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Fast Bayesian Functional Regression for
Non-Gaussian Spatial Data∗

Hyun Bin Kang†, Yeo Jin Jung‡,¶ and Jaewoo Park§,‖

Abstract. Functional generalized linear models (FGLM) have been widely used
to study the relations between non-Gaussian response and functional covariates.
However, most existing works for FGLM assume independence among observations
and therefore they are of limited applicability for correlated data. A particularly
important example is spatial functional data, where we observe functions over
spatial domains, such as the age population curve or temperature curve at each
areal unit. In this paper, we extend FGLM by incorporating spatial random effects.
Especially, we study the relationship between the non-Gaussian response variable
and functional covariates that are spatially observed. However, such model has
computational and inferential challenges. The high-dimensional spatial random
effects cause the slow mixing of Markov chain Monte Carlo (MCMC) algorithms.
Furthermore, spatial confounding can lead to bias in parameter estimates and
inflate their variances. To address these issues, we propose an efficient Bayesian
method using a sparse reparameterization of high-dimensional random effects. We
also study the average coverage probabilities of the credible intervals of functional
parameters. We apply our methods to simulated and real data examples, including
malaria incidence data and US COVID-19 data. The proposed method is fast while
providing accurate functional estimates.

Keywords: functional regression, non-Gaussian spatial data, Markov chain
Monte Carlo, dimension reduction, Gaussian Markov random fields.

1 Introduction
With the rapid development of data collection technology, researchers in various dis-
ciplines face the challenge of extracting information from complex data, such as data
that vary over a continuum (e.g., time and frequency). Examples include growth curves
(Chen and Müller, 2012), temperature curves (Zhang and Chen, 2007), and credit card
transaction volumes over time (Kokoszka and Reimherr, 2012). In order to understand
such data that can be naturally viewed as curves or functions and are inherently infinite-
dimensional, a field of statistics called functional data analysis (Ramsay and Silverman,
2005; Horváth and Kokoszka, 2012; Wang et al., 2016; Kokoszka and Reimherr, 2017)
has been developed. Although standard functional data analysis methods are based on
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the independence assumption between functions, there is an increasing interest in an-
alyzing dependent functions. An important example is spatial functional data analysis
(Delicado et al., 2010; Guillas and Lai, 2010; Ruiz-Medina, 2012; Martínez-Hernández
et al., 2020), where we observe functional data over spatial locations such as spatio-
temporal data.

In this manuscript, we provide a new methodology to model the relationship between
non-Gaussian scalar response and functional covariates when each variable is observed
on spatial locations. For example, we regress coronavirus disease 2019 (COVID-19)
incidence (scalar response) on the age population curve (functional covariates) over
US counties. Furthermore, our model can easily incorporate scalar covariates, such as
the proportion of males in the same counties. It is an extension of previous works in
both modeling and computational aspects. In terms of modeling, we provide a flexi-
ble regression framework for studying non-Gaussian spatial responses with functional
and scalar covariates simultaneously. For computational aspects, we adapt dimension-
reduced Markov chain Monte Carlo (MCMC) algorithm (Hughes and Haran, 2013) to
carry out Bayesian inference for this new model quickly.

We use functional regression models when one of the variables of interest is func-
tional. Functional regression models can be divided into the categories of 1) function-
on-scalar models, which take the functional response and scalar covariate, 2) scalar-
on-function models, which take the scalar response and functional covariate, and 3)
function-on-function models, which take the functional response and functional covari-
ate. Although there are ample studies on scalar-on-function models (Cardot et al., 1999;
Cai et al., 2006; Hall et al., 2007; Crambes et al., 2009; James et al., 2009; Goldsmith
and Scheipl, 2014; Morris, 2015; Reiss et al., 2017), the attempts to incorporate random
effects in the framework of functional mixed models lie in function-on-scalar framework
(Guo, 2002; Morris and Carroll, 2006; Antoniadis and Sapatinas, 2007; Zhu et al., 2011;
Chen and Wang, 2011; Ma et al., 2021). Our proposed model, however, will be one of a
few studies that include random effects in scalar-on-function models. Furthermore, our
response variable is non-Gaussian. Functional generalized linear models (James, 2002;
Müller and Stadtmüller, 2005; McLean et al., 2014) have been developed to study a
non-Gaussian response variable in scalar-on-function framework. However, most studies
concerning functional generalized regressions assume independent random errors. Exam-
ples include a generalized functional regression with image predictors (Reiss and Ogden,
2010), variable selection method for generalized functional regression (Gertheiss et al.,
2013), functional generalized additive models (McLean et al., 2014), and estimation
methods for functional logistic regressions (Mousavi and Sørensen, 2018).

In this manuscript, we provide functional generalized linear models with spatial ran-
dom effects. Our Bayesian method is flexible in that it can apply to a wide variety of
exponential family models, including Bernoulli, Poisson, zero-inflated Poisson, negative
binomial, which is an important contribution of this paper. Note that there is abundant
literature on the applications of functional logistic regression; however, there are rela-
tively few studies on count responses. To the best of our knowledge, James (2002), and
Müller and Stadtmüller (2005) provide theoretical foundations on the estimation and
inference for functional generalized linear models with responses following exponential-
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family distributions, but their examples only concern Bernoulli responses. More ex-
amples of functional logistic regressions include Alzheimer’s disease classification using
PET images and Haar wavelet functions (Wang et al., 2017), variable selection for lo-
gistic regression by embedding the logistic model in RKHS (Bueno-Larraz et al., 2018),
and comparison of the performance of three logistic regressions with different penalties
(Mousavi and Sørensen, 2018), to name a few. But those models do not account for
spatial correlations as our proposed models do.

There have been several recent proposals to account for spatial correlations in the
context of functional regression. Zhang et al. (2016) propose a conditional autoregres-
sive (CAR) model for spacial correlations in function-on-scalar regression. In scalar-on-
function framework, Pineda-Ríos et al. (2019) propose functional simultaneous autore-
gressive (SAR) models to analyze an econometric data set. Huang et al. (2020) propose
a robust functional SAR model based on error terms’ t-distribution assumption. Aw and
Cabral (2020) develop a Bayesian inference for functional spatial linear models. We note
that all these works have focused on the Gaussian response variable. It is challenging
to specify a closed-form of maximum likelihood estimators by marginalizing out spa-
tial random effects for a non-Gaussian response. Furthermore, most previous literature
have studied small size spatial data sets (n ≈ 100). This motivates the development of
computationally efficient methods that allow researchers to study non-Gaussian spatial
data sets with functional covariates.

