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Bayesian ex Post Evaluation of Recursive
Multi-Step-Ahead Density Prediction∗

Anna Pajor†, Jacek Osiewalski‡, Justyna Wróblewska‡, and Łukasz Kwiatkowski‡

Abstract. This research is focused on a formal Bayesian method of recursive
multi-step-ahead density prediction and its ex post evaluation. Our approach
remains within the framework of the standard (classical or orthodox) Bayesian
paradigm based on the Bayes factor and on the use of the likelihood-based up-
date. We propose a new decomposition of the predictive Bayes factor into the
product of partial Bayes factors, for both a finite number of consecutive k-step-
ahead forecasts (where k > 1) and the recursive updates of the posterior odds
ratios based on updated data sets. The first factor in the decomposition is related
to the relative k-step-ahead forecasting ability of models, while the second one
measures the updating effect.

To illustrate the usefulness of the proposed measures, we apply the new de-
composed predictive Bayes factors to compare the forecasting ability of models
when the true data generating process (DGP) is known, using simulated data sets.
Taking into account the effect of updating, the posterior odds ratios leads to the
conclusion that the best model coincides with the true DGP. However, the high-
est k-step-ahead forecasting ability (considered alone) can be achieved by some
other, less adequate models. Next, we investigate the predictive ability of different
Vector Error Correction (VEC) models with conditional heteroscedasticity, com-
bining three macroeconomic variables: unemployment, inflation and interest rates,
separately for the US and Polish economies. The results show that the inference
about the models’ predictive performance depends on the forecast horizon as well
as on taking into account the updating effect.

MSC2020 subject classifications: 62F15, 60G25, 62M20.
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1 Introduction
The predictive capacity of econometric models can be evaluated and compared in several
ways. Many accuracy measures of prediction, both Bayesian and non-Bayesian, have
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been proposed and discussed in the literature. Reviews of Bayesian predictive model
assessment and related concepts can be found in, e.g., Vehtari and Ojanen (2012),
Vehtari and Ojanen (2014), Piironen and Vehtari (2017). A very popular approach to
evaluation of forecasting ability hinges on the so-called scoring rules, proposed by Good
(1952) and Bernardo and Smith (1994), and discussed in numerous papers, e.g., Winkler
and Murphy (1968), Murphy and Winkler (1970), Winkler (1996), Gneiting and Raftery
(2007), Carvalho (2016). Some of the most common scoring rules include: the quadratic
score, the logarithmic score, the continuous ranked probability score (CRPS), the energy
score (ES), as well as scoring rules depending on the first and second moments (see,
e.g., Dawid and Sebastiani, 1999; Gneiting and Raftery, 2007; Yao et al., 2018).

In this paper, we focus on a formal Bayesian recursive multi-step-ahead density
prediction and its ex post evaluation. Our approach remains within the framework of
the standard (classical, orthodox) Bayesian paradigm based on the Bayes factor and the
use of the likelihood-based update – an idea introduced in Jeffreys (1961). Note that
also the concept of non-likelihood-based update has been entertained in the literature,
see, e.g., Bissiri et al. (2016) and Loaiza-Maya et al. (2021), where the likelihood is
replaced with the exponential of a problem-specific loss function.

The classical Bayesian approach to time series modelling makes it possible to for-
mally and coherently compare the quality of predictive distributions for multiple hori-
zons. The comparison is based on the so-called predictive likelihood function, i.e. the
probability density function of the predictive distribution of future (unobserved) data
conditional on the observed data, evaluated at the future values after they are observed
(see Geweke, 2005; Geweke and Whiteman, 2006). There is a relative lack of fully, in-
herently Bayesian tools for comparing the predictive ability of models, based on a finite
number of consecutive k-step-ahead forecasts with k > 1. In practice, to that end, the
average difference between the log predictive scores (or, the log predictive likelihoods)
of competing models is employed (see, e.g., Geweke and Amisano, 2010; Koop and Ko-
robilis, 2012; Warne et al., 2013; Giannone et al., 2015; Cross et al., 2020). While the
literature on density forecasting is abundant, it appears that, to the best of our knowl-
edge, a fully classical Bayesian approach to evaluation and models’ multi-step-ahead
predictive performance comparison has not been developed yet. We aim at filling this
gap and propose a new measure, based on the decomposition of the predictive Bayes
factor, for comparing the forecasting performance of Bayesian models for both n consec-
utive k-step-ahead forecasts and updating posterior odds ratios. The first factor in the
decomposition is related to the relative k-step-ahead forecasting ability of models, while
the second one measures the updating effect. Jointly, the proposed predictive Bayes fac-
tor of order (k, s) at time T shows how the posterior odds ratio depends (on average)
on the updated observations.

The paper is organized as follows. In Section 2, scoring rules in the context of the
Bayesian approach are briefly discussed. Section 3 outlines the Bayesian principles of
model comparison and predictive power relative assessment, within the framework of
which we propose a new decomposition of the predictive Bayes factor for comparing the
forecasting performance of models. Section 4 presents simulation studies. In Section 5,
to illustrate the proposed measure, we use data for the US and, separately, Polish
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three macroeconomic variables: the unemployment, inflation and interest rate, modelled
jointly within the conditionally heteroscedastic vector error correction (VEC) models.
Section 6 concludes.

2 A short note on scoring rules in the Bayesian
approach

In the Bayesian approach, most inferences and predictions are formulated in probabilis-
tic terms. To be able to measure how adequate probabilistic forecasts are, some manners
of their evaluation are needed. The measures frequently used for such evaluations in-
clude strictly proper scoring rules. As noted by Winkler (1996): “In an ex ante sense,
strictly proper scoring rules provide an incentive for careful and honest forecasting by
the forecaster or forecast system. In an ex post sense, they reward accurate forecasts and
penalize inferior forecasts.” A broad discussion of the scoring rules can be found, e.g., in
(Bernardo and Smith, 1994, Section 2.7). The best known proper scoring rules are the
quadratic, logarithmic, and spherical rules (see, e.g., Brier, 1950; Good, 1952; Winkler,
1996; Savage, 1971). Bernardo and Smith (1994) have shown that only the logarithmic
score function is smooth (continuously differentiable), proper (the maximum value is
attained for the true predictive distribution), and local (the value of the function at a
particular event depends only on the probability assigned to that event, and it is inde-
pendent of probabilities of the remaining events). Thus, if one is interested in choosing
such a scoring rule for assessing probabilistic forecasts that is smooth, proper and local,
then the choice can be restricted to the logarithmic rule.

Scoring rules provide measures for the evaluation of probabilistic forecasts by as-
signing a numerical score based on the forecast and on the realised observation (see
Gneiting and Raftery, 2007). From the Bayesian perspective, scores can be referred to
as utilities – in fact, the expected utility of a predictive distribution can be maximised
over the space of competing models (see Bernardo and Smith, 1994). The standard
(and classical) Bayesian approach to comparing two models uses the Bayes factor, the
logarithm of which can be interpreted as the difference between the two models’ log
scores. A survey of Bayesian predictive methods for model assessment, selection and
comparison can be found in Vehtari and Ojanen (2012, 2014).

3 Bayesian predictive model assessment
Let yT+k+n

1 = [y1 . . . yT+k+n] be the matrix of ordered observables, θi be the vector of
unknown parameters, and hT+k+n

i,1 = [hi,1 . . . hi,T+k+n] be the matrix of latent variables
in model Mi, i = 1, . . . , m. Moreover, let M1, . . . , Mm be a set of mutually exclusive
(non-nested) and jointly exhaustive models, with a prior probability for each model,
p(Mi).1 The Bayesian model Mi is defined by the joint distribution of the observables,

1The assumptions of mutually exclusive and jointly exhaustive models ensure that the models
M1, . . . ,Mm form a complete set of non-nested alternative specifications, which is required to introduce
a probability measure on the model space. Then, p({M1, . . . ,Mm}) = p(M1) + · · · + p(Mm) = 1.
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parameters (θi) and latent variables (hT+k+n
i,1 ):

p
(
yT+k+n
1 , hT+k+n

i,1 , θi|Mi

)
= p

(
yT+k+n
1 |hT+k+n

i,1 , θi, Mi

)
p
(
hT+k+n
i,1 |θi,Mi

)
p (θi|Mi) ,

where p(yT+k+n
1 |hT+k+n

i,1 , θi,Mi) is the conditional sampling density for the observables
yT+k+n
1 , p(hT+k+n

i,1 , θi|Mi) = p(hT+k+n
i,1 |θi,Mi) p(θi|Mi) is the prior distribution of the

parameters and latent variables, p(hT+k+n
i,1 |θi, Mi) is the density of the prior distribu-

tion of the latent variables, given the vector of parameters, and finally, p(θi|Mi) is the
prior density for θi. Initial conditions are omitted in our notations.2 Notice that the
observables are the same in the models, but the unobservables need not to be the same.

