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Changepoint Detection on a Graph of Time
Series∗

Karl L. Hallgren†, Nicholas A. Heard‡, and Melissa J. M. Turcotte§

Abstract. When analysing multiple time series that may be subject to change-
points, it is sometimes possible to specify a priori, by means of a graph, which
pairs of time series are likely to be impacted by simultaneous changepoints. This
article proposes an informative prior for changepoints which encodes the infor-
mation contained in the graph, inducing a changepoint model for multiple time
series that borrows strength across clusters of connected time series to detect
weak signals for synchronous changepoints. The graphical model for changepoints
is further extended to allow dependence between nearby but not necessarily syn-
chronous changepoints across neighbouring time series in the graph. A novel re-
versible jump Markov chain Monte Carlo (MCMC) algorithm making use of aux-
iliary variables is proposed to sample from the graphical changepoint model. The
merit of the proposed approach is demonstrated through a changepoint analysis
of computer network authentication logs from Los Alamos National Laboratory
(LANL), demonstrating an improvement at detecting weak signals for network
intrusions across users linked by network connectivity, whilst limiting the number
of false alerts.
Keywords: changepoint detection, graphical model, informative prior, auxiliary
variable MCMC, cyber-security.

1 Introduction
Consider N > 1 time series of random observations

{xi,t | 1 � i � N, t � 0} (1)
which are subject to changepoints. This article will suppose the existence of an underly-
ing graph G on N nodes corresponding to each of the time series, such that changepoints
are believed to occur simultaneously or closely together in time for time series connected
by edges in G.

A motivating application for considering such dependencies is the task of change-
point detection in cyber-security. To identify the presence of a network intrusion, it is
informative to monitor for changes in the authentication activity of each user in the
network. However, cyber data often exhibit much variability and apparent changes are
not guaranteed to correspond to an attack. As a result, to limit the number of false
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alerts and yet not overlook weak signals from genuine, small attack footprints, it is key
to incorporate expert knowledge in the change detection procedure. A commonly held
belief of security experts is that attacks are a priori likely to be identified through quasi-
simultaneous changes in the behaviour of users that are linked by network connectivity
(Sexton et al., 2015). Hence, it is of interest to encode a changepoint prior by means of
a graph G representing the network of users, such that pairs of connected users in G
are a priori more likely to be affected by quasi-simultaneous behavioural changes.

Limited attention has previously been given to encoding prior beliefs on graph-
based dependence structure of discrete-time changepoints across multiple time series.
Existing changepoint model for multiple time series, which admit changepoints may
simultaneously affect a subset of the time series, typically assume a priori changepoint
locations are exchangeable across time series (Jeng et al., 2012; Bardwell and Fearnhead,
2017; Bolton and Heard, 2018; Wang and Samworth, 2018; Bardwell et al., 2019; Grundy
et al., 2020). Moreover, with the exception of Fisch et al. (2022), dependent changepoints
across time series are often assumed to perfectly align, which is a limiting assumption
in cyber-security monitoring where attacks may span a substantial period of time.

More generally, graphical models provide a useful framework for characterising joint
distributions for random variables: the nodes of the graph identify the random variables
and the edges characterise dependencies among these variables (Lauritzen, 1996). In
particular, graphical models have been employed to encode prior beliefs, for example,
in the context of Bayesian variable selection for regression models. Li and Zhang (2010)
assumes that covariates lie on an undirected graph and formulates an Ising model prior
on the covariate space to incorporate structural information.

This article proposes an informative, graphical model-based prior for changepoints
that encodes beliefs on the dependence structure of changepoints across time series (1).
For practical purposes, changepoints are represented in discrete time by a binary matrix
S = (Si,t), such that Si,t indicates whether the time point t is a changepoint for the
time series with index i. Then, extending the standard memoryless prior for change-
points (Fearnhead, 2006), independent and identical Markov random fields (Lauritzen,
1996) with respect to G are assumed a priori for the columns of S. As a result, the
model assumes that clusters of time series (according to G) are likely to be simultane-
ously affected by changepoints. Conditional on changepoints, the time series data are
assumed to be independent of G and to follow a standard parametric changepoint model
(Fearnhead, 2006). A key consequence of the graphical model is that stronger evidence
from data is required to infer scattered synchronous changepoints than synchronous
changepoints clustered according to G. Furthermore, a more general model is proposed
that admits related changepoints not occurring at exactly the same time; the extended
model supposes that changepoints may cluster according to G within some finite time
windows of possibly unknown lengths, which are specific to each series.

A common approach to sampling changepoints for a single time series is that of Green
(1995), using a reversible jump MCMC algorithm to explore the state space of change-
points: at each iteration of the algorithm, a new changepoint is proposed, or else an ex-
isting changepoint is either deleted or shifted to a new position. Specifying a joint model
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for dependent changepoints across multiple time series introduces additional computa-
tional challenges that are not present when changepoints are inferred for each time series
independently. A simulation study will demonstrate that it can be impractical to simply
propose updates to the changepoints of a randomly chosen time series via one of the
moves of Green (1995). To efficiently explore the state space of dependent changepoints,
it is necessary to consider joint proposals for changepoints across multiple time series.

We propose an MCMC algorithm making use of auxiliary variables (Besag and
Green, 1993) to sample from the posterior distribution. Swendsen and Wang (1987) and
Higdon (1998) provide notable examples of use of auxiliary variables in MCMC schemes
that improve mixing and convergence for undirected graphical models. In brief, our sam-
pling strategy is the following. The changepoint parameter space is augmented with aux-
iliary variables that induce clusters of time series according to the dependence graph G.
Then, the MCMC algorithm of Green (1995) is extended to sample from the augmented
parameter space, such that, at each iteration of the algorithm, a new cluster of change-
points may be proposed or an existing cluster of changepoints may be deleted or shifted.

Bayesian inference for changepoints quantifies uncertainty about the number and the
positions of changepoints. However, in some applications such as cyber-security, it will
also be necessary to report a point estimate for changepoint parameters. Yet no existing
loss function in the literature seems suitable for taking into account both the number
and the positions of changepoints. To address this gap, we propose using matchings
in graphs (Bondy and Murty, 1976) to define a novel loss function for changepoints,
which can be used to obtain a point estimate from a posterior sample of candidate
changepoints.

The practical benefits of the proposed graphical model are demonstrated via a
changepoint analysis of real computer network authentication data from Los Alamos
National Laboratory (LANL), where a subset of the data relating to a ‘red team’ ex-
ercise provide a proxy for intruder behaviour (Kent, 2015). The challenge consists of
monitoring for temporal changes in the authentication activity of network users to de-
tect the presence of red team actors. The proposed changepoint prior is used to encode
beliefs that signals for network intrusions are a priori likely to occur at nearby times
for users historically linked by previous network connectivity. We show that, as a conse-
quence, the proposed model can detect weak signals for red team activity in the network,
whilst limiting the number of false alerts, in contrast with a standard model assuming
independence of behavioural changes across users.

Finally, it should be noted that, in contrast with recent changepoint detection meth-
ods (Chen and Zhang, 2015; Chen, 2019a,b; Chu and Chen, 2019), the focus of this
article is not the temporal evolution of a graph subject to changepoints. The graph G
represents prior information that can be exploited to detect changepoints in time series.

The remainder of the article is organised as follows. Section 2 motivates our work
with a cyber-security application. Section 3 presents Bayesian changepoint modelling
for multiple time series. Section 4 introduces a novel, graph-based informative prior
for changepoints. Section 5 proposes an auxiliary variable MCMC sampling strategy.
Section 6 proposes a novel loss function for assessing changepoints. Section 7 presents
results of a changepoint analysis of network authentication data, illustrating the practi-
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cal benefits of the proposed model. The supplementary material (Hallgren et al., 2023)
presents some technical material in Appendices A, B, C and a simulation study in
Appendix D demonstrating the model introduced in Section 4.

