
Bayesian Analysis (2024) 19, Number 4, pp. 985–1011

Objective Bayesian Model Selection for Spatial
Hierarchical Models with Intrinsic Conditional

Autoregressive Priors∗

Erica M. Porter†,¶, Christopher T. Franck‡, and Marco A. R. Ferreira§

Abstract. We develop Bayesian model selection via fractional Bayes factors to
simultaneously assess spatial dependence and select regressors in Gaussian hi-
erarchical models with intrinsic conditional autoregressive (ICAR) spatial ran-
dom effects. Selection of covariates and spatial model structure is difficult, as
spatial confounding creates a tension between fixed and spatial random effects.
Researchers have commonly performed selection separately for fixed and random
effects in spatial hierarchical models. Simultaneous selection methods relieve the
researcher from arbitrarily fixing one of these types of effects while selecting the
other. Notably, Bayesian approaches to simultaneously select covariates and spa-
tial model structure are limited. Our use of fractional Bayes factors allows for
selection of fixed effects and spatial model structure under automatic reference
priors for model parameters, which obviates the need to specify hyperparameters
for priors. We also show the equivalence between two ICAR specifications and
derive the minimal training size for the fractional Bayes factor applied to the
ICAR model under the reference prior. We perform a simulation study to assess
the performance of our approach and we compare results to the Deviance Infor-
mation Criterion and Widely Applicable Information Criterion. We demonstrate
that our fractional Bayes factor approach assigns low posterior model probability
to spatial models when data is truly independent and reliably selects the correct
covariate structure with highest probability within the model space. Finally, we
demonstrate our Bayesian model selection approach with applications to county-
level median household income in the contiguous United States and residential
crime rates in the neighborhoods of Columbus, Ohio.

Keywords: Bayesian model selection, spatial statistics, areal data, ICAR random
effects, fractional Bayes factor.

1 Introduction
Bayesian hierarchical models are often used to model spatial data because they are flex-
ible enough to accommodate both fixed regression effects and spatial random effects.
In particular, hierarchical models with conditional autoregressive (CAR) structure (Be-
sag, 1974) and intrinsic conditional autoregressive (ICAR) structure (Besag et al., 1991)
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for spatial random effects have been used for inference and prediction in fields such as
ecology (Ver Hoef et al., 2018), neuroscience (Liu et al., 2016), disease mapping (Reich
et al., 2006; Lee, 2011; Jin et al., 2005; White et al., 2017), and public policy (Logan
et al., 2020). While modeling and estimation methods for models with CAR and ICAR
structures have seen a variety of methodological developments and applications, simul-
taneous selection of spatial model structure and covariates in hierarchical models with
ICAR spatial random effects has seen limited development. Thus, when choosing which
specific covariates to include and whether spatial dependence persists in the presence of
these covariates, researchers often resort to two-stage procedures. We focus our atten-
tion on Bayesian selection methods in this work. For example, researchers have adapted
selection techniques to compare various proposed CAR models (Lee, 2011; Song and
De Oliveira, 2012; Best et al., 2005) and to determine the impact of covariates when
a spatial correlation structure is assumed (Best et al., 1999). Such approaches require
researchers to either fix the spatial model structure and select covariates or fix the
covariates and assess the need for spatial model structure. The order of selection is
arbitrary and has been seen in case studies to potentially provide conflicting results.
For example, Lee and Mitchell (2013) studied two covariates in a disease mapping ap-
plication. They first fit a Bayesian model with both covariates and no spatial random
effects. In the non-spatial model, 95% credible intervals revealed both covariates were
non-null, however a Moran’s I test indicated spatial correlation in the residuals. Upon
finding spatial correlation in the residuals, the authors fit spatial models including the
Besag-York-Mollié (BYM, Besag et al., 1991), Leroux (Leroux et al., 1999), and locally
adaptive spatial models. In some of these spatial models, one of the covariates was then
found to be plausibly null. This sort of recursive approach can lead to uncertainty about
covariates in the model since it does not directly assess spatial effects and covariates
simultaneously. While Lee and Mitchell (2013) successfully developed novel methods for
accommodating localized spatial dependence, this multi–stage approach that selects the
mean and covariance structures in separate stages indicates a need for more cohesive
and simultaneous selection methods for areal data. Bayesian methods for simultaneous
selection of spatial model structure and covariates have seen less development. Since
simultaneous selection of spatial model structure and regressors would provide a frame-
work for researchers to make concurrent probabilistic decisions in spatial contexts, we
propose a Bayesian approach for simultaneous selection of fixed effects and spatial model
structure in Gaussian hierarchical models with ICAR priors.

Current literature on model selection for hierarchical models with ICAR priors has
suffered from the crucial limitation that, until recently, these models did not have a
fully specified expression for the likelihood function with integrated out random effects.
Without such an expression, the development of formal Bayesian model selection was
not possible. Fortunately, Keefe et al. (2018) recently proposed a formal specification of
sum-zero constrained ICAR models that fully specifies the constant of proportionality in
these models. We explore these recent results to develop formal Bayesian model selection
for hierarchical models with ICAR random effects.

To the best of our knowledge, the closest published work related to our proposed
method is by Song and De Oliveira (2012). Specifically, Song and De Oliveira (2012)
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proposed the use of posterior model probabilities to choose between classes of Gaus-
sian CAR models and simultaneous autoregressive (SAR) models with default priors
for model parameters. However, their proposed methodology differs from ours in two
important ways. First, Song and De Oliveira (2012) considered CAR and SAR models
as direct models for the observations, whereas we consider the more usual framework in
the statistical literature of using CAR priors for spatial random effects in a hierarchical
model. Second, their approach assumes that all competing models have the same mean
structure, and it is restricted to model selection of covariance structure. Hence, their
approach cannot perform covariate selection. In contrast, we provide an approach to
perform joint selection of covariates (fixed effects) and spatial model structure.

There are several published criteria other than posterior probabilities for model se-
lection in hierarchical models with CAR and ICAR spatial random effects. Currently,
the most frequently used model selection criterion for such hierarchical models is the
Deviance Information Criterion (DIC, Spiegelhalter et al. (2002)). For example, the
DIC has been used for model selection in the contexts of generalized multivariate CAR
models (Jin et al., 2005), co-regionalized models for areal data (Jin et al., 2007), locally
adaptive spatial CAR models (Lee and Mitchell, 2013), and disease mapping (Martinez-
Beneito et al., 2017). Another model comparison tool, proposed by White et al. (2017)
for hierarchical models with CAR random effects, is cross-validation, where a part of
the sample is used for model fitting and the other observations are held out for model
evaluation. In such cross-validation setting, White et al. (2017) proposed as model com-
parison criteria predictive interval coverage, predictive mean square error, and predictive
mean absolute error. Although ingenious and practically useful, these published model
selection criteria do not provide the natural and straightforward quantification of model
uncertainty provided by posterior model probabilities.