In order to consider the predictive performance of the models, we split the ma-
trices hT+k+n

i,1 and yT+k+n
1 into two parts with T and n + k elements, respectively:

hT+k+n
i,1 = [hT

i,1 hT+k+n
i,T+1 ] and yT+k+n

1 = [yT1 yT+k+n
T+1 ], where yT1 is observed and yT+k+n

T+1
is unobserved (to be forecasted). Our purpose is to compare the predictive ability of
the models in the period T +1, . . . , T + k+n. Thus, the initial observations (the data)
from t = 1 to t = T , collected in the matrix yT,o

1 , can be treated as a “training sample”.

The posterior probability of the model Mi after observing the data, yT,o
1 , follows

from the Bayes rule:

p
(
Mi|yT,o

1

)
=

p
(
yT,o
1 |Mi

)
p (Mi)

m∑
j=1

p
(
yT,o
1 |Mj

)
p (Mj)

, (3.1)

where p(Mi) is the prior probability of the model Mi, whereas

p
(
yT,o
1 |M i

)
=

∫
p
(
yT,o
1 |hT

i,1, θi,Mi

)
p
(
hT
i,1, θi|Mi

)
dhT

i,1 dθi

is the marginal likelihood (the marginal data density value at yT,o
1 ) for the model Mi.

The marginal likelihood of the model Mi is the measure of how well the model predicted
the data yT,o

1 . The posterior probabilities of the models under consideration provide a
formal basis for choosing the best specification from among M1, . . . ,Mm, as well as for
weighted averaging of the competing models, commonly referred to as Bayesian model
averaging or Bayesian pooling approach.

The main criterion of comparison between the two models Mi and Mj is their pos-
terior odds ratio:

p
(
Mi|yT,o

1

)
p
(
Mj |yT,o

1

) =
p
(
yT,o
1 |Mi

)
p
(
yT,o
1 |Mj

) p (Mi)
p (Mj)

. (3.2)

Ultimately, it enables the calculation of the posterior probabilities of the models, p(Mi|y), according
to the formula given in (3.1).

2Initial conditions can be included into the parameter vector, and be subject to estimation. In the
empirical part of the paper, some of them are assumed to be fixed, and thus not estimated, while the
others constitute additional model parameters.
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The ratio Bi,j(yT,o
1 ) = p(yT,o

1 |Mi)
p(yT,o

1 |Mj)
is referred to as the Bayes factor in favour of the

model Mi versus the model Mj , while p(Mi)
p(Mj) is the prior odds ratio (which may depend

on initial conditions). The prior odds ratio is the degree to which one’s beliefs favour the
model Mi over the model Mj (see, e.g., Morey et al., 2016). In turn, the posterior odds
ratio informs one about the degree to which the model Mi is favoured over the model Mj

after having observed the data. In other words, the posterior odds ratio indicates how
many times the model Mi is more probable than the model Mj after having observed the
data and under the given prior beliefs. If the prior odds ratio is equal to one (i.e. both
models are equally probable a priori, p(Mi) = p(Mj)), then the posterior odds ratio
between the two models coincides with the Bayes factor, Bi,j(yT,o

1 ), which measures the
relative within-sample predictive power of Mi and Mj (see, e.g., Osiewalski and Steel,
1993). The Bayes factor shows how the observations yT,o

1 contribute to the evidence in
favour of the model Mi over the model Mj . Let us point to the fact that Bi,j(yT,o

1 ) can
be expressed as the ratio of the posterior and prior odds ratios. Thus, it indicates the
change in belief for the ratio of the model probabilities due to observing the data yT,o

1 .

Now, let us start with the distribution of yT+k+n
T+1 and latent variables hT+k+n

i,T+1 con-
ditional on yT1 , hT

i,1, θi in the model Mi:

p
(
yT+k+n
T+1 , hT+k+n

i,T+1 |yT1 , hT
i,1, θi,Mi

)
= p

(
yT+k+n
T+1 |hT+k+n

i,T+1 , yT1 , h
T
i,1θi,Mi

)
×

× p
(
hT+k+n
i,T+1 |yT1 , hT

i,1, θi,Mi

)
.

(3.3)

The predictive density of yT+k+n
T+1 conditional on yT,o

1 in the model Mi amounts to the
following integral:

p
(
yT+k+n
T+1 |yT,o

1 ,Mi

)
=

∫
p
(
yT+k+n
T+1 , hT+k+n

i,T+1 |yT,o
1 , hT

i,1, θi,Mi

)
×

× p
(
hT
i,1, θi|yT,o

1 ,Mi

)
dhT+k+n

i,T+1 dhT
i,1 dθi.

(3.4)

Thus, the predictive density is obtained by integrating out the parameters and latent
variables from the joint density function. This predictive distribution describes our
beliefs about the future observation given the observed data yT,o

1 . Once yT+k+n
T+1 is

known, one can evaluate p(yT+k+n
T+1 |yT,o

1 ,Mi) at the observed values, yT+k+n,o
T+1 , obtaining

some real number: p(yT+k+n,o
T+1 |yT,o

1 ,Mi), which is called the predictive likelihood, see
Geweke (2005). In other words, the predictive likelihood is the predictive density for
yT+k+n
T+1 (given data up to time T ) evaluated at the observed data. In order to assess

how well alternative models predict the same set of observations, simply their predictive
likelihoods are compared.

Notice that the posterior odds ratio given yT+k+n,o
1 can be expressed as the product

of the ratio of the predictive likelihoods (the predictive Bayes factor) and the posterior
odds ratio given the initially observed data yT,o

1 :

p
(
Mi|yT+k+n,o

T+1 , yT,o
1

)
p
(
Mj |yT+k+n,o

T+1 , y
T,o

1

) =
p
(
yT+k+n,o
T+1 |yT,o

1 , M i

)
p
(
yT+k+n,o
T+1 |yT,o

1 ,Mj

) p
(
Mi|yT,o

1

)
p
(
Mj |yT,o

1

) . (3.5)
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Thus, the predictive Bayes factor for the period from T + 1 to T + k + n,

Bi,j

(
yT+k+n,o
T+1 |yT,o

1

)
=

p
(
yT+k+n,o
T+1 |yT,o

1 , M i

)
p
(
yT+k+n,o
T+1 |yT,o

1 ,Mj

) , (3.6)

shows how the observations collected in yT+k+n,o
T+1 contribute to the evidence in favour

of the model Mi over the model Mj . The predictive Bayes factor over the period T + 1
to T + k + n updates the ratio of the posterior probabilities based on the first T obser-
vations after having observed the predicted data yT+k+n

T+1 . In other words, it determines
how the posterior beliefs change after having observed the data yT+k+n,o

T+1 . Therefore,
Bi,j(yT+k+n,o

T+1 |yT,o
1 ) indicates how much the additional data, yT+k+n,o

T+1 , changes the odds
of the two models. Note that this predictive Bayes factor can be expressed as a part of
the “full” Bayes factor (see, e.g., O’Hagan, 1995):

Bi,j

(
yT+k+n,o
1

)
=

p
(
yT+k+n,o
1 |Mi

)
p
(
yT+k+n,o
1 |Mj

) =

=
p
(
yT+k+n,o
T+1 |yT,o

1 ,M i

)
p
(
yT+k+n,o
T+1 |yT,o

1 ,Mj

) p
(
yT,o
1 |Mi

)
p
(
yT,o
1 |Mj

) = Bi,j

(
yT+k+n,o
T+1 |yT,o

1

)
Bi,j

(
yT,o
1

)
.

