, this choice is independent of the dimension of the data m.
Additionally, the authors specify a prior for α such that E[α] ≈ 2 for large m and
H = �(m−1)/2. Such specification implies that the expected number of latent features
k̄ grows a priori ≈ 2 logm. While this setting proves valid in the applications discussed
in the paper, it may induce situations where the number of latent features could be too
small and grow at a slow rate in higher dimensional settings, where more latent factors
might be needed to adequately represent the data.

Figure 1 illustrates this aspect of the prior specification. The solid orange line repre-
sents the k̄ values as a function of m ∈ [10, 500] for γ = 1, the expected value of G(6, 6).
The value of k̄ grows very little as m increases; for example, for m = 200, k̄ = 11.76,
while for m = 500, k̄ = 13.59. To allow k̄ to grow at faster rate, an option is the al-
ternative prior specification γ ∼ G(m2c,mc), in which the expected value is an explicit
function of the dimension m: E[γ] = mc. Under this prior, k̄ will grow ≈ 2mc logm,
allowing more control on the prior expected number of active latent features. Given
m, for appropriate choices 0 < c < 1, k̄ < H. The solid light blue and green lines
show the k̄ values for γ = mc with c = 0.3 and c = 0.5, respectively. The value of
k̄ increases at a faster rate in higher dimensional situations; for example, in the case
c = 0.3, k̄ = 37.60 and k̄ = 57.31 when m = 200 and m = 500, respectively. This
alternative prior specification can enable greater flexibility in relation to the number of
active factors.

It would be valuable to hear the authors’ perspectives on these considerations and
the alternative prior, particularly regarding the application to higher-dimensional set-
tings.
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Figure 1: Expected number of active factors k̄ for varying data dimension m and prior
specifications of γ prior. The dashed lines and shaded areas denote the interval be-
tween the mean and the 99th percentile of the corresponding Poisson distribution,
Pois(2

∑m
j=1

γ
γ+j−1 ).
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Contributed Discussion

Louise Alamichel∗, Julyan Arbel∗, Daria Bystrova†,
Guillaume Kon Kam King‡, and Alessandro Lanteri§

In this discussion, we wish to highlight the novel contributions of the paper to the field
of Bayesian factor analysis and comment on aspects of asymptotics, and algorithmics.
The authors present an efficient framework for modeling dependent multivariate ob-
servations, such as time series, using a sparse Bayesian factor model with an unknown
number of factors. A carefully chosen prior on factor loadings aids in model identi-
fication. The paper contributes by seamlessly coupling model estimation with factor
dimension selection and using reversible jump MCMC to explore the factor dimension
space. Additionally, it identifies simple structures through row and column sparsity,
offering a practical solution for high-dimensional datasets.

Asymptotics The approach is at the crossroads between several strands of Bayesian
nonparametric research, employing a combination of overfitted mixtures, spike-and-
slab variable selection and continuous shrinkage priors (e.g. the horseshoe prior). The
asymptotic study of Bayesian nonparametric or related models, where the number of
parameters may grow with the amount of data, is interesting as they do not auto-
matically satisfy a Bernstein-von-Mises theorem. Prior choices may have a substantial
impact on their asymptotic behaviour, and Bayesian asymptotics may reveal interesting
mechanisms and provide intuitions or guidelines for prior elicitation. A typical example
is the asymptotic study of spike-and-slab linear regression with n observations and p
variables (p � n), which reveals, for instance, that a constant prior inclusion probability
for every covariate gives exponentially small mass to sparse models as p diverges (Scott
and Berger, 2010), or that a prior complexity penalty exponential in the model size and
Laplace slabs ensure consistency and good frequentist properties (Castillo et al., 2015).
One may wish to work by analogy and see if some of these insights might shed light on
possible asymptotic properties of the model described here. However, various asymp-
totic regimes may be considered. The simplest is t → ∞ for m and H fixed, i.e. infinitely
long time series for a finite number of variables: in this case, provided Λ is identifiable,
it should be perfectly identified. The second is both t → ∞ and m → ∞, e.g. when
the number of time series considered grows. In this case, for H fixed, intuition from the
analysis of overfitted mixture models (Alamichel et al., 2024) suggests that eventually,
all columns will be filled because as more time series are considered, more factors will
be needed to describe them. This suggests allowing H to increase with m and possibly
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setting H = ∞ (unless novelty can be exhausted and new times series become redun-
dant). This is the typical Bayesian nonparametric setting which allows model complexity
to automatically grow with the amount of data. Several authors studied the posterior
consistency of the number of factors in sparse Bayesian factor models. Ročková and
George (2016) used spike and slab prior with an Indian Buffet Process (IBP, H = ∞)
on the factor loading matrix Λ and provided posterior tail bound on the number of
factors. Ohn and Kim (2022) build on the spike and slab prior introduced in Ročková
and George (2016) and introduced a two-parameter IBP spike-and-slab. In addition, the
authors proved the posterior consistency of the number of factors. However, the prior
depends on the sparsity level. The recent work Ohn et al. (2024) introduces a new prior
that is adaptive to the sparsity level in the data with the desired posterior consistency
properties. As they mention, one of the crucial properties of the proposed prior, which
is essential for good asymptotic properties, is the dependence between row and column
sparsity in Λ. As m → ∞, the probability of slab inclusion inside a given column is
constant (eq. (3.6)). Therefore, as mentioned above, the spike-and-slab prior gives expo-
nentially small mass to sparse columns. The authors encourage sparsity inside columns
by considering extra regularisation in the form of continuous shrinkage priors in the
slab, as discussed in Section 3.2. It is not entirely obvious how these spike-and-slab and
continuous shrinkage sparsity mechanisms interact, and it would be interesting to study
whether row and column sparsity have the type of dependence required by Ohn et al.
(2024). Furthermore, looking at the simulations in Table 2, we notice that when the
sparsity pattern presents heavily overlapped factors, the model size bias Bd is negative.
In these cases, the estimate of the number of columns is still reasonable, but sparsity
constraints seem to overshrink the coefficients inside the columns.

Algorithmics The proposed framework ensures rigorous identification conditions en-
forcing a UGLT structure and the 3579 counting rule. However, these two conditions
are enforced in two different ways. The UGLT structure is cunningly imposed by in-
troducing a prior on the pivots. The 3579 counting rule is applied in the post-process,
eliminating the MCMC draws that do not satisfy the rule. A natural extension to the
proposed algorithm would be to impose the 3579 rule, incorporating it into the prior
choice. Retaining only posterior samples satisfying the 3579 rule amounts to looking
at a conditional posterior, and it is not clear how this posterior relates to one where
the 3579 constraint would have been applied a priori. Also related to the algorithmic
approach, it would be interesting if there was a way to avoid the reversible jump MCMC
algorithm. Miller and Harrison (2018) show that for Mixture of Finite Mixtures (MFM),
it is possible to build on the connection between MFM and classical Bayesian nonpara-
metric priors such as the Dirichlet Process to use efficient samplers based on Neal’s
algorithms (Neal, 2000) for instance. This requires the availability of the Exchangeable
Partition Probability Function. There is a related concept for factor models, introduced
in Broderick et al. (2013), which is that of Exchangeable Factors Probability Function.
It would be an interesting research question to investigate whether this can be employed
to construct algorithms bypassing reversible jump MCMC.

In conclusion, this paper offers an elegant sparse Bayesian factor analysis model
overcoming identification and computational challenges associated with unknown factor



L. Alamichel, J. Arbel, D. Bystrova, G. Kon Kam King, and A. Lanteri 67

dimensions. Future exploration of the asymptotic properties and sensitivity to prior
choices, especially in different application domains, could further solidify its practical
utility.
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Contributed Discussion

Alessandro Zito∗ and Jeffrey W. Miller†

We commend Frühwirth–Schnatter, Hosszejini, and Lopes on their valuable contribu-
tion, which offers an insightful solution to two long-standing problems of traditional
Bayesian factor modeling, namely (i) identifiability of the factor loadings, and (ii) se-
lection of the number of factors to use in the model. Solving both problems within
a Bayesian framework is desirable for improving uncertainty quantification and inter-
pretability in many applications.

The authors introduce a novel extension of the lower triangularity condition: letting
l1, . . . , lk denote the indices of the first nonzero entries in rows 1, . . . , k of the loadings
matrix, the unordered generalized lower triangular (UGLT) condition is that l1, . . . , lk
are all distinct. The authors enforce this UGLT constraint during Markov chain Monte
Carlo (MCMC) sampling, and use the fact that UGLT provides identifiability up to a
signed permutation in order to recover full identifiability in post-processing steps after
sampling.

This approach suggests intriguing possibilities for further improvement and use in
other latent factorization models. First, it would be interesting to extend the method-
ology to generalized bilinear models (GBMs). GBMs provide an extension of factor
analysis to non-Gaussian data by using a generalized linear model for each entry of the
data matrix and parametrizing the linear predictor with a low-rank latent factorization
(Choulakian, 1996; Miller and Carter, 2020; Nicol and Miller, 2023). This class of mod-
els is especially useful when dealing with the sparse, high-dimensional count matrices
that are routinely encountered in genome sequencing. We have found that enforcing
identifiability can help improve estimation accuracy in GBMs (Miller and Carter, 2020;
Nicol and Miller, 2023), and selecting an appropriate number of latent factors remains a
challenging problem for GBMs. Thus, the authors’ approach to solving these problems
may be of particular utility for this class of models.

Another direction would be to consider applying the methodology to non-negative
matrix factorization (Lee and Seung, 2000). Non-negative matrix factorization (NMF)
is used in cancer genomics to perform mutational signatures analysis, which deconvolves
patterns of mutations in the DNA of tumor cells to uncover the corresponding oncogenic
processes (Nik-Zainal et al., 2012; Alexandrov et al., 2013). Denoting as Xij the number
of mutations of type i = 1, . . . , I in tumor sample j = 1, . . . , J , it is standard to model
Xij ∼ Poisson(

∑K
k=1 rikθkj) where rk = (r1k, . . . , rIk) is a mutational signature captur-

ing the rate at which each mutation type occurs under process k, while θk1, . . . θkJ are
loadings representing the activity of signature k on each sample. Identification of spe-
cific signatures in patients shows promise for improving patient outcomes with precision
therapeutics (Aguirre et al., 2018). Correctly identifying which signatures are active in
which patients is crucial for the effectiveness of this treatment approach.
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Sparsity-inducing priors have been used in Bayesian NMF models for mutational
signatures analysis, including the use of overfitted models with compressive hyperpriors
for estimating the number of factors (Zito and Miller, 2024) and multi-study NMF
frameworks to detect both common and cancer-specific mutational signatures (Grabski
et al., 2023). It would be interesting to adapt the authors’ UGLT approach to devise a
sparsity-inducing NMF model to jointly quantify uncertainty in the loadings, signatures,
and the number of active signatures. In this respect, zeros in the loading matrix of
a UGLT structure would translate into a more transparent representation where the
presence or absence of signature activity in a patient is more explicit. Furthermore, the
presence of structural zeros has a connection with the identifiability of the NMF model
itself, as first suggested by Donoho and Stodden (2003). See Gillis (2020) for a detailed
account and discussion.