To enable simultaneous selection of fixed effects and spatial model structure, we
develop a Bayesian model selection method for hierarchical models with an ICAR com-
ponent. In particular, we examine a sum-zero constrained ICAR prior for spatial random
effects in a Bayesian hierarchical model (Keefe et al., 2018). We devise a fractional Bayes
factor (O’Hagan, 1995) approach for model selection via posterior model probabilities.
Fractional Bayes factors use a portion of the likelihood to update priors on parameters,
which enables our automatic Bayesian model selection with an improper reference prior
on model parameters. Model selection consistency, which refers to the method’s ability
to select the true model as sample size increases if the true model is in the candidate set,
is a well-known result when using fractional Bayes factors (O’Hagan, 1995). Thus our
approach provides consistent, simultaneous selection of fixed effects and spatial model
structure in Bayesian hierarchical models and allows for direct probabilistic statements
about inclusion of covariates and spatial model structure.

We describe our formal Bayesian model selection approach in the following sections.
In Section 2 we introduce the hierarchical model with a sum-zero constrained ICAR
prior, prove an equivalence result for two ICAR specifications, and provide the reference
prior we consider for the parameters of the ICAR component. In Section 3 we present
the motivation and implementation of our proposed method which uses fractional Bayes
factors for simultaneous selection of fixed effects and spatial model structure in Gaus-
sian hierarchical models with ICAR priors. In Section 4 we study the performance of
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our proposed method with a simulation study that includes varying levels of spatial
dependence. Section 5 demonstrates two applications of our method, including median
income and socioeconomic data at the county-level for the contiguous United States
(US) in 2017 and residential crime rates in the neighborhoods of Columbus, Ohio (OH)
in 1980. Finally, in Section 6 we discuss the practical impact of our fractional Bayes fac-
tor approach and future avenues for research. Proofs of theoretical results and additional
model selection background and simulation results are provided in the Supplementary
Material (Porter et al., 2023).

2 Hierarchical Model Specification
We consider a hierarchical model for areal data measured over a contiguous region that
is partitioned into n disjoint subregions indexed by 1, . . . , n. Consider the following
hierarchical model

Y = Xβ + θ + φ, (1)

where Y is a n×1 response vector, X is a n×p matrix of covariates, and β is a p×1 vector
of regression coefficients corresponding to fixed effects. Additionally, θ = (θ1, . . . , θn)T is
a n×1 vector of independent unstructured random effects with distribution N(0, σ2In)
and φ = (φ1, . . . , φn)T is a n × 1 vector of spatial random effects. The first column
of the matrix X is assumed to be a vector of ones and, thus, the first element of β is
an intercept. The vectors of random effects, θ and φ, are assumed to be independent
a priori.

The spatial random effects φ are assigned the formal sum-zero constrained intrinsic
conditional autoregressive (ICAR) prior (Keefe et al., 2018, 2019). We consider a signal-
to-noise ratio parameterization where τ/σ2 represents the precision for the vector of
spatial random effects, where the parameter τ ∈ (0,∞) controls the strength of spatial
dependence and σ2 denotes the variance of the unstructured random effects. Small values
of τ indicate strong spatial dependence while values tending towards infinity correspond
to independent data. The sum-zero constraint

∑n
i=1 φi = 0 appears explicitly in the

density for φ as follows.

p(φ|σ2, τ) = (2π)−(n−1)/2
( τ

σ2

)(n−1)/2
(

n−1∏
i=1

di

)1/2

exp
{
− τ

2σ2φ
THφ

}
1(1T

nφ = 0),

(2)
where 1n is a vector of ones and H is a positive semi-definite precision matrix defined
as

(H)ij =

⎧⎪⎨
⎪⎩
hi, if i = j,

−gij , if i ∈ Nj ,

0, otherwise,
(3)

and d1 ≥ d2 ≥ . . . ≥ dn−1 > dn = 0 are the ordered eigenvalues of H. The matrix H is
fixed and is chosen by the researcher to specify the neighborhood structure of the study
region. For example, a common choice for H classifies two subregions as neighbors if
they share a border. In that case, {Nj ; j = 1 . . . n} denotes the set of regions that are
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neighbors to region j, hi indicates the total number of neighbors of region i, and gij = 1
if regions i and j are neighbors and gij = 0 if regions i and j are not neighbors. We
assume that there are no islands in the region of interest, that is, all of the subregions are
connected. As a consequence, H has rank n−1 and one null eigenvalue (e.g., see Ferreira
and De Oliveira, 2007; De Oliveira and Ferreira, 2011). Let the spectral decomposition
of H be H = QDQT , where Q = (q1,q2, . . . ,qn) is a n × n matrix whose columns
are the normalized eigenvectors of H and D = diag(d1, d2, . . . , dn) is a diagonal matrix
with the ordered eigenvalues of H along the diagonal. Let Q̃ = (q1, . . . ,qn−1). Then
the distribution of the spatial random effects φ can be written as the following singular
Gaussian distribution (Keefe et al., 2018, 2019):

φ ∼ N
(
0, σ

2

τ
Σφ

)
, (4)

where Σφ = Q̃diag(d−1
1 , . . . , d−1

n−1)Q̃T is the Moore-Penrose pseudoinverse (Penrose,
1955) of the precision matrix H. See Auxiliary Fact A3 in the Supplementary Material
for details concerning how the sum-zero constraint is represented in (2) and (4).

2.1 Equivalence Between ICAR Specifications
There are three main ways to impose the sum-zero constraint on the ICAR prior. The
first way is through centering on the fly, where the spatial random effects are centered
to sum to zero at each iteration of the Markov Chain Monte Carlo (MCMC) algorithm.
The second way is through obtaining the full conditional distribution of the spatial
random effects, which as we explain below is a proper multivariate Gaussian distribu-
tion, and then use standard multivariate Gaussian results to obtain the full conditional
distribution of the spatial random effects conditional on their sum being equal to zero.
Finally, the third way is to use the sum-zero constrained ICAR model proposed by Keefe
et al. (2018, 2019). Ferreira (2019) and Ferreira et al. (2021) have shown that the first
and the third ways are equivalent for Gaussian hierarchical models. In this section, we
show that the second and third ways are equivalent.

The following propositions and theorem present results about the distribution of
spatial random effects φ and show the equivalence between sampling from the improper
ICAR prior conditional on a sum-zero constraint and sampling from the formal sum-zero
constrained prior.

Proposition 2.1 (Ferreira et al. (2021)). Assume the hierarchical model given by (1)
and (2). Partition the design matrix as X = [1n, F ] and, similarly, partition the vector of
regression coefficients as β = (α,νT )T where α is an intercept. Then, the full conditional
distribution of φ is

φ|τ, σ2,Y,β ∼ N(Q̃s, σ2Q̃D∗Q̃T ), (5)
where D∗ = diag((1 + τd1)−1, . . . , (1 + τdn−1)−1), and s = D∗Q̃T (Y − Fν).

