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Dynamic Functional Variable Selection for
Multimodal mHealth Data

Matthew D. Koslovsky∗, Kelley Pettee Gabriel†, Michael Businelle‡,
David W. Wetter§, and Darla Kendzor‡

Abstract. Mobile health (mHealth) methods allow researchers to monitor study
participants in their natural environments in order to improve health-related out-
comes through behavior change. MHealth investigators are interested in under-
standing the feasibility of supplementing or even replacing actively collected data
with passively collected data to reduce participant burden, while also increasing
the temporal resolution of the data. In this work, we propose a novel Bayesian
dynamic functional variable selection method to explore the relations between
multimodal mHealth data collected on different time scales. Specifically, our ap-
proach leverages spiked hierarchical species sampling priors to identify critical
moments when a participant experiences momentary spikes in a low-frequency
outcome, characterize high-frequency outcome trajectories which are related to
these critical moments, and cluster the relational trends to explore potential sub-
populations. We introduce continuous-time multistate Markov model priors to
inform selection based on information learned at previous assessments. We demon-
strate the variable selection and clustering performance of our model in various
simulation settings motivated by the data structures found in mHealth studies.
We then apply our model to multimodal intensive longitudinal data collected in
the Pathways between Socioeconomic Status and Behavioral Cancer Risk Factors
Study to explore relations between physical activity passively collected with ac-
celerometers and mood actively collected with ecological momentary assessment
methods.
Keywords: accelerometry, clustering, ecological momentary assessment, joint
modeling, nonparametric Bayes, species sampling priors.

1 Introduction
Behavioral mobile health (mHealth) research refers to the use of mobile phones and other
wireless technology to monitor study participants in their natural environments with the
goal of understanding and improving health-related outcomes through behavior change.
These methods have been applied in various research areas including smoking cessation,
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medication adherence, drug abuse prevention, sports injury, and promotion of healthy
behaviors, including physical activity and diet (Businelle et al., 2016; Kendzor et al.,
2016; Walsh et al., 2016; Kazemi et al., 2017; Anglada-Martinez et al., 2015; Zapata-
Lamana et al., 2020; Businelle et al., 2024). A popular mHealth technique in behavioral
health research is the use of ecological momentary assessment (EMA) methods which
involve the repeated assessment of individuals in their natural environment to capture
behavioral, psychological, and environmental factors that may relate to a behavioral
outcome in near real time. In these studies, participants are often prompted to respond
to report-based surveys on mobile devices such as smartphones at random or prespec-
ified time points. In addition to EMAs, behavioral health researchers may passively
collect various forms of information from wearable sensors (e.g., acceleration/move-
ment, locations, physiological information such as heart rate or skin temperature, and
biochemical measures). By fusing or integrating these different data sources, or mul-
timodal data, together, researchers are able to investigate participants’ potential risk
factors and behavioral outcomes from a third-person observational perspective which
promotes ecological validity (Nelson and Allen, 2018; Kumar et al., 2013; Mitchell, 2007;
Rehg et al., 2017). Overall, mHealth methods have helped researchers better understand
complex psychological and behavioral processes, in addition to enhancing their ability
to design, evaluate, and deliver tailored intervention strategies based on a participant’s
risk profile at critical moments throughout the assessment period (Rehg et al., 2017;
Heron and Smyth, 2010; Nahum-Shani et al., 2017; Businelle et al., 2016; Hébert et al.,
2020).

MHealth investigators are currently evaluating the feasibility of supplementing or
even replacing actively collected intensive longitudinal data (ILD) with passively col-
lected data. Here, ILD refers to repeated measures data intensively collected on indi-
viduals to capture complex patterns of change over time (Walls and Schafer, 2006). For
example, studies have recently begun to examine the relation between EMAs of nega-
tive affect (active data collection) and accelerometer measurements of physical activity
(passive data collection), rather than relying upon report-based methods that use a
recall period (e.g., past week) to prompt recall (Kim et al., 2018). Passively collecting
data would reduce participant burden and can increase the temporal resolution of the
data, while still providing insights into related behavioral patterns and momentary risk
factors that may initiate intervention delivery (Blaauw et al., 2016; Bertz et al., 2018).
Integrated analyses targeting this aim are challenged by the high-dimensionality, large
amounts of within- and between-subject heterogeneity, missingness, measurement error,
repeated measures structure, and unbalanced, unequally-spaced assessment times that
are characteristic of mHealth data. Analysis is further challenged when multimodal be-
havioral mHealth data (e.g., EMAs and accelerometer data) are collected at different
temporal resolutions, which requires novel analytical approaches for information fusion
(Kumar et al., 2013).

To explore the relations between passively and actively collected behavioral mHealth
ILD on different time scales, we design a Bayesian joint model which links submodels
for high-frequency accelerometer data and low-frequency EMA data together with a
novel spiked hierarchical nonparametric prior on their joint distribution. Our method



M. D. Koslovsky et al. 3

targets the following research objectives: (1) identify critical moments when a partic-
ipant experiences spikes in the low-frequency outcome; (2) characterize trajectories of
the high-frequency measure which are related to these critical moments; and (3) cluster
the relational trends within and between participants to suggest potential subpopula-
tions. By addressing these exploratory research aims, our proposed model belongs to
the emerging class of dynamic variable selection methods but breaks new ground by
performing dynamic functional variable selection.

Commonly, researchers take a two-stage approach to model the relations between
ILD collected on different time scales in which the low-frequency outcomes are matched
with summary measures of the high-frequency data over prespecified assessment win-
dows, or epochs, based on their proximity in time. In practice, summary measures may
take on various forms from basic summary statistics (e.g., sample means and variances)
to parameter estimates from fitted models (e.g., subject-level effects from mixed-effects
location-scale models) (Kürüm et al., 2016; Dzubur et al., 2020; de Brito et al., 2020;
Cushing et al., 2017). Thereafter, the relations between the low-frequency outcomes
and proximal summaries of the high-frequency measures are typically investigated us-
ing standard repeated measures modeling techniques, such as generalized estimating
equations and generalized linear mixed models (Fitzmaurice et al., 2008). However, in-
ference is highly dependent on the selection of summary measures used in the first stage
of the analysis which may not fully capture the complexity of the individual trajecto-
ries within each epoch. Additionally, it is well known that two-stage approaches may
underestimate model uncertainty and potentially produce biased results (Sayers et al.,
2017).

Alternatively, joint modeling techniques provide a flexible framework for handling
multimodal longitudinal data and have been shown to properly accommodate model
uncertainty and reduce inferential bias in various settings (Tsiatis and Davidian, 2004;
Rizopoulos and Lesaffre, 2014; Bigelow and Dunson, 2009). The strength of this frame-
work stems from its flexibility in accommodating various types of outcome structures
found in longitudinal data analyses (e.g., continuous, binary, time-to-event, or recurrent
events) and specifications of the shared parameters (e.g., individual-level intercept or
slope terms or area under the longitudinal trajectory over a window of time) which are
used to link outcomes together. Despite their widespread use in biomedical research,
joint modeling techniques are often overlooked in mHealth settings where they are par-
ticularly relevant (Scherer et al., 2017).