2 Motivational application: changepoint detection in
cyber-security

To motivate an informative graph-based prior for changepoints, we consider an appli-
cation of changepoint detection in cyber-security. A cyber-attack typically changes the
behaviour of connected endpoints on the target computer network (Sexton et al., 2015).
Therefore, to detect the presence of a network intrusion, it is informative to monitor
for synchronous, or quasi-synchronous, changes in the behaviour of entities that are a
priori known to be linked by network connectivity.

2.1 Change detection in the authentication activity of users

Kent (2015) presents a comprehensive data set summarising 58 days of traffic on the
enterprise computer network of Los Alamos National Laboratory (LANL), which is
available online at https://lanl.ma.ic.ac.uk/data/cyber1. The network authenti-
cation data consist of records describing authentication activity of users connecting from
one computer to another. The occurrence of a ‘red team’ penetration testing operation
during the data collection period makes these data suitable for testing network intru-
sion detection methods. Further details on the data are given in Appendix A.1 in the
supplementary material (Hallgren et al., 2023).

Let V denote the set of users in the enterprise. To detect occurrences of malicious
activity in the network, the authentication activity of each user i ∈ V is monitored
via hourly counts of network logons per source computer. Let M denote the number of
distinct source computers in the network. For each user i ∈ V , let

xi,t = (xi,t,1, . . . , xi,t,M ), (2)

where xi,t,� denotes the number of network logons initiated by user i from source com-
puter � during the t-th hour of the 58 day data collection period. For each user, it is of
interest to detect temporal changes in the distribution of network logons across source
computers as possible evidence for malicious activity. Figure 1 in the supplementary
material (Hallgren et al., 2023) displays the authentication data for two users.

2.2 Motivation for an informative graph-based changepoint prior

The authentication data (2) exhibit much variability, and some observed changes can
correspond to legitimate activity. Therefore, to limit the number of false alerts and yet
not overlook weak signals from genuine attack footprints, it is key to incorporate prior
knowledge in the change detection procedure.

https://lanl.ma.ic.ac.uk/data/cyber1
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When attackers penetrate a network, they rarely gain access to the target users di-
rectly; instead, they typically take control of a vulnerable user, for example via email
phishing, and then they move laterally through the network, gaining access and com-
promising additional users, to achieve their objectives (Sexton et al., 2015). Attackers
are typically constrained in the way they can navigate the network, and it will often
be possible for cyber-security experts to specify a graph G = (V,E), where an edge
(i, i′) ∈ E ⊆ V × V indicates it is believed a priori that attackers may switch creden-
tials between user i and user i′ at any time during the data collection period. Therefore,
it is of interest to encode in the changepoint prior that cyber-attacks are a priori likely
to result in quasi-synchronous changes in the authentication activity of multiple users
that are connected in G. In this article, we consider the following specification of G for
demonstration purposes: (i, i′) ∈ E if and only if both user i and user i′ successfully
initiated a network logon from the same source computer on the same day. This choice
follows from the following considerations. In Windows operating systems, when a user
logs on with their credentials (username and password hash) to a device on the domain,
these credentials are cached locally on the device. Credential caching prevents users from
continuously having to re-authenticate (single sign-on), and enables them to log on to the
device even if the device is disconnected from the network. Attackers will exploit creden-
tials which are cached on devices to upgrade their privileges and move laterally through
the network. How long credentials may be cached on devices depends on the enterprise’s
network settings. In the absence of precise knowledge about the enterprise’s network set-
tings, it is reasonable to assume that if both user i and user i′ have logged into a device on
the same day then both those credentials may be cached on that device during the data
collection period. As a result, if attackers had access to that device then they would have
the ability to exploit cached credentials to switch credentials between user i and user i′.

In Figure 1, for the application of interest, each arrow corresponds to the authenti-
cation activity of a user on the network, and shaded rectangles indicate which pairs of

Figure 1: Cartoon representation of a cluster of synchronous changepoints (red crosses)
on a graph of time series. Arrows represent time series, and shaded rectangles indicate
which pairs of time series are likely to be impacted by simultaneous changepoints.
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users are connected in G and therefore likely to be impacted by simultaneous changes
during an attack. It is of interest to encode in the changepoint prior, by means of the
graph G, that pairs of users (i, i′) ∈ E are likely to be simultaneously affected by mali-
cious behavioural changes, thereby inducing a changepoint model for the authentication
data that borrows strength across connected users in G to detect signals for clusters of
synchronous changes, as sketched in Figure 1.

In contrast with recent intrusion detection methods (Chen and Zhang, 2015; Chen,
2019a; Metelli and Heard, 2019; Passino et al., 2021), the focus of this article is not the
temporal evolution of a graph representing a network, and both V and E are constant
in time. The graph G represents the best available static characterisation of the network
that can be used to guide change detection in the authentication activity of users (2),
and it is assumed to be readily available prior to running network intrusion detection
methods; note that, in practice, the edge set could be derived from historic data. Sec-
tion 8 discusses possible model extensions for settings where prior beliefs on which time
series are likely to be impacted by simultaneous changepoints may be time-dependent.

3 Changepoint analysis for multiple time series
Let G = (V,E) be a graph with node set V = {1, . . . , N} and edge set E ⊆ V × V . For
each node i ∈ V we observe a time series xi = (xi,0, . . . , xi,T ) which may be subject
to changepoints, and the edge set E ⊆ V × V indicates which pairs of time series
are a priori likely to be impacted by quasi-simultaneous changepoints. Conditionally
on changepoints, the data are assumed to be independent of G and follow a standard
parametric changepoint model, presented in this section. Some limitations of the usual
prior for independent changepoints are discussed, paving the way for the proposed
informative prior for graph-dependent changepoints.

3.1 Model and notation
For each node i ∈ V , suppose there are ki � 0 changepoints that partition the time
series of observations for that node into ki + 1 segments. The ordered locations of the
changepoints, denoted by τ i = (τi,1, . . . , τi,ki), belong to the set Tki , where

Tk =
{
(τ1, . . . , τk) ∈ N

k; 0 ≡ τ0 < τ1 < · · · < τk < τk+1 ≡ T + 1
}
. (3)

For each node i, the data xτi,j−1 , . . . , xτi,j−1 in each segment j are assumed to be drawn
from a distribution from the same parametric family Li(·|θi,j), with a segment specific
parameter θi,j drawn independently from a prior density πi(·).

The parameters of interest are the changepoint parameters (k, τ ), where k = (ki)i∈V

and τ = (τ i)i∈V . Motivated by computational considerations, as in Fearnhead (2006)
it is assumed in this article that segment parameters may be marginalised so that the
likelihood of the data x conditional on changepoints,

L(x|k, τ ) =
∏
i∈V

ki+1∏
j=1

Li(τi,j−1, τi,j), (4)
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where

Li(τi,j−1, τi,j) =
∫

Li(xi,τi,j−1 , . . . , xi,τi,j−1|θi,j)πi(θi,j)dθi,j (5)

can be computed. Given a prior for the changepoint parameters, π(k, τ ), one can con-
sequently compute the posterior density function for the changepoint parameters, up to
a normalising constant.

Examples of changepoint models where segment parameters may be marginalised
include models for independent and identically distributed data within segments (Fearn-
head, 2006; Denison et al., 2002), changing linear regressions (Punskaya et al., 2002;
Carlin et al., 1992), models for time-dependent data within segments, such as Markov
models with time-varying transition matrices (Bolton and Heard, 2018), zero-mean and
heteroscedastic processes with changing variance (Johnson et al., 2003), and change-
point models with segment parameters subject to seasonal effects (Turcotte, 2014).
Moreover, some model extensions where segment parameters cannot be marginalised,
and where segment parameters may be shared across segments, are discussed in Ap-
pendix C.2 in the supplementary material (Hallgren et al., 2023), indicating how the
proposed sampling strategy could be adapted for these model extensions.