Next, let ω be a vector of spatial random effects that a priori follows the improper
ICAR prior (Besag et al., 1991). Then, the prior density for ω is defined up to a constant
of proportionality and, with the signal-to-noise ratio parameterization, is given by
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p(ω|τ, σ2) ∝ exp
{
− τ

2σ2ω
THω

}
. (6)

If we substitute φ by ω in (1) and use the prior for ω given in (6), straightforward
application of Bayes’ Theorem yields the full conditional distribution (e.g., see Ferreira
et al., 2021)

ω|τ, σ2,Y,β ∼ N(g, V ), (7)
where V = σ2(In + τH)−1 = σ2Q(In + τD)−1QT and g = (In + τH)−1(Y − Xβ) =
Q(In + τD)−1QT (Y−Xβ). Note that (In + τH) is diagonally dominant and, therefore,
non-singular. Hence, the matrix V is well defined. However, assigning a flat prior for the
intercept in the model and the improper CAR prior given in (6) leads to an improper
posterior distribution for ω.

Alternatively to sampling the sum-zero-constrained spatial random effects vector
φ from its full conditional distribution (5), we may consider using the Besag spatial
random effects vector ω sampled from its full conditional distribution (7) conditional
on the constraint 1Tω = 0. The details of this distribution are given in Proposition 2.2.

Proposition 2.2. Assume the model given by (1) but substituting φ by ω. In addi-
tion, assume for ω the prior given by (6). Then, the full conditional distribution of ω
conditional on the constraint 1T

nω = 0 is

ω|1T
nω = 0, τ, σ2,Y,β ∼ N(μ∗,Σ∗), (8)

where μ∗ = g − V 1n(1T
nV 1n)−1(1T

ng − 0) and Σ∗ = V − V 1n(1T
nV 1n)−11T

nV .

Proof. See Proofs of Main Results in the Supplementary Material.

The following theorem shows the equivalence between sampling from the full condi-
tional distribution of φ implied by the sum-zero constrained ICAR prior of Keefe et al.
(2018, 2019) and sampling from the full conditional distribution of the spatial random
effects ω implied by the improper ICAR prior of Besag et al. (1991) with respect to
the sum-zero constraint, that is, sampling ω conditional on the spatial random effects
summing to zero.

Theorem 2.1. Assume that all subregions are connected. Then, sampling from the
full conditional distribution given in (8) of the spatial random effects ω implied by the
improper ICAR prior (6) conditional on the sum-zero constraint 1Tω = 0 is equivalent
to sampling from the full conditional distribution given in (5) implied by the sum-zero
constrained ICAR prior given in (2).

Proof. See Proofs of Main Results in the Supplementary Material.

The equivalence result given in Theorem 2.1 is of fundamental importance because
it implies that the model selection approach we propose can be applied to Gaussian
hierarchical models with Besag ICAR spatial random effects such as implemented in
the widely used R package R-INLA, which implements the Integrated Nested Laplace
Approximation (INLA) method by Rue et al. (2009).
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Next, we denote the vector of unknown model parameters for the hierarchical spatial
model by η = (β, σ2, τ). Following the approach of Keefe et al. (2018), we impose the
formal sum-zero constraint that implies as prior for the spatial random effects φ the
singular Gaussian distribution given in (4). After that, we integrate out the vector of
spatial random effects φ to obtain for Y|η the Gaussian distribution

Y|β, σ2, τ ∼ N(Xβ, σ2(In + τ−1Σφ)). (9)

We are interested in selecting which covariates to include in the model by choosing
among competing Xβ, and whether to include spatial dependence. We use the ordinary
linear model (OLM) as the independent data model, which does not accommodate
spatial correlation. In the case of the OLM, the unknown parameters are β and σ2, and
the response Y follows the Gaussian distribution

Y|β, σ2 ∼ N(Xβ, σ2In). (10)

2.2 Priors on Model Parameters
We adopt a Bayesian approach and specify priors for η. We consider the recently pro-
posed reference prior for the parameters β, σ2, and τ of the hierarchical model given
in (1) and (4) (Keefe et al., 2019), which serves as an automatic prior with favorable
properties for inference in Gaussian hierarchical models with ICAR priors. The joint
reference prior for η in the hierarchical spatial model is given by

π(β, σ2, τ) ∝ 1
σ2

1
τ

[
n−p∑
j=1

( ξj
τ + ξj

)2
− 1

n− p

{
n−p∑
j=1

( ξj
τ + ξj

)}2] 1
2

, (11)

where ξ1, . . . , ξn−p are the ordered eigenvalues of Q∗TΣφQ
∗ such that the columns of Q∗

are normalized eigenvectors corresponding to the non-zero eigenvalues of the projection
matrix G = In −X(XTX)−1XT . The prior on σ2 is π(σ2) ∝ 1/σ2, and the conditional
reference prior on the vector of regression coefficients is π(β|σ2, τ) ∝ 1. Thus π(τ) takes
the form of (11) excluding 1/σ2. Note that improper priors must be treated carefully
when used for model selection, which we address further in Section 3.

Subjective information for setting hyperparameters is not always available and ex-
pert elicitation is challenging, as evidenced by the absence of such approaches in the
spatial statistics literature. The reference prior obviates the need to choose hyperparam-
eters for priors in hierarchical models for areal data and has been shown to perform well
for estimation in spatial ICAR models. Keefe et al. (2019, Section 5 and supplementary
material) show that inference procedures based on the reference prior have favorable
performance in terms of frequentist coverage rate, average interval length, and mean
squared error (MSE) for β, σ2, and τ . Thus, the reference prior in (11) can be used
to reliably estimate all model parameters in η and to identify appropriate subsets of
covariates. Finally, for the OLM, the joint reference prior for η is π(η) ∝ 1/σ2. In
Section 3 we describe how the reference prior in (11) can be used with fractional Bayes
factors to simultaneously select spatial model structure and covariates.
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3 Bayesian Model Selection via Fractional Bayes
Factors

We next describe simultaneous Bayesian model selection for spatial dependence and
covariates based on models (9) and (10). Bayesian model selection relies on integrated
likelihoods of the form

p(Y|Mc) =
∫

p(Y|ηc,Mc)π(ηc|Mc)dηc, (12)

where model Mc has corresponding parameter vector ηc and c = 1, . . . , C.

To compare two models M1 and M2, we may use the Bayes factor BF12 that is
defined as a ratio of the two models’ integrated likelihoods

BF12 = p(Y|M1)
p(Y|M2)

. (13)

To alleviate numerical underflow when forming all posterior model probabilities, we
form all Bayes factors with respect to a single baseline model, Ml, which has the largest
integrated likelihood of all models in the model space M = {Mc, c = 1, . . . , C}, where C
is the total number of candidate models. From the set of Bayes factors {BF1l, . . . , BFCl}
formed with respect to baseline Ml, the posterior probability of a single model Mr in
the model space can then be found using Bayes’ Rule:

P (Mr|Y) = p(Y|Mr)P (Mr)∑C
c=1 p(Y|Mc)P (Mc)

=
( C∑

c=1
BFclP (Mc)

)−1

×BFrl × P (Mr). (14)