Historically, functional data analysis (FDA) methods have played an integral role
in mHealth research for investigating the dynamic relations between risk factors and
behavioral outcomes using ILD for intervention evaluation and design (Dziak et al., 2015;
Tan et al., 2012; Koslovsky et al., 2018a, 2020; Liang et al., 2023). FDA methods are
well-suited for high-dimensional data with unbalanced and unequally-spaced observation
times, matching the format of data collected with mHealth methods. They also require
few assumptions on the structure of the relations between risk factors and behavioral
outcomes. One of the most popular FDA methods applied in mHealth studies is the
concurrent functional, or varying-coefficient, regression model which relates a functional
response to concurrently observed functional covariates (Ramsay and Silverman, 2002;
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Hastie and Tibshirani, 1993). This approach is often used to investigate how a risk
factor’s relation with the outcome varies as a function of time, often referred to as a time-
varying effect model (Tan et al., 2012). Recent extensions include mixture formulations
to investigate subgroups of subjects who respond similarly over time (Dziak et al., 2015)
and variable selection techniques to identify significant functional covariates and learn
clusters of risk factors that share similar trends (Koslovsky et al., 2020; Goldsmith and
Schwartz, 2017). Relatedly, Islam et al. (2018) introduced a two-step variable selection
method for varying functional linear models to identify relations between recent past
behavior of forearm electromyogram signals with finger/wrist velocities, allowing the
functional terms to vary with position. While these methods provide unique insights into
the complex relations found in mHealth data streams, they are not designed to explicitly
identify critical moments when the data may be related over time, information that is
necessary for the evaluation, design, and delivery of tailored intervention strategies for
behavior change (Walls, 2013).

Advanced methods for dynamic variable selection have recently been proposed to
identify moments in which regressors are active or inactive over time (Rockova and
McAlinn, 2021; Cassese et al., 2019; Kowal et al., 2019). In particular, Cassese et al.
(2019) employ zero-inflated conditionally identically distributed species sampling priors
to identify momentary departures or spikes of a process from a baseline state over
time and space. Their model belongs to the class of “spiked” nonparametric priors,
which have recently gained traction in various applied settings as they provide Bayesian
nonparametric inference on clustering patterns while simultaneously performing variable
selection (Kim et al., 2009; Koslovsky et al., 2020; Savitsky and Vannucci, 2010; Canale
et al., 2017). Despite their strengths, existing methods for dynamic variable selection
are limited to individual time series or data collected on the same time scale, do not
accommodate functional covariates, and are not designed to identify clusters of temporal
trends within and between participants, which limits their use in mHealth research.

In this work, we design a Bayesian joint model to perform dynamic functional vari-
able selection on ILD collected on two different time scales. Specifically, our approach
leverages spiked hierarchical species sampling priors (sHSSPs) to identify and cluster
momentary spikes in a low-frequency outcome that are associated with the functional
trajectory of a high-frequency outcome measured within proximal epochs. To capture
individuals’ momentary spikes in their low-frequency outcome over time, we embed dy-
namic latent inclusion indicators which we assume follow a continuous-time multistate
Markov model. This approach accommodates unbalanced, unequally-spaced assessment
times and potential missingness from device malfunction or nonresponse, characteristic
of data collected in mHealth studies. Our method is developed to explore the relations
between multimodal ILD collected in the Pathways between Socioeconomic Status and
Behavioral Cancer Risk Factors (Pathways) Study. By addressing the research objectives
outlined above, we develop the first method for dynamic functional variable selection.

In the following section, we present our dynamic functional variable selection method
for ILD collected on two different time scales. In Section 3, we evaluate the dynamic
functional variable selection and clustering performance of the proposed method on sim-
ulated data. Section 4 applies the proposed method to investigate multimodal mHealth
data collected in the Pathways study. We conclude with final remarks in Section 5.
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2 Model
We first introduce the high-frequency outcome model used to estimate the functional
trajectories. Next, we describe the low-frequency outcome model which is designed to
capture observation-specific spikes from participants’ average observations over the as-
sessment period. We then construct a hierarchical prior for the joint distribution of
the trajectories and proximal observation-specific effects which links the two models to-
gether. Let Yij represent the low-frequency outcome for the ith participant, i = 1, . . . , N ,
collected at the jth assessment, j = 1, . . . , ni. Motivated by the application data, assume
Uijk ∈ {0, 1} represents the kth measurement, k = 1, . . . , nij , of the ith participant’s
high-frequency binary outcome within the epoch paired with the jth assessment. For
example, 1 may represent active behavior, and 0 otherwise. Let tij represent the time
at which observation Yij is collected, and tijk represent the time Uijk is measured.

2.1 High-Frequency Outcome Model

To model the binary high-frequency outcome, we assume

logit(P (Uijk = 1|tijk,xijk,θij)) = fij(tijk) + μU (tijk), (1)

where fij(·) represents the functional trajectory for the ith participant at the jth as-
sessment and μU (tijk) represents a general regression term, which may include subject-
or population-level trends given baseline or time-dependent covariates, xijk. In FDA,
functional trajectories are typically modeled with basis functions (e.g., splines, Fourier
series, principal components, wavelets, and others), where the type of basis functions
used depends on the characteristics of the data (Ramsay and Silverman, 2002). For ex-
ample, Fourier basis functions are often used for cyclical or periodic functions, wavelets
for irregular functions with rapid changes or discontinuities, and spline basis functions
for relatively smooth, nonperiodic functions (Morris, 2015). In general, the proposed
dynamic functional variable selection framework is flexible to various basis functions as
well as fully nonparametric approaches (e.g., Gaussian processes) to model the smooth
functions (Shi and Choi, 2011; Rodríguez et al., 2009). Since the number of smooth
functions estimated in the model increases with the number of participants and assess-
ments, we preferred a semiparametric approach over nonparametric alternatives due to
its computational efficiency. Given the structure of the high-frequency outcome data
in the application (i.e., relatively smooth, nonperiodic), we chose to approximate the
functional trajectories fij(·) with B-spline basis functions, where the S-dimensional
vector θij represents the corresponding spline coefficients. To reduce the impact of
choosing the number and position of the knots on inference, we chose to include a
large number of equidistant knots and then penalized the spline coefficients, θij , with a
horseshoe prior (Carvalho et al., 2010) which encourages smoothness and avoids over-
fitting. For efficient sampling of the resulting posterior distribution of θij , we imple-
mented the data augmentation approach of Makalic and Schmidt (2015). Specifically,
we assume θijs ∼ Normal(0, vθvθs), for s = 1, . . . , S, where the global variances vθ
∼ Inverse-Gamma(1/2, 1/Aθ), local variances vθs ∼ Inverse-Gamma(1/2, 1/ϑθs), and
auxiliary parameters ϑθ1 , . . . , ϑθS ,Aθ ∼ Inverse-Gamma(1/2, 1). Note that the spline
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coefficients will eventually be linked to the observation-specific effects introduced in
Section 2.2 via a hierarchical model on their joint distribution.