In particular, consider the class of changepoint models where, within each segment,
the data are assumed to be independent and identically distributed such that

xi,t ∼ fi( · | θi,j), τi,j−1 � t < τi,j , (6)

for some parametric density fi( · | θi,j) dependent on some segment parameter θi,j ∼
πi(·). The integrals in (5) can be calculated analytically when πi is chosen to be con-
jugate to fi; and for non-conjugate cases, (5) may be calculated numerically for low-
dimensional segment parameters. For the cyber-security application discussed in Sec-
tion 2, the changepoint model (6) is suitable for the count data with, for all i, fi denoting
the density of the multinomial distribution with unknown probability parameter vectors
θi,j with an uninformative, conjugate prior Dirichlet(1M ), where 1M denotes the M -
dimensional vector of ones. As a result, each changepoint τi,j corresponds to a temporal
change in the distribution of counts of logons initiated by the user i ∈ V across M host
computers in the network.

3.2 Limitations of the standard prior for independent changepoints
When changepoints are assumed to be independent across time series, the posterior
distribution of changepoints can be estimated for each time series separately. In this
setting, it is standard to assume a priori that, for all time series, discrete time change-
points follow a Bernoulli process (Fearnhead, 2006) such that

π(k, τ |p) =
∏
i∈V

pki(1 − p)T−ki1Ti(τ i) (7)

for some Bernoulli parameter 0 < p < 1, which encodes prior belief on the expected
number of changepoints.



656 Changepoint Detection on a Graph of Time Series

For the cyber-security application where G represents a network of users, the stan-
dard prior in (7) cannot fully encode prior beliefs on changepoints. Appendix A.2 in
the supplementary material (Hallgren et al., 2023) exposes limitations resulting from
the assumption of changepoint independence across time series through a comparative
study. No choice of p seems satisfactory: choosing a small value for p will limit the
number of false alerts due to noise in user-specific legitimate activity; yet it will also
prevent the detection of weak signals for changes shared by different users which are
linked in the network, that may be of great interest. It would be preferable to specify a
priori that changepoints are more likely to occur simultaneously across time series that
are linked in G, in order to require strong evidence from the data for changes impacting
a single user, or possibly weak signals for changes that impact multiple users linked in
the network.

4 Graphical models for dependent changepoints across
multiple time series

This section proposes a novel graphical prior for dependent changepoints across multiple
time series. Given the graph of time series G = (V,E), where V = {1, . . . , N}, change-
points are modelled by means of an undirected graphical model encoding that pairs of
time series (i, i′) ∈ E are a priori likely to be simultaneously affected by changepoints.
The graphical model is further extended by relaxing the assumption that dependent
changepoints across time series are synchronous; the extended model assumes depen-
dent changepoints across time series correspond to nearby but not necessarily identical
time points.

4.1 Synchronous dependent changepoints across time series

4.1.1 Model definition

In Section 3.1, changepoints were most simply defined in terms of their number and
locations, (k, τ ). Subsequently, it will be useful to represent changepoints by means of
a binary matrix. For changepoint parameters (k, τ ), let S = (Si,t) be the corresponding
binary matrix such that, for all i ∈ V and t = 1, . . . , T ,

Si,t =
{

1 if ∃j ∈ {1, . . . , ki} s.t. t = τi,j
0 otherwise, (8)

so that (k, τ ) and S are equivalent representations of the changepoints. Moreover, let
Si,0 = Si,T+1 = 1 for all i.

To encode the dependence structure of synchronous changepoints across time series
in G = (V,E), let λ = (λi,i′) be a symmetric matrix of non-negative edge weights for
the graph satisfying λi,i′ > 0 if and only if (i, i′) ∈ E for all i, i′ ∈ V . Then, conditional
on λ, changepoints are assumed to have a prior distribution described by the weighted,
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undirected graph G such that, for all (k, τ ),

π(k, τ |p,λ) = 1
Z(p,λ)

T∏
t=1

exp
{
p̄
∑
i∈V

Si,t +
∑
i<i′

λi,i′Si,tSi′,t

}
, (9)

for some 0 < p < 1, where p̄ = logit(p) = log{p/(1− p)} and some normalising constant
Z(p,λ) that has no convenient closed form in general but will present no computa-
tional complications since the MCMC algorithm for changepoint parameters proposed
in Section 5 only requires computation of ratios of the prior density (9).

If the edge set E is the empty set, implying λi,i′ = 0 for all i and i′, then the prior
distribution in (9) is equivalent to the standard prior for independent changepoints (7);
for all changepoint parameters (k, τ ) and for all 0 < p < 1,

π(k, τ |p,0) =
∏
i∈V

p
∑T

t=1 Si,t(1 − p)T−
∑T

t=1 Si,t , (10)

where 0 is the null matrix. The memoryless property of the standard prior (Fearnhead,
2006) is maintained by the extended prior (9), conditional on fixed value of p. The
latter assumes independent and identical Markov random fields (Lauritzen, 1996) for
the columns of S. The memoryless property would be lost if (9) were marginalised over
a prior distribution for p.

The graphical prior distribution (9) takes into account both the number of change-
points across time series and their relative positions; the parameter p controls prior
belief on the sparsity of changepoints, and the edge weight parameters λ control the
synchronisation of changepoints between time series. For all pairs (i, i′), the larger the
edge weight λi,i′ > 0, the higher the probability for time series i and i′ to be simulta-
neously affected by changepoints. Hence, the prior in (9) may specify changepoints are
likely to occur simultaneously across clusters of time series according to G.

To understand how to set the changepoint prior parameters p and λ in practice,
it is instructive to consider the conditional prior distribution of the components of the
binary matrix S. Under (9), the conditional distribution of Si,t given S−(i,t) = {Si′,t′ :
(i′, t′) �= (i, t)} is

π(Si,t|S−(i,t), p,λ) ∝ exp

⎧⎨
⎩Si,t

⎛
⎝p̄ +

∑
i′: (i,i′)∈E

λi,i′Si′,t

⎞
⎠
⎫⎬
⎭ , Si,t ∈ {0, 1}. (11)

Therefore, for all i and t, the hyperparameter p corresponds to the prior probability
that t is a changepoint for the ith time series given that no changepoints occur at
time t for the graph neighbour time series of i; and, for all i′ such that (i, i′) ∈ E, the
interaction parameter λi,i′ governs how much the conditional prior probability increases
if the neighbour time series i′ is impacted by a changepoint at time t. Moreover, to
perceive the influence of the changepoint prior parameters on the posterior distribution
of changepoints, it is helpful to consider the full conditional distribution of Si,t given
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S−(i,t) = {Si′,t′ ; (i′, t′) �= (i, t)},

π(Si,t|S−(i,t), p,λ,x) ∝
(
Li(τ ′t , t)Li(t, τ ′′t )

Li(τ ′t , τ ′′t )

)Si,t

π(Si,t|S−(i,t), p,λ)

∝ exp

⎧⎨
⎩Si,t

⎛
⎝log

{
Li(τ ′t , t)Li(t, τ ′′t )

Li(τ ′t , τ ′′t )

}
+ p̄ +

∑
i′: (i,i′)∈E

λi,i′Si′,t

⎞
⎠
⎫⎬
⎭ ,

(12)

where Li is defined in (5), τ ′t = max{t′ : t′ < t, Si,t′ = 1} and τ ′′t = min{t′ : t′ >
t, Si,t′ = 1}. In essence, p determines the level of evidence required from the data to
suggest a changepoint, and the edge weight parameters control, relative to p, how weak
signals for synchronous changepoints can be combined across time series.