Formulation of posterior model probabilities in (14) requires prior probabilities to
be assigned to the competing models. For a moment, consider covariate subset selection
for K total candidate predictors in the class of OLMs, where K = p− 1. We follow the
recommendations of Scott and Berger (2010) by first assigning a uniform prior on all
groups of models with a fixed number of covariates k, then evenly splitting the share of
probability among models in that set. For example, if K = 2, then the candidate models
all include either zero, one, or two covariates. The model with zero covariates receives
1/3 of the prior probability, as does the model with two covariates. Each model with
a single covariate receives 1/6 of the prior model probability. This approach imparts
Bayesian multiplicity correction to the selection procedure. We modify the subset selec-
tion approach slightly to accommodate both OLMs and spatial models. In this work,
we set prior probability for independence at 1/2, and also give 1/2 prior probability to
spatial dependence. Thus, we further divide prior probabilities suggested by Scott and
Berger (2010) for the independence models in half, and incorporate all possible subset
models with the inclusion of spatial dependence, so that the full candidate model set con-
tains all possible combinations of candidate predictors in both spatial dependence and
independence settings. Then the prior probability for a model Mc with kc covariates is

P (Mc) = 1
2(K + 1)

(
K

kc

)−1

. (15)
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We develop Bayesian model selection via fractional Bayes factors with the following
motivation in mind. If improper priors are assigned to parameters in competing models,
the full Bayes factor is defined only up to an undefined constant and thus cannot be
used for valid model comparison. In particular, the conditional reference prior on β is
improper and cannot be used in the full Bayes factor when we consider selection of
covariates. For example, consider a comparison between two candidate models, M1 and
M2, where M1 represents an intercept-only spatial model and M2 represents a spatial
model with k ≥ 1 covariates. Then π(η) = a1 · 1

σ2π(τ) for M1 and π(η) = a2 · 1
σ2π(τ) for

M2, where a1 �= a2 due to differing sizes for β. Then the Bayes factor, BF12, becomes

BF12 =
a1 ·

∫
p(Y|β, σ2, τ,M1)π(β)π(σ2)π(τ)dβdσ2dτ

a2 ·
∫
p(Y|β, σ2, τ,M2)π(β)π(σ2)π(τ)dβdσ2dτ

, (16)

where a1/a2 is an undefined constant and thus BF12 is not well-defined. In addition,
while σ2 appears in every model in M, use of the full Bayes factor with π(σ2) ∝
1/σ2 tacitly assumes the normalizing constant for π(σ2) is the same across all models,
where σ2 may include variation from important regressors that are missing in some
models. Thus, the same improper prior on σ2 for models with different specifications
of β may not be reasonable when performing model selection via full Bayes factors.
Assigning proper priors to all model parameters elicits a proper Bayes factor as defined in
(13). However, specification of sensible priors for spatial dependence models is difficult.
The sensitivity of Bayes factors and the resulting model selection to hyperparameter
specification is well established (Kass and Raftery, 1995; Berger and Pericchi, 1996;
Chipman et al., 2001; Franck and Gramacy, 2020).

Rather than approaching Bayesian model selection with proper priors, approaches
that use training samples to calibrate reference improper priors, including partial Bayes
factors and fractional Bayes factors (FBF), have been proposed (O’Hagan, 1995; Berger
and Pericchi, 1996). The partial Bayes factor separates out a subset of the data as a
training sample, which is then used to update the priors on parameters. The partial
Bayes factor uses for training the joint distribution of the specific observations selected
for training. Selecting training observations for correlated data is difficult, as a subset
of randomly selected points may not contain much information about the dependence
structure and the τ parameter. The underlying Markovian structure may be lost by
splitting the likelihood based on spatially correlated observations between training and
selection, and training based on observations that do not properly reflect the overall
dependence structure may result in poor model selection. The intrinsic Bayes factor
averages over partial Bayes factors obtained from some or all possible training samples
(Berger and Pericchi, 1996). However, this process is computationally expensive and
it is not clear if all possible minimal training sets would have the same size necessary
to capture the dependence structure. To overcome this difficulty, we develop a FBF
approach, which uses a fraction of the likelihood rather than reserving specific observa-
tions for training. We thus use FBF methodology to approximate partial Bayes factors.
The FBF updates the prior on model parameters π(ηc) using a fraction b = m/p of the
likelihood, obtaining the updated prior

π∗(ηc) = π(ηc){p(Y|ηc,Mc)}b∫
π(ηc){p(Y|ηc,Mc)}bdηc

. (17)
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Then the fractional integrated likelihood, qc(b,Y), for a single model Mc using the
updated prior is

qc(b,Y) =
∫

π∗(ηc){p(Y|ηc,Mc)}1−bdηc, (18)

where p(Y|ηc,Mc)}1−b is the likelihood remaining to calculate the fractional integrated
likelihood. Finally, note that we can rewrite the fractional integrated likelihood as

qc(b,Y) =
∫

π(ηc)pb(Y|ηc,Mc){p1−b(Y|ηc,Mc)}dηc∫
pb(Y|ηc,Mc)π(ηc)dηc

(19)

=
∫
p(Y|ηc,Mc)π(ηc)dηc∫
pb(Y|ηc,Mc)π(ηc)dηc

.

Since the fractional integrated likelihood uses a ratio of two integrals each containing
the same π(ηc), all undefined normalizing constants discussed in (16) cancel out in the
computation of the fractional integrated likelihood. The FBF, which we denote by BF b

12,
for two models M1 and M2 is defined as the ratio of two fractional integrated likelihoods.
That is,

BF b
12 = q1(b,Y)

q2(b,Y) . (20)

We use this FBF approach to form posterior model probabilities that are model
selection consistent (O’Hagan, 1995), which we demonstrate with a simulation study in
Section 4.

3.1 Parameter Estimation and Model Selection Under the FBF

An advantage of a fractional Bayes framework is that the trained prior, denoted π∗(ηc)
for parameter vector ηc, multiplied by the likelihood after training, is proportional to
the same posterior distribution as if π(ηc) is used with the full likelihood. That is,

π∗(ηc){p(Y|ηc,Mc)}1−b = π(ηc){p(Y|ηc,Mc)}b∫
π(ηc){p(Y|ηc,Mc)}bdηc

× {p(Y|ηc,Mc)}1−b (21)

∝ π(ηc){p(Y|ηc,Mc)}b{p(Y|ηc,Mc)}1−b

∝ π(ηc)p(Y|ηc,Mc)
∝ p(ηc|Y,Mc).