2.2 Low-Frequency Outcome Model

For the low-frequency outcome, we assume a linear regression model

Yij = αij + μY (tij) + εij , (2)

where αij represents an observation-specific effect for the ith participant at the jth

assessment, μY (tij) represents a general regression term, which may include subject-
or population-level trends given baseline or time-dependent covariates, xij , and εij is
an error term. We propose αij as an observation-specific intercept term, but the model
could easily be adjusted to accommodate observation-specific effects for other covariates.

The interpretation of αij depends on the specification of μY (tij). For example, if
μY (tij) = βi, then a non-zero value for αij is interpreted as a departure in a partici-
pant’s mean low-frequency outcome at a particular assessment. To identify these critical
moments, we assume spike-and-slab priors for αij (George and McCulloch, 1997; Brown
et al., 1998). See Section 2.3 for more details, including the hierarchical model for the
joint distribution of αij and θij that links the low- and high-frequency outcome mod-
els together. To complete the low-frequency outcome model specification, we assume
εij ∼ Normal(0, σ2) with σ2 ∼ Inverse-Gamma(aσ2 , bσ2).

2.3 Spiked Hierarchical Species Sampling Priors

Species sampling models are a general class of discrete random measures that includes
the famed Dirichlet process (Ferguson, 1973) and its generalization the Pitman-Yor pro-
cess (Pitman and Yor, 1997; Pitman, 1996). Species sampling priors are commonly used
to govern clustering allocation due to their computational simplicity (Ray and Mallick,
2006; Suarez and Ghosal, 2016; White and Gelfand, 2020; Das et al., 2021). Hierarchical
species sampling priors enable group-based clustering and allow the sharing of clusters
across groups (Bassetti et al., 2020). To identify clusters of high-frequency outcome tra-
jectories that are dynamically associated with momentary spikes in the low-frequency
outcome within and between participants, we jointly model the observation-specific ef-
fects, αij , and the functional parameters, θij , with a hierarchical species sampling prior
(HSSP). Specifically for Θij = (αij ,θij), we assume

Θi1, . . . ,Θini |pi ∼ pi, i = 1, . . . , N,
(p1, . . . , pN )|p0 ∼ SSrp(q1, p0),

p0 ∼ SSrp(q0, G0),
(3)

where SSrp is a species sampling random probability, q1 and q0 are exchangeable par-
tition probability functions characterizing the process, and G0 is the base distribution.
Common choices of SSrps include the Pitman-Yor (PY) process (Pitman and Yor,
1997), PY (�, ϑ,G), and the Dirichlet Process (DP) (Ferguson, 1973), DP (ϑ,G), with
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discount parameter �, 0 ≤ � < 1, concentration parameter ϑ > −�, and base distribu-
tion G. For example by assuming a DP at both levels of the HSSP in (3), the hierarchical
DP presented in Teh et al. (2006) is obtained, which we denote as DPDP(ϑ0, ϑ1, G0).
See Bassetti et al. (2020) for more details of HSSPs, including those with non-diffuse
base distributions, and Ghosal and Van der Vaart (2017), Müller and Quintana (2004),
and Hjort et al. (2010) for a more general review of Bayesian nonparametric modeling
approaches.

In exploratory research settings, researchers often use spiked nonparametric priors to
simultaneously perform variable selection and clustering in a unified framework (Dunson
et al., 2008; Kim et al., 2009; Savitsky and Vannucci, 2010; Canale et al., 2017; Cassese
et al., 2019; Koslovsky et al., 2020). There are two popular techniques for construct-
ing spiked nonparametric priors (i.e., “inner” and “outer” formulations (Canale et al.,
2017)). “Inner” formulations, which assume a non-diffuse base distribution (e.g., the
spike-and-slab prior (George and McCulloch, 1997; Brown et al., 1998)), are considered
less informative than “outer” formulations and more robust to prior misspecification
(Canale et al., 2017). In this work, we construct an “inner” formulation in order to
identify moments in which the high-frequency outcome trajectories are associated with
momentary spikes in the low-frequency outcome. Specifically, we assume that the base
distribution of the HSSP, G0, is the product of S normal distributions for θij described
in Section 2.1 and the spike-and-slab prior for αij introduced in Section 2.2. Specifically,

G0 =
S∏

s=1
N(0, vθvθs) × (N(0, vα)γij + δ0(1 − γij)) ,

where γij ∈ {0, 1} is a latent inclusion indicator and δ0(·) is a Dirac delta function, or
point mass, at zero. The latent inclusion indicator represents whether or not a subject is
experiencing a spike in negative affect at a given assessment and determines whether the
corresponding observation-specific effect, αij , is set to zero (spike) or is freely estimated
in the model (slab). By assuming a normal slab distribution, our method is able to
detect positive and negative spikes in the low-frequency over time which are related to
unique high-frequency outcome trajectories. Note that our approach is agnostic to the
length of the observation window for the high-frequency outcome trajectories and their
proximal relation with the corresponding low-frequency outcome.

2.4 Dynamic Selection Priors
The prior specification for the latent inclusion indicators controls the overall sparsity
of the model. Common assumptions include beta-binomial priors, logistic regression
priors which allow covariate information to inform the prior probability of inclusion, and
Markov random field priors which accommodate (un)known graphical structure (Stingo
et al., 2010; Li and Zhang, 2010). Since the latent inclusion indicators in the proposed
method represent momentary spikes in the low-frequency outcome over time, we propose
modeling transitions between spikes dynamically using a continuous-time multistate
Markov (MSM) model prior. While MSM models are often applied to mHealth data
to model participants as they transition through discrete behavioral states over time
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(Koslovsky et al., 2018b; Liang et al., 2021; Liu et al., 2017), they have yet to be used as
variable selection priors. Note that we assume a continuous-time MSM model as opposed
to a discrete-time MSM model to handle unbalanced and unequally-spaced assessment
times characteristic of mHealth data. Specifically, we assume that the probability of γij
depends on the realization of the previous inclusion indicator γi,j−1. For a two-state
Markov model, the transition probability matrix is defined as

P(δij) =

current state
0 1[ ]

previous 0 P (0, 0|δij) P (0, 1|δij)
state 1 P (1, 0|δij) P (1, 1|δij)

,

where P (0, 1|δij) is interpreted as the probability of transitioning from an inactive latent
inclusion indicator (γi,j−1 = 0) to an active inclusion indicator (γij = 1) given δij =
tij − ti,j−1, the change in time between the current and previous assessment. Transition
probabilities have closed-form solutions, namely

P01(δij) = 1 − P00(δij) = λ

λ + μ
[1 − exp(−(λ + μ)δij)]

P10(δij) = 1 − P11(δij) = μ

λ + μ
[1 − exp(−(λ + μ)δij)],

where μ, λ < 0 represent transition rates (Pinsky and Karlin, 2010). For inference, the
steady state probability of experiencing a spike in the low-frequency outcome P1 =
1 − P0 = λ

λ+μ . In practice, μ and λ can be chosen a priori to induce sparsity in the
model or freely estimated by specifying a prior distribution that may depend on other
covariates.