Spatial generalized linear mixed models (SGLMM) (Besag, 1974; Besag et al., 1991)
are popular for studying areal spatial data sets by adjusting spatial dependence within
a generalized linear model framework. In this manuscript, we introduce a functional
SGLMM (FSGLMM) which extends the areal SGLMM by incorporating functional
covariates. The Bayesian approach is useful for these models; it can easily provide un-
certainties of estimates by constructing joint posterior distributions of spatial random
effects and model parameters. However, similar to SGLMM, the Bayesian inference for
FSGLMM may suffer from computational and inferential challenges. (1) With increas-
ing observations, the number of spatial random effects grows, which results in high-
dimensional posterior distributions. (2) Spatial confounding (Reich et al., 2006; Hanks
et al., 2015) can inflate the variance of estimates, and make it difficult to interpret
fixed effects. To address these issues, we adopt recently developed sparse reparameter-
ization (Hughes and Haran, 2013) within a SoFR framework. We propose functional
sparse SGLMM (FSSGLMM) that uses reparameterization of high-dimensional random
effects. Our method can alleviate spatial confounding and is faster than FSGLMM as
it reduces the dimension of spatial random effects.

The outline of the remainder of this manuscript is as follows. In Section 2, we
introduce FSGLMM and introduce relevant notation. In Section 3, we propose functional
sparse SGLMM (FSSGLMM) and describe Bayesian inference via MCMC. Furthermore,
we provide theoretical justification for our method. In Section 4, we provide simulation
studies to investigate the performance of our methods. In Section 5, we apply our
approach to two non-Gaussian spatial data sets and conclude with a discussion and
summary in Section 6.



410 Fast Bayesian Functional Regression for Non-Gaussian Spatial Data

2 Functional Spatial Generalized Linear Mixed Models
Non-Gaussian spatial data sets frequently arise in many disciplines, including climate
science, epidemiology, and social science. Examples include Poisson data on malaria
incidence (Gopal et al., 2019) and satellite image data sets on the amount of water
vapor (Gao and Kaufman, 2015). Spatial generalized linear mixed models (SGLMM)
are useful for studying the relationship between scalar variables or understanding overall
spatial patterns from fitted results. In this section, we extend SGLMM to take functional
covariates.

Let S ⊂ R
2 be the spatial domain of interest. For a spatial location s ∈ S, let Ys

be a real-valued non-Gaussian random variable; let zs be a p-dimensional vector with
finite second moments; and let {Xs(t), t ∈ T } be a zero mean, second-order stochastic
process in L2(T ), the set of all square integrable functions on T . The space L2(T )
is equipped with the inner product 〈X1, X2〉 =

∫
T X1(t)X2(t)dt. These are observed

at spatial locations s1, · · · , sn. Consider Y = (Ys1 , · · · , Ysn)�, the observed response
over spatial locations; Z = (zs1 , zs2 , · · · , zsn)� ∈ R

n×p, the observed scalar covariates
over spatial locations; and X(t) = (Xs1(t), · · · , Xsn(t))�, the functional covariates that
depend on spatial locations.

At each spatial location we can define the spatially correlated random variable {Ws :
s ∈ S}. Here, W = (Ws1 , · · · ,Wsn)� is assumed to follow the Gaussian Markov random
field (Besag, 1974) with zero-mean. With an invertible link function g(·) and strictly
positive variance function σ2(·), we can define FSGLMM as

η = Zγ +
∫

X(t)β(t)dt + W

f(W|τ) ∝ τn/2 exp
(
− τ

2W�QW
)
,

(1)

where g−1(η) = μ = E (Y|W,Z,X) and V (Y|W,Z,X) = σ2(μ) = σ2(g(η)). The
functional parameter β is a square integrable function on T . Here, Q = diag(D1) − D
is the precision matrix where 1 is the n-dimensional vector of 1’s and D ∈ R

n×n is the
spatial adjacency matrix. Dij = 1, if ith location and jth location are neighbors, and
otherwise Dij = 0. The parameter τ measures the smoothness of the spatial field. In (1),
estimating the functional parameter β(t) is our main interest. In this manuscript, we
propose a Bayesian approach via MCMC to estimate model parameters.

Following Pineda-Ríos et al. (2019), we expand the functional covariate and param-
eter with respect to orthonormal basis functions {φj}j∈N ∈ L2(T ). Then we have

Xsi(t) =
∞∑
j=1

aijφj(t), β(t) =
∞∑
j=1

bjφj(t). (2)

In (2), {aij}j∈N are random variables associated with a spatial location si. With-
out loss of generality, we assume E(aij) = 0 and E(a2

ij) = σ2
j , for all i = 1, · · · , n.

Under the spatial homoscedasticity assumption (Pineda-Ríos et al., 2019) we have∫
E(X2

si(t))dt =
∑∞

j=1 σ
2
j < ∞. Since {φj}j∈N are orthornmal basis functions, using
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dominated convergence we have∫
Xsi(t)β(t)dt =

∫ ( ∞∑
l=1

ailφl(t)
)( ∞∑

j=1
bjφj(t)

)
dt

=
∞∑
l=1

∞∑
j=1

ailbj

(∫
φl(t)φj(t)dt

)
dt =

∞∑
j=1

aijbj

(3)

for each spatial location si. We approximate this infinite sum by the finite sum
∑k

j=1 aijbj
where k = kn increases as n → ∞. We assume that the sum

∑∞
j=k+1 aijbj becomes neg-

ligible. See Müller and Stadtmüller (2005) for more details. Let A = (aij)n×k be the
design matrix with the coefficients b = (b1, · · · , bk)�. From this we can represent (1) as

η ≈ Zγ + Ab + W = Ãb̃ + W. (4)

where Ã = (Z,A) and b̃ = (γ�,b�)�.

Let f(Y|b̃,W) be the conditional distribution of the response, which is from the
exponential family. Once we specify priors p(b̃), p(τ), we can define the joint posterior
distribution as π(W, b̃, τ |Y) ∝ f(Y|b̃,W)f(W|τ)p(b̃)p(τ). However, Bayesian infer-
ence for such models is computationally challenging due to the high-dimensional spatial
random effects W ∈ R

n. The dimension of the joint posterior increases with the in-
creasing number of observations n. Such high-dimensional random effects are spatially
dependent, which results in slow mixing of the MCMC algorithm.

Furthermore, there can be serious inferential issues in FSGLMM due to spatial
confounding between fixed and random effects as in a classical multivariate statistics
(Reich et al., 2006; Hodges and Reich, 2010). Spatial confounding arises frequently when
the spatial covariates A are collinear with the spatial random effects W. Consider the
projection matrix P = Ã(Ã�Ã)−1Ã and its complement P⊥ = I − P. Then we can
represent (4) as

η ≈ Ãb̃ + W = Ãb̃ + PW + P⊥W. (5)
Here, Ã is confounded with PW because of their linear relationship. To address such
multicollinearity issues, Reich et al. (2006) propose a restricted spatial regression model
by removing PW in (5). However, the Bayesian credible intervals obtained from a re-
stricted spatial regression model can be narrow; Hanks et al. (2015) suggest adding
a posteriori adjustments to the MCMC samples from this model. Hughes and Haran
(2013) develop sparse SGLMM to alleviate the spatial confounding and gain computa-
tional efficiency. Based on this approach, we develop a SoFR for non-Gaussian spatial
data that is fast, while providing accurate functional estimates.