Finally, we would like to point out that while the UGLT structure relaxes the strict
lower triangular condition that is often used, it can still depend strongly on the values
of just a few entries of the loadings matrix. If there is high uncertainty in these entries,
then it seems possible that the resulting inferences could be strongly affected. The
authors’ approach of performing post-processing conditionally on the most probable
factor dimension r and pivot sequence l1, . . . , lr alleviates this issue, but also reduces
the number of posterior samples used to form posterior estimates. This suggests the
possibility of using more information about the sparsity pattern of each column, rather
than just index of the first nonzero entry.

In summary, the usefulness of having a UGLT prior structure in a Gaussian factor
model is clearly demonstrated in the article of Frühwirth–Schnatter, Hosszejini, and
Lopes, and it may also have applications beyond traditional factor analysis as well.
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Contributed Discussion

Elizabeth Bersson∗

Introduction
I would like to congratulate the authors on their important contributions to latent factor
modeling, and, in particular, the insights provided in this manuscript. In this discussion,
I describe motivations for sparsity in covariance estimation and propose consideration
of an alternative view of parsimony with respect to covariance estimation.

Accurate high dimensional covariance estimation is a challenging task. A common
approach to estimate a covariance matrix in such a setting is to utilize a factor model
that represents a covariance matrix as a diagonal variance matrix plus a possibly low-
rank covariance matrix. In contrast to estimating an unstructured covariance matrix,
such an approach can reduce the number of unknown parameters to be estimated,
thereby resulting in more stable covariance estimates. In this work, the authors present a
prior framework for a latent factor model that simultaneously encourages within-column
and within-row sparsity in the factor loadings matrix. In what follows, I primarily
elaborate on this contribution that incorporates two interpretations of model parsimony,
low-rank covariance estimation and zero-sparsity shrinkage, in latent factor modeling.

Sparsity in Modeling
In statistical modeling, parsimony, whereby the smallest number of parameters are used
such that the population is accurately represented (Box et al., 2015), is often desirable
for a number of reasons. For example, in estimation of a mean regression coefficient
vector, a natural manifestation of parsimony is to encourage sparsity of the coefficients.
In such a setting, a sparse solution refers to one in which many coefficients are exactly
equal to zero, as with a lasso penalization (Tibshirani, 1996), or very nearly equal to
zero, as with a ridge penalization (Hoerl and Kennard, 1970). Such penalized regres-
sion coefficient estimation approaches are desirable as they can yield estimates with
reduced error and greater predictive accuracy. Additionally, this definition of sparsity
in mean regression implies a model selection framework whereby fewer covariates are
used to predict the outcome. In this way, a sparse regression coefficient solution features
streamlined interpretation of model parameters.

While mean estimation has received more substantial attention in the literature,
these notions of parsimony and sparsity have been extended to covariance estimation as
well, and many popular covariance estimation approaches that encourage sparsity such
as diagonality (Daniels and Kass, 1999) and thresholding (Bickel and Levina, 2008)
have been proposed. Favorable theoretical results for such approaches suggest superior
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performance in the case of sparse population covariances. For a detailed review of regu-
larization methods for high dimensional covariance estimation, see Pourahmadi (2013).

Similarly, prior distributions used for the factor loadings matrix commonly favor
a sparse matrix whereby the factor loadings matrix is shrunk towards a zero matrix,
corresponding to a diagonal prior marginal covariance matrix. Recently, some non-
exchangeable priors have been proposed that offer flexibility, but still strongly favor zero-
sparsity. For example, the structured increasing shrinkage process proposed in Schiavon
et al. (2022) shares information across the rows of the factor loadings matrix; this
framework also allows for both column- and row-sparsity.

General Parsimony for Covariances
By providing a framework for simultaneously encouraging column-sparsity and row-
sparsity in a factor loadings matrix, the approach detailed in Frühwirth-Schnatter et al.
(2024) couples dimension reduction with structured covariance shrinkage estimation.
In this way, the proposed framework encourages two interpretations of parsimony. For
one, by encouraging column-sparsity, the proposed prior allows for a simpler model
with respect to lower rank of the factor covariance matrix. For another, by concurrently
encouraging row-sparsity in the factor matrix, a simpler model is achieved by allowing
for fewer non-zero parameters in the factor loadings matrix.

To elaborate, row-sparsity in this work is motivated by the notion of utilizing a
simple structure for factor modeling as introduced in Thurstone (1947), which allows
for practically meaningful factors. The concept of a simple structure, nicely summarized
in Joereskog (1966), emphasizes sparsity among the active factors. That is, among the
non-zero columns of the factor loadings matrix, each row of the factor loadings matrix
should preferably have a large number of zero elements. While the interpretability of
such simple structures may be appealing, it can be a restrictive structure. For example,
the most parsimonious model under this objective of row-sparsity corresponds to a zero
factor loadings matrix, and, correspondingly, a diagonal prior covariance matrix.

For diagonal or sparse population covariance matrices, these developed methods are
appealing; however, the plausibility of such a covariance structure in practice is uncer-
tain. While this approach, and others mentioned, may result in more stable estimates
when compared to alternatives with many more unknown parameters, a compromise
may be available whereby a different interpretation of parsimony is considered for high
dimensional covariance estimation. In particular, a more flexible alternative that allows
for non-zero shrinkage among active columns of the factor loadings matrix might yield
more accurate estimates in regimes with dense population covariances. When coupled
with the benefit of dimension reduction via column-sparsity in factor modeling, this
additional layer of flexibility that allows for prior non-zero correlations among the vari-
ables can potentially yield more accurate covariance estimates than current approaches
that favor shrinkage towards a diagonal covariance.
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Antonio Canale∗, Lorenzo Schiavon†, and Federica Stolf‡

1 Introduction
We would like to congratulate the authors for their valuable contribution to sparse
Bayesian factor analysis literature. Coupling identifiability through the unordered gener-
alized lower triangular (UGLT) structures discussed in Frühwirth-Schnatter et al. (2023)
with an efficient Markov chain Monte Carlo (MCMC) algorithm enables straightforward
uncertainty quantification for all unknowns, including the factor loading’s sparse struc-
ture and dimension, thereby facilitating interpretation—often the ultimate goal of latent
factor methods. In this discussion, we aim to highlight how the proposed approach can
also be advantageous when exogenous information about the variables is available and
integrated into the inferential process, specifically in inferring the sparsity structure of
the factor loading matrix.

2 Order Non-invariant Priors for Factor Loadings
In imposing a UGLT structure on the factor loadings, Frühwirth-Schnatter et al. (2024)
implicitly propose a prior which is not invariant with respect to the order in which the
variables appear. In fact, under the proposed prior, the order of the variables influences
the induced covariance structure, by increasing the probability of having sparse loadings
for first variables. To see this, consider the model

yt = βft + et, et ∼ N(0,Σ), ft ∼ N(0, I),

and introduce πij to denote the conditional prior probability that βij is not zero given
the location of the other pivots, i.e. πij = pr(βij �= 0 | lr,−j). Then, the uniform prior
distribution on lj | lr,−j , reported in Equation (3.5) of the paper leads to

πij = pr(δij = 1 | lr,−j)

=
∑

h∈L(lr,−j)

pr(δij = 1 | lj = h, lr,−j) pr(lj = h | lr,−j)

= 1
m− r + 11

{
i ∈ L(lr,−j)

}
+ τj

i−Ri,−j − 1
m− r + 1 , (1)

where Ri,−j is the number of pivots in L(lr,−j) smaller than i. The second term in
Equation (1) is not decreasing in i, that implies an ordering of the πij for i > 1 and
i ∈ L(lr,−j). In other terms, the prior probability of being sparse for an element of any
column j of β tends to be smaller as index i increases.
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Figure 1: Monte Carlo mean across 500 simulations of δδT with different values for the
parameter of the beta prior: α = 3 (left panel), α = 5 (center panel) and α = 7 (right
panel).

Figure 1 provides some numerical evidence of this behavior. We simulated 500 dif-
ferent sparsity matrices δ from the prior proposed by the authors using as distribution
on the slab probabilities the finite one-parameter-beta prior with three different values
for the parameter α, encoding different sparsity levels. Figure 1 shows the Monte Carlo
average of δδT as a measure of the prior probability of having a non null covariance in
the global covariance matrix Ω = ββT + Σ. The expected decreasing sparsity for the
elements of β induces a higher probability of having a null correlation between the first
variables, a priori.

Although this behavior may seem undesirable when there is no obvious order between
variables, in many applications, prior knowledge can guide the prior sparsity pattern.
For example, in a previous work (Frühwirth-Schnatter et al., 2023), the authors mod-
eled a dataset about the monthly log-returns from the New York Stock Exchange where
firms were ordered by industrial sector. More generally, information about the rela-
tionships among variables may be linked to multiple observed traits of those variables.
Consistently with this, Schiavon et al. (2022) proposed to induce a sparsity structure
in the factor loading matrix by means of metacovariates, i.e. information associated to
each marginal measured variable. Similarly to the approach presented by Frühwirth-
Schnatter et al. (2024), this method is also not invariant with respect to the variables.
However, the dependencies are informed by metacovariates that are associated with
intrinsic similarities among the variables, rather than their order.

Following Schiavon et al. (2022) and adapting their notation to that of the paper by
Frühwirth-Schnatter et al. (2024), the structured sparsity prior for the factor loadings
is

βij | γj , φij ∼ N(0, γjφij), pr(φij = 1 | θj) = cm logit−1(x�
i θj

)
, (2)

where γj is a column specific scale, and φij is a Bernoulli distributed local scale, with
expectation depending on an offset cm ∈ (0, 1) and on the metacovariates xi pertaining
to the i-th marginal. These metacovariates can be categorical variables, such as the
industrial sector in the previously mentioned stock exchange application, or continuous
variables.
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The family of factor models discussed by Schiavon et al. (2022), shares the usual
identifiability issues, including the factor loadings rotational ambiguity. This issue is
exacerbated in the context of structured sparsity, as obtaining a meaningful posterior
summary that maintains a relation with the dependence from the metacovariates be-
comes a challenging task. In fact, standard MCMC post-processing techniques cannot
be applied, as they would completely destroy the relationships across the various layers
of the hierarchical model (2). As a result, the authors opted to use an approximation
of the maximum a posteriori as the posterior point summary.