(3.7)

In turn, it is obvious that

p
(
yT+k+n,o
T+1 |yT1 ,M i

)
p
(
yT+k+n,o
T+1 |yT1 ,Mj

) =

k+n∏
s=1

p
(
yoT+s|y

T+s−1,o
1 ,Mi

)
k+n∏
s=1

p
(
yoT+s|y

T+s−1,o
1 ,Mj

) =
k+n∏
s=1

p
(
yoT+s|y

T+s−1,o
1 ,Mi

)
p
(
yoT+s|y

T+s−1,o
1 ,Mj

) ;

(3.8)
see Geweke and Amisano (2010). Hence,

logBi,j

(
yT+k+n,o
T+1 |yT,o

1

)
=

k+n∑
s=1

logBi,j

(
yoT+s|yT+s−1,o

1

)
, (3.9)

and, in consequence, the predictive Bayes factor can be calculated based on the re-
peated one-step-ahead forecasts. It is worth mentioning that the predictive Bayes factor
Bi,j(yT+k+n,o

T+1 |yT,o
1 ) measures the relative predictive power of Mi and Mj within the

whole period T + 1, . . . , T + k + n, given yT,o
1 , and it can be viewed as the difference of

the two models’ logarithmic scores (see Gneiting and Raftery, 2007). In fact, the same
rank of models is obtained by the use of the average logarithmic score:

ALogS (1, k + n, T,Mi) = 1
n + k

log p
(
yT+k+n,o
T+1 |yT1 ,Mi

)
=

= 1
n + k

n+k∑
s=1

log p
(
yoT+s|yT+s−1,o

1 ,Mi

)
.

(3.10)
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Some issue with the interpretation of the average of (or sum of) logarithmic scores
arises when one is to compare the k-step-ahead forecasting ability of models Mi and
Mj , for k > 1. The formulation of this problem and a proposition of its solution are
presented in the following section.

4 Comparing models in respect to their k-step-ahead
forecasting performance. A new decomposition of the
predictive Bayes factor

In order to compare the k-step-ahead forecasting ability of two competing Bayesian
models, Mi and Mj , let us start with the posterior odds ratio given the matrix of
observations yT,o

1 and the realised value of yT+k, that is yoT+k:

p
(
Mi|yoT+k, y

T,o
1

)
p
(
Mj |yoT+k, y

T,o
1

) =
p
(
yoT+k|y

T,o
1 , Mi

)
p
(
yoT+k|y

T,o
1 ,Mj

) p
(
Mi|yT,o

1

)
p
(
Mj |yT,o

1

) . (4.1)

The predictive Bayes factor of the form: Bi,j(yoT+k|y
T,o
1 ) = p(yo

T+k|y
T,o
1 ,Mi)

p(yo
T+k|y

T,o
1 ,Mj)

, for the k-
step ahead forecast, indicates how much the additional data (the k-th observation as
from T ), yoT+k, modifies the odds of the two models based on the data up to time T .
Henceforth, we refer to this quantity as the predictive Bayes factor of order k at time T .
In addition, following Geweke (2005), it is easy to show that the predictive likelihood in
the model Mi, p(yoT+k|y

T,o
1 ,Mi), is the ratio of the corresponding marginal likelihoods:

p
(
yoT+k|yT,o

1 ,Mi

)
=

p
(
yoT+k, y

T,o
1 |Mi

)
p
(
yT,o
1 |Mi

) . (4.2)

Thus, it is the multiplicative updating factor applied to the marginal likelihood
p(yT,o

1 |Mi) after observing yT+k, that produces the new marginal likelihood
p(yoT+k, y

T,o
1 |Mi).

To approximate the predictive likelihood, p(yoT+k|y
T,o
1 ,Mi), we first draw h

T+k,(q)
i,1

and θ
(q)
i , for q = 1, . . . , N , from the posterior distribution (conditional on yT,o

1 ). Then,
if k > 1, for each q, a vector y

T+k−1,(q)
T+1 is simulated from the conditional sampling

distribution of observations given yT,o
1 , hT+k,(q)

i,1 and θ
(q)
i . Finally, the arithmetic mean

is calculated:

p̂
(
yoT+k|yT,o

1 ,Mi

)
= 1

N

N∑
q=1

p
(
yoT+k|yT,o

1 , y
T+k−1,(q)
T+1 , h

T+k,(q)
i,1 , θ

(q)
i ,Mi

)
.

Now let us consider the following setup of recursive k-step-ahead forecasts. The set
of actual observations is extended by a progressive inclusion of consecutive observations
(s = 1, . . . , n), and each time the forecasting is carried out using the k-step-ahead
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predictive density:

p
(
yT+k+s|yT+s,o

1 ,Mi

)
=

∫
p
(
yT+k+s, hi,T+k+s|yT+s,o

1 , hT+s
i,1 , θi,Mi

)
×

× p
(
hT+s
i,1 , θi|yT+s,o

1 ,Mi

)
dhi,T+k+s dh

T+s
i,1 dθi.

(4.3)

The following key question arises now: how to compare, from a Bayesian perspective,
the k-step-ahead forecasting ability of the models under consideration in the period from
T + 1 to T + k + n?

As mentioned above, for k = 1, the answer is very simple: we can use the predictive
Bayes factor Bi,j(yT+k+n,o

T+1 |yT,o
1 ) or, equivalently, we can evaluate the predictive per-

formance of the model Mi by means of the average log predictive likelihoods for the
one-period-ahead forecasts. Thus, the Bayesian comparison of the accuracy of density
forecasts, based on the predictive Bayes factor, can be regarded as using the log predic-
tive score, with the logarithm of the predictive density evaluated at the realised value
of the time series.

Let us now proceed to the case of in which k is fixed and k > 1. In the literature
(see, e.g., Gneiting and Raftery, 2007; Koop and Korobilis, 2012; Cross et al., 2020), a
popular measure of the predictive ability of the model Mi for the k-step-ahead forecasts
is the average (or sum) of the log predictive likelihoods:

AlogPL (k, n, T,M i) = 1
n + 1

n∑
s=0

log p
(
yoT+k+s|yT+s,o

1 , M i

)
. (4.4)

However, this measure has no direct Bayesian interpretation. Obviously, it is straight-
forward to show from (4.1) that the average of the log posterior odds ratios based on
all observations is equal to the sum of two averages: the average of the log predictive
Bayes factors of order k, and the one of the log posterior odds ratios obtained with the
k-th observations excluded:

1
n + 1

n∑
s=0

log
p
(
Mi|yoT+k+s, y

T+s,o
1

)
p
(
Mj |yoT+k+s, y

T+s,o
1

) =

= 1
n + 1

n∑
s=0

logBi,j

(
yoT+k+s|yT+s,o

1

)
+ 1

n + 1

n∑
s=0

log
p
(
Mi|yT+s,o

1

)
p
(
Mj |yT+s,o

1

) .
(4.5)

Thus, the average of the log predictive Bayes factors of order k informs one on how
the average of the log posterior odds ratios changes after the k-th observations have
realized. However, when we want the average of the log posterior odds ratios based on
all observations, 1

n+1

n∑
s=0

log p(Mi|yo
T+k+s,y

T+s,o
1 )

p(Mj |yo
T+k+s,y

T+s,o
1 )

, to be compared to the log posterior odds

ratio based on the first T observations, that is log p(Mi|yT,o
1 )

p(Mj |yT,o
1 )

, we should consider another
term different from the average of log predictive Bayes factors of order k. Therefore,
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here we define the predictive Bayes factor of order (k, s) for recursive k-step-ahead
forecasts, and we provide a new decomposition of this Bayes factor, delivering a simple
interpretation of its factors.

Let us start with the posterior odds ratio given the matrix of observations yT+s,o
1

and the realised value of yT+k+s (that is yoT+k+s) for s = 1, . . . , n:

p
(
Mi|yoT+k+s, y

T+s,o
1

)
p
(
Mj |yoT+k+s, y

T+s,o
1

) =
p
(
yoT+k+s|y

T+s,o
1 ,Mi

)
p
(
yoT+k+s|y

T+s,o
1 ,Mj

) p
(
Mi|yT+s,o

1

)
p
(
Mj |yT+s,o

1

) . (4.6)

Next, we have:

p
(
Mi|yoT+k+s, y

T+s,o
1

)
p
(
Mj |yoT+k+s, y

T+s,o
1

) =
p
(
yoT+k+s, y

T+s,o
T+1 |yT,o

1 ,M i

)
p
(
yoT+k+s, y

T+s,o
T+1 |yT,o

1 ,M j

) p
(
Mi|yT,o

1

)
p
(
Mj |yT,o

1

) =

=
p
(
yoT+k+s|y

T+s,o
1 ,M i

)
p
(
yoT+k+s|y

T+s,o
1 ,Mj

) p
(
yT+s,o
T+1 |yT,o

1 ,M i

)
p
(
yT+s,o
T+1 |yT,o

1 ,M j

) p
(
Mi|yT,o

1

)
p
(
Mj |yT,o

1

) =

=
p
(
yoT+k+s|y

T+s,o
1 ,M i

)
p
(
yoT+k+s|y

T+s,o
1 ,Mj

)
s∏

l=1
p
(
yoT+l|y

T+l−1,o
1 ,M i

)
s∏

l=1
p
(
yoT+l|y

T+l−1,o
1 ,M j

) p
(
Mi|yT,o

1

)
p
(
Mj |yT,o

1

) .