3 Functional Sparse Spatial Generalized Linear Mixed
Models

Hughes and Haran (2013) develop a reduced rank approach that uses Moran eigenvec-
tors as a set of basis functions for spatial random effects. These natural basis functions
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are orthogonal to the fixed effects. Spatial filtering methods (cf. Griffith, 2000; Getis and
Griffith, 2002; Griffith, 2004) have been widely used for geographical and environmen-
tal science problems. By extracting eigenvectors from spatial configuration matrices,
filtering methods account for spatial dependencies or missing spatial covariates; there-
fore they are useful for addressing confounding issues. The eigenvectors are used as
basis functions to describe distinct spatial associations. Especially, Griffith (2000) uses
eigenvectors of (I − 11′/n)D(I − 11′/n) as additional predictors to filter out spatial
correlations (see Griffith (2002, 2004), as cases for non-Gaussian spatial data). This
operator is called as the Moran operator (Moran, 1950) that can measure dependencies
corresponding to spatial adjacency matrix D. By adapting these approaches, Hughes
and Haran (2013) develop a reduced rank approach that uses eigenvectors of the gen-
eralized Moran operator, P⊥DP⊥. These natural basis functions are orthogonal to the
fixed effect and account for spatial dependencies. Such Moran basis functions have also
been used in many spatiotemporal applications (e.g., Bradley et al. (2015); Musgrove
et al. (2016); Heaton et al. (2020)). Based on this we propose the functional sparse
spatial generalized linear mixed models (FSSGLMM) as follows.

η = Zγ +
∫

X(t)β(t)dt + Mδ

f(δ|τ) ∝ τm/2 exp
(
− τ

2δ
′M′QMδ

)
,

(6)

where M ∈ R
n×m is the projection matrix. To obtain the projection matrix M, we use

the following procedure. (1) We calculate P⊥, a complement of the projection matrix
P = Ã(Ã�Ã)−1Ã. Here, Ã is a matrix consisting of the observed scalar covariates
Z ∈ R

n×p and the design matrix from the functional basis expansion A ∈ R
n×k (i.e.,

Ã = (Z,A) ∈ R
n×(p+k)). (2) Then we compute the Moran operator P⊥DP⊥, where

D ∈ R
n×n is the spatial adjacency matrix defined in Section 2. (3) Lastly, we obtain

the M ∈ R
n×m by taking the first m principal components of the Moran operator. Note

that this requires a spectral decomposition of the n×n matrix, which becomes computa-
tionally expensive with increasing n, but this computation needs to be done only once.
For instance, for the COVID-19 data example (Section 5.2), we have n = 3,108, and a
spectral decomposition of P⊥DP⊥ takes about 150 seconds. However, we only need to
compute a spectral decomposition a single time before implementing our MCMC algo-
rithm. In the MCMC updates, M is not a model parameter but is a fixed design matrix
consisting of Moran’s eigenvectors. Therefore, we don’t need to repeat the spectral de-
composition of a high-dimensional matrix. Incorporating M in the model allows us to
capture distinct clustering patterns of residual to Ã, which contains the information of
both scalar and functional covariates. Furthermore, it also allows us to consider the un-
derlying neighborhood structure among observations (Boots and Tiefelsdorf, 2000). The
positive eigencomponents of the Moran operator correspond to the spatial clustering and
the negative ones correspond to spatial repulsion. Since modeling spatial clustering is
of interest in many cases, we consider the positive eigencomponents in our model as in
Hughes and Haran (2013). With this projection approach, we can represent (4) as

η ≈ Ãb̃ + Mδ. (7)
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Following recommendation in Hughes and Haran (2013), we use approximately 10% of
the eigencomponents to select m. For example, in our simulation studies we found that
m = 90 for n = 900 can provide accurate functional estimates.

3.1 Markov Chain Monte Carlo Methods for FSSGLMM
With the conditional distribution f(Y|b̃,M, δ) and priors p(b̃), p(τ), we can define the
joint posterior distribution for the FSSGLMM as π(δ, b̃, τ |Y) ∝ f(Y|b̃,M, δ)f(δ|τ)
p(b̃)p(τ). Compared to the original posterior π(W, b̃, τ |Y), the dimension of π(δ, b̃, τ |Y)
is much smaller (m + k + 1 << n + k + 1). Here, we use a diffuse multivariate normal
prior on b̃ ∼ N (0, 1000I) and an approximated reference prior 1/(0.5 + τ)2 proposed
by Ferreira et al. (2021). Note that the application of a naive uniform prior for τ would
lead to an improper distribution and the reference prior provides adequate uncertainty
quantification especially for Gaussian Markov random field (Keefe et al., 2019; Ferreira
et al., 2021). We observe that our method performs well across the different choices of
priors in practice. We provide prior sensitivity analysis in the supplementary material
(Kang et al., 2023). From this we can obtain full conditionals as

π(b̃|δ, τ) ∝
n∏

i=1
f(Yi|b̃,M, δ) × p(b̃)

π(τ |δ, b̃) ∝ τm/2 exp
(
− τ

2δ
′M′QMδ

)
× p(τ)

π(δ|b̃, τ) ∝
n∏

i=1
f(Yi|b̃,M, δ) × exp

(
− τ

2δ
′M′QMδ

)
,

(8)

which can be easily sampled using Metropolis-Hasting random walk updates. Starting
with an arbitrary initial value (δ(0), b̃(0), τ (0)) (e.g., sampling from the prior distribu-
tions), we successively update the parameters. Following Hughes and Haran (2013), we
update b̃ with a normal proposal with variance V̂, where V̂ is the estimated asymp-
totic covariance matrix from the standard GLM fit. We update δ by using a multivariate
random walk with normal proposals. We use the probabilistic programming language
nimble for implementing this, which is popular for Bayesian inferences. Then the sta-
tionary distribution from this MCMC algorithm converges towards the joint posterior
distribution π(δ, b̃, τ |Y).