4.1.2 A special case: identical edge weight parameters

In practice, it will often be natural to assume that, for all (i, i′) ∈ E, λi,i′ = λ for some
fixed value λ > 0. For all i and t, let

ni,t =
∑

i′:(i,i′)∈E

Si′,t (13)

be the number of neighbour time series of i that are affected by a changepoint at time
t. Then, under (9), the conditional prior distribution of Si,t given S−(i,t) = {Si′,t′ :
(i′, t′) �= (i, t)} is

π(Si,t|S−(i,t), p, λ) = exp {Si,t (p̄ + λni,t)}
exp {p̄ + λni,t} + 1 , Si,t ∈ {0, 1}. (14)

Moreover, λ will typically be chosen relative to p̄ and the degree distribution of the
nodes in G. For example, it can be convenient to assume λ = λs|p̄|/n, where n denotes
the maximum degree of the nodes in G, for some λs > 0.

4.2 Examples of graphical dependence structures for changepoints
The prior distribution (9) is suitable for a wide variety of settings. This section pro-
vides graph motifs that can be regarded as building blocks to encode the dependence
structure of changepoints across multiple time series. For these examples, we assume
identical non-zero edge weights as considered in Section 4.1.2 and provide some insight
on how to choose the changepoint prior parameters p and λ. These exemplar depen-
dence structures for changepoints are explored via a simulation study in Appendix D
in the supplementary material (Hallgren et al., 2023).

4.2.1 Lattices

It might be natural to choose the edge set E to induce an N1×N2 lattice graph when the
number of time series is N = N1N2 for some N1, N2 > 0. For all i, let 0 � i1 � N1 − 1
and 0 � i2 � N2 − 1 be the unique natural numbers such that i = i2N1 + i1 + 1. Then
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Figure 2: Cartoon representation of a changepoint matrix S = (Si,t), defined in (8),
for 20 time series of length T which lie on a 5 × 4 lattice graph G. Edges indicate
dependence between components of S according to the prior (9) given the lattice graph
G. Blue squares indicate Si,t = 1 and white circles indicate Si,t = 0 for all i and t.

the N1 ×N2 lattice graph is such that (i, i′) ∈ E if and only if |i1 − i′1| + |i2 − i′2| = 1.
For example, suppose the data x are recorded for the analysis of some spatio-temporal
phenomenon such that xi,t denotes the observation at time t and at the coordinate i of
some N1 × N2 grid over a map of the region of interest, and it is of interest to detect
the times and the coordinates at which the distribution of the data changes.

Figure 2 illustrates the dependence structure for changepoints induced by the graph-
ical changepoint prior (9) given a lattice graph G on 20 time series of length T . The
larger the edge weight λ > 0, the higher the probability for pairs of time series connected
on the lattice graph G to be simultaneously impacted by changepoints. As a result, in
Figure 2, changepoints at time t′, which are connected by edges, are a priori more likely
than isolated changepoints at time t. The prior (9) can therefore specify that change-
points are likely to occur as clusters of simultaneous changepoints on the lattice. The
conditional probability (14) specifies that p is the prior probability that a changepoint
occurs in isolation on the lattice, and is constrained such that ni,t ∈ {0, . . . , 4}.

4.2.2 r-chains

Another dependence structure of interest arises when there is a natural ordering of the
time series, which is encoded by the time series indices 1 < · · · < N , and changepoints
are a priori likely to occur as chains of simultaneous changepoints across consecutive
time series. For instance, suppose the data consist of multiple time series that are
recorded to monitor various aspects of a system; and, it is of interest to detect some
event which evolves through multiple phases, such that each phase is likely to manifest
through the perturbation of one aspect of the system. In such a setting, it is appropriate
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to consider the following graph for the time series indices, which we call an r-chain graph:
let (i, i′) ∈ E if and only if 1 � |i− i′| � r, for some r > 0 chosen to allow gaps of length
r − 1 within chains of changepoints. For r-chain graphs, ni,t ∈ {0, . . . , 2r}.

4.2.3 Complete graphs

Suppose a complete graph for the time series indices, that is (i, i′) ∈ E for all i �= i′,
so that, according to Section 4.1.2, λi,i′ = λ > 0 for all i �= i′. In such a setting, the
prior given in (9) assumes changepoint locations are exchangeable across time series,
like the Multi-Variate Collective And Point Anomalies (MVCAPA) model proposed in
Fisch et al. (2022), and therefore solely takes into account the number of time series
impacted by a changepoint at time t, for all t.

4.2.4 Unknown graph

This article assumes that the graph G is known a priori and contains useful informa-
tion concerning the dependence structure of changepoints across time series. Future
work could reverse this idea and consider applications where estimating G is one of
the inferential objectives. It might often be computationally unrealistic to specify an
unconstrained prior for G admitting that λi,j � 0 for all (i, i′) ∈ V × V . However, in
some settings it might be appropriate to consider a class of possible graphs G, such
as those considered in the previous two subsections; for example, it may be assumed a
priori that G is an r-chain with r � 0 unknown.

4.3 Extension to asynchronous changepoint dependence

The model in Section 4.1 assumes changepoints are likely to simultaneously affect clus-
ters of time series according to the dependence graph G. In this section, we relax this
model to allow dependence between changepoints in different time series at nearby points
in time. The extended model relies on representing changepoints as lagged realisations
of simultaneous but unobserved latent changepoints. The latent changepoints are dis-
tributed according to the model introduced in Section 4.1 and, conditional on these
latent changepoints, time series-specific lags are assumed to be uniformly distributed
over some small time window.

Let (k, τ ) be changepoint parameters for multiple time series as defined in Sec-
tion 3.1, where it is assumed that the ith time series is subject to ki changepoints whose
positions are denoted τ i = (τi,1, . . . , τi,ki) ∈ Tki as defined in (3). The asynchronous
model further assumes that, for all time series i = 1, . . . , N , there exist latent change-
point positions τ̃ = (τ̃ 1, . . . , τ̃N ), τ̃ i = (τ̃i,1, . . . , τ̃i,ki) ∈ Tki , and lags d = (d1, . . . ,dN ),
di = (di,1, . . . , di,ki) ∈ {0, . . . , wi}ki , for w = (w1, . . . , wN ), where wi � 0 is an upper
bound for the lags, such that, for all j = 1, . . . , ki, the jth changepoint for time series i
is

τi,j = τ̃i,j + di,j . (15)
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Let τ̃i,0 = τi,0 = 0 and τ̃i,ki+1 = τi,ki+1 = T + 1. For all (ki, τ i) and wi � 0, if τ̃ i = τ i

and di is the zero vector then (15) holds, and therefore the existence of a corresponding
pair (τ̃ i,di) with τ i ∈ Tki is guaranteed. If wi = 0 then the latent changepoints and the
changepoints must be identical; but, in general, given changepoints (ki, τ i) and wi > 0,
there are multiple distinct pairs of latent changepoints (ki, τ̃ i) and lags di satisfying
(15) and τ̃ i ∈ Tki .

For some applications the upper bounds for the lags, w, may be fixed. In particular,
for some reference time series i ∈ V , it can be set that wi = 0, implying that τi,j = τ̃i,j
for all j, so that changepoints for time series i′ with wi′ � 0 are lagged relative to
changepoints for time series i. However, in general, upper bounds for the lags will not
be known. For example, in the motivational application in cyber-security, no user i ∈ V
can be assumed to be the first user to be affected by an attack, making it awkward to
pick a reference time series i, and the exact duration of attacks is not known a priori.
It will be assumed that, independently for all time series i, wi ∼ Geometric(η) for some
value 0 < η < 1 chosen to reflect the expected duration of an attack.