However, the solutions presented in the paper by Frühwirth-Schnatter et al. (2024)
are likely to solve the identifiability issues also in the structured sparsity approach of
Schiavon et al. (2022). We sketch this in the following pages.

3 Structured Sparsity UGLT Prior
Rather than deriving πij from the full conditional distribution of the pivot locations,
we start specifying it in a way that is consistent with the structured sparsity approach.
This allows us to obtain the prior distribution for the pivot locations as a consequence.
Specifically, we aim at designing a prior process such that the prior probability that βij

is not zero depends mainly on variable traits contained into metacovariates xi, rather
than merely on variable ordering.

To achieve this, we specify a m × r unconstrained sparsity matrix Φ with binary
entries φij . Similarly to the structured increasing shrinkage process in Schiavon et al.
(2022), we propose to relate the probability pr(φij = 1) to the metacovariates xi through
a logistic transformation of the linear predictor x�

i θj . Then, indicating with δ the
indicator matrix such that δij = 1(βij �= 0), we impose a UGLT structure on δ sampling
uniformly a column index j and letting, for i = 1, . . . ,m,

δij = φij1
{
i ∈ L(lr,−j)

}
+ φij1

{
i /∈ L(lr,−j)

}
1(i > lj).

In other terms, given the pivots of the other columns lr,−j , the pivot lj of column
j corresponds to the first nonzero element of column j of the matrix Φ, if i is not
a pivot row in other columns. Notably, in doing this, we are creating a link between
πij = pr(δij = 1 | lr,−j) and the probability of φij = 1, thus having the metacovariates
impacting each πij .

Under these settings the induced full conditional prior on the pivot location at
column j, conditional to the locations of the other pivots, is

pr(lj = i|lr,−j) = 1
{
i ∈ L(lr,−j)

}
pr(φij = 1)

∏
m∈L(lr,−j),

m<i

{
1 − pr(φmj = 1)

}
.

Similarly,

pr(lj < i|lr,−j) =
i−1∑
h=1

pr(lj = h|lr,−j) = 1 −
∏

m∈L(lr,−j),
m<i

{
1 − pr(φmj = 1)

}
.
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Figure 2: Monte Carlo mean across 500 simulations of δδ�, under the structured sparsity
prior with UGLT constraints and univariate metacovariates: categorical metacovariate
with three levels (left); continuous metacovariate with linear relationship with respect to
the variable order (center); continuous metacovariate with quadratic effect with respect
to the variable order (right).

We are now able to derive the probability that βij is not sparse conditionally on the
other pivots’ locations, i.e.

πij = pr(δij = 1 | lr,−j)
= pr

{
φij = 1 | i ∈ L(lr,−j)

}
1
{
i ∈ L(lr,−j)

}
+ pr

{
φij = 1 | i /∈ L(lr,−j), lj < i

}
pr(lj < i | lr,−j)1

{
i /∈ L(lr,−j)

}
.

Similar in spirit to Schiavon et al. (2022), we set

pr
{
φij | i ∈ L(lr,−j)

}
= cm logit−1(x�

i θj

)
,

such that πij = cm logit−1(x�
i θj) for i ∈ L(lr,−j). In fact, the variable ordering still has

an impact for the i /∈ L(lr,−j) as those cannot be pivots. To mitigate this aspect, we
specify

pr
{
φij | i /∈ L(lr,−j)

}
= min

{
cm logit−1(x�

i θj

)
/pr{lj < i | lr,−j}, 1

}
,

resulting in

πij = cm logit−1(x�
i θj

)
1
{
i ∈ L(lr,−j)

}
+ min

{
cm logit−1(x�

i θj

)
,pr(lj < i | lr,−j)

}
1
{
i /∈ L(lr,−j)

}
. (3)

Figure 2 provides numerical examples illustrating the behavior of the proposed prior.
Similarly to Figure 1, 500 different sparsity matrices δ have been simulated indepen-
dently using the structured sparsity structure prior in (3) under different scenarios for
metacovariates. The left panel replicates a situation in which prior knowledge about
grouping of variables is available. This setup mirrors the previously discussed applica-
tions to the New York Stock Exchange monthly log-returns, where the industrial sectors
of the firms were known. In this case, we simulate using the proposed prior, with xi
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corresponding to a categorical metacovariate with three levels. In contrast, the second
and third panel assume continuous metacovariates, with linear and quadratic effects,
respectively, with respect to the variable order. The Monte Carlo averages of δδT shown
in the plots demonstrate different induced sparse correlation patterns, consistent with
the information contained in the metacovariates, while the order-dependent decreasing
sparsity behavior noticed under (1) almost vanishes. In the leftmost panel, the higher
probability of non-null correlations between variables within the same group is clearly
visible in blocks. In the middle panel, the first set of variables shows strong correlation
a priori, while the third panel showcases that a simple reordering of the variables is not
sufficient to control order-dependence when there is a more complex structure in prior
knowledge.

4 Posterior Inference Under Structured UGLT Prior
We sketch the main steps for posterior inference under the structured UGLT approach
presented. We integrate the UGLT structure update into the Gibbs sampler proposed
by Schiavon et al. (2022) as follows.

Loop over the columns in random order and, for each column, perform the steps
below.

1. Update the list lr,−j .

2. Update the parameter θj with an MH move. Following Schiavon et al. (2022),
we sample a proposal for the parameter vector θ∗

j from the logit regression full
conditional, assuming pr(φij = 1) = cm logit−1(x�

i θj) for each i, and exploiting
the Pólya–Gamma data augmentation proposed by Polson et al. (2013). We accept
the proposal with probability min{pθj (θ∗

j | −)/pθj (θj | −), 1}, where pθj (· | −) is
proportional to the full conditional distribution of θj .

3. Set the prior probability of φij conditionally on θj and lr,−j as

pr{φij | θj , lr,−j} = cm logit−1(x�
i θj

)
1
{
i ∈ L(lr,−j)

}
+ min

{
cm logit−1(x�

i θj

)
/pr(lj < i | lr,−j), 1

}
1
{
i /∈ L(lr,−j)

}
.

4. Update the m elements of the j-th column of Φ in parallel from its Bernoulli full
conditional, which is available in closed form. With the prior probability pr(φij |
θj , lr,−j) and the other columns of the loadings matrix known, we employ the
strategy outlined in Schiavon et al. (2022).

5. Identify the pivot lj as the first non-zero element in column j of Φ that is not a
pivot in other columns, i.e. i ∈ L(lr,−j) and such that φij = 1.

6. Update the j-th column of the sparsity matrix δ by setting δij = 0 if i < lj , and
δij = φij otherwise.

7. Update the j-th column of β conditionally on δ·,j , and the factor model mean βft.
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Christian Aßmann∗ , Sylvia Kaufmann‡, and Markus Pape¶

1 Introduction
Frühwirth-Schnatter et al. (2024) investigate possibilities to induce sparsity in the load-
ing matrix of a static factor model, while simultaneously estimating the number of
latent factors. The suggested approach is based on the identification strategy imposing
an unordered generalized lower triangular (UGLT) structure on the loading matrix, and
the authors provide a comprehensive review of the properties of this identification ap-
proach. They thoroughly introduce the prior setup, which induces shrinkage in line with
the desired UGLT structure. Different possibilities to steer the hyperparameters of the
prior distribution are discussed and evidence from the literature is provided to highlight
the different prior elicitation strategies. The paper also points at implications of prior
specifications with regard to the Heywood problem, relating to multimodality of the
posterior distribution with one mode at the boundary of the parameter space. Properly
specified priors induce shrinkage away from the boundary of the parameter space. The
prior specification gives rise to a special Markov Chain Monte Carlo (MCMC) setup.
The innovative MCMC algorithm allows for sampling from the augmented posterior
distribution implied by the high-dimensional parameter space when the number of fac-
tors is unknown, under an imposed UGLT structure on the loading matrix. The MCMC
algorithm consists of two main blocks. In the first block, the parameters are sampled
conditional on the number of latent factors, while in the second block, the number of
factors is explored via a reversible jump (RJ) step. In addition to sampling from the
full conditional distributions, boosting based on ancillarity-sufficiency interweaving is
implemented to improve mixing. While the imposed UGLT structure ensures rotational
identification, the draws are post-processed according to the 3579 counting rule to en-
sure variance identification as well. Applications are provided in form of a simulation
study and two empirical illustrations using exchange rate data for 22 currencies against
the euro and for returns of 63 firms listed at the NYSE.

In the following, we discuss several potential refinements and possible extensions
that could be considered in future applications of the suggested approach.

2 Refinements
We discuss refinements related to the properties of the identification strategy and the
induced shrinkage.
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2.1 Explore Rather Than Impose a (U)GLT Structure
Given that a UGLT structure may be transformed into a GLT structure by appropriate
column permutations, we expose our arguments based on the GLT structure in the
following. As discussed in Hauzenberger and Koop (2024), imposing a GLT structure
when estimating a factor model is not order-invariant and needs a critical selection
of leading or pivot units in the data set. Missing this consideration may induce the
same issues brought forth against pre-imposing a PLT structure (Aßmann et al., 2016;
Chan et al., 2018; Frühwirth-Schnatter et al., 2023). In the present paper, Frühwirth-
Schnatter et al. (2024) provide an MCMC scheme to identify so-called pivot units by
posterior inference, without re-ordering units while sampling. The sampler thus provides
an alternative to Carvalho et al. (2008), who detect pivot series by sequentially adding
factors to the model as long as they occur to strongly load on series. The unit most
strongly loaded by a factor is re-ordered into the group of leading units, which eventually
leads to a PLT structure in the factor loading matrix. In contrast to that, imposing a
GLT structure without re-ordering units introduces order non-invariance, which may
eventually blur factor interpretation. For illustration, consider the sparse factor loading
matrices

Λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.7500 0
0 0

−0.2800 0.6300
0 0.3000

0.7500 −0.6000
−0.4000 −0.6000

0.2400 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and Λ̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.4000 −0.6000
0 0

−0.2800 0.6300
0 0.3000

0.7500 −0.6000
0.7500 0
0.2400 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where underlying factors and factor interpretation remain unchanged when we exchange
the first and sixth rows of Λ, to obtain Λ̃. While the units in Λ = (λ1, . . . , λ7)′ with λi =
(λi1, λi2)′, i = 1, . . . , 7, are ordered according to a GLT structure, they are not in Λ̃. The
loadings are plotted as coordinates in Figure 1, where the solid lines represent the factor
basis corresponding to the sparse representation. The label of units λi corresponds to
the ordering in Λ̃. While this ordering does not conform to a sparse GLT representation,
a GLT structure can be induced by rotation into (a dense) GLT form given as

Λ̃R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.7211 0
0 0

−0.3689 0.5824
−0.2496 0.1664

0.0832 −0.9569
−0.4160 −0.6240
−0.1331 0.1997

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The rotation corresponds to a rotation in the factor basis, drawn as dashed lines in Fig-
ure 1. Imposing a GLT structure while estimating the model should eventually recover
this representation. Although both representations are observationally equivalent, factor
interpretation after rotation may be blurred or less obvious than under the sparse rep-
resentation. We would argue that while both representations are variance and rotation
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Figure 1: Coordinates corresponding to Λ̃ (solid axes). Rotated basis corresponding to
the rotation into the GLT structure Λ̃R (dashed axes). Factor loadings corresponding
to additional moderate shrinkage (gray), leading to Λ̃RS . Axes are labeled towards the
positive side..

identified, the one of interest is subject to the underlying research question. Interested
in sparse factor analysis, we would prefer to recover the underlying sparse structure
of the factor loading matrix, related to a potentially clear factor interpretation. The
example illustrates that imposing a GLT structure without caring about the ordering
of units may blur this inference.