Thus, the posterior odds ratio given the matrix of observations yT+s,o
1 and the realised

value of yT+k+s is the product of the three: first, the predictive Bayes factor related to
the k-step-ahead forecast at time T + s; second, the predictive Bayes factor based on
the forecasts for the period (of a length of s) ranging from t = T + 1 to t = T + s; and
finally, the posterior odds ratio given the matrix of observations yT,o

1 :

p
(
Mi|yoT+k+s, y

T+s,o
1

)
p
(
Mj |yoT+k+s, y

T+s,o
1

) = Bi,j

(
yoT+k+s|yT+s,o

1

)
Bi,j

(
yT+s,o
T+1 |yT,o

1

) p
(
Mi|yT,o

1

)
p
(
Mj |yT,o

1

) . (4.7)

We define this product of the two predictive Bayes factors in the equation above as the
predictive Bayes factor of order (k, s) at time T , and denote it as Bi,j(k, s, T ):

Bi,j(k, s, T ) = Bi,j

(
yoT+k+s|yT+s,o

1

)
Bi,j

(
yT+s,o
T+1 |yT,o

1

)
for s = 0, 1, . . . , n, (4.8)

where according to our convention:

Bi,j

(
yT+s,o
T+1 |yT,o

1

)
= 1 for s = 0. (4.9)

Of course, identity (4.8) can be expressed as:

Bi,j(k, s, T ) = Bi,j

(
yoT+k+s|yT+s,o

1

) s∏
l=1

Bi,j

(
yoT+l|yT+l−1,o

1

)
. (4.10)
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The predictive Bayes factor of order (k, s) at time T provides information about how
much the k-th observation as from T + s, yoT+k+s, as well as all the observations from
T + 1 to T + s change the posterior odds ratio of the two competing models based
on the data up to time T . In other words, Bi,j(k, s, T ) informs about the predictive
ability of two models not only related to yoT+k+s, but to the entire predicted (updated)
path yT+s

T+1. Clearly, for k = 1, the predictive Bayes factor of order (k, s) at time T is
equal to the predictive Bayes factor over the period T + 1, . . . , T + s+ 1: Bi,j(1, s, T ) =
Bi,j(yT+1+s,o

T+1 |yT,o
1 ).

It is worth noting that the first factor in equality (4.8) can be used to compare the
predictive ability of two models for the k-step-ahead forecast at time T + s, while the
second factor is the effect of updating the posterior odds ratios. Thus, the predictive
Bayes factor of order (k, s) at time T captures both the k-step-ahead forecast ability
and the effect of updating the posterior model probability. Note, that for s = 1, . . . , n:

logBi,j(k, s, T ) = log p
(
yoT+k+s, y

T+s,o
T+1 |yT,o

1 ,M i

)
− log p

(
yoT+k+s, y

T+s,o
T+1 |yT,o

1 ,Mj

)
=

= log p
(
yoT+k+s|yT+s,o

1 ,M i

)
+

s∑
l=1

log p
(
yoT+l|yT+l−1,o

1 ,Mi

)
+

− log p
(
yoT+k+s|yT+s,o

1 ,Mj

)
−

s∑
l=1

log p
(
yoT+l|yT+l−1,o

1 ,Mj

)
.

(4.11)

Therefore, the log predictive Bayes factor of order (k, s) at time T can be treated as the
difference of the corresponding log predictive score functions (cf. Geweke, 2005; Geweke
and Amisano, 2011).

Let us now consider the average of the log posterior odds ratios. From identity (4.7),
we obtain:

1
n + 1

n∑
s=0

log
p
(
Mi|yoT+k+s, y

T+s,o
1

)
p
(
Mj |yoT+k+s, y

T+s,o
1

) =

= 1
n + 1

[
n∑

s=0
logBi,j

(
yoT+k+s|yT+s,o

1

)
+

n∑
s=1

logBi,j

(
yT+s,o
T+1 |yT,o

1

)]
+

+ log
p
(
Mi|yT,o

1

)
p
(
Mj |yT,o

1

) .

(4.12)

As we can see from identity (4.12), the average (with respect to s) of the Bayes factors
of order (k, s) at time T informs us how the posterior odds ratio, on average, changes
by successively updating the observations: yoT+k+s and yoT+s for s = 1, . . . , n.

Note that the average of the logarithmic scores for the model Mi (in other words,
the average of the cumulative predictive likelihoods for the model Mi) can be written
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as follows:

AClogPL (k, T,M i) =

= 1
n + 1

[
log p

(
yoT+k|yT,o

1 , M i

)
+

n∑
s=1

log p
(
yoT+k+s, y

T+s,o
T+1 |yT,o

1 ,Mi

)]
=

= 1
n + 1

[
n∑

s=0
log p

(
yoT+k+s|yT+s,o

1 ,Mi

)
+

n∑
s=1

s∑
l=1

log p
(
yoT+l|yT+l−1,o

1 ,Mi

)]
.

(4.13)

Hence, the difference between AClogPL(k, T,M i) and AClogPL(k, T,M j) can be ex-
pressed with the use of the log predictive Bayes factors of order (k, s) at time T :

AClogPL (k, T,Mi) −AClogPL
(
k, T,M j

)
=

= 1
n + 1

[
n∑

s=0
logBi,j

(
yoT+k+s|yT+s,o

1

)
+

n∑
s=1

logBi,j

(
yT+s,o
T+1 |yT,o

1

)]
=

= 1
n + 1

n∑
s=0

logBi,j

(
yoT+k+s|yT+s,o

1

)
+ 1

n + 1

n∑
s=1

logBi,j

(
yT+s,o
T+1 |yT,o

1

)
.

(4.14)

The first component on the right-hand side of (4.14) informs one about the relative
predictive ability of the models for the k-step-ahead forecasting in the period T + k,
. . . , T + n + k. In turn, the second component is connected with the recursive updates
of the posterior odds ratios based on the updated data sets. Formula (4.14) shows that
the average (with respect to s) of the log predictive Bayes factors of order (k, s) at time
T is equal to the difference between the averages of the corresponding log predictive
scores (the average of the corresponding log predictive likelihoods), which can also
be decomposed in a natural manner into two components: the k-step-ahead forecast
ability and the updating effect, respectively. By re-estimating both models n times (for
s = 1, . . . , n, each time extending the matrix of observations by consecutive data points)
and calculating the corresponding Bayes factors of order (k, s) for a fixed k, we can both:
(i) compare the predictive ability of the models for the k-step-ahead forecasting at each
time point T + s, and (ii) include the effect of updating the data set.

We end this section by providing some intuitions pertaining to the methodology
developed above. Let us consider two very simple hypothetical examples. Suppose that
k > 1 is fixed, and assume:

p
(
M1|yT,o

1

)
p
(
M2|yT,o

1

) = 2,

B1,2

(
yoT+k|yT,o

1

)
= 0.1, B1,2

(
yoT+k+1|yT+1,o

1

)
= 0.01,

B1,2

(
yoT+k+2|yT+2,o

1

)
= 1000, B1,2

(
yoT+k+3|yT+3,o

1

)
= 10.

Moreover:

B1,2

(
yoT+3|yT+2,o

1

)
= B1,2

(
yoT+2|yT+1,o

1

)
= B1,2

(
yoT+1|yT,o

1

)
= 0.1.
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s
p(M1|yo

T+k+s,y
T+s,o
1 )

p(M2|yo
T+k+s,y

T+s,o
1 ) B1,2(yoT+k+s|y

T+s,o
1 ) B1,2(yT+s,o

T+1 |yT,o
1 )= p(M1|yT,o

1 )
p(M2|yT,o

1 )=0.1s
0 0.2 0.1 1 2
1 0.002 0.01 0.11 2
2 20 1000 0.12 2
3 0.02 10 0.13 2

average
of logs ≈ −0.95 0.25 −1.5 ≈ 0.30

Table 1: The first hypothetical example.