Suppose the latent changepoints (k, τ̃ ) are distributed according to the prior distri-
bution (9) given some 0 < p < 1 and graph edge weight parameters λ. Then, indepen-
dently for all time series i, conditional on wi and (ki, τ̃ i), the lags di = (di,1, . . . , di,ki)
are assumed to be uniformly distributed on the set

D(wi, ki, τ̃ i) =
{
(di,1, . . . , di,ki) ∈ {0, . . . , wi}ki : (τ̃i,1 + di,1, . . . , τ̃i,ki + di,ki) ∈ Tki

}
,

(16)

such that, for all d = (d1, . . . ,dN ),

π(d|k, τ̃ ,w) =
N∏
i=1

1D(wi,ki,τ̃ i)(di)
card(D(wi, ki, τ̃ i))

. (17)

Proposition 1 gives a recursion to derive the cardinality of (16).
Proposition 1. (Cardinality of D). Let w � 0, k � 0, τ = (τ1, . . . , τk) ∈ Tk with τ0 = 1
and τk+1 = T + 1, and let D(w, k, τ ) be the set defined in (16).

(i) For all j � 1 and l � 0, let ρ(j, l) = min{w + 1, T + 1 − τj} − (τj+l − τj) and

Q(j, l) = (ρ(j, l) + l)!
(ρ(j, l) − 1)!(l + 1)!1{0,...,w}(τj+l − τj). (18)

Additionally, let Z(0) = 1, Z(1) = Q(1, 0) and, recursively for all k > 1,

Z(k) =
k∑

j=1
(−1)k−jZ(j − 1)Q(j, k − j). (19)

Then

card(D(w, k, τ )) = Z(k). (20)

In particular, if k = 0 then τ is the empty sequence and D(w, k, τ ) contains a
unique element, namely the empty sequence.
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(ii) card(D(w, k, τ )) � (w+1)k and the equality holds if and only if τj+1 − τj > w for
all j.

Proof. See Appendix B in the supplementary material (Hallgren et al., 2023).

Consequently, the joint prior density for (k, τ̃ ,d) is

π(k, τ̃ ,d|p,λ,w) = π(k, τ̃ |p,λ)∏N
i=1 card(D(wi, ki, τ i))

(21)

and the induced changepoint prior distribution for (k, τ ) is

π(k, τ |p,λ,w) =
∑

(τ̃ ,d)∈Υ(k,τ ,w)

π(k, τ̃ ,d|p,λ,w), (22)

where Υ(k, τ ,w) denotes the set of pairs of latent changepoints and lags, (k, τ̃ ,d), that
identify the changepoints (k, τ ) according to (15).

5 Markov chain Monte Carlo inference
Joint sampling of changepoints across time series is required when the assumption of
independence for changepoints is relaxed. In this section, we propose a reversible jump
MCMC algorithm (Green, 1995) to sample changepoints in multiple time series, (k, τ ).
The changepoint parameter space is augmented with auxiliary variables (Besag and
Green, 1993; Higdon, 1998) that induce clusters of time series indices according to G.
Then, the reversible jump MCMC algorithm of Denison et al. (2002) is extended to
sample from the augmented parameter space, thereby providing a means to efficiently
explore the changepoint parameter space. At each iteration of the algorithm, a new
cluster of changepoints may be proposed or an existing cluster of changepoints may
be deleted or shifted. The validity of the proposed MCMC algorithm follows immedi-
ately from the reversibility of the proposed moves. Appendix C in the supplementary
material (Hallgren et al., 2023) gives some indications on the time complexity of the al-
gorithm and discusses possible extensions for settings where segment parameters cannot
be marginalised. For notational simplicity it is assumed there are no missing data, but
even with data which are not independent and identically distributed within segments,
any missing observations would present no methodological complication, since missing
data can be sampled from their predictive distribution within the proposed MCMC
scheme (Gelman et al., 2004).

5.1 Sampler for synchronous dependent changepoints

We begin by proposing an MCMC algorithm to sample from the posterior distribution
of changepoints when changepoint parameters are a priori distributed according to the
prior introduced in Section 4.1, π(k, τ |p,λ), given 0 < p < 1 and some interaction
parameters λ.
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To sample changepoints for multiple time series, consider the following adaptation
of the standard MCMC algorithm to sample changepoints for a unique time series
(Denison et al., 2002), which will be called the “single site updating” MCMC algorithm
thereafter. At each iteration of the algorithm, with (k, τ ) denoting the latest particle
of the sample chain, propose one of the following two moves: for a uniformly chosen
index (i, t), propose Si,t to be updated to 1 − Si,t, thereby allowing birth or death
of a changepoint; alternatively, the position of a randomly chosen changepoint, τi,j , is
sampled uniformly from {τi,j−1 + 1, . . . , τi,j+1 − 1}.

With the graphical prior distribution (9), synchronous changepoints can be corre-
lated across time series, and the single site updating MCMC algorithm can become
impractical, as illustrated in Appendix D.4.3 in the supplementary material (Hallgren
et al., 2023) through a simulation study. Instead, it will be necessary to propose moves
that allow birth, death or shift of clusters of synchronous changepoints according to the
graph induced by λ.

5.1.1 Augmenting the parameter space with auxiliary variables

To provide a means of moving efficiently through the state space of the changepoint
parameters, the parameter space is augmented with binary auxiliary variables u =
(u1, . . . ,uT ) such that, for all t, ut is an N × N symmetric binary graph adjacency
matrix with (i, i′) element ut(i, i′). For all t, the prior density of ut is assumed to take
the conditionally independent form

π(ut|λ, δ,k, τ ) =
∏
i<i′

qt(i, i′)ut(i,i′){1 − qt(i, i′)}1−ut(i,i′), (23)

where

qt(i, i′) = 1 − exp{−δλi,i′(1 − |Si,t − Si′,t|)} (24)

is the conditional probability that ut(i, i′) = 1, given a partial decoupling parameter
δ � 0 (Higdon, 1998) whose role will be discussed in Section 5.1.2. After observing data
x distributed according to (6), the joint posterior density of the augmented parameters
(k, τ ,u) is

π(k, τ ,u|p,λ,x, δ) = π(u|λ, δ,k, τ )π(k, τ |p,λ,x), (25)

where

π(u|λ, δ,k, τ ) =
T∏

t=1
π(ut|λ, δ,k, τ ). (26)

For all t, consider the graph Ht = (V,Et) with vertex set V = {1, . . . , N} and edge
set Et such that (i, i′) ∈ Et if and only if ut(i, i′) = 1 for all i, i′ ∈ V . According to (24), if
ut(i, i′) = 1 then qt(i, i′) > 0 and, consequently, Si,t = Si′,t. As a result, with Ct denoting
the set of connected components of Ht, for all clusters of time series γ ∈ Ct, Si,t = Si′,t

for all i, i′ ∈ γ. In other words, the auxiliary variables ut induce a partition of the time
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series, Ct, such that, for each cluster γ ∈ Ct, either all time series or no time series in γ are
affected by a changepoint at time t. Moreover, according to (24), if Si,t = Si′,t then the
conditional probability that ut(i, i′) = 1 increases with λi,i′ > 0, so that clusters induced
by ut will tend to be clusters on the graph induced by the edge weight parameters.

5.1.2 MCMC algorithm

To generate realisations from the posterior distribution of the changepoints, we consider
a “cluster updating” MCMC algorithm that samples from the extended joint posterior
density (25). By inducing clusters of time series determined by the edge weight parame-
ters for each time point t, the auxiliary variables u provide a means to efficiently explore
the state space of (k, τ ).

The parameter δ is a tuning parameter for the cluster updating MCMC algorithm.
The size of clusters will tend to increase with δ; in particular, if δ = 0 then, for all t,
each cluster corresponds to a unique time series index, even if the edge weights of the
dependence graph are large, so that the “cluster updating” MCMC algorithm reduces to
the “single site updating” algorithm. Typically δ is fixed (Higdon, 1998) to control the
probabilities in (23) and therefore the expected size of clusters. However, we propose to
treat δ � 0 as an unknown parameter with prior distribution π(δ), so that expected sizes
of cluster may vary in the sample; specifically, we assume that δ = 0 with probability
0 � δ0 � 1 and otherwise δ is drawn from Beta(δ1, δ2) for δ1, δ2 > 0.