In summary, the proposed dynamic functional variable selection method described
above is designed to explore the relations between passively and actively collected be-
havioral mHealth ILD on different time scales. Our approach links submodels for high-
frequency accelerometer data (Section 2.1) and low-frequency EMA data (Section 2.2)
together with a novel spiked hierarchical species sampling prior (Section 2.3) on their
joint distribution. To capture individuals’ momentary spikes in their low-frequency out-
come over time, we embed dynamic latent inclusion indicators which we assume follow
a continuous-time multistate Markov model (Section 2.4). As a result, the model is
able to identify critical moments that a participant experiences momentary spikes in
a low-frequency outcome, characterize high-frequency outcome trajectories which are
related to these critical moments, and cluster the relational trends to explore potential
subpopulations.

2.5 Posterior Inference
For posterior inference, we implement a Metropolis-Hastings within Gibbs algorithm.
The full joint posterior distribution is defined as

f(Y |x,α, c,d)f(U |x, c,d,θ)p(c,d)p(α|γ)p(γ)p(θ|νθ,ϑθ,Aθ)p(νθ)p(ϑθ)p(Aθ).
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Figure 1: Graphical representation of the proposed Bayesian joint model for dynamic
functional variable selection. Auxiliary covariates and hyperparmeters are suppressed
for clarity.

A graphical representation of a simplified version of our model focusing on the sHSSP
formulation for dynamic functional variable selection is provided in Figure 1. The
Markov chain Monte Carlo (MCMC) sampler used to implement our model is outlined
below in Algorithm 1. A more detailed description of the MCMC steps is provided in the
Supplementary Material. After burn-in, the remaining samples obtained from running
Algorithm 1 for M iterations are used for inference. To determine a significant departure
in the low-frequency outcome (i.e., active inclusion indicator γij), the marginal poste-
rior probability of inclusion (MPPI) is empirically estimated by calculating the average
of its respective inclusion indicator’s MCMC samples (George and McCulloch, 1997).
Typically, covariates are included in the model if their MPPI exceeds 0.50 (Barbieri
et al., 2004) or a Bayesian false discovery rate threshold, which controls for multiplicity
(Newton et al., 2004). Clusters of spikes in the low-frequency outcome and proximal
high-frequency outcome trajectories are determined using sequentially-allocated latent
structure optimization to minimize the lower bound of the variation of information loss
(Wade and Ghahramani, 2018; Dahl et al., 2021).

3 Simulation Study
In this section, we evaluate the clustering and selection performance of our model on
simulated data. To our knowledge, there are no existing methods for dynamic functional
variable selection currently developed for comparison, so we compare our model with
various parameterizations of the sHSSP, including a Dirichlet process at both levels
(sDPDP(�0, �1, G0)), a Pitman-Yor process at both levels (sPYPY(�0, ϑ0, �1, ϑ1, G0)),
a Pitman-Yor-Dirichlet process (sPYDP(�0, ϑ0, ϑ1, G0)), and a Dirichlet-Pitman-Yor
process (sDPPY(ϑ0, �1, ϑ1, G0)).

We simulated N = 20 subjects with ni = 20 observations of the low-frequency
outcome which were each paired with nij = 20 high-frequency measures. Thus, we
generated a total of 400 low-frequency and 8,000 high-frequency observations. For each
subject, we first simulated inclusion indicators following a multistate Markov model with
λ = exp(3) and μ = exp(2) using the msm package in R (Jackson, 2011). Observation
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Algorithm 1 MCMC Sampler.
1: Input data Y ,U ,Xij ,Xijk,T ij ,T ijk

2: Initialize parameters: c,d,α,γ, σ2, θ, vθ, vθs , ϑθs ,Aθ

3: Specify hyperparameters: ϑ0, ϑ1, �0, �1, μ, λ, vα, aσ2 , bσ2

4: for iteration m = 1, . . . ,M do
5: for i = 1, . . . , N do
6: for j = 1, . . . , ni do
7: for k = 1, . . . , nij do
8: Update ωijk ∼ PG(1, ψijk), where ψijk = fij(tijk)+μU (tijk) via Polson et al. (2013).
9: end for

10: end for
11: end for
12: for i = 1, . . . , N do
13: for j = 1, . . . , ni do
14: Update cluster assignments cij via Bassetti et al. (2020) and Algorithm 8 of Neal (2000).
15: end for
16: end for
17: for d = 1, . . . , D do
18: Update dishes dd via Bassetti et al. (2020) and Algorithm 8 of Neal (2000).
19: Update θd, vθd , vθds , ϑθds ,Aθd via Makalic and Schmidt (2015).
20: end for
21: Jointly update α and γ with Between and Within Steps via Savitsky et al. (2011).
22: Update regression coefficients in μU (·) and μY (·), if necessary.
23: Update σ2 from Inverse-Gamma(ãσ2 , b̃σ2 ).
24: end for

times tij and tijk were sampled from a Uniform(0,1) without loss of generality. Low-
frequency observations with active latent inclusion indicators (i.e., γij = 1) were gener-
ated from Yij ∼ N(αdij + f(tij) + xijβY , σ