From identity (4.5) we obtain:

p
(
M1|yoT+k, y

T,o
1

)
p
(
M2|yoT+k, y

T,o
1

) = 0.2,
p
(
M1|yoT+k+1, y

T+1,o
1

)
p
(
M2|yoT+k+1, y

T+1,o
1

) = 0.002,

p
(
M1|yoT+k+2, y

T+2,o
1

)
p
(
M2|yoT+k+2, y

T+2,o
1

) = 20,
p
(
M1|yoT+k+3, y

T+3,o
1

)
p
(
M2|yoT+k+3, y

T+3,o
1

) = 0.02.

All calculations are summarized in Table 1.

The average of the logarithms of the predictive Bayes factors of order k,
B1,2(yoT+k+s|y

T+s,o
1 ), for s = 0, 1, 2, 3, is equal to 0.25, which indicates that the pre-

dictive capacity of the model M2 for sheer k-step-ahead forecasting is better than that
of the model M1. However, when we take into account the updating effect, represented
by the average log predictive Bayes factor over the period T +1, . . . , T +3, (the average
of logB1,2(yT+s,o

T+1 |yT,o
1 ) with respect to s), which is equal to −1.5, we see that the pos-

terior odds for the data up to time T , on average, decreases in the period from T +1 to
T +3. In consequence, the average of the log posterior odds ratios for both: (i) the four
consecutive k-step-ahead forecasts considered, and (ii) the updating of the data sets is
equal to −0.95, whereas log p(M1|yT,o

1 )
p(M2|yT,o

1 )
≈ 0.3.

In the second example, it is assumed that for the one-step-ahead forecasts both of
the models have the same predictive ability measured by the predictive Bayes factors,
B1,2(yoT+l|y

T+l−1,o
1 ) = 1 for l = 1, . . . , s, and s > 0. The values of B1,2(yoT+k+s|y

T+s,o
1 )

for s = 0, 1, 2, 3 remain the same as in the first example. In consequence, the updating
affect equals zero, while the posterior odds ratio increases, on average (see the second
column in Table 2).

The examples above show that the average of the log predictive Bayes factors of or-
der k, B1,2(yoT+k+s|y

T+s,o
1 ), measures only the k-step-ahead forecasting ability, without

taking into account the effect of the data updates (which are always present in ex post
analyses), whereas the average of the log predictive Bayes factors of order (k, s) at time
T does measure the change in the average odds.
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s
p(M1|yo

T+k+s,y
T+s,o
1 )

p(M2|yo
T+k+s,y

T+s,o
1 )

B1,2(yoT+k+s|y
T+s,o
1 ) B1,2(yT+s,o

T+1 |yT,o
1 ) p(M1|yT,o

1 )
p(M2|yT,o

1 )
0 0.2 0.1 1 2
1 0.02 0.01 1 2
2 2000 1000 1 2
3 20 10 1 2

average
of logs ≈ 0.55 0.25 0 ≈ 0.30

Table 2: The second hypothetical example.

5 Simulation examples
In this section, we illustrate the usefulness of our new decomposition of the predictive
Bayes factor of order (k, s), using simulated data. We apply the new measures of models’
forecasting ability to compare forecasts from different models when the assumed data
generating process (DGP) is actually known. We consider two 3-dimentional vector au-
toregressive processes of order two, each with two cointegrating relations and a constant
restricted to the cointegration space:

1. VEC with constant conditional covariance matrix,

2. VEC with log-normal Multiplicative Stochastic Factor structure, VEC-LN-MSF.

Further details about the DGPs will be provided in the next section, where the
models for empirical data are presented. We simulate time series of length T + n =
275, whereof the first 175 observations are used as a training sample, and the last
n = 100 data points for evaluating the performance of our new measure. The DGPs
under consideration are related to the empirical part of the paper Pajor et al. (2022),
where VAR models with time-varying conditional covariances are analysed. Using the
average log predictive score and the new measure, we compare one- to eight-step-
ahead forecasts generated by the true model to various other specifications, which
differ from the previous one in terms of the number of cointegrating relations and
the structure of conditional covariances. The results are collected in Tables 3–8 and
Figures 1–2.

Tables 3–8 reveal that, in terms of the sheer k-step-ahead forecasting ability (mea-
sured by the average log predictive Bayes factor of order k), the true model does not
necessarily turn out as the best one if k > 1. However, for the purpose of the overall
model comparison, the average of the log predictive Bayes factors of order (k, s) is by
far more appropriate. For all forecast horizons this new, joint measure pinpoints the
true DGP model, thus appears to be working well here.

6 Empirical results
In this section, the methods presented above are employed to assess the forecast accuracy
of inflation of consumer prices (Δpt), unemployment rate (Ut) and short-term interest
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No. Model k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
1 VEC(0) 0.134 0.204 0.294 0.36 0.412 0.461 0.506 0.545
2 VEC(1) 0.055 0.067 0.108 0.135 0.152 0.176 0.196 0.213
3 VEC(2), true DGP 0 0 0 0 0 0 0 0
4 VEC-LN-MSF(2) 0.004 0.004 0.002 0.001 −0.001 −0.001 −0.002 −0.002
5 VEC-t-DBEKK(2) 0.013 0.016 0.017 0.012 0.013 0.007 0.006 0.005
6 VEC-LN-MSF-

DBEKK(2)
0.005 0.005 0.006 0.004 0.005 0.003 0.003 0.001

The best model 3 3 3 3 4 4 4 4

Table 3: Average log predictive Bayes factor of order k,
1

n+1

n∑
s=0

logBVEC(2),j(yoT+k+s|y
T+s,o
1 ), for VEC(2) as the DGP. The number of

cointegrating relations is given in parentheses.

No. Model k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
1 VEC(0) 7.156 7.225 7.315 7.381 7.433 7.482 7.527 7.566
2 VEC(1) 2.857 2.869 2.91 2.938 2.954 2.979 2.998 3.015
3 VEC(2), true DGP 0 0 0 0 0 0 0 0
4 VEC-LN-MSF(2) 0.224 0.224 0.222 0.221 0.219 0.219 0.218 0.218
5 VEC-t-DBEKK(2) 1.001 1.004 1.005 1 1.001 0.995 0.994 0.993
6 VEC-LN-MSF-

DBEKK(2)
0.33 0.33 0.331 0.329 0.331 0.328 0.328 0.327

The best model 3 3 3 3 3 3 3 3

Table 4: Average log predictive Bayes factor of order (k, s),
1

n+1

[
n∑

s=0
logBVEC(2),j(yoT+k+s|y

T+s,o
1 ) +

n∑
s=1

logBVEC(2),j(yT+s,o
T+1 |yT,o

1 )
]
, for VEC(2) as

the DGP. The number of cointegrating relations is given in parentheses.

No. Model
(no. of coint. relations)

Average of
logBVEC(2),j(yT+s,o

T+1 |yT,o
1 )

1 VEC(0) 7.022
2 VEC(1) 2.802
3 VEC(2), true DGP 0
4 VEC-LN-MSF(2) 0.220
5 VEC-t-DBEKK(2) 0.988
6 VEC-LN-MSF-DBEKK(2) 0.325

The best model 3

Table 5: Average of logBVEC(2),j(yT+s,o
T+1 |yT,o

1 ) for VEC(2) as the DGP.

rate (rt) within the framework of the so-called small model of monetary policy (see,
e.g., Primiceri, 2005). This model has been applied for the data for the Polish economy
by Pajor and Wróblewska (2017), and Wróblewska and Pajor (2019), where different
VEC-MSF specifications have been compared. In this paper, similarly as in Pajor et al.
(2022), we focus on a larger class of specifications and on two (rather than one) quarterly
data sets, representing not only the Polish but also the US economy (see Figure 3). The
data for Poland ranges from 1998Q1 to 2020Q2, with the final 30 quarters (i.e. 2013Q1
to 2020Q2) designated for forecast evaluation. The series are seasonally unadjusted
and their seasonality is modelled and forecasted in a deterministic manner, i.e. using
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No. Model k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
1 VEC-LN-MSF(0) 0.159 0.207 0.257 0.28 0.309 0.348 0.386 0.399
2 VEC-LN-MSF(1) 0.067 0.06 0.057 0.067 0.076 0.079 0.081 0.088
3 VEC-LN-MSF(2),

true DGP
0 0 0 0 0 0 0 0

4 VEC(2) 0.136 0.105 0.082 0.048 0.049 0.046 0.06 0.063
5 VEC-t-DBEKK(2) 0.064 0.039 0.013 −0.004 −0.007 −0.01 0.003 0.004
6 VEC-LN-MSF-

DBEKK(2)
0.023 0.013 0.018 0.021 0.012 0.021 0.022 0.019

The best model 3 3 3 5 5 5 3 3

Table 6: Average log predictive Bayes factor of order k

1
n+1

n∑
s=0

logBLN-MSF(2),j(yoT+k+s|y
T+s,o
1 ), for LN-MSF(2) as the DGP. The number of

cointegrating relations is given in parentheses.