Computationally efficient Bayesian approaches for latent variable models have been
widely developed. For example, Christensen and Waagepetersen (2002); Christensen
(2004); Christensen et al. (2006) proposed a fast mixing Langevin Hastings algorithm
for SGLMM that utilizes gradient information of the log posterior in proposal distribu-
tion. The integrated nested Laplace approximation (Rue et al., 2009; Lindgren et al.,
2011) can also quickly estimate marginal posteriors from latent Gaussian Markov ran-
dom fields. Polson et al. (2013) develop a data augmentation strategy based on the
Pólya–Gamma distributions, resulting in efficient Gibbs-sampling algorithms. Recently,
Bradley et al. (2018, 2020) introduce latent conjugate multivariate distributions for
dependent non-Gaussian data that allows a fast simulation from full conditional dis-
tribution. Adapting some of these computational methods to estimate our posterior
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π(δ, b̃, τ |Y) is possible. For the sake of concreteness, we focus here on the projection-
based MCMC algorithm (Hughes and Haran, 2013). They use the projection-based basis
functions, which can reduce the dimension of spatial random effects and make them less
correlated. Then a classic MCMC algorithm is implemented for this reduced-dimensional
representation. This is quite simple but effective for spatially correlated datasets, in-
cluding our cases. Due to such practical advantages, the reduced-rank approach using
Moran eigenvectors is applied in many complex Bayesian hierarchical models. Examples
include the Bayesian spatio-temporal model for functional magnetic resonance imaging
data (Musgrove et al., 2016) and the Bayesian change point model for estimating epi-
demic curves of respiratory syncytial virus (Heaton et al., 2020).

3.2 Theoretical Justifications
Consider the model in (8) and the following representations.

1. Let β ∈ L2(T ) be the true regression function that can be represented by β =∑∞
j=1〈β, φj〉φj ≡

∑∞
j=1 bjφj .

2. Let βkn =
∑kn

j=1 bjφj be the truncated regression function with kn large enough
so that

∑
j>kn

bjφj is negligible. And let bkn = (b1, · · · , bkn)�.

3. Let b(u)
kn

= (b(u)
1 , · · · , b(u)

kn
)� be the posterior sample from uth iteration of MCMC

(Section 3.1).

4. Let β(u)
kn

=
∑kn

j=1 b
(u)
j φj ∈ L2(T ) be a function constructed using MCMC samples.

5. Letβ̂(u)
kn

=
∑kn

j=1 b̄
(u)
j φjbe the estimated regression function where b̄(u)

j = 1
u

∑u
l=1 b

(u)
j .

Let b̄(u)
kn

=(b̄(u)
1 , · · · , b̄(u)

kn
)�.

Assumption 3.1 summarizes our presumptions. Overall, these assumptions are gen-
eral and not restrictive. The first assumption is that we are working under a given fixed
basis system. In the second assumption, kn depends on n, and both go to infinity, which
is commonly assumed. The third assumption allows us to do any computation on these
functions. Note that ‖ · ‖ is the norm in L2(T ), and ‖ · ‖Rp denotes the Euclidean norm.

Assumption 3.1. We make the following assumptions.

1. The basis system {φj}∞j=1 is a fixed orthonormal system of L2(T ).

2. The truncation kn → ∞ as n → ∞.

3. All of β, βkn , β(u)
kn

, and β̂
(u)
k are defined on the same probability space.

Under Assumption 3.1, we show that the functions constructed from the MCMC
sample converge in distribution to the true β in Theorem 3.1. Since the functions from
the MCMC sample follow the distribution of the true β, we can create the corresponding
credible intervals as in Section 3.3.
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Theorem 3.1. Consider the sequence of random functions {β(u)
kn

}n,u ∈ L2(T ). Then
β

(u)
kn

D→β as n → ∞ and u → ∞.

Proof. An ergodic Markov chain {b(u)
k }u∈N will converge to the stationary distribution

π(b|Y) in terms of total variation distance. Therefore, we have b(u)
kn

D→bkn as u → ∞
for every kn ∈ N. Then β

(u)
kn

D→βkn for every kn by the continuous mapping theorem.
Since βkn

D→β as n → ∞, we have β
(u)
kn

D→β as u → ∞ and n → ∞.

In Theorem 3.2, we show that our estimated regression function β̂kn converges in
probability to the true regression function β as both n (sample size) and u (MCMC
sample size) go to infinity.

Theorem 3.2. Consider the estimated regression function β̂
(u)
kn

. Under Assumption 3.1,
we have β̂

(u)
kn

P→β as n → ∞ and u → ∞.

Proof. First we fix kn. Since {b(u)
k }u∈N is an ergodic and stationary Markov chain, we

have b̄(u)
kn

P→bkn as u → ∞ by the law of large numbers. As

P
(
‖β̂(u)

kn
− βkn‖2 ≥ ε

2

)
= P

(
‖b̄(u)

kn
− bkn‖2

Rkn ≥ ε

2

)
→ 0,

we have β̂
(u)
kn

P→βkn as u → ∞ for every kn ∈ N.

Since βkn is the truncated version of β, we have βkn

P→β as n → ∞ (i.e. kn → ∞)
and this gives P

(
‖βkn − β‖2 ≥ ε

2
)
→ 0.

P
(
‖β(u)

kn
− β‖2 ≥ ε

)
≤ P

(
‖β(u)

kn
− βkn‖2 + ‖βkn − β‖2 ≥ ε

)
≤ P

(
‖β(u)

kn
− βkn‖2 ≥ ε

2

)
+ P

(
‖βkn − β‖2 ≥ ε

2

)
→ 0 + 0

as u → ∞ and n → ∞.

Investigating the ergodicity and stability of the Markov chain is crucial to guar-
antee convergence to the stationary distribution. For instance, Tong and Van Handel
(2012) studied the ergodic theory of nonlinear filters (i.e., the conditional distribution
of unobserved process for given observed process). Please also see seminal papers for
the convergence of Markov chain (Mengersen and Tweedie, 1996; Tierney, 1994). For
SGLMM, Christensen et al. (2001) showed that the Metropolis-Hastings algorithm with
a random walk proposal produces an ergodic Markov chain. This result is based on Lem-
mas 1.1, 1.2 in Mengersen and Tweedie (1996) and Corollary 2 in Tierney (1994), which
implies that an aperiodic, irreducible, positive Harris recurrent Markov chain is ergodic.
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Here, we also used a random walk proposal, which is a default setting in nimble to up-
date model parameters. Since Theorems 1, 2 do not require more than the standard
SGLMM settings in Christensen et al. (2001), we can apply this result to guarantee
convergence of the MCMC algorithm. However, the more challenging question is the
rate of convergence. For instance, Christensen et al. (2001) showed the geometric er-
godicity for both random walk Metropolis-Hastings and truncated Langevin-Hastings
algorithms in the standard SGLMM. Cowles (2002) also provide a convergence rate for
a spatial linear model with a pairwise-differences prior based on a drift condition and
a minorization condition (Rosenthal, 1995). However, these are quite MCMC sampler
specific. Deriving such conditions for the projection-based MCMC sampler is challeng-
ing even without functional covariates. This is an interesting avenue for future research
that is out of the scope of this paper.