2), where d ∈ {1, 2} with equal probability,
f(tij) = 0.5+0.2tij−(π/10) sin(2πtij), βY is a 2-dimensional vector of population-level
regression coefficients randomly sampled from ±0.75, xij represents two covariates sim-
ulated from a standard normal distribution, and σ2 = 0.2. The cluster specific α1ij and
α2ij were set to 1.5 and −1.5, respectively. The corresponding high-frequency outcomes
were generated from Uijk ∼ Bernoulli(pijk), where

pijk = exp(fdij(tijk) + xijkβU )
1 + exp(fdij(tijk) + xijkβU ) ,

f1ij(tijk) = 1.5−0.5 cos(2tijk), f2ij(tijk) = −1.1, βU is a 2−dimensional vector with el-
ements set to ±0.75 with equal probability, and xijk represents two covariates simulated
from a standard normal distribution. Note that by including a time-varying intercept
term in the low-frequency model, in addition to the high-frequency model, and accom-
modating potential covariates at both levels of the model, we evaluate our approach
for dynamic functional variable selection in a more general setting than our applica-
tion study to demonstrate its flexibility in practice. Low-frequency observations with
inactive latent inclusion indicators (i.e., γij = 0) were simulated similar to the above
with αdij = 0, and their corresponding high-frequency outcomes were generated with
f1ij(tijk) = 0.5 cos(tijk) and f2ij(tijk) = −1.0 − 1.5 cos(−tijk). Thus, each observation-
specific effect and corresponding trajectory could belong to one of four unique clusters.
Additionally, we investigated the performance of our proposed method with varying
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sample sizes. Treating the above simulation as a baseline setting, we varied the overall
sample size, N = {5, 50}, adjusting the number of low-frequency observations to 100 and
1,000, respectively. We also investigated varying numbers of high-frequency measures,
nij = {5, 50}.

In a second simulation study, we investigated the robustness of our proposed ap-
proach to model misspecification of the high-frequency trajectories by introducing cor-
rupted data. Specifically, we simulated data similar to the above, but we flipped 5%
and 10% of the high-frequency binary observations, mimicking a systematic error in the
measurement device. We evaluated the models at various numbers of high-frequency
observations, nij = {20, 50}.

We ran each of the MCMC algorithms on 30 replicated data sets for 1,000 itera-
tions, treating the first 500 iterations as burn-in. We generated B-spline basis functions
with five degrees of freedom to model f(·) and fij(·), where the Q-dimensional vec-
tor ζ represents the corresponding spline coefficients for f(·). Each chain was initiated
with observations allocated to the same cluster with θij = 0 and αij = 0. Regres-
sion coefficients βY , βU , and ζ were also initialized at zero. All horseshoe variances
and corresponding auxiliary parameters were initialized at one. We set the hyperpa-
rameters for the inclusion indicators λ = exp(−1.5) and μ = exp(1.5) to represent
∼ 0.05 steady state probability of experiencing a spike in the low-frequency outcome
at a given moment. We assumed ζq ∼ Normal(0, vζvζqσ2), where the global variances
vζ ∼ Inverse-Gamma(1/2, 1/Aζ), local variances vζq ∼ Inverse-Gamma(1/2, 1/ϑζq ), and
auxiliary parameters ϑζ1 , . . . , ϑζQ ,Aζ ∼ Inverse-Gamma(1/2, 1). We assumed the co-
variate regression coefficients βY , βU ∼ Normal(0, vβ) with variance vβ . Additionally,
we set vβ = vα = 5, which places a 95% prior probability of included regression coeffi-
cients between ±4.4. We specified the shape and scale parameters of the inverse-gamma
distribution for σ2, aσ2 = bσ2 = 1. To complete the hyperparameter specification, we
assumed the concentration parameters ϑ0 = ϑ1 = 1. For the PY priors, the discount
parameters were set to 0.5 when appropriate.

Each of the models were evaluated in terms of their selection and clustering perfor-
mance. Variable selection performance was evaluated via sensitivity (SENS), specificity
(SPEC), and Matthew’s correlation coefficient (MCC), defined as

SENS = TP

FN + TP
, SPEC = TN

FP + TN
,

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

,

where TN , TP , FN , and FP represent the true negatives, true positives, false negatives,
and false positives, respectively. Active spikes were determined if their MPPI exceeded
0.50 (Barbieri et al., 2004). Clustering performance was evaluated using the variation
of information (VI), a measure of distance between two clusterings ranging from 0
to logB, where B is the number of items to cluster and lower values imply better
clustering (Meilă, 2003). Additionally, we evaluated model fit for each of the models with
the widely applicable information criterion (WAIC) for both the high-frequency binary
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SENS SPEC MCC VI WAICY WAICU

sDPDP 0.916 0.715 0.709 0.615 2253.6 8004.0
sDPPY 0.955 0.669 0.742 0.559 2593.6 7992.7
sPYDP 0.876 0.505 0.485 0.618 2596.1 8006.2
sPYPY 0.893 0.504 0.521 0.570 2512.8 7995.7

Table 1: Results of the proposed dynamic functional variable selection model with var-
ious sHSSP specifications for the N = 20, ni = 20, and nij = 20 setting. Results are
averaged over 30 replicate data sets.

outcomes (WAICU ) and low-frequency continuous outcomes (WAICY ) (Watanabe and
Opper, 2010). WAIC is an extension of the deviance information criterion (DIC) for
Bayesian models that uses the entire posterior distribution to estimate the pointwise
out-of-sample prediction accuracy of the model, and it is asymptotically equivalent
to leave-one-out cross-validation (Watanabe and Opper, 2010). Lower values indicate
better model fit. See the Supplementary Material for convergence assessment of the
models.

Results of the simulation study with 20 subjects and 20 high-frequency measures are
presented in Table 1. Overall, the models had relatively high sensitivity (SENS > 0.85)
with moderate specificity (SPEC > 0.50). We found that the sDPPY model obtained the
highest sensitivity, resulting in the highest overall performance with respect to MCC,
and the best clustering performance compared to the other model specifications (VI
= 0.559). The sDPDP model obtained the highest specificity overall (SPEC = 0.715).
Clustering performance remained the same or improved with larger sample sizes for
all models (Table 2). Similar trends in the overall variable selection performance were
found for the sDPDP and sPYDP models. The sPYPY and sDPPY models were more
robust to sample size in terms of selection performance. We found that the selection
and clustering results were more sensitive to the number of high-frequency outcomes
generated than the sample size (Table 3). For most models, we observed a reduction
(improvement) in selection and clustering performance with respect to all metrics as
the number of high-frequency measures decreased (increased). This was not surprising,
as there was very little information available to identify the unique high-frequency
trajectories in the nij = 5 setting. Notably, the nij = 50 setting showed almost perfect
clustering performance for all models.

In the second simulation study, we observed that our proposed method with different
sHSSPs is relatively robust to moderate amounts of measurement error in the high-
frequency outcomes (Table 4). We observed a marginal decrease in overall selection and
clustering performance for all models, except the sPYPY model, which maintained or
even improved selection performance.

In each of the simulation scenarios, the models performed similarly with respect to
WAIC for the high-frequency binary outcomes. While we did observe some marginal dif-
ferences in fit for the low-frequency continuous outcomes across model specifications, we
did not find any systematic trends with the exception that the sPYPY model performed
the best in terms of WAICY in the presence of measurement error (Table 4).