For the cluster updating MCMC algorithm, at each iteration of the algorithm, with
(k, τ ,u, δ) denoting the latest particle of the sample chain, one of the following moves
is proposed.

Birth/death move

Conditional on the auxiliary variables, the birth/death move proposes the birth or death
of a cluster of synchronous changepoints. Sample t′ uniformly from {1, . . . , T}. A cluster
γ of time series indices is randomly chosen from Ct′ , the set of clusters of time series
induced by the auxiliary variables ut′ . Then, leaving the auxiliary variables unchanged,
propose changepoint parameters (k′, τ ′) such that, for all i = 1, . . . , N and t = 1, . . . , T ,

S′
i,t =

{
1 − Si,t if i ∈ γ and t = t′

Si,t otherwise, (27)

where S and S′ are binary matrix representations of (k, τ ) and (k′, τ ′) according to
(8), respectively.

Shift move

The shift move proposes to shift the position of a cluster of synchronous changepoints.
First, a time unit t is uniformly chosen from {t :

∑N
i=1 Si,t > 0}. Let C∗

t ⊆ Ct denote the
set of clusters of time series indices γ induced by ut such that, for all i ∈ γ, Si,t = 1. A
cluster γ is uniformly chosen from C∗

t . For all i ∈ γ, let ji be the index of the changepoint
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with position t for the ith time series, that is τi,ji = t. Then, sample uniformly t′ from⋂
i∈γ{τi,ji−1 + 1, . . . , τi,ji+1 − 1} and propose changepoint parameters (k, τ ′) that are

identical to (k, τ ) but with τ ′i,ji = t′, for all i ∈ γ.

In parallel, it is required to propose auxiliary variables u′ which are adapted to
(k, τ ′). The updated auxiliary variables differ from u as follows. For all i, i′ ∈ γ,
u′
t′(i, i′) = ut(i, i′) and u′

t(i, i′) = ut′(i, i′); for all i ∈ γ and i′ /∈ γ such that t′ /∈
τ i′ , u′

t′(i, i′) = 0; and, ensuring reversibility of the move, for all i ∈ γ and i′ /∈
γ such that t /∈ τ i′ , u′

t(i, i′) is sampled conditionally on (k, τ ′) according to the
Bernoulli (1 − exp{−δλi,i′(1 − |Si,t − Si′,t|)}) target distribution implied by (23).

Update of auxiliary variables

Changepoints are left unchanged, δ is sampled from its prior distribution, and auxil-
iary variables are sampled from the full conditional distribution given in (23), thereby
proposing an updated clustering of time series indices for all t.

5.2 Sampler for asynchronous dependent changepoints
According to the changepoint model (22) introduced in Section 4.3, changepoints do not
need to occur at the same time to be related. Consequently, to explore the changepoint
parameter space it will be required to propose the birth, death or shift of clusters of
asynchronous changepoints. This section extends the MCMC algorithm from Section 5.1
to sample from the posterior distribution of changepoints when changepoint parameters
are a priori distributed according to π(k, τ |p,λ,w) from (22).

Recall that under the asynchronous model, changepoints (k, τ ) are deterministically
specified by latent changepoints (k, τ̃ ) and unknown lags d according to (15). Therefore,
a sample from (k, τ ) can be obtained from a sample from (k, τ̃ ,d). Next, we propose a
sampler from the joint posterior distribution of (k, τ̃ ,d), updated from the prior density
(21) by the observed data x, thereby providing a means to obtain a sample from the
posterior distribution of (k, τ ).

As in Section 5.1, the parameter space is augmented with auxiliary variables u =
(u1, . . . ,uT ) to facilitate the exploration of the state space of the parameters of interest
(k, τ̃ ,d). Conditionally on latent changepoints (k, τ̃ ) and independently of the lags
and the data, for all t and i < i′, ut(i, i′) is assumed to be distributed according to
(23), such that ut(i, i′) ∼ Bernoulli

(
1 − exp{−δλi,i′(1 − |S̃i,t − S̃i′,t|)}

)
, where S̃ is the

binary matrix representation of (k, τ̃ ) according to (8). As described in Section 5.1.1,
it follows that the auxiliary variables ut induce a partition of the time series, Ct, such
that, for each cluster γ ∈ Ct, either all time series or no time series in γ are affected by
a latent changepoint at time t.

The joint posterior density of the augmented parameters (k, τ̃ ,d,u) is

π(k, τ̃ ,d,u|p,λ,w,x, δ) = π(u|λ, δ,k, τ̃ )π(k, τ̃ ,d|p,λ,w,x). (28)

To sample from the posterior distribution of (k, τ̃ ,d,u), or (k, τ̃ ,d,u,w) if upper
bounds for the lags are a priori unknown, the MCMC algorithm discussed in Sec-
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tion 5.1 is extended as follows: the birth/death and shift moves are adapted to pairs
of latent changepoints and lags; and additional moves are introduced for updating the
lags. For the lags, note that according to (16), for all i = 1, . . . , N and j = 1, . . . , ki, to
maintain monotonicity in the changepoints, the lag associated to the jth changepoint
of the ith time series must satisfy

di,j ∈ Dj(wi, ki, τ̃ i) = {� ∈ N; d− � � � d+}, (29)

where d− = max(0, di,j−1 + τi,j−i − τi,j + 1) and d+ = min(wi, di,j+1 + τi,j+1 − τi,j −
1); and the full conditional probability distribution of di,j is such that, for all di,j ∈
Dj(wi, ki, τ̃ i),

π
(
di,j |d−(i,j), ki, τ̃ i, wi,xi

)
∝Li (τ̃i,j−1+di,j−1, τ̃i,j+di,j)Li (τ̃i,j+di,j , τ̃i,j+1+di,j+1)

(30)

where d−(i,j) = {di′,j′ ; (i′, j′) �= (i, j)} and Li is defined in (5).

For the extended cluster updating MCMC algorithm, at each iteration of the algo-
rithm, with (k, τ̃ ,d,u,w) denoting the latest particle of the sample chain, one of the
following moves is proposed.

Extended birth/death move

The extended birth/death move proposes the birth or death of a cluster of asynchronous
changepoints. First, conditionally on the auxiliary variables, latent changepoints (k′, τ̃ ′)
are proposed according to the birth/death move detailed in Section 5.1: for all time series
i ∈ γ ⊆ {1, . . . , N}, the birth or death of latent changepoint with position t is proposed.
Then, updated lags are proposed conditional on (k′, τ̃ ′): If the birth of changepoints
is proposed, then, for all time series i ∈ γ, there is ji such that τ̃ ′i,ji = t, and the lags
d′
i = (di,1, . . . , di,ji−1, d

′
i,ji

, di,ji . . . , di,ki) are proposed for the ith time series, where
d′i,ji is sampled from the full conditional distribution (30); otherwise, if the death of
changepoints is proposed, then, for all i ∈ γ, there is ji such that τ̃i,ji = t, and the lags
d′
i = (di,1, . . . , di,ji−1, di,ji+1 . . . , di,ki) are proposed for the ith time series.

Extended shift move

The extended shift move proposes to shift the positions of a cluster of asynchronous
changepoints. First, latent changepoints (k′, τ̃ ′) and auxiliary variables u′ are proposed
according to the shift move discussed in Section 5.1: for all time series with index i ∈ γ,
the position t′ is proposed for latent changepoint with position t. Then, for all i ∈ γ,
letting ji denote the index such that τ̃ ′i,ji = t′, propose d′i,ji from the full conditional
distribution (30).

Update of auxiliary variables

δ is sampled from its prior distribution and, conditional on latent changepoints (k, τ̃ ),
auxiliary variables are sampled from their full conditional distribution (23).
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Update of lags

A pair (i, j) is uniformly chosen from {(i, j); i = 1, . . . , N and j = 1, . . . , ki}, and the
lag di,j is sampled from the full conditional distribution given in (30).