3.3 Credible Intervals for Functional Parameter

The credible intervals for functional parameter can be constructed using the posterior
sample of MCMC,

{
b(l)
k

}u

l=1
=

{
(b(l)1 , . . . , b

(l)
k )�

}u

l=1
. We can reconstruct

{
β

(l)
k (t) =∑k

j=1 b
(l)
j φj(t)

}u

l=1
. We evaluate the β

(l)
k (th) for each point th, h = 1, . . . , H, where

t1 < t2 < . . . < tH , and l = 1, . . . u. We calculate the simultaneous credible bounds
following Crainiceanu et al. (2007). Let β̂k(th) and SD(βk(th)) be the sample mean and
sample standard deviation of

{
β

(l)
k (th)

}u

l=1
. Let Mα be the (1 − α) sample quantile of

max
1≤h≤H

∣∣∣∣∣β
(l)
k (th) − β̂k(th)
SD(βk(th))

∣∣∣∣∣ .
Then we find the (1 − α) simultaneous credible intervals become

I(α, th) = β̂k(th) ±MαSD(βk(th)), h = 1, . . . , H.

We summarize the procedure as the following.

1. We reconstruct β
(l)
k (t) =

∑k
j=1 b

(l)
j φj(t) from b(l)

k , for l = 1, . . . , u.

2. We evaluate β
(l)
k (th) for grid points th ∈ T , h = 1, . . . , H.

3. We find Mα by first calculating max1≤h≤H

∣∣∣∣β(l)
k (th)−β̂k(th)
SD(βk(th))

∣∣∣∣ for each l = 1, . . . , u

and then computing the (1 − α) sample quantile of them.

4. We construct the simultaenous confidence intervals by I(α, th) = β̂k(th) ±
MαSD(βk(th)), h = 1, . . . , H.



H. B. Kang, Y. J. Jung, and J. Park 417

4 Simulated Data Examples
We apply our approach to Poisson and Bernoulli data over the discrete spatial domain.
To illustrate the performance of FSSGLMM, we compare it with standard functional
GLM (FGLM) and FSGLMM. Our method is flexible in that we can construct a wide
variety of Bayesian hierarchical models with a minor change in nimble code. We also
provide simulation studies for zero-inflated Poisson and negative binomial in the sup-
plementary material. MCMC algorithms are run until the Monte Carlo standard errors
(Jones et al., 2006; Flegal et al., 2008) for FSSGLMM are at or below 0.01 (300,000
iterations). The simulation steps are as follows.

1. We construct the spatial adjacency matrix D ∈ R
900×900 using the neighbor struc-

ture on a 30 × 30 lattice over [0, 1]2 domain. We set a scalar covariate Z as the
coordinates of the vertices to the unit square with the scalar regression parameter
γ = (−1, 1)�.

2. To consider spatial correlations among functional observations, we generate func-
tional covariate coefficients A = (aij)n×k from the Matérn class (Stein, 2012)
covariance function, obtained from the distance matrix of Z. For each j, we sim-
ulate a·j = (aij)ni=1 from a Gaussian process with mean 1 and Matérn covariance
with variance 1, range 0.3, and smoothness as 1.5. By using 7 Fourier basis func-
tions over T = [0, 1], we create Xsi(t) =

∑7
j=1 aijφj(t) for i = 1, · · · , 900.

3. We calculate
∫
T X(t)β(t)dt numerically for given the true functional regression

parameter β(t). Especially, we investigate three different types of β(t) with zero
function, low frequency function, and high frequency function as follows:

• βzero(t) = 0
• βlow(t) = 0.2 cos(11t− 2) + 0.1 sin(8t− 1)
• βhigh(t) = 0.5(2(2t− 1)5 + 3(2t− 1)2 + cos(3π(2t− 1)).

For brevity, we focus on visualizing βhigh(t) in the manuscript. We provide results
for βzero(t) and βlow(t) in the supplementary material.

4. Following Hughes and Haran (2013), we construct a projection matrix M ∈
R

900×90 by taking positive eigencomponents of the Moran operator; this allows
positive spatial dependence (i.e., clustering) among observations. Then we simu-
late random effects δ from N(0, τM′QM) with τ = 0.3.

5. Given the generated random effects and covariates, non-Gaussian observations are
simulated from a link function g(·).

• We used a logit link log(p/(1 − p)) = Zγ +
∫

X(t)β(t)dt + Mδ for Bernoulli
observations.

• We used a log link log(λ) = Zγ +
∫

X(t)β(t)dt+Mδ for count observations.
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Figure 1: Regression function estimates for a simulated Bernoulli dataset. The left panel
shows the posterior mean estimates of βhigh(t) from FGLM, FSGLMM, and FSSGLMM
with varying ranks. The right panel shows the posterior mean estimates and correspond-
ing 95% credible intervals from FSSGLMM with 10% of n (i.e., m = 90).

4.1 Bernoulli Data
Figure 1 compares β̂high(t) estimates from different methods. We fit FSSGLMM at
m = 90, 180, 270, which correspond to 10%, 20%, 30% of n (sample size). We observe
that β̂high(t) obtained from FGLM, FSGLMM, and FSSGLMM with different ranks are
all reasonably close to the simulated truth. We also observe that the credible intervals
obtained from FSSGLMM can cover the true βhigh(t) well. Table 1 shows that FSS-
GLMM can recover the true parameter values well compared to the other two methods.
To measure the spatial correlation among residuals, we calculate the Moran’s I (Moran,
1950), a simple and popular nonparametric statistic. We note that this is more use-
ful for exploratory data analysis rather than rigorous statistical inference. We observe
that residuals from FGLM and FSGLMM are spatially correlated. On the other hand,
FSSGLMM account for such correlations and result in errors that are not spatially cor-
related. Furthermore, we observe that FSSGLMM is faster than FSGLMM due to the
projection step.

We repeat the simulation 100 times to assess the performance of our method. Figure 2
shows that the estimated curves from FSSGLMM are densely distributed around the
true curve. In general, the estimated curves from FSSGLMM are accurate with different
rank sizes. Figure 3 compares the mean square error (MSE) for all parameters. We obtain
MSE of β̂high(t) numerically as

1
1000

1000∑
h=1

(β̂high(th) − βhigh(th))2,

where th is an evaluated point for h = 1, · · · , 1, 200. We observe that FSSGLMM shows
the smallest MSE values for all model parameters. As described in Section 3.3, we inves-
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FGLM γ1 γ2 τ
Mean −0.936 0.961 NA

95%HPD (−1.826,-0.079) (0.398,1.513) NA
Moran’s I (p-value) 0.168 (0.000)

Time (min) 1.22
FSGLMM γ1 γ2 τ

Mean −0.788 0.919 0.260
95%HPD (−1.833,0.057) (0.282,1.512) (0.237,0.284)

Moran’s I (p-value) 0.149 (0.000)
Time (min) 18.92

FSSGLMM (10% of n) γ1 γ2 τ
Mean –1.145 1.179 0.238

95%HPD (−2.135,-0.290) (0.591,1.834) (0.124,0.386)
Moran’s I (p-value) −0.029 (0.877)

Time (min) 3.31
Table 1: Inference results for a simulated Bernoulli dataset. The true values are γ1 = −1,
γ2 = 1, τ = 0.3. FGLM and FSGLMM show high Moran’s I value, which means there
can be spatial correlations not accounted for by the model.