Thus, point and interval estimation for parameters ηc is unchanged when using a
FBF approach for model selection, and the trained prior that results from using the FBF
resolves a tension for use of priors for either estimation or model selection. Therefore,
researchers may select prior π(ηc) for the purpose of parameter estimation and benefit
from a FBF approach with π∗(ηc) for model selection without conflict.
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3.2 Integrated Likelihood Methods

To form the fractional integrated likelihood qc(b,Y) of a single model Mc using a FBF
approach, we need both

∫
p(Y|ηc,Mc)π(ηc)dηc and

∫
pb(Y|ηc,Mc)π(ηc)dηc. Under the

Gaussian hierarchical model with reference prior presented in Section 2.2, parameters
β and σ2 can be analytically integrated out of the integrated likelihood, but τ must be
integrated out via approximation methods. Therefore, the integrated likelihoods for the
independent model have tractable expressions. Note that, since we use a prior for τ that
depends on a projection of the matrix of covariates for a given model, the fractional
integrated likelihood for model Mc depends on the model-specific matrix of covariates.
That is, βc is the vector of regression coefficients for covariates contained in Mc, Xc is
the matrix of covariates corresponding to βc, pc is the length of βc, and ξc1, . . . , ξc,n−p

are the ordered eigenvalues of Q∗T
c ΣφQ

∗
c such that the columns of Q∗

c are normalized
eigenvectors corresponding to the non-zero eigenvalues of the projection matrix In −
Xc(XT

c Xc)−1XT
c . Then the denominator of the fractional integrated likelihood in (19)

for a spatial model under the reference prior reduces to the one-dimensional integral
∫

pb(Y|ηc,Mc)π(ηc)dηc ∝
∫ ∞

0
|Ω|− b

2 |XT
c Ω−1Xc|−

1
2 (τ)−1

[ b
2S

2
c

] pc−nb
2 × (22)

[
n−pc∑
j=1

( ξcj
τ + ξcj

)2
− 1

n− pc

{
n−pc∑
j=1

( ξcj
τ + ξcj

)}2] 1
2

dτ,

where Ω = In + τ−1Σφ and S2
c = YT (Ω−1 − Ω−1Xc(XT

c Ω−1Xc)−1XT
c Ω−1)Y.

We use an adaptive quadrature approach to approximate integrals∫
p(Y|ηc,Mc)π(ηc)dηc and

∫
pb(Y|ηc,Mc)π(ηc)dηc over τ for the FBF. See the Sup-

plementary Material for further details and complete integrated likelihood expressions
for the OLM and spatial ICAR model. Next, Section 3.3 discusses the choice of training
fraction, specifically the minimal training fraction that will make the integrals in the
FBF finite so that adaptive quadrature can be applied.

3.3 FBF Training Fraction

The training fraction for the FBF should be chosen to be small while still ensuring
propriety of the fractional integrated likelihood. Consider a training fraction of the form
b = m/n, where m is the corresponding training size. The minimal training size, which
we use in this work, is the smallest integer value for m such that

∫
pb(Y|ηc,Mc)π(ηc)dηc

is finite for all models considered in M = {Mc, c = 1, . . . , C}. In particular, if m is
chosen to be too small, the integral

∫
pb(Y|ηc,Mc)π(ηc)dηc will diverge for one or more

models in M and the corresponding FBF cannot be formed for all models. Additionally,
as m increases beyond the minimal training size, the posterior model probabilities more
closely resemble the prior model probabilities. Over–training the prior at the cost of the
likelihood forfeits statistical power and reduces the ability of the FBF to detect signal.
Thus, the minimal training size should be used when known for a class of models. To
understand the behavior of the denominator of the fractional integrated likelihood for
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the ICAR model, we first consider expressions leading to the integral over τ as in (22)
by using the eigenvalue decomposition of functions of X and Σφ.

The following propositions outline the fractional integrated likelihood results which
lead to the minimal training size for the FBF with the reference prior for spatial
ICAR models. The above text has demonstrated that it is essential for the FBF-
trained prior to be proper. The purpose of the upcoming Propositions 3.1 and 3.2
is to find the smallest value of the training size m that will yield a proper FBF-
trained prior, overcome the arbitrary constant issue in (16), and lead to valid Bayesian
model selection. Proposition 3.1 addresses propriety with respect to σ2 in the de-
nominator of the fractional integrated likelihood and in the updated prior (see (19)
and (17)). For notational convenience, let p(b)(Y|σ2, τ,M) =

∫
pb(Y|β, σ2, τ,M)π(β)dβ

and p(b)(Y|τ,M) =
∫ ∫

pb(Y|β, σ2, τ,M)π(β)π(σ2)dβdσ2.
Proposition 3.1. To ensure

∫
pb(Y|η,M)π(η)dη < ∞, consider the tail behavior of

p(b)(Y|σ2, τ,M)π(σ2) over σ2. For a given value of τ ,

(i) p(b)(Y|σ2, τ,M)π(σ2) = O
(
(σ2) p−nb

2 −1) as σ2 → ∞.

(ii) p(b)(Y|σ2, τ,M)π(σ2) = O
(
exp{ −b

2σ2S
2}
)

as σ2 → 0.

Proof. See Proofs of Main Results in Supplementary Material.

Next, Proposition 3.2 addresses propriety of the trained prior and p(b)(Y|τ,M) with
respect to τ after both β and σ2 have been integrated out analytically.
Proposition 3.2. Assume nb−p

2 > 0. To ensure
∫
pb(Y|η,M)π(η)dη < ∞, consider

the behavior of p(b)(Y|τ,M) over τ . p(b)(Y|τ,M) is a continuous function on τ ∈ (0,∞)
and

(i) p(b)(Y|τ,M) = O(τ 1−b
2 +1) as τ → 0.

(ii) p(b)(Y|τ,M) = O(1) as τ → ∞.

Proof. See Proofs of Main Results in Supplementary Material.

Proposition 3.3 demonstrates that the reference prior for τ is proper.
Proposition 3.3 (Keefe et al. (2019)). The marginal reference prior for τ is a contin-
uous function on (0,∞) where

(i) π(τ) = O(1) as τ → 0.

(ii) π(τ) = O(τ−2) as τ → ∞.

Theorem 3.1 provides the minimum training size for the application of our FBF
approach.
Theorem 3.1. Consider model (9) and the reference prior in (11). The minimal train-
ing size for the FBF is m = p + 1.
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Proof. See Proofs of Main Results in Supplementary Material.

Finally, it is straightforward to show that results similar to that of Theorem 3.1 also
hold for the OLM with a reference prior as well as for the SAR model for spatial areal
data with the independence Jeffreys prior developed by De Oliveira and Song (2008).
For both of these models, the minimal training size for the FBF is also m = p + 1.

4 Simulation Study
To investigate the utility of our FBF approach to simultaneously select covariates and
presence of spatial dependence, we perform Monte Carlo simulations for 100 square
grid regions of size n = 102, 202, 302. To study selection performance for a variety of
spatial settings, we examine varying levels of the signal-to-noise ratio. In particular, we
fix σ2 = 1 for simulations and consider τ = 0.01, 0.1, 1, 10,∞ for the response, where
small values of τ correspond to strong spatial dependence, and infinite τ corresponds
to independence. Further, we consider k = 5 covariates with β = (5, 2, 1, 0, 0, 0)T .
Since many spatial applications also contain spatially correlated covariates, covariates
are generated from a model of the form (9) with mean 0, σ2 = 1, and strong spatial
correlation where τ = 0.1 for each covariate. We obtain model selection results based on
100 simulated data sets for each combination of these levels of sample size and spatial
dependence.