The example suggests a potential refinement to the sampler proposed in Frühwirth-
Schnatter et al. (2024). Rather than imposing a GLT structure, one could evaluate
independently of unit ordering, whether a sparse loading matrix, sampled without im-
posing constraints, includes a GLT structure upon re-ordering the units. There may be
various re-orderings leading to a GLT structure, but each one of them would be rota-
tion identified. Such an online evaluation may be based on so-called set identification
conditions, see Kaufmann and Pape (2024) who propose a geometric approach to factor
model identification.

Another strategy to circumvent the order non-invariance of a GLT structure would be
to re-order pivot units randomly to assess their stability, rather than exploring new pivot
rows across a fixed ordering of units. Within the sampler, a re-ordering step would move
a randomly chosen pivot unit into the last position, where none of the GLT constraints
applies, i.e. the loading structure for this unit can be freely estimated. The unit retains
its pivot status if the sampled loading structure remains unchanged when ranked last.
Changes in the loading structure to the left of the pivot column are non-critical, as
they do not affect the GLT structure.1 Other changes are critical. First, the unit loses

1They are potentially critical for an UGLT structure, however. In a UGLT structure, zero loadings
switching to non-zero may be critical for pivot units of higher rank order relative to the pivot unit
re-ordered last.
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its pivot status if there is a switch from a non-zero to a zero sampled pivot loading.
Likewise, the unit also loses its pivot status if non-zero loadings are sampled to the right
of the pivot element, i.e. elements that were initially restricted to zero by imposing a
GLT structure. For instance, in the application to exchange rates (Subsection 5.2), we
expect that the Australian dollar would also be loaded by the second factor if it were
re-ordered last in the data set.

Overall, we conjecture that while a main part of the sampler proposed in Frühwirth-
Schnatter et al. (2024), i.e. the RJMCMC step to detect the number of factors, would
remain unchanged, relaxing the GLT constraint towards evaluating order-independent
identification conditions or exploring pivot units by random re-ordering would largely
simplify or increase the efficiency in sampling indicators and parameters. Eventually,
the sampler would recover the true sparse, rotation identified structure underlying the
data, independently of unit order.

2.2 When in, Don’t Shrink
Frühwirth-Schnatter et al. (2024) induce shrinkage by specifying a Dirac spike and slab
prior distribution on factor loadings. The probability of non-zero factor-specific loadings
(the slab) follows an exchangeable shrinkage process (ESP) prior, see Legramanti et al.
(2020), which increasingly penalizes the introduction of additional factors as the factor
dimension increases. The prior provides the basis for designing the RJMCMC scheme
to explore the factor dimension. Frühwirth-Schnatter et al. (2024) introduce additional
column (θj) and row (ωij) shrinkage in the slab to induce sparsity. The combination
is rather unconventional and extends the specification of Legramanti et al. (2020), who
advise to formulate a rather diffuse slab to model the active loadings. It would seem
more natural to induce row shrinkage by specifying an additional hierarchical layer in
the ESP prior for the slab probability, in the spirit of Carvalho et al. (2008). Or, working
only with a slab inducing global and local column and row shrinkage as suggested in
Bhattacharya and Dunson (2011) or Kaufmann and Strachan (2024). Combining these
two specifications raises the question which part, the ESP prior (τj) or factor-specific
shrinkage (θj), dominates in determining model dimension and sparsity.

Returning to our previous example, we may illustrate that inducing too much spar-
sity when estimating the factor model under an imposed GLT structure may further
blur factor interpretation, and additionally lead to biased factor-units associations (i.e.
factor-driven correlations across units) and overemphasize the importance of some fac-
tors relative to others for some units. Inducing shrinkage in Λ̃R (see Figure 1, black
coordinates corresponding to the dashed factor basis), it is conceivable that some load-
ings may be shrunk towards some axis or even to zero, leading to

Λ̃RS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.7211 0
0 0

−0.3689 0.5824
−0.3000 0

0 −0.9605
−0.4160 −0.6240

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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In Figure 1, the loadings (partially) shrunk to zero are indicated in gray. The non-zero
loadings of Units 4 and 5 correspond to the length of the vector determined by the non-
zero loadings in Λ̃R, to keep the variance share explained by factors constant. Although
the sparse solution is not very different from the dense one, some interpretations change
fundamentally. The importance of Factors 1 and 2 is overemphasized for Units 4 and 5,
respectively. The correlation between Units 6 and 7 is not captured by the factors any
more, although they share a common factor component.

The bias introduced by shrinkage may be empirically relevant. For example, in the
exchange rates application in Subsection 5.2, it happens that the Hong Kong dollar
was pegged to the US dollar during the entire observation period, which reflects in a
correlation coefficient of .999 between the two series. We would therefore expect these
two series to be driven by the same factors, where even each factor would explain the
same variance share in each series (i.e. equal factor loadings across units). Figure 5
in Frühwirth-Schnatter et al. (2024) conveys a very different interpretation. The Hong
Kong dollar (Unit 7) serves as pivot for Factor 4, and is mainly loaded by Factor 4. The
US dollar, ranked last, is mainly loaded by Factor 2, and not by Factor 4. Thus, the
(interpretation of the) estimate is very difficult to reconcile with this empirical fact.2

The conclusion we draw from these considerations is that inducing shrinkage into
a model estimated under an imposed GLT structure needs monitoring, to alleviate the
issue of introducing a bias into the estimate of latent common or factor-driven correlation
across units.

3 Extensions for Related Modeling Contexts
The suggested approach to handle sparsity in static factor models with a priori in-
dependent factors is an important archetypical model. Sparsity is prominent for data
situations with the number of observational units tending to become small relative to
the number of parameters involved. In order to become even more fruitful in general,
the suggested approach could be extended to several related modeling contexts.

3.1 Correlated or Orthogonal Factors
In particular time series usually share common persistent transitory or permanent dy-
namics that may be captured by latent dynamic processes, like a vector autoregression
in factors leading to dynamic factor models. Usually, factors are assumed condition-
ally independent (Forni et al., 2000; Stock and Watson, 2002; Nakajima and West,
2013). However, induced sparsity in the factor loading matrix allows relaxing indepen-
dence towards correlated factors. Combined with informative data, inducing sparsity
into the factor loading matrix may recover a correlated factor basis (Beyeler and Kauf-
mann, 2021). Graphically, in Figure 1 a correlated factor basis would be reflected by
non-orthogonal solid and dashed axes. This renders a sparse factor model a lot more
flexible.

2Likewise, it is hardly conceivable that the Australian and New Zealand dollars do not share any
common correlation.
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Both applications in Frühwirth-Schnatter et al. (2024) fit a static factor model to
exchange rate and stock price return series. Considering that common latent persis-
tent dynamics are highly probable, modeling the unconditional distribution of factors,
i.e. the static factor representation of a dynamic factor model, calls for correlated factors.
We think that the approach would work well for a model specification with correlated
factors.

Also factor models assuming orthogonal factors defined on the Stiefel manifold may
be of interest, see Villani (2006), Koop et al. (2010), or Aßmann et al. (2024), as they
imply orthogonal factor estimators and thus a strict variance decomposition serving as
an interesting companion for sparse loading matrices. Combining the suggested approach
with an orthogonal factor specification would require adjustments in the steps sampling
the loadings and latent factors.

3.2 Data Types and Model Uncertainty

Related modeling contexts may also include factor models for binary, ordinal, and cate-
gorical dependent variables, and consideration of observed or fixed factor structures, see
for example Edwards (2010) or Aßmann et al. (2023). While the latter seems straightfor-
ward to be incorporated, a change in scale of the dependent variable can be handled by
data augmentation as suggested by Albert (1992) and Albert and Chib (1993). In line
with consideration of categorical variables, a comparison with alternative model speci-
fications as those considered in Conti et al. (2014) for continuous and binary dependent
variables and dedicated factor structures may be of interest as well. The analysis of spar-
sity in these related model contexts is connected to the evaluation of whether the ESP
prior performs similarly when considering categorical data, given the reduced amount
of scaling information provided by such data constellations.

The benefits of the suggested approach may become most visible when embedded
in ensembles of different factor models in empirical applications, thereby accounting
for model uncertainty as well. While the Bayesian estimation paradigm allows for
a conceptually straightforward handling of model uncertainty via model averaging,
the ability to provide ensemble based estimation or forecasting is linked to the in-
tegration of the considered model specifications into one model space or the aggre-
gation of the evidence from different model specifications. The approach suggested
by Frühwirth-Schnatter et al. (2024) achieves this for the class of static factor mod-
els via augmenting the parameter space by the number of latent factors and pro-
viding a corresponding RJMCMC sampling scheme. Further analysis could investi-
gate whether estimation of the number of latent factors based on rotational invari-
ant quantities is as accurate as the estimator implied by the suggested approach.
If not, this would strengthen the argument in favor of RJMCMC algorithms to ex-
plore model dimension, as numerically stable routines to calculate the marginal like-
lihood are currently lacking for some model specifications, like models with orthog-
onal factors. In cases where the number of latent factors can be accurately deter-
mined with other approaches, e.g. via prediction-based approaches or rotational in-
variant marginal data likelihood, there may be possibilities to construct weighting
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schemes to aggregate or evaluate across different types of identifying restrictions, even-
tually enabling model averaging over confirmatory and shrinkage prior settings as
well.