Update of upper bounds for lags

If the maximal lags w are a priori unknown, for a randomly chosen time series with in-
dex i it is proposed to update wi to w′

i = wi+σ with probability 1/2, and to update wi to
w′

i = |wi−σ| otherwise, where σ is drawn from Geometric(ρ) for some 0 < ρ < 1. Propos-
ing to update wi requires proposing updated lags d′

i = (d′i,1, . . . , d′i,ki
) ∈ D(w′

i, ki, τ̃ i)
for the ith time series. For j = 1, . . . , ki, given w′

i and (d′i,1, . . . , d′i,j−1, di,j+1 . . . di,ki),
the lag d′i,j is sampled from the full conditional distribution (30).

6 Estimating changepoint parameters
To summarise the posterior distribution of changepoint parameters for multiple time
series, for each time series i, following Green (1995), one may consider the posterior
marginal distribution of the number of changepoints ki, and the posterior distribution
of the changepoint positions τ i conditional on ki. However, in practice, for each time
series i, it may be necessary to report a point estimate (k̂i, τ̂ i) for the changepoint
parameters (ki, τ i). Following normative Bayesian theory, to define an optimal Bayes
estimate for changepoints, we propose a loss function that evaluates the quality of
estimated changepoints. When assessing the cost associated with the estimate (k̂i, τ̂ i) of
(ki, τ i), both the number and the positions of changepoints must be taken into account.
To address this challenge, we use matchings in graphs, as defined in Definition 1 and
Definition 2, to define a loss function L for changepoint estimates in Definition 3.
Definition 1. (Maximum matching in a graph). Let B = (V,E) be a graph where V
is a vertex set and E ⊆ V × V is an edge set. A matching M in B is a subset of E
such that no two edges in M share a common vertex. A maximum matching in B is a
matching that is not a subset of a larger matching in B.
Definition 2. (Minimum weight maximum matching in a graph). Let B = (V,E) be a
graph with weights wi,j � 0 for all (i, j) ∈ E. A minimum weight maximum matching in
B is a maximum matching in B for which the sum of weights of the edges is minimised.

When B is a weighted bipartite graph, the Kuhn–Munkres algorithm, also known
as the Hungarian algorithm, (Bondy and Murty, 1976) finds a minimum weight max-
imum matching in B; the time complexity of the algorithm is O(card(E)card(V ) +
card(V )2 log log card(V )), where card(V ) and card(E) denote the cardinality of the ver-
tex set and the cardinality of the edge set of B, respectively.
Definition 3. (Loss function L for changepoint estimates). Let γ � 0. For all ki, k̂i � 0,
τ i = (τi,1, . . . , τi,ki) ∈ Tki and τ̂ i = (τ̂i,1, . . . , τ̂i,k̂i

) ∈ Tk̂i
(3), let Bi be the weighted com-

plete bipartite graph with vertex sets Vi = {0, . . . , ki} and V̂i = {0, . . . , k̂i}, and weights

wi,j,j′ = min{γ, |τi,j − τ̂i,j′ |} (31)
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for all j ∈ Vi and j′ ∈ V̂i. Given a minimum weight maximum matching Mi in Bi, for
all j ∈ Vi and j′ ∈ V̂i, let mi,j,j′ = 1 if j and j′ are matched, that is (j, j′) ∈ Mi, and
mi,j,j′ = 0 otherwise. Then, define the loss to be

L
[
(k̂i, τ̂i), (ki, τ i)

]
= γ|k̂i − ki| +

1
2
∑
j∈Vi

∑
j′∈V̂i

mi,j,j′wi,j,j′ . (32)

Consider the complete bipartite graph Bi with independent vertex sets Vi = {0, . . . , ki},
V̂i = {0, . . . , k̂i} and weights (31). A minimum weight maximum matching Mi in Bi

gives a matching of the elements of τ̂ i and τ i that minimises the sum of distances (31)
between matched changepoints. Given Mi, according to the loss function (32), the cost
associated with the estimate (k̂i, τ̂ i) of (ki, τ i) is then obtained by adding the cost γ
for each unmatched changepoint and the total distance between matched changepoints.
Note that according to (31), the cost of matching two changepoint positions, that are
separated by more than γ time units, is equal to the cost of an unmatched changepoint,
namely γ. Therefore, the loss function L takes into account both the number and the
positions of changepoints, and the cost γ is chosen to be the maximum acceptable dis-
tance between a changepoint position and its estimated position. The optimal Bayes
estimate (k̂i, τ̂ i) is the changepoint parameters that minimise the expected posterior
loss with respect to the posterior marginal distribution of the changepoints (ki, τ i).

Given an approximate sample from the posterior distribution (Section 5), an ap-
proximate Bayes estimate (k̂i, τ̂ i) for each series can be identified numerically by finding
within the sample the changepoint parameters that minimise the estimated posterior
expected loss.

Appendix D in the supplementary material (Hallgren et al., 2023) presents a sim-
ulation study that demonstrates the model introduced in Section 4 and the MCMC
sampling strategy discussed in Section 5, using the loss function introduced in this
section. In particular, various graphs and changepoint parameters are considered to il-
lustrate the flexibility of the proposed model, and the convergence of the sampler is
demonstrated under a wide range of settings.

7 Red team detection in network authentication data
from LANL

This section presents results of an analysis of the LANL network authentication data
presented in Section 2 that demonstrates the utility of the graphical changepoint model
proposed in Section 4.

7.1 Presence of a red team
The occurrence of a red team exercise during the first month of the data collection
provides surrogate intruder behaviour in the authentication data (Kent, 2015). In par-
ticular, 103 user IDs are known to have been used by the red team. We show the
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Figure 3: Degree distribution of users in the LANL network represented by the graph
G′. Left panel: counts for legitimate users. Right panel: counts for red team users.

graphical model for dependent changepoints can combine evidence from multiple users
which are linked in the network, to detect chains of quasi-synchronous weak signals for
changes in the authentication activity of red team users, whilst limiting the number of
false alerts.

For our demonstration purposes, it suffices to examine a subset of the full LANL
network of users, which is represented by the graph G = (V,E) defined in Section 2.2.
Let R denote the set of red team users and let B ⊆ {u ∈ V \R : ∃r ∈ R s.t. (u, r) ∈ E}
denote card(R) randomly selected users that are not labelled as red team users in the
data but are linked to red team users on the network. The focus is on the network
corresponding to the subgraph G′ induced in G by the set of users V ′ = R∪B. Figure 3
shows the degree distribution of the 206 users in G′. Red team users tend to have a
greater degree in G′ than legitimate users; to traverse the network towards high value
targets, intruders tend to take control of users that are highly linked on the network.

7.2 Changepoint modelling

Recall from Section 2 that, for each user i ∈ V ′, the data xi,0, . . . , xi,T consist of hourly
counts of network logons per source computer for the first month of data collection as
defined in (2), which are now assumed to follow the model specified in (6) for multinomial
data. Different graphical changepoint priors are considered to demonstrate the benefits
of encoding prior beliefs about cyber-attacks. To encode prior belief that signals for
changes resulting from an attack are likely to occur at similar times across users that are
linked in the network G′, the graphical changepoint prior specified in (22) is considered
with an identical edge weight parameter λ > 0, as defined in Section 4.1.2, for all pairs
of time series corresponding to users that are linked in G′. Moreover, for comparison
purposes, the graphical changepoint prior (22) is also considered assuming the complete
graph defined in Section 4.2.3 such that λi,j = λ > 0 for all pairs of users (i, j) ∈ V ′×V ′.
With λ = 0, the two graphical changepoint priors of interest correspond to the standard
changepoint model assuming independence of changepoints across time series (10).
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For comparison purposes and to illustrate the flexibility of the proposed model, a
collection of changepoint prior parameters are considered: p̄ ∈ {−30,−50,−70} and
λ = λs|p̄|/n with λs ∈ {0, 0.5, 0.6, 0.7, 0.8}, where n denotes the average node degree in
the graph. Moreover, different assumptions for the upper bounds w for the lags are com-
pared: the zero window assumption with wi = 0 for all i, implying signals for attacks are
assumed to be synchronous across users; and, the variable window assumption with wi ∼
Geometric(0.9) for all i, admitting signals for attacks may be asynchronous across users.