For each simulated data set our method computes posterior model probabilities via
FBFs for each of the 26 = 64 models, including 32 OLMs and 32 spatial models with
all possible combinations of the k = 5 covariates. Additionally, since we use Bayesian
model selection, posterior inclusion probabilities for individual fixed effects are easy to
calculate. Figure 1 displays boxplots of the posterior inclusion probabilities for each of
the 5 covariates alongside the probability of selecting a spatial model at each sample
size. Red diamonds correspond to the mean probability across the 100 data sets rep-
resented in each boxplot. Overall our method correctly assigns high posterior model
probability to the correct model, both in terms of spatial structure and identification of
null and non-null covariates. For small τ the true model contains spatial dependence,
and as sample size increases the probability of selecting a spatial model quickly ap-
proaches 1 for τ ∈ {0.01, 0.1, 1} and moves toward 0 for τ at ∞, which corresponds
to the OLM. Note that only τ at ∞ corresponds to true independence, reducing the
model in (9) to (10). However, practically, most real spatial data sets have small τ less
than 10. Thus, for larger finite values of τ , e.g. 10 ≤ τ < ∞, the true dependence
structure is spatial, but there is very little spatial signal to detect. As demonstrated in
Figures 1b, 1d, and 1f, the decision to select a spatial model or OLM at τ = 10 is much
more equivocal than for small values of τ , due to the diminishing strength of spatial
correlation between the observations. Figure 1f indicates that for n = 900, our method
has correctly identified all spatial data sets with small τ ∈ {0.01, 0.1, 1} as requiring
spatial random effects. The most difficult case of non-null covariate selection occurs in
Figure 1a under n = 100 and the strongest level of spatial dependence with τ = 0.01,
where we assigned x2 a low signal-to-noise ratio. Results for all three sample sizes in-
dicate accurate identification of covariates, as the posterior inclusion probabilities for
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the three null covariates x3, x4, and x5 move towards 0 from the prior, and posterior
inclusion probabilities for the non-null covariates x1 and x2 quickly approach 1. For any
single covariate x, if you sum over the model priors corresponding to each model that
contains x, that probability is 1/2. Additionally, recall from Section 3 that the prior
probability of spatial dependence is 1/2. The horizontal bar in Figure 1 corresponds to
this prior probability at 1/2, where all posterior probabilities can be seen moving off of
this prior.

These results indicate that our method tends to select the correct model in terms
of both spatial and fixed effects as n increases. When data is truly independent cor-
responding to τ = ∞, our method correctly selects the simpler OLM without spatial
random effects the majority of the time, it does not attribute high probability to null
covariates, and it assigns high probability to non-null covariates with relatively small
signal-to-noise ratios. Performance quickly improves as the sample size increases, indi-
cating that our FBF approach provides consistent model selection for fixed and spatial
effects simultaneously.

In addition to our FBF model selection approach, we also considered the Deviance
Information Criterion (DIC, Spiegelhalter et al. (2002)) and the Widely Applicable
Information Criterion (WAIC, Watanabe (2010)). The DIC and WAIC are most often
computed using the likelihood that includes φ with estimated values for the spatial
random effects plugged into the criteria calculations. The likelihood for Y|φ,β, σ2 ∼
N(Xβ + φ, σ2In) follows as:

p(Y|φ,β, σ2) = (2π)−n/2(σ2)−n/2 exp
{
− 1

2σ2 (Y −Xβ − φ)T (Y −Xβ − φ)
}
. (23)

We also consider a version of the DIC that uses the likelihood with the spatial
random effects integrated out:

p(Y|β, σ2, τ) = (2π)−n/2(σ2)−n/2|Ω|−1/2exp
{
− 1

2σ2 (Y−Xβ)TΩ−1(Y−Xβ)
}
, (24)

where Ω = In + τ−1Σφ. The likelihood in (24) corresponds to the distribution in (9)
used in our FBF approach. This version of DIC, called type 2 DIC by Celeux et al.
(2006) in the context of missing data models, was studied in Ferreira et al. (2021) for
the spatial hierarchical models considered here.

We use an MCMC algorithm to compute the DIC, WAIC, and type 2 DIC for
all 64 models for each data set in the simulation study as described above (Gelman
et al., 2014). We use the same reference priors when computing DIC, WAIC, and type
2 DIC as for the FBF, so parameters in the ICAR models are assigned the prior in (11)
and parameters in the OLMs are sampled with prior π(β, σ2) ∝ 1/σ2. For each ICAR
model, we sample parameters in η using a Metropolis-within-Gibbs algorithm with a
Gibbs step for β and a joint Metropolis-Hastings step for τ and σ2 (Keefe et al., 2019).
To obtain samples from likelihood (23), we simulate the spatial random effects φ using
composite sampling. The full conditional distribution for φ and the complete algorithm
for sampling from the parameters of the ICAR model are listed in the Supplementary
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Figure 1: Covariate posterior inclusion probabilities (left) and probability of selecting
a spatial model (right) for τ ∈ {0.01, 0.1, 1, 10,∞} for n = 100 (top row), n = 400
(middle row), and n = 900 (bottom row). Each boxplot represents probabilities from
100 simulated data sets. The reference FBF selection method correctly assigns high
probability to non-null covariates, and to spatial models for small τ . The posterior
inclusion probabilities for non-null covariates x1 and x2 are exactly 1 for all simulated
data sets where n = 400 and n = 900, and for n = 100 with τ > 0.01. Thus, the boxplots
for these covariates appear as lines at 1.
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Material. For each OLM, we sample σ2 from its marginal posterior p(σ2|Y) and use a
Gibbs sampler to sample β from its conditional posterior p(β|σ2,Y). For each model,
30,000 MCMC iterations are obtained with the first 10,000 iterations discarded as burn-
in.

The computations for all results reported here were performed using a 2 × E5 −
2683v42.1GHz (Broadwell) CPU supercomputer from Advanced Research Computing
at Virginia Tech. Our FBF selection approach takes 9.28, 65.89, and 365.73 seconds
for a single data set with sample size equal to 100, 400, and 900, respectively. The
DIC selection approach takes 953.39; 2,491.87; and 6,315.48 seconds for all models for
a single data set with sample size equal to 100, 400, and 900, respectively. The WAIC
takes 1,041.75; 2,254.34; and 6,156.46 seconds for a single data set with sample size
equal to 100, 400, and 900. Finally, the type 2 DIC selection approach takes 1,059.91;
2,350.69; and 6,835.21 seconds for a single data set with sample size equal to 100, 400,
and 900, respectively.

For each simulated data set, we calculated the DIC, WAIC, and type 2 DIC for all 64
candidate models using MCMC and identified the model with lowest DIC, WAIC and
type 2 DIC values, and the model with highest posterior model probability according
to our FBF approach. Figure 2 plots the proportion of data sets for which DIC, WAIC,
type 2 DIC (abbreviated as DIC-2), and our FBF approach correctly identify the correct
covariate structure containing only x1 and x2 and the correct spatial model structure,
where the true model for τ at ∞ is the OLM with no spatial random effects. As discussed
above and seen in Figure 1, the true dependence structure when τ = 10 is spatial,
but spatial correlation is weak in this setting, making the need for spatial random
effects in the model ambiguous. Therefore we compare selection results only at values
of τ ∈ {0.01, 0.1, 1,∞} in Figure 2.