Figure 2: The posterior mean estimates of βhigh(t) for the 100 simulated Bernoulli
datasets. Red lines indicate true function. We fit FSSGLMM with varying ranks (10%,
20%, 30% of n).
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Figure 3: MSE obtained from the 100 simulated Bernoulli datasets under the high
frequency function. Overall the performance is robust across the different choice of
ranks for FSSGLMM.

tigate the coverages for 100 simulated datasets for βzero, βlow and βhigh in Table 2. Here,
we report the mean coverages from the simulated data sets. The mean coverages from
FSSGLMM are close to the 95% nominal rate. We also observe that the performance of
FSSGLMM is robust across different choices of ranks.

β FGLM FSGLMM FSSGLMM
Rank10

FSSGLMM
Rank20

FSSGLMM
Rank30

Bernoulli βzero 0.999 0.989 0.998 0.997 0.996
βlow 0.995 0.988 0.994 0.993 0.993
βhigh 0.998 0.985 0.995 0.994 0.994

Poisson βzero 0.718 0.683 0.993 0.941 0.884
βlow 0.692 0.645 0.992 0.944 0.867
βhigh 0.698 0.657 0.987 0.933 0.848

Table 2: Coverage obtained from 1,200 grid points for Bernoulli and Poisson datasets.
Mean coverage of 100 simulated datasets is calculated.



H. B. Kang, Y. J. Jung, and J. Park 421

Figure 4: Regression function estimates for a simulated Poisson dataset. The left panel
shows the posterior mean estimates of βhigh(t) from FGLM, FSGLMM, and FSSGLMM
with varying ranks. The right panel shows the posterior mean estimates and correspond-
ing 95% credible intervals from FSSGLMM with 10% of n (i.e., m = 90).

4.2 Poisson Data
We now repeat the same procedure with Poisson data. Figure 4 shows the estimated
functional parameters β̂high(t) of the three methods along with a credible intervals
of FSSGLMM. Compared to the estimates from FSGLMM and FGLM, β̂high(t) from
FSSGLMM are close to the truth. One noticeable difference with the Bernoulli case is
that the credible intervals are much narrower for the Poisson dataset. Table 3 shows
that FSSGLMM estimates can recover the truth. The point estimates from FSSGLMM
are much closer to the true parameters than the estimates from the other two models.
Furthermore, parameter estimates in FSGLMM are biased due to spatial confounding.
FSSGLMM can account for the spatial correlation in the data better than other meth-
ods, signified by the higher p-values of Moran’s I. We note that Moran’s I test is an
exploratory rather than a confirmatory tool.

We conduct the simulation 100 times. Figure 5 shows that the estimated curves from
FSSGLMM are densely distributed around the true curve compared to those from the
other two models. In the Poisson examples, the estimated curves become more accurate
with smaller m. In general, FSSGLMM shows the smallest MSE values across model
parameters except for τ (Figure 6). When we study the coverages for 100 simulated data
sets in Table 2, we observe that coverages from FSSGLMM are improved with smaller
rank, becoming close to the 95% nominal rate. Table 2 indicates that Poisson responses
are more affected by the frequency of curves than Bernoulli responses; coverages become
lower for a higher frequency curve. In the Bernoulli case, we only have two possible
outcomes (0 or 1); therefore, extreme values do not occur even with the high or low
peak of the curves. On the other hand, Poisson responses are more likely to be affected
by the frequency of curves because the peak values can lead to extreme count values.
Therefore, achieving the nominal rate for Poisson cases is more challenging when we
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FGLM γ1 γ2 τ
Mean −0.888 1.244 NA

95%HPD (−1.207,-0.575) (1.069,1.423) NA
Moran’s I (p-value) 0.497 (0.000)

Time (min) 2.03
FSGLMM γ1 γ2 τ

Mean −1.052 0.414 0.258
95%HPD (−1.333,-0.732) (0.244,0.572) (0.237,0.282)

Moran’s I (p-value) 0.289 (0.000)
Time (min) 19.71

FSSGLMM (10% of n) γ1 γ2 τ
Mean −1.165 0.965 0.224

95%HPD (−1.684,-0.642) (0.705,1.253) (0.137,0.289)
Moran’s I (p-value) −0.110 (0.999)

Time (min) 3.53
Table 3: Inference results for a simulated Poisson dataset. Estimates of FSSGLMM are
closest to the true values γ1 = −1, γ2 = 1, τ = 0.3. FGLM and FSGLMM show high
Moran’s I values which mean there can be spatial correlations not accounted by the
models.

Figure 5: The posterior mean estimates of βhigh(t) for the 100 simulated Poisson
datasets. Red lines indicate true function. We fit FSSGLMM with varying ranks (10%,
20%, 30% of n).
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Figure 6: MSE obtained from the 100 simulated Poisson datasets under the high fre-
quency function. In general, FSSGLMM shows the lowest MSE except for τ . MSE of
FSSGLMM becomes bigger as m increases.

have high-frequency functions. Note that Poisson data have not been studied much,
especially in the functional GLM context, and adapting extreme value models into our
framework could also be a potential extension.

5 Real Data Examples
We apply our method to two real data examples: (1) malaria incidence data and (2)
presence-absence confirmed cases of COVID-19 data. For both cases, FSSGLMM can
provide comparable functional estimates with the non-spatial model (FGLM) and ac-
count for spatial correlation. FSSGLMM can conduct statistical inference much faster
than FSGLMM. We also provide fitted results using FPCA in the supplementary ma-
terial.