No. Model k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
1 VEC-LN-MSF(0) 7.572 7.619 7.67 7.693 7.722 7.76 7.798 7.812
2 VEC-LN-MSF(1) 2.9 2.891 2.89 2.9 2.908 2.911 2.913 2.921
3 VEC-LN-MSF(2),

true DGP
0 0 0 0 0 0 0 0

4 VEC(2) 3.389 3.357 3.335 3.301 3.301 3.298 3.312 3.315
5 VEC-t-DBEKK(2) 1.462 1.436 1.411 1.394 1.39 1.387 1.4 1.402
6 VEC-LN-MSF-

DBEKK(2)
0.974 0.963 0.968 0.972 0.962 0.97 0.972 0.969

The best model 3 3 3 3 3 3 3 3

Table 7: Average log predictive Bayes factor of order (k, s),
1

n+1

[
n∑

s=0
logBLN-MSF(2),j(yoT+k+s|y

T+s,o
1 ) +

n∑
s=1

logBLN-MSF(2),j(yT+s,o
T+1 |yT,o

1 )
]
, for

LN-MSF(2) as the DGP. The number of cointegrating relations is given in parentheses.

No. Model
(no. of coint. relations)

Average of
logBLN-MSF(2),j(yT+s,o

T+1 |yT,o
1 )

1 VEC-LN-MSF(0) 7.413
2 VEC-LN-MSF(1) 2.833
3 VEC-LN-MSF(2), true DGP 0
4 VEC(2) 3.253
5 VEC-t-DBEKK(2) 1.398
6 VEC-LN-MSF-DBEKK(2) 0.951

The best model 3

Table 8: Average of logBLN-MSF(2),j(yT+s,o
T+1 |yT,o

1 ) for LN-MSF(2) as the DGP.

zero-mean seasonal dummies. The prior structure is the same as in Pajor et al. (2022).
The US data covers the period from 1960Q1 to 2015Q4, and the forecast evaluation is
performed for the final 56 quarters (i.e. 2002Q1 to 2015Q4). The analysed series are
seasonally adjusted, and the Wu-Xia shadow federal funds rate (the last business day
of a quarter) is used instead of the nominal rate.3

3https://www.frbatlanta.org/cqer/research/wu-xia-shadow-federal-funds-rate.aspx (see
also Wu and Xia, 2016).

https://www.frbatlanta.org/cqer/research/wu-xia-shadow-federal-funds-rate.aspx
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Figure 1: Average log predictive density values for VEC(2) as the DGP: (a) without the
updating effect, (b) with the updating effect. The number of cointegrating relations is
given in parentheses.

6.1 Bayesian models

The models considered here are motivated by Pajor et al. (2022), where numerous VAR
structures with time-varying conditional covariances are analysed. We consider 3-variate
vector autoregressive processes of order 2, in the vector error correction (VEC) form,
with deterministic terms, two cointegration relationships, and time-varying conditional
covariance structures:

Δyt = αβ′
[

yt−1
Dco

t

]
+ Γ1Δyt−1 + ΦDt + εt, εt = Σ1/2

t ζt, ζt ∼ iiN(0, I3), (6.1)
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Figure 2: Average log predictive density values for LN-MSF(2) as the DGP: (a) without
the updating effect, (b) with the updating effect. The number of cointegrating relations
is given in parentheses.

where yt is the observed and forecasted 3-variate random variable, t = 1, . . . , T + k+n,
α is a (3×2) matrix of adjustment coefficients, β′ is a (2×4) cointegration matrix of full
rank r = 2 (with only non-negative elements in the first column), Dco

t is a deterministic
term (constant) included in the cointegration relations, Dt is the matrix of remaining
deterministic variables (e.g. seasonal dummy variables), and Σt is a (3×3) symmetric
and positive-definite matrix, which may depend on ψt−1 (the past of yt up to time
t− 1) and qt (a latent variable from a scalar or vector random process {qt}). Let θ be
the vector of all parameters involved. As εt|ψt−1, qt, θ ∼ N(0, Σt), Σt is the conditional
covariance matrix: Σt = V (εt|ψt−1, qt, θ). We assume that Σt = qtΣ̃t, where qt > 0
is a multiplicative stochastic factor (MSF) part, while Σ̃t may depend on ψt−1, as in
the GARCH-type processes. We start with the Diagonal BEKK (DBEKK) form of the
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Figure 3: Analysed data. The vertical (black) line represents the beginning of the fore-
casting period.

matrix Σ̃t:
Σ̃t = Σ + A(εt−1ε

′
t−1)A + GΣ̃t−1G, (6.2)

where Σ is a (3×3) symmetric and positive-definite matrix, A = diag(a11, a22, a33),
G = diag(g11, g22, g33), a11 > 0, g11 > 0 and a2

ii + g2
ii < 1 for i = 1, 2, 3. If aii = a and

gii = g for i = 1, 2, 3, then the DBEKK form of Σ̃t reduces to a simpler case of Scalar
BEKK (SBEKK).

The MSF component, representing the class of multivariate stochastic volatility mod-
els, is considered here in two forms: log normal (LN) and inverse gamma (IG). The
logarithm of variable qt is defined accordingly:

ln qt =
{

φ ln qt−1 + ηt, |φ| < 1, ηt⊥ζs, {ηt} ∼ iiN
(
0, σ2

q

)
: LN-MSF,

φ ln qt−1 + ln γt, |φ| < 1, γt⊥ζs, {γt} ∼ iiIG
(
ν
2 ,

ν
2
)

: IG-MSF. (6.3)

The LN-MSF specification means that the univariate latent process {qt} is in fact the
same as in the basic stochastic volatility (SV) process, where the log of unobserved
volatility follows a stationary and causal Gaussian AR(1) process. In the IG-MSF spec-
ification, the log volatility follows a stationary, causal but non-Gaussian AR(1) process.
Such {qt}, multiplied by Σ̃t of either the SBEKK or DBEKK form, leads to simple hybrid
MSV-MGARCH structures, proposed and developed in Osiewalski (2009), Osiewalski
and Pajor (2009, 2018, 2019) and Pajor et al. (2022). All other model specifications with
the conditional covariance matrix of the form Σt = qtΣ̃t, considered in this paper, are
special or limiting cases of these basic two specifications; see Table 9 for the details.