Each panel of Figure 2 demonstrates that the FBF approach performs better than
DIC, WAIC, and type 2 DIC for selection in all data settings considered here. Our FBF
approach also successfully identifies the correct model with respect to spatial random
effects more than 80% of the time for n = 100 at all levels of spatial dependence,
and correctly identifies the spatial model structure for every data set for n = 400
and n = 900. Additional simulation results generated with covariates with no spatial
dependence for the sample sizes and coefficient vector described above appear in the
Supplementary Material. These results exhibit similar patterns to those in Figure 2, as
the performance of the FBF is superior to that of the DIC, WAIC, and type 2 DIC for
all data settings. Thus, including results provided in the Supplementary Material, for
all n and τ considered here, the FBF performs better in each setting in this simulation
study. This simulation study demonstrates the reliability of our fully automatic FBF
approach to accurately and simultaneously select both spatial model structure and
covariate structure.

5 Case Studies
To illustrate the practical application of our FBF approach to simultaneously select
covariates and spatial random effects in spatial areal datasets of varying sizes, we per-
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Figure 2: Proportion of times out of 100 simulated data sets that the reference FBF,
reference DIC-2, reference DIC, and reference WAIC methods select the correct covariate
and spatial dependence structure for τ ∈ {0.01, 0.1, 1,∞} for n = 100 (top row), n = 400
(middle row), and n = 900 (bottom row). The reference FBF selection method reliably
selects covariates and spatial dependence for all values of τ and performs better than
DIC-2, DIC, and WAIC for selection in all data settings.

form selection for two existing datasets, whose responses include county-level median
household income in the contiguous United States and residential crime rates in the
neighborhoods of Columbus, Ohio.
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To demonstrate the breadth of our method, we show that our FBF approach can also
be used to select between different types of spatial random effects. In particular, for the
two case studies that follow, we also considered selection with the class of simultaneous
autoregressive (SAR) models in the model space M. We adopt the model form and
independence Jeffreys prior for the SAR model from De Oliveira and Song (2008). The
SAR model for response Y is given by the following autoregression.

Y = Xβ + (In −B)−1ε, (25)

where ε ∼ N(0, σ2In) and B = γW , with unknown spatial parameter γ and W =
(wij)n×n is a known, symmetric weight matrix with all wij ≥ 0 and wij > 0 if i ∈ Nj . As
with the ICAR model, we treat adjacent subregions as neighbors with the SAR model.
The spatial parameter γ ∈ (λ−1

n , λ−1
1 ), where λ1 ≥ λ2 . . . ,≥ λn are the ordered eigen-

values of W , and γ = 0 corresponds to the OLM with distribution Y ∼ N(Xβ, σ2In).

Then SAR response Y|β, σ2, γ has the following Gaussian distribution.

Y|β, σ2, γ ∼ N(Xβ, (In −B)−1M(In −BT )−1), (26)

where M = σ2In. We consider the independence Jeffreys prior πJ (β, σ2, γ) for SAR
model parameters β, σ2, and γ (De Oliveira and Song, 2008).

πJ(β, σ2, γ) ∝ 1
σ2

{
n∑

i=1

( λi

1 − γλi

)2
− 1

n

[ n∑
i=1

λi

1 − γλi

]2
} 1

2

. (27)

We use the same training size, m = p + 1, for the SAR model with independence
Jeffreys prior, as the prior induces similar behavior in the integrated likelihood to that
produced by the reference prior for the ICAR model. Derivation of the fractional inte-
grated likelihood qc(b,Y) for the SAR model with independence Jeffreys prior is detailed
in the Fractional Integrated Likelihood Calculations section of the Supplementary Ma-
terial.

Upon including SAR models in the candidate set, we adjust the model priors from
Section 3. This results in a 50/25/25 split between prior probability for OLMs, ICAR
models, and SAR models, with the remaining probability within each class attributed
by model size, as described in Section 3. Thus, the prior probability for an OLM Mc

with kc covariates is

P (Mc) = 1
2(K + 1)

(
K

kc

)−1

, (28)

and the prior probability for an ICAR or SAR model Mc with kc covariates is

P (Mc) = 1
4(K + 1)

(
K

kc

)−1

. (29)

The following case studies perform selection using the FBF with minimal training
size m = p + 1 where OLM, ICAR, and SAR models are included in the model space.
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5.1 Case Study: US Socioeconomic Application

To demonstrate our formal Bayesian model selection approach for areal data, we first
consider an application to median household income by county in the contiguous United
States in 2017. We consider the logarithm of median household income as the response
variable and we select among five candidate predictors: logarithm of the county popula-
tion in 2017; logarithm of the unemployment rate in 2017; and three indicator variables
for whether the county belongs to a large metropolitan area, a medium metropoli-
tan area, or a small metropolitan area. The baseline covariate level corresponds to a
non-metropolitan county. Figure 3 plots the response variable and all the candidate
covariates over a map of the contiguous US counties.

Following the approach to simultaneous selection of spatial model structure and fixed
effects presented in Section 3 and adapted as described above to include SAR models in
the candidate set, we form posterior model probabilities for all 96 models that include
either an ICAR, SAR, or independent model structure as in (9), (26), and (10) and every
combination of the five covariates. We use a training size of m = 7, according to the
minimal training fraction found in Section 3.3. Model selection using the FBF approach

Figure 3: Map of United States socioeconomic variables by county in 2017: (a) logarithm
of median household income; (b) logarithm of population; (c) logarithm of unemploy-
ment rate; (d) metro area classification.
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selects with probability 1 the ICAR model of form (9) with all five candidate predictors.
To assess the impact of priors on the model space, we also performed selection among
the 96 models using uniform priors on every model. Note that between the ICAR and
SAR sets this causes 2/3 prior probability of selecting a spatial model.

The prior probability of the ICAR model with all covariates is equal to 0.0417 under
(15) and decreases to 0.0104 under the use of equal prior probability for every model.
But even with the latter prior specification, the posterior probability of the ICAR model
with all five covariates is also equal to 1. Therefore, the model selection result in this
case study does not appear to be highly sensitive to reasonable specifications of model
prior probabilities.

In keeping with the results seen in Figure 2, the type 2 DIC also selects the ICAR
model with all covariates, with corresponding value equal to −3926.387. In contrast,
both the DIC and WAIC select the OLM with all five candidate predictors, with criteria
values equal to −2,306.965 and −2,306.213, respectively. The estimated τ value for this
data set is 0.1575, which indicates strong spatial dependence. Finally, the results from
the simulation study presented in Section 4 indicate that the reference FBF selection
method is more reliable. These results demonstrate performance of our reference FBF
selection method when applied to large spatial data sets.