5.1 Malaria Incidence Data
The malaria incidence data set has been collected from Ethiopia Demographic and
Health Surveys of 2015 (ICF, 2004-2017 (Accessed July, 1, 2020). The data set contains
malaria incidence (the Poisson response) from 557 GPS clusters in Ethiopia. Malaria is
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one of the leading causes of death worldwide and hence is of significant public health
interest. Investigating the relationship between malaria incidence and environmental
variables is important. We use the vegetation index of the region, the proximity to
water, and average annual rainfall as scalar covariates. The vegetation index can be
used to quantify the greenness of the GPS cluster; the higher value indicates the region
with dense vegetation. These variables are used in Gopal et al. (2019) for analyzing
malaria incidence in Keyna under a spatial regression framework. Furthermore, we use
the average monthly temperature (1970-2000) as a functional covariate. We expand
monthly temperature with 7 Fourier basis functions (Figure 7). We chose the number of
basis functions by minimizing generalized cross-validation (GCV) error. Then, we use
the population of the region as an offset. We construct the adjacency matrix using 5-
nearest neighbors based on the centroid of GPS clusters for spatial models. Algorithms
are run until the Monte Carlo standard errors (Jones et al., 2006; Flegal et al., 2008)
for FSSGLMM are at or below 0.001 (210,000 iterations).

Figure 7 shows the estimates of β(t) from different methods. Functional estimates
from FGLM and FSSGLMM show a similar trend compared to that from FSGLMM.
This is because parameter estimates from FSGLMM can be confounded. For FSSGLMM
estimates, we observe double peaks, which confirms high malaria incidence in March
and August. Table 4 provides estimates for scalar covariates and τ . We observe that
the vegetation index shows a negative relationship with malaria incidence. This sug-
gests that increased urbanization may result in low malaria transmission intensity. In
FSSGLMM, water and rainfall variables have a positive relationship with the response
variable. The results coincide with a study in Zhou et al. (2012), which shows that the
malaria risk was significantly higher in regions surrounding water bodies. The credible
intervals obtained from FSGLMM are wider than those from the other two methods;
spatial confounding can inflate variance estimates. As an exploratory data analysis, we
apply the Moran’s I statistics to check whether the residuals are spatially correlated.
A significant spatial correlation exists among residuals from FGLM estimates, while
the other two models (FSSGLMM and FSGLMM) can account for spatial correlation.
FSSGLMM is faster than FSGLMM for this example. Figure 8 compares the observed
malaria incidence with Poisson intensity estimates from FSSGLMM; spatial patterns
are similar between them.

5.2 US COVID-19 Data

In this section, we aim to model the COVID-19 incidences in 3108 US counties. We
use the percentage of male residents and the percentage of black residents as scalar
covariates. We also use the population pyramid of each county as a functional covari-
ate; we have 13 age groups (≤ 5, 5-9, 10-14, 15-19, 20-24, 25-34, 35-44, 45-54, 55-59,
60-64, 65-74, 75-84, ≥ 85). We expand the age population with 7 Fourier basis functions
(Figure 9), with the number of basis selected to minimize GCV error. The data on
confirmed COVID-19 cases in US counties as of May 23, 2020, is obtained from Kaggle
(https://www.kaggle.com/c/covid19-global-forecasting-week-5/), and is turned
into Bernoulli data based on whether the county had at least one confirmed case or not.
The age pyramid and demographic variables are obtained from the US Census. US

https://www.kaggle.com/c/covid19-global-forecasting-week-5/
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Figure 7: The top panel shows curves of monthly temperature across the 557 GPS
clusters of Ethiopia. The bottom panel shows the estimated functional parameter and
corresponding 95% credible intervals of each method.

Census provides county adjacency information for identifying which counties are neigh-
bors (https://www.census.gov/geographies/reference-files/2010/geo/county-
adjacency.html). We use that file to construct the spatial adjacency matrix in our

https://www.census.gov/geographies/reference-files/2010/geo/county-adjacency.html
https://www.census.gov/geographies/reference-files/2010/geo/county-adjacency.html
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FGLM Vegetation Water Rainfall τ
Mean −0.427 −0.037 0.044 NA

95%HPD ( −0.483, −0.364) (−0.081, 0.008) (−0.027 0.119) NA
Moran’s I (p-value) 0.488 (0.000)

Time (min) 0.552
FSGLMM Vegetation Water Rainfall τ

Mean −0.384 0.386 −0.195 0.193
95%HPD (−0.688, −0.090) (−0.052 , 0.792) (−0.646 0.215) (0.166, 0.222)

Moran’s I (p-value) −0.204 (1.000)
Time (min) 5.31
FSSGLMM Vegetation Water Rainfall τ

Mean −0.458 0.154 0.183 0.209
95%HPD (−0.526, −0.393) (0.110, 0.198) (0.100, 0.260) (0.160, 0.258)

Moran’s I (p-value) −0.146 (1.000)
Time (min) 3.40

Table 4: Inference results for malaria incidence data using Fourier basis functions.
210,000 posterior samples are generated from each method.

Figure 8: The left panel shows the observed malaria incidence. The right panel shows
Poisson intensity estimates from FSSGLMM. Spatial pattern are similar between the
estimated and the observed data.

models. MCMC algorithms were run until the Monte Carlo standard errors (Jones
et al., 2006; Flegal et al., 2008) for FSSGLMM are at or below 0.01 (330,000 iterations).

Figure 9 illustrates the estimates of β(t) from different models. Functional estimates
from FSSGLMM and FGLM are similar, while the functional estimate of FSGLMM
has a slightly different curve. For estimates from FSSGLMM, we observe high (age
group 45-54) and low (age group 75-84) peaks; people in the 45-54 (75-84) age group
have a high (low) risk for contracting COVID-19. We note that this is a county-level
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Figure 9: The top panel shows age population curves across the 3108 US counties. The
bottom panel shows the estimated functional parameter and corresponding 95% credible
intervals of each method.

study; therefore, we cannot interpret this result at the individual level. For instance,
we do not imply that an individual in the 75-84 age group has a low risk, but rather
that the county with a high population of individuals in the 75-84 age group has a
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FGLM Male Black τ
Mean −13.558 2.383 NA

95%HPD (−16.700, −10.685) (1.820, 2.942) NA
Moran’s I (p-value) 0.399 (0.000)

Time (min) 3.260
FSGLMM Male Black τ

Mean −6.279 13.851 0.086
95%HPD (−10.401, −2.156) (2.181, 5,568) (0.052, 0.123)

Moran’s I (p-value) −0.067 (1.000)
Time (min) 132.073
FSSGLMM Male Black τ

Mean −14.957 3.109 0.097
95%HPD (−18.224, −11.859) (2.437, 3.769) (0.067, 0.127)

Moran’s I (p-value) 0.069 (0.000)
Time (min) 22.814

Table 5: Inference results for US COVID-19 data using Fourier basis functions. 330,000
posterior samples are generated from each method.

low COVID-19 risk. From our functional estimates, we can conclude that having more
people in 45-54 (75-84) age group would increase (decrease) the spread of COVID-19.
This is reasonable, because people in 45-54 (75-84) age group are likely (less likely) to
move for economic/daily activities. Table 5 provides estimates for scalar covariates and
τ . We observe that the proportion of males shows a negative relationship, while the
proportion of black shows a positive relationship with the risk of contracting COVID-
19. Millett et al. (2020) also report that US counties with a higher proportion of blacks
had more COVID-19 diagnoses. Due to spatial confounding, the credible intervals from
FSGLMM are wider than those from the other two models. Moran’s I statistics indicate a
significant spatial correlation among residuals from the non-spatial model (FGLM). The
Moran’s I statistics of FSSGLMM also implies significant spatial correlation. However,
we note that the value has greatly decreased compared to Moran’s I statistics of FGLM.
For this large non-Gaussian spatial data set, FSSGLMM takes about 20 minutes, while
FSGLMM takes about 2.2 hours. Figure 10 indicates that there are similar spatial
patterns between observed and estimated presence from FSSGLMM.