4 Conclusion
The paper of Frühwirth-Schnatter et al. (2024) is an excellent addition to the factor
model toolbox in applied empirical research. The insights provided on sparsity round up
the current literature. The suggested sampling scheme allows for exploring the model
space with regard to the number of latent factors and has the potential to provide the
basis for several fruitful extensions both in the direction suggested in the article by the
authors and the ones discussed herein. Nevertheless, based on considerations exposed
in our discussion, the order non-invariance of imposing a (U)GLT to induce rotation
identification in the posterior estimate is not a subtle issue and needs to be addressed
to recover the sparse structure underlying the factor loadings. Shrinkage as well needs
to be monitored to obtain unbiased estimates of factor-determined correlations across
the units in the data set.
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Contributed Discussion

Margarita Grushanina∗

1 Overview
I congratulate the authors on their outstanding research which led to the development
of new approaches to model estimation, selection, and identification in sparse Bayesian
factor analysis. These significant contributions, their mathematical foundations and
various applications are further illustrated in Hosszejni and Frühwirth-Schnatter (2022),
Frühwirth-Schnatter (2023) and Frühwirth-Schnatter et al. (2023).

This approach is a novel and interesting addition to the literature which uses shrink-
age process priors to learn factor dimensionality (Bhattacharya and Dunson, 2011;
Legramanti et al., 2020; Frühwirth-Schnatter, 2023). The authors combine an exchange-
able shrinkage process (ESP) prior (Frühwirth-Schnatter, 2023) with a Dirac-spike-and-
slab prior on factor loadings to induce both row and column sparsity. The exploration
of the factor dimensionality is performed via split and merge steps in the reversible
jump MCMC. Finally, the paper offers an elegant and efficient solution to the problem
of identification, which deals with both rotational invariance and variance identification
in sparse factor models. The latter is often not given enough attention in the factor
analytical literature, which is especially true for the literature involving automatic in-
ference on factor dimensionality and infinite factorisations. In this discussion, I would
like to explore how this approach could be applied to the framework of mixtures of
factor analysers (MFA).

2 MFA framework
MFA represent a class of models where observations are divided into groups (clusters)
and each cluster has its own cluster-specific factor model. Recently, MFA models have
been developed which allow for automatic inference on varying factor dimensionality in
each cluster (Murphy et al., 2020; Grushanina and Frühwirth-Schnatter, 2023). However,
with unconstrained cluster-specific factor loading matrices, identification of factors and
factor loadings has up to now not been sufficiently addressed in the case of MFA. One of
the available options is to use a post-processing procedure, such as Aßmann et al. (2016),
Poworoznek et al. (2021), or Papastamoulis and Ntzoufras (2022), among others. An
example of this is Murphy et al. (2020) who use Procrustes rotation to achieve identified
cluster-specific factor loadings, however, do not explicitly address variance identification
in their sparse factor model setting.

If an MFA model assumes dense cluster-specific factor loading matrices and finite
number of factors, variance identification can be achieved by imposing the upper limit on
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the number of factors r ≤ (m−1)/2 (Anderson and Rubin, 1956), assuming the notation
as in Frühwirth-Schnatter et al. (2024). An example of such approach is Grushanina
and Frühwirth-Schnatter (2023), where a finite ESP prior is employed to learn factor
dimensionality in dense cluster-specific factor models and the upper limit on the number
of factors in each cluster is set equal to H = (m− 1)/2. However, in many applications
of MFA models, sparse structure of cluster-specific loading matrices is of significant
interest. With this in mind, I think an implementation of a similar algorithm as in
Frühwirth-Schnatter et al. (2024) in an MFA setting is worth considering.

A straightforward approach would be to use the same prior on the cluster-specific
factor loadings, which would yield for each cluster k the following prior:

βk
ij | τkj ∼ (1 − τkj )Δ0 + Pslab(βk

ij), τkj |H ∼ B(aH , bH), j = 1, . . . , H.

However, several issue could potentially arise. One of them concerns computational
feasibility. Although the authors propose an efficient MCMC algorithm, the costs of
computation are likely to significantly increase if all the steps listed in Algorithm 1
will be performed k times at each of the M iterations, where k indicates the number of
clusters. Also, the number of elements in δH , fH , βH , ΣH and τH will also be multiplied
by k, which may lead to memory problems in the case of high-dimensional data.

Another point to consider is that the partition of data into clusters in an MFA
model algorithm is usually performed marginalised with respect to factors. This implies
that in a cluster-specific factor model algorithm factors should be updated at the first
step to ensure that in the subsequent steps factors derived from the observations in
this particular cluster are used. More specifically, this means that step (F) will need
to be placed before step (D) in the confirmatory factor analysis (CFA) block of the
Algorithm 1 in Frühwirth-Schnatter et al. (2024) to ensure that the subsequent steps,
which deal with imposing the unordered generalised lower triangular structure on the
sparsity matrix δr, are conditioned on the correct factors. This should work fine for
the CFA block, however, considering that in the exploratory factor analysis block, step
(R-F), spurious factors fsp are sampled conditional on the active factors fr updated
based on the new loadings, I am not entirely sure if such change in structure will not
affect the performance of the model.

It might also be worth looking into a simpler approach, for example, by assigning
a normal prior to factor loadings and factorising the variance into column-specific and
local shrinkage (Bhattacharya and Dunson, 2011; Schiavon et al., 2022). An ESP prior
on the column-specific shrinkage parameter will push redundant columns of the factor
loading matrix to zero. With a continuous shrinkage prior on the local shrinkage pa-
rameter some arbitrary thresholding will need to be applied during post-processing to
obtain exact zeroes. However, this would leave identification to be dealt with entirely
during post-processing.
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Roberto Casarin∗,† and Antonio Peruzzi∗

1 Introduction
The techniques suggested in Frühwirth-Schnatter et al. (2024), FS-H-FL hereafter, con-
cern sparsity and factor selection and have enormous potential beyond standard factor
analysis applications. We show how these techniques can be applied to Latent Space
(LS) models for network data. These models suffer from well-known identification issues
of the latent factors due to likelihood invariance to factor translation, reflection, and
rotation (see Hoff et al., 2002). A set of observables can be instrumental in identifying
the latent factors via auxiliary equations (see Liu et al., 2021). These, in turn, share
many analogies with the equations used in factor modeling, and we argue that the factor
loading restrictions may be beneficial for achieving identification.

2 Latent Space Models
Denote with W = {wij , i, j = 1, . . . , n} the adjacency matrix of a weighted network G,
where the weights are integer-valued, wij ∈ N. We assume the following model:

wij
ind∼ Poi(θij), θij = g

(
α− ||fi − fj ||2

)
,

where Poi(θ) denotes the Poisson distribution with intensity θ, g(·) : R → R
+ is a link

function, α is an intercept parameter, fi, i = 1, . . . , n is a collection of d-dimensional
latent factors and || · || denotes the Euclidean norm. To avoid translation issues, one can
assume

∑n
i=1 fik = 0 for k = 1, . . . , d.

The latent factors can be interpreted via a set of node-specific observables Y with
the following interpretation factor model:

Y = Λf + ε, ε ∼ MN p,n(O,Σp, In),

where Y is an p×n matrix of interpretation variables, f = (f1, f2, . . . , fn) is a d×n matrix
obtained by stacking the factors, Λ = (λ1,λ2, . . . ,λd) is a p×d matrix of loadings with
λk = (λ1k, λ2k, . . . , λlk, . . . , λpk)′ and ε is a p × n matrix of independent normal error
terms with Σp = Diag(σ2

1 , . . . , σ
2
p). We are interested in achieving row sparsity for Λ.

Similarly to FS-H-FL, we assume the following prior distributions:

α ∼ N
(
0, σ2

α

)
, fi ∼ Nd

(
0, (1 − 1/d)−1Id

)
, σ2

i ∼ IG(c0, C0),
τl ∼ Be(1, 1), σ2

k ∼ IG(cσ, bσ), κ ∼ IG(cκ, bκ),
λlk | κ, σ2

k, τl ∼ (1 − τl)δ0 + τlN
(
0, κσ2

k

)
.
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Figure 1: Results for an LS model without and with restrictions (top and bottom,
respectively). Panel a) and e) report the observed network width edge gradient propor-
tional to the absolute distance between the observed and predicted weight (darker edge
colors). Panel b) and f) report the posterior draws (blue dots) against the true latent
coordinates (red triangles). The true value of Λ is in Panel c) and g). Panel d) and h)
report the posterior means of Λ without and with PLT restrictions, respectively.

Figure 1 presents the posterior results for an LS model with d = 2 and p = 4 for the
unrestricted and restricted Λ (top and bottom panels, respectively). Panel b) shows the
identification issue, and Panel f) the effectiveness of the restrictions on Λ to achieve
identification of the set of latent factors f . The factor identification is obtained via PLT
restriction, i.e. λkk > 0 and λlk = 0 for k > l. As discussed in FS-H-FL, the PLT
structure may be too restrictive. Therefore, we speculate on imposing an ordered or
unordered GLT structure on Λ.

3 Conclusion
As further research, we suggest extending the authors’ approach to nonlinear factor
models. This is a stimulating work, and we are therefore very pleased to be able to
propose the vote of thanks to the authors for their contribution.
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Contributed Discussion

Marta Catalano∗, Beatrice Franzolini†, Matteo Giordano‡, and Giovanni Rebaudo‡

We congratulate the authors for their contribution to the field of Bayesian factor analy-
sis, which develops an appealing methodology for sparse recovery. We believe that their
approach may become a useful tool in applications for statisticians and practitioners,
thanks to its ability to simultaneously perform inference on identifiable sparse factor
loadings and achieve data-driven model selection in terms of the number of factors.

This works also stimulates a wealth of interesting follow up questions, both on the
specifics of the model at hand and also drawing from the broader contemporary Bayesian
literature. In this discussion we expand upon some of these questions, with specific ref-
erence to multiple testing, dependence among slab probabilities, continuous alternatives
to spike-and-slab priors, and the learning of the number of factors.

Multiplicity and Multiple Testing The sparse Bayesian factor model with UGLT struc-
tures estimates all parameters simultaneously. Nonetheless, the estimation process can
be viewed as addressing two inferential challenges: first, a multiple testing problem,
where each entry of the factor loading matrix is tested to determine whether it is active
or not; and second, the estimation of the values of the active entries. In the context
of multiple testing, the Bayesian framework naturally accommodates two desirable yet
distinct types of penalties. The first is an Ockham’s razor penalty, typically arising
from the use of marginal likelihoods, which penalizes models with more active load-
ings in factor analysis, thus promoting sparsity. The second is a multiplicity penalty,
thanks to which the posterior inclusion probabilities for each factor loading decrease
as the dimensions m or H increase, leading to a framework of adaptive sparsity. Mul-
tiplicity penalties relate to the frequentist challenge of multiple testing and generally
provide better control of noisy signals and false discoveries by adopting a more cau-
tious approach (Scott and Berger, 2010). It would be valuable to assess the presence
and potential influence of the multiplicity penalty in the Bayesian model with UGLT
structures. Specifically, while the prior on τj seems to induce a multiplicity penalty in
H (i.e., the number of columns), it would be worth exploring whether a similar penalty
also applies to m (i.e., the number of rows) and whether such penalties are preserved
after the post-processing procedure. Additionally, it would be interesting to investigate
how these penalties affect the model’s recovery performance, for instance, by examining
changes in the ROC curve.

