Open Access
Translator Disclaimer
2021 Concentration of Posterior Model Probabilities and Normalized L0 Criteria
David Rossell
Author Affiliations +
Bayesian Anal. Advance Publication 1-27 (2021). DOI: 10.1214/21-BA1262

Abstract

We study frequentist properties of Bayesian and L0 model selection, with a focus on (potentially non-linear) high-dimensional regression. We propose a construction to study how posterior probabilities and normalized L0 criteria concentrate on the (Kullback-Leibler) optimal model and other subsets of the model space. When such concentration occurs, one also bounds the frequentist probabilities of selecting the correct model, type I and type II errors. These results hold generally, and help validate the use of posterior probabilities and L0 criteria to control frequentist error probabilities associated to model selection and hypothesis tests. Regarding regression, we help understand the effect of the sparsity imposed by the prior or the L0 penalty, and of problem characteristics such as the sample size, signal-to-noise, dimension and true sparsity. A particular finding is that one may use less sparse formulations than would be asymptotically optimal, but still attain consistency and often also significantly better finite-sample performance. We also prove new results related to misspecifying the mean or covariance structures, and give tighter rates for certain non-local priors than currently available.

Funding Statement

DR was partially funded by the Europa Excelencia grant EUR2020-112096, NIH grant R01 CA158113-01, Ramón y Cajal Fellowship RYC-2015-18544, Plan Estatal PGC2018-101643-B-I00 and Ayudas Fundación BBVA a equipos de investigación científica en Big Data 2017.

Acknowledgments

The author thanks Gabor Lugosi and James O. Berger for helpful discussions, and the Editors and Referees for invaluable feedback in improving the exposition of this manuscript.

Citation

Download Citation

David Rossell. "Concentration of Posterior Model Probabilities and Normalized L0 Criteria." Bayesian Anal. Advance Publication 1 - 27, 2021. https://doi.org/10.1214/21-BA1262

Information

Published: 2021
First available in Project Euclid: 16 April 2021

Digital Object Identifier: 10.1214/21-BA1262

Keywords: Bayes factors , consistency , high-dimensional inference , L0 penalty , model misspecification , Model selection , uncertainty quantification

JOURNAL ARTICLE
27 PAGES


SHARE
Advance Publication
Back to Top