Apart from the continuously-valued volatility processes presented above, we also
consider a Markov-switching approach to capturing heteroscedasticity, in which the
volatility dynamics is limited to discrete breaks over a finite number of states. The lat-
ter was also (though the only) of interest in Kwiatkowski (2020a,b), where the predictive
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Process Description of process {εt}:
εt = ζtΣ̃1/2

t q
1/2
t , {ζt} ∼ iiN(0, I)

LN-MSF-DBEKK Σ̃t = Σ + A
(
εt−1ε

′
t−1

)
A + GΣ̃t−1G,

A = diag(a11, a22, a33), G = diag(g11, g22, g33),
ln qt = ϕ ln qt−1 + ηt, {ηt} ∼ iiN(0, σ2

q )
IG-MSF-DBEKK Σ̃t = Σ + A

(
εt−1ε

′
t−1

)
A + GΣ̃t−1G,

A = diag(a11, a22, a33), G = diag(g11, g22, g33),
ln qt = ϕ ln qt−1 + ln γt, {γt} ∼ iiIG(v/2, v/2)

LN-MSF-SBEKK Σ̃t = Σ + A
(
εt−1ε

′
t−1

)
A + GΣ̃t−1G,

A = diag(a11, a11, a11), G = diag(g11, g11, g11),
ln qt = ϕ ln qt−1 + ηt, {ηt} ∼ iiN(0, σ2

q )
IG-MSF-SBEKK Σ̃t = Σ + A

(
εt−1ε

′
t−1

)
A + GΣ̃t−1G,

A = diag(a11, a11, a11), G = diag(g11, g11, g11),
ln qt = ϕ ln qt−1 + ln γt, {γt} ∼ iiIG(v/2, v/2)

IG-DBEKK
(t-DBEKK)

Σ̃t = Σ + A
(
εt−1ε

′
t−1

)
A + GΣ̃t−1G,

A = diag(a11, a22, a33), G = diag(g11, g22, g33),
{qt} ∼ iiIG(v/2, v/2)

IG-SBEKK
(t-SBEKK)

Σ̃t = Σ + A
(
εt−1ε

′
t−1

)
A + GΣ̃t−1G,

A = diag(a11, a11, a11), G = diag(g11, g11, g11),
{qt} ∼ iiIG(v/2, v/2)

LN-MSF Σ̃t = Σ,
ln qt = ϕ ln qt−1 + ηt, {ηt} ∼ iiN(0, σ2

q )
IG-MSF Σ̃t = Σ,

ln qt = ϕ ln qt−1 + ln γt, {γt} ∼ iiIG(v/2, v/2)
DBEKK Σ̃t = Σ + A

(
εt−1ε

′
t−1

)
A + GΣ̃t−1G,

A = diag(a11, a22, a33), G = diag(g11, g22, g33),
qt ≡ 1

SBEKK Σ̃t = Σ + A
(
εt−1ε

′
t−1

)
A + GΣ̃t−1G,

A = diag(a11, a11, a11), G = diag(g11, g11, g11),
qt ≡ 1

Student’s t white noise Σ̃t = Σ, {qt} ∼ iiIG(v/2, v/2)
Gaussian white noise Σ̃t = Σ, qt ≡ 1

Table 9: The model assumptions.

performance of two- and three-state VEC models with Markov-switching heteroscedas-
ticity (VEC-MSH) is evaluated, much in the spirit of the current study, although using
shorter time series and evaluating only the one-step-ahead predictions. The two-state
VEC-MSH specifications were also examined in Pajor et al. (2022), yet again, in terms
of the one-step-ahead forecasts. To the best of our knowledge, except for the cited works
and also the paper by Hauzenberger et al. (2021), hardly can be found in the literature
studies examining the forecasting performance of the (Bayesian) VEC-MSH models,
and even more so in the context of multiple-step-ahead predictions. Therefore, our pa-
per also extends the cited works on VECs with Markovian regime changes in conditional
volatility, maintaining the logic followed therein and based on a simple premise that for
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some data sets (such as relatively short macroeconomic time series) allowing for only
discrete rather than continuously-valued volatility changes may just prove empirically
sufficient.

In a K-state VEC-MSH model, where K ∈ {2, 3, . . . } is the number of allowed
regimes, the conditional covariance matrix of εt is indexed with a random variable
St ∈ {1, 2, . . . ,K}, denoting the state in which the modelled system resides at time
t: Σt = ΣSt , so that εt|St, θ ∼ N(0,ΣSt). The sequence {St} forms a latent, K-state,
homogeneous and ergodic Markov chain with transition probabilities pij = p(St =
j|St−1 = i), for i, j = 1, . . . ,K.

Although various numbers of regimes could be allowed in the VEC-MSH structures,
we limit our attention to two-state specifications only, i.e. K = 2, thereby enabling
the system to switch between the high- and low-volatility regimes, with the conditional
probabilities of remaining in a given state equal to p11 and p22, respectively. As evidenced
by Kwiatkowski (2020b), although allowing for yet another state for the U.S. data
analysed therein could emerge empirically valid in terms of the in-sample inference, the
predictive performance of the three-state models turns out to be just on a par with
that of the simpler, two-state specifications. As for the Polish data, our preliminary
estimation results (not reported in this study) for three-state VEC–MSH models do not
provide empirical support for a third state whatsoever.

Similarly to Kwiatkowski (2020a,b), in order to address the problem of label switch-
ing, inherent to (Markov) mixture models, in all the VEC–MSH specifications (for
the US and Poland) we impose an identification restriction of the form: V ar(rt|St =
1, ψt−1, θ) > V ar(rt|St = 2, ψt−1, θ), so that the first regime displays a higher volatility
of interest rates. However, we note that the estimation and forecasting results presented
below prove insensitive to the choice of the state-identifying variable.

For the sake of comparison, we also include in this study two univariate, conditionally
Gaussian and homoscedastic models, considered separately for each variable: stationary
AR(1) for the first differences, and random walk (RW) for the levels. Note that, to remain
consistent with the assumption of a constant present only in cointegration relations
(see 6.1), neither of the two models features an intercept. However, for the Polish data,
both structures are equipped with seasonal dummies. Admittedly, it may be expected
that such models would perform rather poorly as they ignore the dependencies between
the variables. Nevertheless, they are widely recognized as benchmark specifications in
forecasting exercises.

The Bayesian statistical model amounts to specifying the joint distribution of all ob-
servations, latent variables and parameters. The assumptions presented so far determine
the conditional distribution of the matrix of observations and the vector of latent vari-
ables given the parameters. Thus, what remains to be done is to formulate the marginal
distribution of the parameters (the prior distribution). We start with the prior for α
and β. For matrix αβ′ we use the parametrisation proposed by Koop et al. (2009):

αβ′ = (αMΠ)
(
βM−1

Π
)′ ≡ QB′, (6.4)

where MΠ is a (2×2) symmetric and positive-definite matrix, and Q and B are un-
restricted matrices. Identity (6.4) holds, in particular, for α = Q(B′B)1/2 and β =
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B(B′B)−1/2. The prior distributions for matrices Q and B imply the prior distributions
for α and β. Moreover, we assume independence among groups of parameters. To spec-
ify the prior structures, we follow Osiewalski and Pajor (2019), Pajor and Wróblewska
(2017) and Pajor et al. (2022). In particular, for the conditional mean parameters (com-
mon to all the models under consideration), we set:4

• the matrix normal distribution for B: p (B|r = 2) = fmN (B|0, I2, 0.01Im), which
leads to the matrix angular central Gaussian (MACG) distribution for β:
p (β|r = 2) = fMACG (β|0.01Im) = fMACG (β|Im) (see, e.g., Chikuse, 2002),
E(B) = 0, V (vecB) = 0.01Ir ⊗ Im = 0.01Irm,

• the matrix normal distribution for Q: p (Q|ν, r = 2) = fmN (Q|0, νI2, 0.01I3) with
inverse gamma distribution for ν: p (ν) = fIG (ν|3, 2), so E(ν) = 1, V ar(ν) = 1
and E(Q|r = 2) = 0, V (vecQ|ν, r = 2) = νI2 ⊗ 0.01I3 = 0.01νI6,

• the matrix normal distribution for Γ1: p (Γ1|h) = fmN (Γ1|0, I3, hI3) with inverse
gamma distribution for h: p (h) = fIG (h|3, 2), E (h) = 1, V ar (h) = 1, E(Γ1) =
0, V (vecΓ1|h) = I3 ⊗ hI3 = hI9,

• the matrix normal distribution for Φ: p (Φ|hs) = fmN (Φ|0, I3, hsIls) with inverse
gamma distribution for hs: p (hs) = fIG (hs|3, 2), ls denotes the number of de-
terministic terms in Dt, E(hs) = 1, V ar(hs) = 1, E(Φ) = 0, V (vecΦ|hs) =
I3 ⊗ hsIls = hsI3ls .