Individual Components in the Slab Probability The prior for the factor loadings
(βi,j)i,j in (3.1) requires a multivariate spike and slab prior. The dependence between
the marginals βi,j is induced by column-specific slab probabilities τj and a multivariate
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hierarchical slab distribution with row-specific dependence, which shrinks each com-
ponent towards zero. However, to achieve additional shrinkage for individual factor
loadings, in (3.12) the authors propose to add an individual shrinking factor in the
multivariate hierarchical slab distribution. Could a similar result be achieved by allow-
ing for individual components in the slab probabilities? This would bring to the need
for multivariate versions of the exchangeable or cumulative shrinkage process, which
could possibly converge to a multivariate version of the Indian buffet process, e.g., the
hierarchical Indian buffet process (Thibaux and Jordan, 2007; James et al., 2024).

A Role for Other Bayesian Approaches to Sparsity and Model Selection in Bayesian
Factor Analysis? Implementing posterior-based inference with spike-and-slab priors is
a notoriously challenging task, due to the underlying combinatorial problem of explor-
ing the space containing all possible sparsity patterns. One of the key contributions of
the present paper is the construction of an ad-hoc MCMC sampler (cf. Algorithm 1),
which cleverly alternates between the two formulations, Exploratory and Confirmatory,
of the Factor Analysis model. On the other hand, the construction of Bayesian mod-
els for sparse structures and variable selection is an issue of general interest in the
broader Bayesian literature, where some continuous (and easier to work with) alterna-
tives to the spike-and-slab prior have been shown, either theoretically or empirically,
to be potential effective approaches. For example, Laplace priors are known to pos-
sess desirable sparsity-promoting properties at the level of the maximum-a-posterior
estimators (Agapiou et al., 2018) and here could be deployed either directly onto the
factor loadings βij , or column-wise for the matrix βH . Excitingly, hierarchical Gaussian
priors have recently been shown to possess variable selection properties when endowed
with a horseshoe hyper-prior on the length-scale without the need for the additional
spike-and-slab structure (Castillo and Randrianarisoa, 2024). Some further possibilities
include the horseshoe priors themselves (and extensions thereof), Dirichlet–Laplace and
the so-called R2-D2 priors, see Hirsh et al. (2022). These developments suggest the
questions as to whether such sparse (or approximately sparse) continuous priors models
could also be employed with success in Bayesian factor analysis.

Learning the Number of Factors Learning the number of factors simultaneously with
estimating the factors is a challenging problem, which the authors address effectively
in their proposal. Specifically, by imposing a UCLT structure, they facilitate the joint
identification of the unknown number of factors r and the underlying factor model
parameters Λ and Σ0 from the overfitting BFA model. Inference on the number of factors
is validated through a simulation study, where the authors empirically demonstrate the
model’s ability to recover the true number of factors, rtrue. These findings give hope that
the model can consistently estimate the true number of factors under a well-specified
data-generating process. Establishing such consistency for the discrete parameter rtrue
under an identifiable and well-specified model might be achievable by leveraging Doob’s
Theorem (Doob, 1949). In particular, demonstrating consistency for the true number
of factors rtrue(< H) in a subset of the possible values of r of prior probability one
would imply consistency across all possible values of r, given that the prior distribution
assigns positive probability to each possible value. This strategy has been successfully
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employed, for instance, in proving the consistency of the number of mixture components
in Bayesian finite mixture models with a prior on the number of components (Nobile,
1994; Miller, 2023).
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Jamie L. Cross∗ , Lennart Hoogerheide†,‡ , and Herman K. van Dijk‡,§

1 Introduction
In their interesting and mathematically elegant paper Frühwirth-Schnatter et al. (2024)
discuss the issue of determining a plausible number of latent components in a sparse
factor model (technically: determining the rank of the factor space) which is a nontrivial
issue in case of weak data, sparse model restrictions and diffuse prior information. In this
context the authors focus on the connection between the theoretical issue of parametric
identification restrictions including informative prior information and the operational
issue of Bayesian Markov chain Monte Carlo estimation. Specifically, the authors achieve
identification and inference which is independent from the ordering of the dependent
variables by making use of the concept of Unordered Generalized Lower Triangular
(UGLT) structure and for estimation they introduce a novel Markov chain Monte Carlo
procedure which makes use of a reversible jump sampler. All this in order to learn about
a plausible number of latent factors with substantial posterior probability.

We introduce two contributions to this research. We start to discuss the issue of
identification restrictions within the authors’ framework of a static factor model and
present an operational alternative to the UGLT structure by introducing orthogonal
parameter restrictions. Second, we propose the use of predictive likelihoods in combi-
nation with moving window estimation in order to determine a plausible time-varying
number of factor model components. Our motivation stems from the observation that
financial and economic relations vary over time. One of these time-varying relations
is the increase in the correlations between equities during market downturns, that is,
during equity market downturns fewer latent factors are assumed to be able to explain
the same amount of variation in equity returns. We present empirical results on how a
residual momentum strategy based on a time-varying latent factor model outperforms
a standard momentum strategy using a portfolio of industrial stocks. This strategy has
been popular among investors over a long time.

2 Identification Restrictions in Factor Models
For expository purposes we start with a basic multivariate regression model:

y′
t = x′

tB′ + ε′t, εt ∼ NID(0,Σ), (1)

where yt is an m-vector, xt is an r-vector and B an m × r matrix. It is well-known
that a Bayesian analysis of this model using diffuse priors leads to a marginal posterior
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of B that is bell-shaped and belongs to the class of matrix Student-t distributions.
Determining a plausible number of explanatory variables is a standard topic in an
introductory Bayesian course. The connection between model structure and estimation
is direct: analytical as well as simulation methods are used.

Next, consider a static factor model and adjust formula (1.1) of Frühwirth-Schnatter
et al. (2024) as:

y′
t = f ′tΛ + ε′t, ft ∼ NID(0, Ir), εt ∼ NID(0,Σ0), Σ0 = Diag(σ2

1 , . . . , σ
2
m),

(2)
where ft is an r-vector and Λ an r × m matrix. The diagonal covariance matrix as-
sumption with respect to the disturbances εt implies that all cross-sectional correlation
is captured by the factors ft, in addition, cor(ft, εs) = 0 for ∀s, t. The vector of obser-
vations xt is replaced by a vector of unobserved random factors ft and the matrix of
coefficients B′ by a matrix Λ, labeled factor loadings.

Let F be the T × r matrix of factors. The identification problem of F and Λ can be
seen from the equality FΛ = FRR−1Λ for an r × r invertible (or invertible rotation)
matrix R, which has r2 free parameters. Hence, at least r2 parameter restrictions are
needed for the model to be identified. The identity covariance matrix of the ft imposes
r(r+1)

2 restrictions, so an additional r(r−1)
2 restrictions are required for identification.

The transformed and/or rotated factors and loadings still provide the same likelihood
value.

We note that the key feature of factor models is that the information in the m
economic variables of interest yt can be compressed to a much lower number of r
unobserved random factors ft. Given model and data, we intend to have this information
dominate prior information. However, given the present likelihood of the model with a
diffuse prior it is clear that there does not exist an operational estimation procedure for
structural inference using Bayesian MCMC. Of course, structural identification is not a
necessary condition for forecasting, see Geweke (2007).

Next, consider the static factor model with a triangular normalization on Λ, given
as:

Λ =
(
Λ(r×r)

1 Λ(r×(m−r))
2

)
, Λ1 =

⎛⎜⎜⎜⎝
λ11 0 · · · 0
λ21 λ22 · · · 0
...

...
. . .

...
λr1 λr2 · · · λrr

⎞⎟⎟⎟⎠ , (3)

where Λ2 is unrestricted. The triangular normalization on Λ1 provides r(r−1)
2 restric-

tions. Together with the restrictions on the covariance of the ft this gives parametric
identification. Combining a diffuse prior with the likelihood yields a posterior which
is unbounded (for F tending to 0), but integrable.1 Given the posterior structure and
given an a priori fixed number of factors r the corresponding MCMC method is a basic
Gibbs sampler. However, the important disadvantage is that inference depends on the
ordering of the dependent variables.

1See Bastürk et al. (2017), Section 3.3 for proofs.
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As mentioned, Frühwirth-Schnatter et al. (2024) achieve inference which is indepen-
dent from the ordering of the dependent variables by making use of Unordered Gener-
alized Lower Triangular structure. We propose to obtain this independence by making
use of orthogonal normalization on the parameters of the model. The orthogonal nor-
malization implies that in this case no preferred ordering of the variables is imposed
and, conditionally upon a largest singular value, the region of integration of the factors
and factor loadings is bounded. That is, the parametrization FΛ can be linked to the
singular value decomposition FΛ = UKV, where the rectangular T × r matrix U is
an element of the Stiefel manifold U′U = Ir and the r × m matrix V is an element
of the Stiefel manifold V′V = Im. K is a diagonal r × r matrix with positive diagonal
entries equal to the singular values of FΛ, denoted by κ = (κ1, . . . , κr)′. The manifolds
on which U and V are defined have finite volume conditionally upon a largest singular
value and the region of integration of the factors and factor loadings is then bounded.

In order to achieve this we propose an approach that directly uses the structure
of the singular value decomposition and makes use of a lasso type shrinkage prior for
regularization, see Tibshirani (1996). As it is specified above, the singular value de-
composition is not uniquely defined. Any simultaneous permutation of the columns of
U, K and V also constitutes a singular value decomposition. A common way to avoid
this ambiguity is by ordering the singular values that occur on the diagonal of K as
κ1 ≥ κ2 ≥ · · · ≥ κr ≥ 0, which is more straightforward than devising an ordering of the
columns of F and Λ. Because of this ordering each element κi+1 for i = 1, . . . , r − 1 is
bounded by κi. Only κ1 remains unbounded towards +∞. Integrability is thus deter-
mined by the behavior of κ1.2

A natural choice for κ1 that is consistent with the uniform prior on the simplex for
κ2, . . . , κr|κ1 is the exponential distribution. Conditional on κ1, all model parameters
(except the covariance matrix Σ) are bounded to finite areas.