For each simulation, a sample of size 1 000 000 was obtained from the posterior
distribution of the changepoints via the MCMC algorithm proposed in Section 5.2,
with a burn-in of 300 000 iterations; the Bayes estimate for changepoints corresponding
to the loss function (32) with γ = 48 was then derived from the sample.

7.3 Results
For each user in the network, each estimated changepoint represents a piece of evidence
for possible malicious behaviour that might require further investigation by cyber ana-
lysts. Identifying inferred changepoints for time series corresponding to legitimate users
i ∈ B as false alerts, it is meaningful to compare models in terms of the estimated
number of changepoints per time series i ∈ V ′,

k̄ = 1
card(V ′)

∑
i∈V ′

ki, (33)

and the proportion of estimated changepoints that impact redteam users,

kR/V ′
=

∑
i∈R ki∑
i∈V ′ ki

. (34)

Moreover, since cyber-attacks tend to be identified through clusters of behavioural
changes across machines that are linked on the network, it is of interest to prioritise for
investigation the estimated changepoints that belong to clusters of quasi-synchronous
changepoints on the network. Given some time window � � 0, let the weight of τi,j be

c�i,j =
n�
i,j + 1
ni + 1 , (35)

where

n�
i,j = card({(i, i′) ∈ E : ∃j′ ∈ {1, . . . , ki′} s.t. |τi,j − τi′,j′ | � �}) (36)

denote the number of users linked to user i in G′ that are impacted by a changepoint
within � hours of τi,j , and where ni = card({(i, i′) ∈ E}) is the degree of node i in
G′, such that (ni + 1)−1 � ci,j � 1. The larger the weight ci,j , the more connected
τi,j to other changepoints across the network. To take into account both the number of
changepoints and their connectedness, for each user i, changepoint estimates are also
compared via the sum of weights

mi ≡ m�
i =

ki∑
j=1

c�i,j , (37)
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Figure 4: Average number of changepoints per time series k̄ (top row), and proportion
of changepoints impacting redteam users kR/V ′ (bottom row), assuming the network
graph (left column) and the complete graph (right column), for different assumptions for
the upper bounds for the lags - zero window (circles) and variable window (triangles),
and for a collection of prior parameters p̄ (identified by distinct colours) and λs.

such that 0 � mi � ki. Note that for each user i, mi increases with both the number of
changepoints and their weights. Let

m̄ = 1
card(V ′)

∑
i∈V ′

mi, mR/V ′
=

∑
i∈R mi∑
i∈V ′ mi

(38)

be the average sum of changepoint weights per user and the proportion of changepoint
weights associated to redteam users, respectively.

For each choice of graph and changepoint prior parameters, Figure 4 displays the
estimated values of k̄ and kR/V ′ , and Figure 5 displays the estimated values of m̄
and mR/V ′ assuming � = 48. As p̄ increases, weaker evidence is required to infer
changepoints, and therefore, for each graph, k̄ and m̄ increase. As λ increases, the
estimates for k̄ and m̄ tend to increase for each graph, but the estimates for kR/V ′ and
mR/V ′ tend to increase only when assuming the network graph. This follows because
the graphical changepoint model assuming the network graph successfully encodes prior
knowledge that cyber attacks tend to correspond to coordinated activity across multiple
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Figure 5: Estimated m̄ and mR/V ′ (38), assuming the network graph (left column) and
the complete graph (right column), for different assumptions for the upper bounds for
the lags - zero window (circles) and variable window (triangles), and for a collection of
prior parameters p̄ (identified by distinct colours) and λs.

users linked by network connectivity, and consequently, as λ increases, it detects weaker
signals for behavioural changes that correspond to red team activity, whilst crucially
limiting the number of false alerts. For the proposed model with the complete graph,
all time series are connected, and therefore, as λ increases, weaker signals for changes
are detected for red team activity but also for legitimate activity, which would impede
fast identification of the attack.

Moreover, results show the benefits of the model extension which relaxes the as-
sumption that signals for attacks are synchronous across users. As λ increases, when
assuming the network graph, the increase of the estimates for kR/V ′ and mR/V ′ tend to
be greater for the variable window scenario than for the zero window scenario. In con-
trast with the zero window scenario, the variable window scenario admits attacks may
result in quasi-synchronous behavioural changes across the network, and consequently
clusters of nearby but not necessarily synchronous weak signals for changepoints are
detected across red team users.

The results show that, in comparison with the standard model for independent
changepoints across time series, the proposed graphical changepoint model provides a
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flexible tool for cyber-analysts to incorporate expert knowledge in changepoint analysis
for network monitoring, thereby facilitating network intrusion detection.

8 Discussion
This article considers a setting with N time series (1) subject to changepoints, where
it is desirable to encode in the changepoint prior, by means of a graph G = (V,E) on
N nodes corresponding to each of the time series, that pairs of time series (i, i′) ∈ E
are a priori more likely to be impacted by simultaneous changepoints. This setting is
adapted to the application in cyber-security where each node in V corresponds to a time
series representing the authentication activity of a network user, and an edge (i, i′) ∈ E
indicates that it is believed a priori that attackers may switch credentials between user
i and user i′ at any time of the data collection period, so that users i and i′ are a priori
more likely to be impacted by quasi-simultaneous behavioural changes.

However, for some applications, it might be restrictive to assume that prior beliefs
on which time series are likely to be impacted by simultaneous changepoints do not
vary over time. For example, consider the following application in cyber security. Using
system log data, it can be of interest to monitor the process activity of computers, which
may be subject to changes when attackers perform malicious activity such as the installa-
tion or the execution of malware. Moreover, attackers will typically need to communicate
with compromised computers to simultaneously execute malicious commands on these
computers. As a result, the process activity of computers i and i′ are more likely to be
subject to simultaneous changes when some source computer simultaneously communi-
cates to both i and i′. For such a setting, it would be more suitable to specify a time series
of graphs {Gt = (V,Et) |Et ⊆ V ×V, t � 0}, such that pairs of time series (i, i′) ∈ Et are
a priori more likely to be impacted by simultaneous changepoints at time t. Each node
in V would correspond to a time series representing the process activity of a computer in
the network, and an edge (i, i′) ∈ Et would indicate that communication events occurred
at time t from some source computer to both i and i′, so that computers i and i′ are a
priori more likely to be impacted by simultaneous behavioural changes at time t. For
networks where many computers may leave or enter during the data collection period,
a further model extension could consider relaxing the assumption that V is fixed, speci-
fying a time series of graphs {Gt = (Vt, Et) |Et ⊆ Vt ×Vt, Vt ⊂ N, t � 0} such that Vt is
the node set of computers active in the network at time t. With the introduction of time-
dependent edge weight parameters λ = (λi,i′,t) such that λi,i′,t > 0 if and only if (i, i′) ∈
Et, these model extensions would present no theoretical complication, with a straight-
forward adaption of the graphical changepoint prior and the proposed sampling strategy.

Supplementary Material
Supplementary Material for “Changepoint detection on a graph of time series” (DOI:
10.1214/23-BA1365SUPP; .pdf). The Python code and the data are available at https://
github.com/karl-hallgren/cp_on_graph_of_timeseries/

https://doi.org/10.1214/23-BA1365SUPP
https://github.com/karl-hallgren/cp_on_graph_of_timeseries/
https://github.com/karl-hallgren/cp_on_graph_of_timeseries/
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