5.2 Case Study: Columbus, OH Crime Rates
Next we consider a data set containing crime rates in the 49 neighborhoods of Colum-
bus, OH in 1980. This data set has been previously analyzed by Anselin (1988) and
Banerjee et al. (2015) and can be obtained from the spData package in R (Bivand
et al., 2019). The response variable is residential burglaries and vehicle thefts per thou-
sand households in each of the n = 49 neighborhoods of Columbus, OH. We consider
five available candidate predictors: housing value, household income, open space in
the neighborhood, percentage of housing units without plumbing, and distance to the
Columbus business district. Using the minimal training size m = 7 to select between
the 96 candidate models, our FBF approach selects with probability 0.1422 the OLM
with three covariates: housing value, household income, and distance to the Columbus
business district. Table 1 lists the candidate predictors and their corresponding poste-
rior inclusion probabilities; the selected model contains the three covariates with the
largest posterior inclusion probabilities. Figure 4 plots the response variable and the
three selected covariates over a map of the 49 neighborhoods in Columbus, OH. In
contrast to the previous case study, n = 49 is a small sample size and thus posterior
probabilities do not move as far off the model priors. In particular, the prior probability
for an OLM with three covariates was 0.0083. The total posterior model probability
of selecting an OLM was 0.6770, indicating that the decision about spatial structure
for this application has moved only slightly off the 1/2 prior probability of selecting
an OLM. Table 2 lists the covariate structure, dependence structure, posterior prob-
ability, and DIC-2, DIC, and WAIC values for the top models indicated by the FBF
approach. The top five models are OLMs and the model with sixth highest probability
is the ICAR model containing the same covariates as the selected model. Covariates
household income and distance to the Columbus business district have the two largest
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Covariate description Posterior inclusion
probability

housing value 0.733
household income 0.931

open space in the neighborhood 0.302
percentage of housing units without plumbing 0.432

distance to Columbus business district 0.918
Table 1: Description and posterior inclusion probability for each of the 5 candidate co-
variates available for modeling theft and burglary rates in the neighborhoods of Colum-
bus, OH.

Figure 4: Map of Columbus, OH variables by neighborhood in 1980: (a) crimes per 1,000;
(b) housing value; (c) household income; (d) distance to Columbus business district.

posterior inclusion probabilities and are included in all of the top 6 models. We also
performed selection for this data set assigning uniform priors on the model space. This
setup selected with posterior probability 0.1458 the OLM with the covariates housing
value, household income, and distance to the Columbus business district. The prior
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Covariate Model
type

Post.
prob. DIC-2 DIC WAIC

value income open plumb dist

� � � OLM 0.142 369.7 369.8 370.7
� � � � OLM 0.126 369.9 369.8 370.7

� � OLM 0.123 371.3 371.3 372.6

� � � � � OLM 0.081 372 372 372.2

� � � � OLM 0.061 371.7 371.6 372.1

� � � ICAR 0.060 370.7 330.2 343.8

Table 2: Top 6 models for the Columbus, OH crime data according to the reference FBF
approach. The first set of 5 columns indicates which of the covariates are in the model
with the following abbreviations: value (housing value), income (household income),
open (open space in the neighborhood), plumb (percentage of housing units without
plumbing), and dist (distance to Columbus business district). Columns 6-10 provide the
corresponding model type, posterior model probability, DIC-2, DIC, and WAIC values.
The top 5 models are OLMs and the model with 6th highest posterior model probability
is the ICAR model with the same covariate structure as the model selected by the FBF
approach.

probability for an OLM with three covariates increased to 0.0104, so the model selected
by our initial FBF setup received even more prior mass from uniform priors. The total
posterior model probability of selecting an OLM was 0.5089, which is an increase from
the prior probability of 0.3333 of selecting an OLM. The posterior inclusion probabil-
ities for the candidate predictors are 0.6827, 0.9033, 0.1816, 0.3002, and 0.8830 when
performing selection with uniform model priors. Among OLM and ICAR models, the
DIC selects the ICAR model with the covariate housing value and WAIC selects the
ICAR model with covariates housing value and open space in the neighborhood. The
DIC-2 selects the same OLM as the FBF approach. The DIC-2, DIC and WAIC values
for their chosen models are 369.736, 265.814 and 288.481, respectively. This coincides
with the simulation study in Section 4, which indicates that the DIC and WAIC cri-
teria in particular tend to select spatial models over OLMs more often than the FBF
approach does. The estimated value of τ for this data set is 1.9794, which does not in-
dicate strong spatial dependence among the observations. Despite the low sample size,
this application highlights the ability of our FBF method to select both independent
and spatial data models in real spatial applications.

6 Discussion
We have presented a FBF approach that enables automatic, objective Bayesian model
selection for hierarchical models with ICAR spatial random effects. We have derived
integrated likelihood expressions and the resulting FBFs under the reference prior for
areal data, which acts as an automatic prior. We found the minimal training size for the
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FBF for the hierarchical model with an ICAR prior when the reference prior is assigned
to all model parameters, and showed through simulation that our approach provides
consistent simultaneous selection of fixed effects and spatial model structure. Notably,
our FBF approach provides superior results, in terms of both detection of covariates and
spatial dependence, to the widely used model selection criteria DIC and WAIC. When
compared to the type 2 DIC, which is calculated using a likelihood with the spatial
random effects integrated out, the performance from our FBF approach is superior and
more reliable in simulations. However, the type 2 DIC selects the same model as the FBF
approach in each of the two case studies presented in Section 5. We have demonstrated
in Section 4 that the FBF approach implemented with the reference prior performs
well for selection in spatial ICAR models, and Keefe et al. (2019) established that the
reference prior to have favorable properties for estimation. Thus, the FBF approach
provides the ability to use a single prior for both estimation and model selection for
spatially dependent areal data. Finally, we showed that our FBF selection approach
can be applied to spatial areal data sets of many sizes, and can be generalized to select
between different types of spatial random effects (e.g. ICAR versus SAR). As is the case
for other variable subset selection approaches, the model space grows exponentially with
the number of candidate predictors and, as is well known, exhaustive search becomes
computationally burdensome for large p. In this work we examine problems where the
entire model space can be enumerated and assigned posterior model probabilities. When
the model space is too large for exhaustive search, our FBF-based model selection
approach can still be used in conjunction with a stochastic search algorithm to explore
the model space such as the genetic algorithm used by Wu et al. (2020).

There are many possible avenues for future research. First, we note that our reference
FBF approach provides posterior model probabilities, which could be used in future
research to provide Bayesian model averaging for prediction. Other future work may
include developing model selection for data in the exponential family. In particular,
ongoing work addresses ICAR effects for Poisson and Binomial response data, which
commonly occurs in disease-mapping and health data. In principle, one could extend the
proposed methodology to the Poisson case by developing automatic and/or objective
priors for ICAR random effects in the Poisson context, deriving the minimal training
size, and applying FBF methodology to produce Bayesian model selection for count
data models.

Supplementary Material
Supplementary Material for “Objective Bayesian Model Selection for Spatial Hierarchi-
cal Models with Intrinsic Conditional Autoregressive Priors”
(DOI: 10.1214/23-BA1375SUPP; .pdf). Supplementary material for “Objective Bayesian
Model Selection for Spatial Hierarchical Models with Intrinsic Conditional Autoregres-
sive Priors” provides proofs for theoretical results and additional simulation results.
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