We conclude that given the standard form of a static factor model and using a
lasso type shrinkage prior under orthogonal normalization on the parameters of the
matrix with reduced rank, the marginal posteriors of these parameters are proper with
finite first and higher order moments and inference is independent of the ordering of
the dependent variables. For a survey on alternative identification restrictions with
corresponding MCMC algorithms, see Koop et al. (2006).

3 Learning on a Plausible Number of Factor Model
Components Using Predictive Likelihoods

We propose a ‘predictive likelihood’ approach to assess the number of factors in a factor
model. The basic idea of this approach is to split the data into two parts: a training set
and a ‘hold-out’ set of data. In the first part a possible weak prior is transformed to an

2If a singular value occurs more than once, then the columns of U and V corresponding to these
singular values are not uniquely defined. Any other orthonormal basis that spans the same space will
also do. Although the transformation between the matrix FΛ and its singular value decomposition
(U,K, V ) is still not invertible everywhere, this is an event with zero measure.
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informative posterior which serves as a prior for the second part of the data. This also
refrains from the Bartlett (1957) paradox occurring under diffuse priors.3 The gain in
the use of ‘prior data points’ is to obtain predictive likelihoods for the computation of
reliable predictive model probabilities. It is important to note that predictive likelihoods
evaluated at different times (using moving estimation windows) provide time-varying
model probabilities. Any policy based on these model weights will therefore be time-
varying as well.

Let Mr denote the factor model with r << m factors. A predictive likelihood for
model Mr is computed by splitting the dataset as follows:

Y =
(

Yt0:t1
Yt1+1:t2

)
=
(
Y 


Ỹ

)
, (4)

where observations from t0 to t1 are defined as the ‘training sample’ and observations
from t1 + 1 to t2 are defined as the ‘hold-out sample’. The predictive likelihood for the
hold-out sample is then defined as:

p(Ỹ |Y 
,Mr) = p(Ỹ , Y 
|Mr)
p(Y 
|Mr)

= p(Y |Mr)
p(Y 
|Mr)

. (5)

Choosing the size of the hold-out samples is important. If the hold-out sample is very
small, the qualities of the models may be hard to distinguish (with almost equal model
probabilities), and the results may be sensitive to just a few hold-out observations. If
the hold-out sample is very large, the results may be sensitive to the few observations in
the small training sample, and the Bartlett (1957) paradox may imply that we choose
a model with too small number of factors r. Naturally, a robustness check should be
performed to see the effect of training and hold-out sample size selection.

A simple method to estimate model probabilities is the harmonic mean estimator
(Newton and Raftery, 1994; Ardia et al., 2012), which has the advantage that it is easily
estimated using a set of draws generated from the posterior distribution of parameters θr
of model Mr. The computational steps are as follows. Calculate two marginal likelihoods
for each model Mr, a marginal likelihood for the whole sample and the second for the
training sample. The full sample marginal likelihood is given as:

p(Y |Mr) =
∫
θr

p(Y |θr,Mr)p(θr|Mr)dθr ≈
(

1
N

N∑
i=1

p(Y |θf,ir ,Mr)−1

)−1

with posterior draws θf,ir (i = 1, . . . , N) based on the full data sample. The training
sample marginal likelihood is given as:

p(Y 
|Mr) =
∫
θr

p(Y 
|θr,Mr)p(θr|Mr)dθr ≈
(

1
N

N∑
i=1

p(Y 
|θ
,ir ,Mr)−1

)−1

3Another approach is to construct a so-called imaginary sample by introducing a set of dummy
observations. It yields a pragmatic class of priors proposed by Christopher Sims (Sims, 2005).
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with posterior draws θ
,ir (i = 1, . . . , N) based on the training sample. Next calculate
predictive likelihoods for each model Mr using (5) as:

p(Ỹ |Y 
,Mr) = p(Y |Mr)
p(Y 
|Mr)

≈
∑N

i=1 p(Y 
|θ
,nr ,Mr)−1∑N
i=1 p(Y |θf,nr ,Mr)−1

. (6)

From the predictive likelihoods for each model compute model probabilities for Mr for
r ∈ 1, . . . ,m− 1:

p(Mr|Y ) = p(Ỹ |Y 
,Mr) × p(Mr)∑m−1
r′=1 p(Ỹ |Y 
,Mr′) × p(Mr′)

,

where p(Mr) is the prior model probability. An uninformative prior, such as p(Mr) =
1

m−1 is easy to use in this setting. Based on the predictive likelihood calculation from a
rolling window of predictive likelihoods, an optimal model M
 can be chosen or Bayesian
Model Averaging can be applied.

Simulated Data Experiment For illustrative purposes we apply the predictive likeli-
hood approach for the factor model to simulated data. We consider simulated datasets
with T = 100 and T = 250 observations. In order to see the effect of number of depen-
dent variables m and number of factors r on the predictive likelihood methodology, we
consider r = 1, 2 common factors for m = 2, 4, 10, 20 data series. For each simulation
experiment, we apply the predictive likelihood approach with different sizes of train-
ing samples, consisting of 5%, 10%, 20% and 50% of observations. We replicate each
simulation experiment 100 times.

Table 1 presents the posterior probabilities from all simulation experiments, where
we report the posterior model probabilities for different number of factors averaged over
100 simulation experiments for each simulation setting. Posterior results are based on
4000 posterior draws, where the first 2000 draws are burn-in draws.

The results in Table 1 indicate that the highest probabilities (indicated by bold-
face entries) for each simulation experiment, indicated in rows, correspond to the true
number of factors. In most simulation studies, the posterior probability is very close to
1 for the correct model specification. Hence the predictive likelihoods provide a clear
choice of models. Comparing the bottom panel of Table 1 with the other panels, we
conclude that the predictive likelihood approach with a smaller training sample than
50% provides more clear indications of the correct number of factors, with posterior
probabilities being closer to 1 compared to the same simulation setting but a larger
training sample (50%). Thus, the length of the training sample should not be chosen
too large compared to the total length of the sample and a sensitivity analysis with
respect to the length of the training sample will give more confidence in the results.

Figure 1 presents the details of predictive likelihoods for two sets of simulated data
and for each simulation. These data correspond to T = 100, p = 2, r = 1 on the left
panel of Figure 1 and T = 100, p = 10, r = 1 on the right panel of Figure 1. For both
simulation specifications, the correct number of factors r = 1, shown by the red lines
in the figure, has the highest posterior probability in almost all simulation replications.
We therefore conclude that the predictive likelihood approach accurately detects the
number of factors, even with a small sample size.
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5% training sample
T m r pr(r = 1) pr(r = 2) pr(r = 3) pr(r = 4) pr(r = 5) pr(r = 6)

100 2 1 1.00 0.00 – – – –
100 10 1 0.96 0.02 0.00 0.02 0.00 0.00
250 4 2 0.00 1.00 0.00 0.00 – –
250 20 2 0.00 1.00 0.00 0.00 0.00 0.00
10% training sample
T m r pr(r = 1) pr(r = 2) pr(r = 3) pr(r = 4) pr(r = 5) pr(r = 6)

100 2 1 1.00 0.00 – – – –
100 10 1 0.89 0.07 0.00 0.03 0.01 0.00
250 4 2 0.00 1.00 0.00 0.00 – –
250 20 2 0.00 1.00 0.00 0.00 0.00 0.00
20% training sample
T m r pr(r = 1) pr(r = 2) pr(r = 3) pr(r = 4) pr(r = 5) pr(r = 6)

100 2 1 1.00 0.00 – – – –
100 10 1 0.77 0.14 0.05 0.02 0.01 0.00
250 4 2 0.01 0.98 0.01 0.00 – –
250 20 2 0.00 0.95 0.01 0.00 0.03 0.01
50% training sample
T m r pr(r = 1) pr(r = 2) pr(r = 3) pr(r = 4) pr(r = 5) pr(r = 6)

100 2 1 1.00 0.00 – – – –
100 10 1 0.34 0.13 0.02 0.08 0.18 0.24
250 4 2 0.00 0.95 0.05 0.00 – –
250 20 2 0.00 0.88 0.02 0.02 0.01 0.07

Table 1: Average posterior probabilities from 100 simulation replications with T obser-
vations, m variables and r factors. Highest probabilities are indicated by boldface table
entries.

Equity Momentum at Work Using a Time-Varying Latent Factor Model Financial
momentum strategies are based on the expectation that past stock winners will continue
to be winners and past stock losers will continue to be losers. Standard equity momen-
tum strategy ranks stocks on their recent returns, skips a short period to overcome short
term reversals and then buys stocks in the top of the ranking and short-sells stocks in
the bottom of the ranking. We emphasize that standard momentum’s risk and return
vary over time.

We compare the performance of residual momentum strategies based on the residual
returns (returns in excess of what is to be expected based on the factors and factor
loadings) with a standard momentum strategy. We use monthly return data on ten in-
dustry portfolios between 1960M7 and 2015M6, shown in Figure 2. The ten industries
are labeled as ‘non-durables’, ‘durables’, ‘manufacturing’, ‘energy’, ‘hi-tech’, ‘telecom’,
‘shops’, ‘health’, ‘utilities’ and the final category ‘others’. This residual industry momen-
tum strategy is a combination of residual momentum (Blitz et al., 2011) and industry
momentum (Moskowitz and Grinblatt, 1999).
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Figure 1: Log-predictive likelihoods for different number of factors for two sets of sim-
ulated data with T = 100 observations. The left panel corresponds to m = 2 series
and r = 1 common factor. The right panel corresponds to m = 10 series and r = 1
common factor. Each simulation experiment is repeated 100 times, as shown in the x-
axes. Predictive likelihoods are calculated using 10 percent of the sample as the training
sample.

Figure 2: Monthly percentage returns for ten industry portfolios.

Results are presented in Table 2. In order to allow for changes in the number of
factors, we apply the moving window estimation method as follows. Within one esti-
mation period, the static factor model is estimated for r = 2, . . . , 5 factors, and the
optimal number of factors is chosen based on the predictive likelihoods. The moving
window estimation is based on a sample of T = 240 observations. We consider two
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Standard Latent Factor Models
10% 20%

mean −1.13 2.82 3.75
volatility 21.54 20.16 12.56

Sharpe ratio -0.05 0.14 0.30
Largest loss −68.52 −68.52 −20.95

Max. drawdown 135.3 68.52 35.19
Max. recovery 15 9 9

Table 2: Risk and return characteristics of standard momentum compared with momen-
tum from time-varying factors.