M. D. Koslovsky et al. 13

N SENS SPEC MCC VI WAICY WAICU

sDPDP

5

0.850 0.472 0.452 0.785 946.8 2030.5
sDPPY 0.971 0.577 0.760 0.607 729.1 2015.2
sPYDP 0.903 0.449 0.480 0.776 927.1 2026.9
sPYPY 0.896 0.586 0.551 0.691 867.5 2020.2
sDPDP

50

0.904 0.674 0.654 0.573 5704.0 19981.7
sDPPY 0.958 0.531 0.751 0.547 5675.5 19957.7
sPYDP 0.954 0.696 0.753 0.578 4898.8 19983.1
sPYPY 0.974 0.546 0.745 0.548 5647.0 19959.7

Table 2: Results of the proposed dynamic functional variable selection model with var-
ious sHSSP specifications for the N = 5 and 50, ni = 20, and nij = 20 setting. Results
are averaged over 30 replicate data sets.

nij SENS SPEC MCC VI WAICY WAICU

sDPDP

5

0.731 0.464 0.249 1.116 2647.4 2097.8
sDPPY 0.918 0.397 0.438 0.981 3056.4 2082.4
sPYDP 0.759 0.492 0.318 1.113 2592.2 2095.2
sPYPY 0.931 0.521 0.521 1.021 3422.0 2084.8
sDPDP

50

0.929 0.642 0.700 0.159 2499.9 19781.7
sDPPY 0.978 0.771 0.857 0.154 2079.6 19779.1
sPYDP 0.884 0.540 0.515 0.173 2104.6 19782.5
sPYPY 0.927 0.776 0.741 0.155 2107.3 19779.9

Table 3: Results of the proposed dynamic functional variable selection model with var-
ious sHSSP specifications for the N = 20, ni = 20, and nij = 5 and 50 setting. Results
are averaged over 30 replicate data sets.

% Error SENS SPEC MCC VI WAICY WAICU

sDPDP

5

0.904 0.676 0.655 0.724 2522.8 8129.2
sDPPY 0.937 0.560 0.675 0.683 2192.4 8112.0
sPYDP 0.834 0.345 0.257 0.719 4185.0 8130.2
sPYPY 0.967 0.719 0.811 0.678 2120.1 8116.6
sDPDP

10

0.872 0.548 0.504 0.836 3321.8 8316.6
sDPPY 0.919 0.537 0.593 0.787 2873.5 8291.1
sPYDP 0.862 0.488 0.443 0.838 2685.9 8316.4
sPYPY 0.954 0.494 0.653 0.788 2420.5 8297.6

Table 4: Results of the proposed dynamic functional variable selection model with var-
ious sHSSP specifications for the N = 20, ni = 20, and nij = 20 setting with 5%
and 10% error for the high-frequency binary observations. Results are averaged over 30
replicate data sets.
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vα = 1 ϑ0 = 0.1 ϑ1 = 0.1 �0 = 0.25 �1 = 0.25
SENS 0.984 0.944 0.938 0.953 0.908
SPEC 0.707 0.538 0.597 0.710 0.556
MCC 0.836 0.683 0.692 0.756 0.564
VI 0.562 0.567 0.572 0.559 0.584

WAICY 2707.8 2458.5 2539.6 2179.2 2412.9
WAICU 7995.9 7994.6 7997.0 7993.4 8000.3

vα = 10 ϑ0 = 10 ϑ1 = 10 �0 = 0.75 �1 = 0.75
SENS 0.856 0.983 0.941 0.969 0.937
SPEC 0.507 0.709 0.518 0.708 0.650
MCC 0.452 0.851 0.679 0.811 0.704
VI 0.562 0.570 0.562 0.555 0.561

WAICY 3226.3 3341.5 2712.4 2811.6 2825.2
WAICU 7995.9 8004.6 7993.9 7996.2 8001.4

Table 5: Simulated Data: Sensitivity results for the proposed model with sPYPY using
various hyperparameter specifications. Results are averaged over 30 replicated data sets.

3.1 Sensitivity Analysis
To assess the model’s sensitivity to hyperparameter settings, we set each of the hyper-
parameters to default values and then evaluated the effect of manipulating each term on
selection and clustering performance. For the default parameterization, we set the hy-
perparameters for the prior inclusion indicators, γ, to μ = exp(1.5) and λ = exp(−1.5),
reflecting a ∼ 0.05 steady state prior probability of experiencing a spike in the low-
frequency outcome at a given assessment. The default values for the variance of the
normal distribution for the slab of αij were each fixed at 5, and vβ was set similarly.
The hyperparameters for the concentration parameters ϑ0 = ϑ1 = 1, and the discount
parameters were set to 0.5. We ran the joint model on the 30 replicated data sets
generated in the first simulation scenario.

The results of the sensitivity analysis are presented in Table 5. We observed that
the proposed joint model was insensitive to hyperparameter specification in terms of
clustering. We found that the selection results were not affected by an increase in the
prior variance for the observation-specific effects, vα. However, as vα decreased, we ob-
served improved selection performance, potentially an artifact of the data generation
process. We found a marginal positive association between the hyperparameter specifi-
cation of the sHSSP and WAICY . However, the fit of the high-frequency binary outcome
as measured by WAICU was not affected by hyperparameter specification.

4 Application
In this section, we illustrate the performance of the proposed joint model on data col-
lected in the Pathways between Socioeconomic Status and Behavioral Cancer Risk Fac-
tors (Pathways) Study, which was a 7-day prospective observational study designed
to characterize proximal predictors of health behaviors using mHealth methods in a
racially and ethnically diverse community sample of adults. Full details of the Path-
ways design including recruitment, eligibility, data collection/preprocessing are found
elsewhere (Kendzor et al., 2016). After baseline measures were collected, participants
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were provided with a mobile phone, which they were asked to carry over a 7-day period.
Within the assessment period, each participant was randomly prompted to complete
EMAs four times per day during self-reported waking hours. Each assessment collected
information on participants’ current affective status, environment, behaviors, loneliness,
and stress. Additionally, each participant was fitted with an ActiGraph GT3X triaxial
accelerometer to passively collect information on their ambulatory movement (i.e., time
spent sedentary or active) during the assessment period.