6 Discussion
In this manuscript, we propose a fast Bayesian functional regression for a non-Gaussian
spatial response. Based on a sparse reparameterization (Hughes and Haran, 2013), FSS-
GLMM is computationally efficient and can alleviate spatial confounding. We have stud-
ied the convergence in distribution of functional parameters with increasing n (sample
size) and u (MCMC iteration). Furthermore, we show that the estimated regression
function obtained from the posterior mean converges to the true function. Through
simulated and real data applications, we show that our method provides accurate esti-
mates and can account for spatial correlations. To the best of our knowledge, this is the
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Figure 10: The left panel shows the observed COVID-19 presence at the observation. The
right panel shows the estimated presence. Red points denote the COVID-19 presence
and blue points denote absence. Spatial patterns are similar between FSSGLM estimates
and the observed data.

first attempt to study SoFR with spatially correlated errors and with response variables
following under-studied exponential families such as Poisson responses.

We have studied the performance of simultaneous credible intervals of functional
parameters. We note that these simultaneous credible intervals are different from simul-
taneous credible band. Simultaneous credible intervals, often used in spline regression,
achieve the average coverage probability of 0.95 whereas simultaneous credible band
is expected to achieve coverage probability of 0.95. The frequentist methodologies for
confidence bands in functional data analysis are underdeveloped (Liebl and Reimherr,
2019), let alone the studies on utilizing MCMC samples. Simultaneous confidence bands
are mostly found using either simulation-based methods (e.g. Bunea et al., 2011; Degras,
2011; Cao et al., 2012) or bootstrap methods (e.g. Cuevas et al., 2006; Chang et al.,
2017). Most simulation-based methods often assume the asymptotic normality of func-
tional data in the Banach space and focus on finding the simultaneous confidence band
for the mean function whereas the bootstrap methods allow finding confidence bands of
other functional estimators such as sample variance and trimmed mean (Cuevas et al.,
2006) or coefficient function in function-on-scalar regression (Chang et al., 2017). Here,
we provided the simultaneous credible intervals based on the MCMC-sampled func-
tions as in Crainiceanu et al. (2007). We observe that the average coverage probability
obtained from FSSGLMM can achieve a nominal rate, while Poisson cases are more
affected by the frequency of curves. As we pointed out, peak values of the curves can
lead to extreme Poisson responses, resulting in lower coverage.

Although the simultaneous credible intervals can provide useful insights for the true
function, they may not be directly applicable to determine the significance of function
(i.e., testing whether β(t) = 0 or not). In order to come up with credible bands that
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achieve average probability of 1−α, we may need to consider a botostrap-based methods,
but it is computationally challenging and requires further studies. We also plan to
develop a hypothesis testing method for FSSGLMM to actually determine whether
the functional parameter is nonzero or not. Testing for the functional mixed models
are studied in Morris and Carroll (2006) and Antoniadis and Sapatinas (2007) but
they concern function-on-scalar models with functional responses and scalar covariates,
whereas our model stems from scalar-on-function models. Also, as our response is non-
Gaussian and our random effects are spatially correlated for FSSGLMM, these further
complicate the development of an inference method for FSSGLMM. In addition, since
the interest in many applications lies not on testing whether the function is identically
0 or not, but rather on determining whether specific regions or features of the curves
are different from 0 (Morris and Carroll, 2006), we plan to develop a hypothesis testing
for a given domain of the curve.

In the classical linear models, introducing spatially correlated random effects poses
challenges in statistical inference. Unlike the i.i.d. case, the evaluation of likelihood
function requires high-dimensional integration with respect to spatial random effects.
Especially for non-Gaussian responses we consider in this manuscript, such integration
is intractable; therefore, we need to construct high-dimensional joint posterior with
model parameters and random effects. The same issues arise in functional spatial models
because we represent functional terms with a finite basis expansion, which turn into the
classical linear model form. Therefore, the slow mixing of MCMC for high-dimensional
posteriors and spatial confounding can lead to unreliable basis coefficient estimates,
resulting in difficulties in recovering true curves compared to the i.i.d case. Our method
can alleviate such issues by adapting sparse reparameterization (Hughes and Haran,
2013) and show improved performance compared to other competitors. Furthermore, the
complexity of the functional parameter adds another layer of difficulty in estimation.
If the functional parameter is of high frequency, it can require more basis functions,
resulting in higher dimensional posteriors. In our method, we choose the best number
of basis based on cross-validation for our functional predictor X(t) and use the same
basis functions in estimation for functional parameter β(t). If the functional predictors
are of lower frequency or of less complexity, then the resulting expansion using these
bases may not lead to a close estimation.

Our method can incorporate functional variables into a spatial regression framework
without information loss. Variables such as temperatures or growth curves are innately
functional data. Instead of using a numeric summary (e.g., mean, quantiles) of these
functional data, our model uses the full information. This can provide a time-varying
(functional domain-specific) interpretation of spatial covariates. Furthermore, analyz-
ing such variables within the multivariate statistics framework cannot adjust for the
correlation within each sample (function).

A great deal of spatial functional data has been collected and analyzed in scientific
studies. We focus on studying epidemiological data sets, but the method we have devel-
oped can be broadly applicable to data sets in different disciplines. Examples include
the brain signals (frequency curves) which are observed over brain voxels (Musgrove
et al., 2016), predicting the risk of drought (Escabias et al., 2005) using atmospheric
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functional variables, and identifying the gene and time-varying environment exposure
interaction of human disease (Wei et al., 2014).

Supplementary Material
Supplementary Material of “Fast Bayesian Functional Regression for Non-Gaussian Spa-
tial Data” (DOI: 0.1214/22-BA1354SUPP; .pdf). Supplementary material available on-
line contains the results of simulation studies under different basis functions, coverage
for simulated datasets with varying ranks, different frequencies of the true functional
parameter, zero-inflated Poisson and negative binomial responses, and weak spatial
dependence setting. It also provides MCMC diagnostics for real data examples and
sensitivity analysis of different priors.
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