Figure 3: Optimal number of factors for 10 industry portfolios. The figure presents the
number of factors with highest predictive likelihood at each estimation window for two
training sample choices (10% or 20% of the estimation window). X-axes correspond to
the final month in the estimation window.

cases for the predictive likelihood calculation with a ‘small training sample’ and a
‘large training sample’, consisting of 10% and 20% of the full moving window sam-
ple, respectively. We first analyze the evolution of the number of factors through the
moving windows for the two training sample percentages. Figure 3 presents the number
of factors with the highest predictive likelihood for each estimation sample under two
training sample choices, where 10% and 20% of the total sample is used as training
samples.

Figure 3 shows that the model with r = 3 factors is the most frequently chosen
model using both training samples. Despite this high frequency, the optimal number of
factors according to predictive likelihoods changes substantially over time. The obtained
number of factors in the left and right panels of Figure 3 are different, in particular, at
the end of the sample period. On the one hand, this difference indicates that the training
sample choice should be made with care in order to find the appropriate number of
factors. On the other hand, this variation in the number of factors may influence the
gains from a trading strategy, like momentum. For the latter reason, we next report the
gains from trading strategies using both training samples.



106 Invited Discussion

One would expect that the number of optimal factors varies with the performance
of equity markets, in particular fewer factors are present in the model during market
declines. We have two major market declines in our sample: 2000–2002 and 2008 where
equity markets lost 56 and 38 percent, respectively. We indeed find that during the
equity market losses in 2000 to 2002 the optimal number of factors was 2. For the 2008
crash we do not find a smaller number of optimal factors. This needs to be explored in
further research.

Next, we report the performance of a standard momentum strategy and compare it
with a residual momentum strategy based on the factor model. The standard strategy
is a benchmark and by definition does not depend on an underlying model. The ten
industry portfolios are sorted on their mean (residual) returns in the last 12 months.
The strategy is long in the best industry and short in the worst industry, where this
position is held for 12 months. The first investment month is July 1980, as we require
240 months since 1960 for the first estimation of the model parameters.

In Table 2, we report the following risk and return measures for the returns of
each strategy: mean return, volatility, Sharpe ratio, largest loss encountered, maximum
drawdown, all measured in percentages, and maximum recovery period measured in
months. These values are based on the realized returns of each investment strategy.

The standard industry momentum strategy does not yield positive average returns;
its average annual return is minus 1.1 percent. The 20 percent Bayesian Factor Model
scores better in all six criteria compared to the standard industry momentum strategy.

We conclude that a Bayesian latent factor model with a time-varying number of
factors, moving window estimation and a training sample of 20 percent is able to out-
perform a standard momentum strategy for all criteria in this portfolio setting of ten
industries. Apparently, the model adjusts quickly to big shocks and the number of op-
timal factors decreases when the equity market experiences large losses. However, more
empirical work needs to be done to assess its properties adequately, which is outside the
scope of the present paper.

4 Final Comments
Since the early nineteen-seventies there has been a strong tradition in Bayesian econo-
metrics of studying the shape and integrability of posteriors of parameters of multivari-
ate regression models with a reduced rank using different normalization restrictions and
so-called regularization priors. Apart from the factor model, the other models are a time
series model with an unknown number of non-stationary components and a structural
instrumental variable regression model where number and strength of instrumental vari-
ables is not known. Research in this field was started in econometrics by Anderson and
Rubin (1949) in simultaneous equations models and in 1956 by the same authors in
factor models (Anderson and Rubin, 1956). Johansen (1991) treated reduced rank in
a time series model with possibly non-stationary components. A survey of the exten-
sive recent frequentist literature is beyond the scope of this paper. There exists also an
emerging Bayesian literature about reduced rank estimation, see Bastürk et al. (2017),
Section 3 and Appendix 3.2 for details.
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We end with emphasizing that the paper by Frühwirth-Schnatter et al. (2024) gave
much food for thought. We look forward to more theoretical and empirical work on the
topic by the authors. In this context, the dynamic nature of many models in economics
is relevant. It is very natural to allow parameters of such models to move through
time. The well-known Normal or Kalman Filter is a fundamental tool for this and it
helps to give identification in factor models. Although dynamic factor models make
the mathematics of identification and possible MCMC algorithms more complex, yet,
this is a promising research field. We note that the application of static factor models
using moving estimation windows and predictive likelihoods for time-varying posterior
probabilities of numbers of factors is also able to yield profitable residual momentum
strategies that outperform benchmark strategies as the standard momentum strategy.

A second topic is to extend the work by the authors to the field of forecast combi-
nations. Some recent work is given in Billio et al. (2013), Casarin et al. (2023), Aastveit
et al. (2023), and Aastveit et al. (2024). The predictive probabilities introduced in the
present paper can be used that framework.
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Contributed Discussion

William R. P. Denault∗, Aliaksandr Hubin†, Valeria Vitelli‡, and Sylvia Richardson§

Introduction We congratulate Frühwirth-Schnatter et al. (2024) on their paper. Below,
we discuss adaptations of the ideas presented in the paper to two problems: Empiri-
cal Bayes Matrix Factorization (EBMF), and latent binary Bayesian Neural Network
(LBBNN).

Improving EBMF The work proposed by Frühwirth-Schnatter et al. (2024) offers a
promising avenue for improving the Empirical Bayes Matrix Factorization (EBMF)
framework (Wang and Stephens, 2021). In brief, EBMF fits a factor model using a fully
factorized variational approximation of the posterior, and as many factor models, it
suffers from identifiability issues. A potential improvement could involve modifying the
coordinate ascent algorithm to enforce a Generalized Lower Triangular (GLT) structure
on the loading matrix at each update, thereby ensuring identifiability. At present, the
implementation of EBMF available through the flashier R package (Stevens, 2024)
does not include priors that enforce GLT structures during the coordinate ascent proce-
dure. As a preliminary investigation, we explored a naive version of GLT by permuting
the columns of the loading matrix at each step to maximize the diagonal entries (we
refer to this approach as had hoc permutation). This empirical approach demonstrated
potential benefit in some cases by yielding sparser loading matrices and higher evi-
dence lower bound (ELBO) scores when applied to the GTeX dataset (Lonsdale et al.,
2013) (see Figure 1). Although our proposal is empirical and lacks the formal rigor of
Frühwirth-Schnatter et al. (2024), we anticipate that refining the EBMF coordinate
ascent algorithm by incorporating GLT structures could lead to improved approxima-
tions.

Application to LBBNN Bayesian neural networks (BNNs) with i.i.d. priors are not
only over-parameterized but are also exposed to massive symmetries (Wiese et al.,
2023) in the posterior. To resolve these problems, we propose to apply a triple Gamma
shrinkage prior inspired by Frühwirth-Schnatter et al. (2024) for the slab component
of the latent binary BNN (Hubin and Storvik, 2024). The network weights β

(l)
ij at each

layer l, neuron i, and feature j follow a spike-and-slab distribution with slab:

p
(
β

(l)
ij |γ

(l)
ij = 1

)
=
∫∫∫
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(
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(l)
ij ; 0, κ · θ(l) · ζ(l)
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0
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Here, γ
(l)
ij ∈ {0, 1} is a binary variable indicating whether the weight is drawn from

the slab (γ(l)
ij = 1) or from the spike (γ(l)

ij = 0) at zero p(β(l)
ij |γ

(l)
ij = 0) = δ(β(l)

ij ).
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Figure 1: We fit EBMF using both the ad hoc permutation approach and the stan-
dard EBMF approach on GTeX data provided in the flashier package. The following
parameters were used: a row-wise intercept, SVD for initialization, Kmax = 7, and an
adaptive shrinkage prior (Stephens, 2017) for the loadings and factors. Each panel rep-
resents the posterior mean of the entries for each factor, as estimated by the flashier
software (we omit the first intercept factor has all values are set to 1). The ELBO for
the ad hoc permutation approach was −80131.77, and for the standard implementation
it was −80456.5.

Further, in (1), the variance of the Gaussian slab is defined using three levels of pa-
rameters, where κ is a global shrinkage parameter shared across all layers, θ(l) is a
layer-specific shrinkage parameter allowing to control (for logistic activations) the
degree of linearity of a specific layer, and ζ

(l)
i is a neuron-specific shrinkage param-

eter that breaks within layer symmetries. Lastly, σ2
0 is a fixed base variance. The priors

on κ, θ(l), and ζ
(l)
i are κ ∼ F(2aκ, 2bκ), θ(l) ∼ F(2aθ(l) , 2bθ(l)), ζ(l)

i ∼ F(2a
ζ
(l)
i
, 2b

ζ
(l)
i

).

Finally, the binary variable γ
(l)
ij follows p(γ(l)

ij ) = BetaBinomial(γ(l)
ij ; 1, α, β). We fix

σ2
0 = 1, and following Hubin and Storvik (2024), the other prior hyperparameters

α, β, aκ, bκ, aθ(l) , bθ(l) , a
ζ
(l)
i
, b

ζ
(l)
i

are found by an EB technique during the first 20 epochs.
Integration in (1) is done by MC sampling at every iteration. Variational approxima-
tions and stochastic variational Bayes fully follow the mean-field variant from Hubin
and Storvik (2024). The results obtained with the suggested approach are shown and
discussed in Table 1. Triple Gamma shrinkage within slabs holds promise for LBBNNs,
hence it is of interest to study it more thoroughly. MPM and pruning for LBBNN need
further theoretical justification. Lastly, triple Gamma prior is of interest for standard
BNN as the alternative to horseshoe (Ghosh et al., 2019).
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Median probability model Dense model
Data Metric min median max density min median max density

MNIST ACC 0.9814 0.9823 0.9835 0.2865 0.9846 0.9856 0.9865 1.0000
MNIST ECE 0.0157 0.0162 0.0179 0.2865 0.0198 0.0210 0.0227 1.0000
FMNIST ACC 0.8890 0.8920 0.8981 0.4201 0.8973 0.8988 0.9015 1.0000
FMNIST ECE 0.0723 0.0762 0.0794 0.4201 0.0545 0.0567 0.0582 1.0000
KMNIST ACC 0.9125 0.9138 0.9160 0.4639 0.9244 0.9256 0.9292 1.0000
KMNIST ECE 0.0661 0.0677 0.0694 0.4639 0.0548 0.0574 0.0590 1.0000

Table 1: Predictive performance (accuracy, and ece) of the proposed LBBNN (sum-
maries based on 10 runs). As compared to a recent comprehensive study (Anonymous,
2024), these results demonstrate marginal improvements to predictive performance and
calibration in some of the settings. As expected, median probability model (MPM) spar-
sity is considerably lower as compared to the approaches without the shrinkage within
the slab component. This is arguably due to some sparsity being moved to the slab
components. Further sparsification is possible through slab pruning. Just as for other
priors in LBBNN, MPM does not change significantly the performance of the full model,
albeit providing sparsity.
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