In this analysis, we use the Pathways data to investigate the relations between neg-
ative affect actively collected with EMAs (low-frequency outcome) and accelerometer
data passively captured minute-by-minute with accelerometers in proximal 30-minute
epochs (high-frequency outcome). Negative affect was calculated as the average of a
participant’s responses to five EMA items (i.e., “I feel irritable, frustrated/angry, sad,
worried, and miserable”). Time spent sedentary has been linked to a variety of adverse
health outcomes, including cancer (Friedenreich et al., 2021), sleep disturbance/insom-
nia (Yang et al., 2017), major depressive disorder (Schuch et al., 2017), all cause mor-
tality, cardiovascular disease, diabetes (Rezende et al., 2014; Young et al., 2016), and
dementia (Yan et al., 2020). There is growing evidence that prolonged sedentary time
is a risk factor for mental health (Giurgiu et al., 2020). Due to differences in movement
patterns across ages, it is important to consider age-specific criteria when processing
accelerometer data (Migueles et al., 2017). In contrast to thresholds based on vertical
count axis data, very little work has been done to establish and validate intensity-based
thresholds based on vector magnitude count (triaxial) data used to differentiate seden-
tary from active time. To investigate the relation between negative affect and sedentary
behavior, physical activity vector magnitudes were calculated using three-dimensional
movement data and thresholded at 150 counts per minute (cpm), where cpm < 150 in-
dicates sedentary behavior and cpm >= 150 indicates physical activity at any intensity
category, following Peterson et al. (2015) and the age-group criteria recommendations
for adults (i.e., 19–59 years) defined in Migueles et al. (2017). To account for non-
compliance, EMAs with missing negative affect responses or one hour periods of zero
cpm vector magnitudes preceding the proximal EMA were removed from this analysis.
Overall, 222 participants were investigated in this study, comprising over 4,500 EMAs
and roughly 140,000 accelerometer minutes of data. On average (SD), 20.8 (5.6) EMAs
and 625.4 (166.9) high-frequency accelerometer measures per participant were available
for inference.

4.1 Model and Prior Specification
We use the following model and prior specifications for the application study. For the
low-frequency outcome model (Section 2.2) in (2), we assume μY (tij) = βi, where βi

represents the participant-specific mean negative affect. We assume the slab variance
for the αij prior vα = 5, and the hyperparameters for the error term aσ2 = bσ2 = 1. In
the high-frequency outcome model (Section 2.1) for physical activity, we approximate
the smooth functions in (1) using B-spline basis functions with five degrees of free-
dom. Recall that the spline coefficients are penalized with horseshoe priors to encourage
smoothness. For the sHSSP (Section 2.3), we assume a spiked hierarchical Dirichlet pro-
cess (sDPDP) with ϑ0 = ϑ1 = 1. For the multistate Markov model prior assigned to the
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dynamic inclusion indicators (Section 2.4), we set the hyperparameters λ = exp(−3) and
μ = exp(1.5), reflecting a ∼ 0.01 steady state prior probability of experiencing a spike
in negative affect at a given assessment. The MCMC algorithm was run for 5,000 itera-
tions, treating the first 1,000 iterations as burn-in and was initiated with observations
allocated to the same cluster with θij = 0 and αij = 0. Participant-specific means, β,
were also initialized at zero. All horseshoe variances and corresponding auxiliary param-
eters were initialized at one. Traceplots of the total number of clusters in the model and
the number of clusters in the model with active spikes indicated good mixing and overall
convergence. (See the Supplementary Material for more details). The average effective
sample size across active parameters in the model was 2,500. Additionally, we initial-
ized the model with subjects in their own cluster and corresponding cluster coefficients
sampled from a standard normal distribution. Between the two MCMC chains initiated
at different values, we observed potential scale reduction factors, R̂, for α, σ2,θ, and β
below 1.1 (Gelman et al., 1992), further demonstrating that the MCMC procedure was
working properly and the chains converged. Selection of spikes in momentary negative
affect were determined using the median model approach (i.e., MPPI ≥ 0.50) (Barbieri
et al., 2004). Clusters were determined using sequentially-allocated latent structure op-
timization to minimize the lower bound of the variation of information loss (Wade and
Ghahramani, 2018; Dahl et al., 2017).

4.2 Results

Using our Bayesian dynamic functional variable selection method, we identified 439
moments (i.e., MPPI ≥ 0.5) in which subjects departed from their average negative
affect over the 7-day assessment window. We observed good separation between active
and non-active observation-specific effects, where the average MPPI for active and non-
active terms was around 0.83 and 0.08, respectively. A plot of the MPPIs for each
observation is provided in the Supplementary Material. Figure 2 presents the observed
negative affect and estimated momentary spikes versus time for a subset of participants.
These plots illustrate the ability of our model to dynamically identify critical moments
in which participants depart from their mean negative affect. In post-hoc analyses, we
did not find strong evidence of temporal trends in the magnitude of the departures
in negative affect over the assessment window. Additionally, most of the clusters were
uniformly distributed across the assessment window, with exceptions for relatively small
clusters.

Each of the active observation-specific effects in the low-frequency outcome model
for negative affect was clustered with a unique trajectory in the high-frequency outcome
model for activity. We identified 15 clusters with active observation-specific effects using
the sDPDP model with an average (SD) of 39.9 (36.7) observations in each cluster. We
observed a variety of cluster compositions with some comprised of observations from
a small subset of participants and others with observations from nearly half of the
participants. A plot of the clustered trajectories for the estimated probability of being
active over the 30-minute epoch prior to the proximal EMA is presented in Figure 3. For
comparison, the time scales are shifted to range from 0 to 30 minutes for each physical
activity trajectory, however the actual time of measurement may have occurred at any
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Figure 2: Application Study: Observed momentary negative affect (dashed lines) for a
subset of participants with corresponding participant-specific means (solid line). Red
(Blue) diamonds indicate moments in which participants experienced a positive (nega-
tive) spike in negative affect compared to their mean which were identified as associated
with proximal physical activity trajectories by our model.

Figure 3: High-Frequency Outcome Trajectories: Clusters of the time-varying probabil-
ity of being active over the 30-minute (min) epoch prior to a proximal EMA. Darker
purple indicates trajectory clusters associated with negative spikes in momentary neg-
ative affect and brighter red indicates positive spikes in negative affect. Active clusters
with 5 or more observations are plotted for ease of exposition.



18 Dynamic Functional Variable Selection

Figure 4: Participant-Level Dynamic Trajectory Selection: Observed momentary nega-
tive affect (dashed line) for a select participant compared to their average negative affect
(solid line) over time in hours (hrs). Inset plots capture trajectories of the probability of
being active for corresponding spikes in negative affect over the 30-minute epoch prior
to the proximal EMA.

point over the 7-day assessment window. We found that trajectories associated with a
decrease in proximal negative affect tended to have a higher probability of activity over
the 30-minute epoch compared to trajectories associated with a positive spike. Most of
the trajectories associated with a positive spike hovered around a 0.50 probability of
activity over the 30-minute period.

To demonstrate the dynamic relation between momentary negative affect and proxi-
mal physical activity trajectories at the participant level, we investigated a select partic-
ipant’s behavioral trends over the assessment period. Figure 4 depicts the observed neg-
ative affect trajectory (dashed line) of participant 27 over the course of the assessment
period compared to their estimated average (solid line). We showcase two departures
from their average negative affect, one on the second day of the assessment period and
another on the fourth. On the second day, the individual experienced a positive spike in
negative affect from their mean. This spike was associated with an activity trajectory
that dropped from a 0.5 to 0.3 probability of being active in the first 25 minutes of the
epoch and then increased to roughly a 0.5 probability of being active just before the
proximal EMA. On the fourth day, a negative spike in negative affect was associated
with an activity trajectory that increased from a 0.3 probability of being active to 0.9
by the 20th minute, before decreasing to 0.7 prior to the assessment.

Our joint modeling approach is designed to leverage the high temporal resolution of
multimodal technology-based assessment strategies to provide insights on the dynamic
relation between physical activity and negative affect. Our analysis revealed dynamic re-
lations between accelerometer-measured physical activity over 30 minutes before EMA-
measured negative affect. Findings indicated that higher activity level trajectories prior
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to the proximal EMA were typically associated with subsequent ratings of participants’
negative affect that were lower than their average. We also found that clusters were
often comprised of observations on the same participant or small subpopulations of
participants. These results emphasize the potential utility of developing personalized
just-in-time adaptive interventions focused on negative affect management, where mo-
ments of increased negative affect are identified and targeted with activity prompts
and/or other motivational or educational messaging via smartphone, smartwatch, or
other technologies.

4.3 Sensitivity Analysis
HSSPs provide a flexible framework for nonparametric clustering at multiple levels with-
out having to specify the number of clusters a priori. As such, one of the strengths of this
class of priors is its ability take on characteristics of the assumed SSrp at each level of the
model. A consequence of this flexibility is that results may be sensitive to the assumed
hierarchical structure. To explore the model’s sensitivity to the specified sHSSP on the
application study results, we fit a similar joint model for dynamic functional variable se-
lection, but we varied the SSrp specifications at both levels of the model. Holding ϑ0 =
ϑ1 = 1, we investigated a Pitman-Yor process at both levels (sPYPY(�0, ϑ0, �1, ϑ1, G0),
�0 = �1 = 0.5), a Pitman-Yor-Dirichlet process (sPYDP(�0, ϑ0, ϑ1, G0), �0 = 0.5), and
a Dirichlet-Pitman-Yor process (sDPPY(ϑ0, �1, ϑ1, G0), �1 = 0.5).

Compared to the sDPDP model in Section 4, the sDPPY and sPYPY models identi-
fied more spikes in momentary negative affect (i.e., 865 and 560, respectively), whereas
the sPYDP model only identified 305 using the median model approach. As expected,
the sDPPY, sPYDP, and sPYPY models identified more active clusters (i.e., 45, 24, and
48, respectively) than the sDPDP model. A majority of the observations were clustered
into similar groups across model specifications. See Figure 5 for a heatmap of the ad-

Figure 5: Clustering Allocation Sensitivity: Heatmap of the adjusted Rand index (ARI)
for the pairwise comparison of clustering allocation by the spiked hierarchical Dirichlet
process (sDPDP), Dirichlet-Pitman-Yor process (sDPPY), Pitman-Yor-Dirichlet pro-
cess (sPYDP), and the hierarchical Pitman-Yor process (sPYPY) models.
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justed Rand index, which measures cluster similarity for each pairwise combination of
model specifications and adjusts for the expected number of chance agreements (Hubert
and Arabie, 1985). The adjusted Rand index ranges from 0 to 1, with 1 representing that
the clustering allocations are the same. Overall, we observed that models with similar
prior specifications at the first level of the hierarchy tended to cluster more similarly
as well. The sDPDP and sPYDP models were the most similar in terms of clustering
overlap (ARI = 0.82), and the sPYDP and sPYPY models were the most dissimilar
(ARI = 0.66). Lastly, we compared the fit of each model using WAIC for both the
high- and low-frequency outcomes. We found that the sDPDP model best fit the low-
frequency continuous outcomes (WAICY = 193449) with relatively similar performance
for the sPYDP model (WAICY = 210768). The sDPPY and sPYPY models obtained a
poorer fit (WAICY = 313687 and 318409, respectively). For the high-frequency binary
outcomes, we found a similar fit for the sDPDP, sPYDP, and sDPPY models (WAICU

= 1162113, 1152028, and 1159852, respectively) with the sPYPY model obtaining the
best fit (WAICU = 1069216). We note that the other prior distribution hyperparmeter
settings of the model were consistent with typical specifications in the literature, and
the choice of these values had minimal effects on inference in the application study.

5 Conclusions
In this work, we developed the first method for dynamic functional variable selection.
We applied the proposed method to investigate the relations between two actively and
passively assessed health-related variables, a fundamental research objective in behav-
ioral mHealth studies (Walls, 2013). Motivated by data collected in the Pathways study,
our approach is designed to accommodate multimodal intensive longitudinal data col-
lected on different time scales. To achieve this, we employed spiked hierarchical species
sampling priors to identify critical moments that a participant departs from their av-
erage negative affect that were associated with physical activity trajectories observed
in proximal epochs. Our hierarchical approach is designed to deliver unique insights
into the dynamic behavioral patterns shared within and between subjects, critical in-
formation for the design and evaluation of personalized intervention strategies using
mHealth methods. While the results highlight the importance of understanding the
dynamic relation between physical activity trajectories and proximal negative affect,
we recommend using our method in exploratory settings for hypothesis generation and
conducting confirmatory studies before generalizing results.

The proposed method is designed for continuous low-frequency outcomes and bi-
nary high-frequency outcomes given the structure of the application data set. However,
it can be easily adjusted to accommodate continuous (binary) high- (low-) frequency
outcomes via the connection between the Pólya-Gamma data augmentation technique
of Polson et al. (2013) and a Gaussian likelihood function. As such, our approach is
easily modified to handle a variety of settings in which multivariate intensive longitu-
dinal data are collected on different time scales. In the FDA literature space, sparsity
or variable selection often refers to identifying portions of the domain that retain rele-
vant information for a functional trajectory, balancing between representativeness and
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parsimony (Berrendero et al., 2016), or capture significant differences between differ-
ent groups or unobserved clusters (Vitelli, 2019; Pini and Vantini, 2017). In this work,
the proposed method is designed to identify the critical moments that participants’
depart from their baseline average of the low-frequency outcome which are associated
with proximal high-frequency outcome trajectories. A future extension would be to
develop the model to identify intervals of time in which the participant departs or re-
mains at their low-frequency baseline average. In extreme high-frequency settings (i.e.,
nij large), the likelihood contribution of the data is dominated by the high-frequency
model when determining cluster allocation. As a result, the model may achieve good
clustering performance but fail to correctly identify active/inactive observation-specific
effects due to poor mixing. While our method was relatively robust to measurement
error in the simulation study, future work may explore robustification methods, such as
the coarsened-posterior method, which in addition to providing robust inference, may
improve mixing (Miller and Dunson, 2018; Geyer and Thompson, 1995).
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