For the parameters related to the LN-MSF-DBEKK and IG-MSF-DBEKK volatility
structures, we assume the following priors:

• the inverse Wishart distribution for Σ: p (Σ) = fIW (Σ|I3, 5), so E(Σ) = I3,

• the gamma distribution for v: fG (v|3, 0.1), so E(v) ≈ 30, Mode(v) ≈ 20,

• the normal distribution for φ, truncated by the restriction |φ| < 1: p (φ) ∝
fN (φ|0, 100) I(−1, 1)(φ),

• the inverse gamma distribution for σ2
q : p

(
σ2
q

)
= fIG

(
σ2
q |2.5, 0.16

)
, so E(σ2

q ) ≈
0.107 (see Osiewalski and Pajor, 2019),

4The following symbols are used:
fmN (X|M,U, V ) – the probability density function of the matrix normal distribution with mean M ,
and positive definite matrices U and V ;
fIG(x|a, b) – the probability density function of the inverse gamma distribution with mean b/(a − 1)
for a > 1 and variance b2/[(a− 2)(a− 1)2] for a > 2;
fIW (X|V, q) – the probability density function of the inverse Wishart distribution with a (p× p) scale
matrix V and q degrees of freedom;
fN (x|a, b) – the probability density function of the normal distribution with mean a and variance b;
fG(x|a, b) – the probability density function of the gamma distribution with mean a/b and variance
a/b2;
fExp(x|λ) – the probability density function of the exponential distribution with mean 1/λ;
fBe(x|a, b) – the probability density function of the beta distribution with a, b > 0;
I(a, b)(x) – the indicator function of the interval (a, b).
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• the uniform distribution over the unit square [0, 1]2 for a11 and g11, truncated by
the restriction a2

11 + g2
11 < 1: p (a11, g11) ∝ I[0, 1)

(
a2
11 + g2

11
)
,

• the uniform distribution over the square [−1, 1]2 for aii and gii, truncated by the
restriction a2

ii + g2
ii < 1: p (aii, gii) ∝ I[0,1)

(
a2
ii + g2

ii

)
, i = 2, 3,

• the exponential distribution for σ2
0 : p

(
σ2

0
)

= fExp(σ2
0 |1), so E(σ2

0) = 1.

Finally, for the volatility parameters in the VEC-MSH models, we specify the fol-
lowing priors (see Kwiatkowski, 2020a,b):

• the inverse Wishart distribution for Σi: p (Σi) = fIW (Σi|I3, 5), so E(Σi) = I3,
i = 1, 2,

• the beta distribution for p11 and p22: p (pii) = fBe (pii|1, 1), i = 1, 2.

As regards the initial conditions for Σ̃t, we take Σ̃0 = σ2
0I3 and treat σ2

0 > 0 as
an additional parameter, exponentially distributed a priori with mean one, whereas the
initial value of qt, i.e. q0, is assumed to be equal to one. As the initial conditions for yt,
the first two vectors of observations are used: y−1 and y0. Finally, the initial state of
the latent Markov chain in the VEC-MSH models, S0, is modelled as a binary random
variable with probability p0 = p(S0 = 1) treated as an additional parameter with a
uniform prior over [0, 1].

For the univariate AR(1) models, the priors for Γ1 (now a diagonal matrix), Σ (also
diagonal) and, as in the case of the Polish data, Φ need to be specified. To that end,
and to ensure the prior coherence (in the sense presented by Poirier, 1985) with the
other models considered in this paper, the distributions: p (Γ1|h) and p (Σ) are induced
from the ones introduced above under zero restrictions for the off-diagonal elements.
Specifically:

• the normal distribution for each diagonal element of Γ1, i.e. Γ1,ii, i = 1, 2, 3:
p (Γ1,ii|h) = fN (Γ1,ii|0, h), with the hyperparameter h being the prior variance
(common to all the coordinates of diag(Γ1)),

• the inverse gamma distribution for each diagonal element of Σ, i.e. Σii, i = 1, 2, 3:
p (Σii) = fIG (Σii|3, 0.5), so E(Σii) = 0.25 and V ar(Σii) = 0.0625.

Finally, p (Φ) remains the same as specified previously, i.e. p (Φ|hs) = fmN (Φ|0, I3, hsIls).

In the univariate random walks, Γ1 is further assumed to be the zero matrix, while
p (Σii), i = 1, 2, 3, and p (Φ) remain the same as for the AR(1) models.

Note that in the AR(1) models, the prior distributions of Γ1,ii, i = 1, 2, 3, share
the same hyperparameter h. Therefore, the models are only conditionally independent.
Otherwise, considering unconditionally independent models would break the prior co-
herence. A similar reasoning pertains also to the seasonal parameters, Φ, sharing a
common hyperparameter, hs, across the individual AR(1) (or RW) equations. Inciden-
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tally, due to the lack of the seasonal component, the RW models for the US data do
enjoy the unconditional independence.

In all models under study, the posterior distributions of the parameters are non-
standard and intractable for analytical computations, thereby necessitating a use of
Markov Chain Monte Carlo (MCMC) simulations, combining the Gibbs sampler and the
Metropolis-Hastings algorithm. The conditional mean parameters in the VEC–LN-MSF-
DBEKK and VEC–IG-MSF-DBEKK models are drawn in the same manner as in Pajor
and Wróblewska (2017, 2022) and Wróblewska and Pajor (2019), while the volatility
parameters are sampled following Osiewalski and Pajor (2018, 2019). Finally, to sample
the VEC–MSH models’ parameters we employ Jochmann and Koop (2015) approach,
hinged on the Forward-Filtering-Backward-Sampling (FFBS) scheme designed by Carter
and Kohn (1994) and Chib (1996).

6.2 Results of forecast comparison

All models considered here were re-estimated at a quarterly frequency. In each model,
the results are based on 200000 posterior samples, preceded by 20000 burnt-in cycles.
Table 10 displays the average log predictive Bayes factor of order k for each model for
the US data and for selected forecast horizons: k = 1, 4, 8 (for brevity). Also, except
for models with two cointegration relations, for both economies we additionally report
results on two model specifications with zero long-run relationships: the one with the
volatility structure that for k = 1 emerged the best for a given economy (i.e. VEC-
t-DBEKK(0) for the US, and VEC-LN-MSF-DBEKK(0) for Poland), and the basic
homoscedastic, conditionally normal VEC, denoted as VEC(0). Note that the latter is
equivalent to a simple VAR(1) process for the first differences of the modelled variables.

For the US data, it is the VEC-t-DBEKK(2) specification that turned out the best
for k = 1 and k = 2. Surprisingly, this model ranks only 8th for the 4- to 8-step-ahead
forecasts. For k = 4, 6, 7, the first position in the ranking is occupied by the VEC-
LN-MSF-SBEKK(2) model. In turn, the VEC-LN-MSF(2) specification is the best for
k = 5, 8. For k = 3, the best model is VEC-LN-MSF-DBEKK(2). For k = 1, the second
position is occupied by VEC-t-DBEKK(0), but for k = 2 it ranks only 7th. In the case
of higher forecast horizons (k = 3, . . . , 8), the predictive performance of the VEC-t-
DBEKK(0) model deteriorates dramatically, by taking 10− 13 positions. Further, note
only a poor performance of the Markov-switching specification, ranked 13 (for k = 1, 4)
and 10 (for k = 8), indicating that for the sake of prediction, allowing for only discrete
volatility breaks is way insufficient. Finally, for each horizon, the ranking closes with
the bundles of (conditionally independent) AR(1) and RW models, which remains in
line with our expectations.

As seen in Table 10, the rank correlation coefficient drops markedly with the in-
crease of the forecast horizon. Therefore, it may be concluded that when the effect of
updating the posterior odds ratios is disabled, the ranking of the models depends on
the forecast horizon. However, the rankings are more stable across the forecast horizons
while using the average log predictive Bayes factors of order (k, s) than while using the
average log predictive Bayes factors of order k, see Table 11. For each forecast horizon,
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Forecast horizon and rank
Model k = 1 rank k = 4 rank k = 8 rank
VEC-LN-MSF-DBEKK(2) 0.071 5 0.004 2 0.058 6
VEC-IG-MSF-DBEKK(2) 0.051 4 0.020 5 0.064 7
VEC-LN-MSF-SBEKK(2) 0.107 9 0 1 0.004 2
VEC-IG-MSF-SBEKK(2) 0.084 7 0.025 7 0.016 3
VEC-LN-MSF(2) 0.125 11 0.008 3 0 1
VEC-IG-MSF(2) 0.121 10 0.011 4 0.02 4
VEC-t-DBEKK(2) 0 1 0.038 8 0.084 8
VEC-t-SBEKK(2) 0.036 3 0.024 6 0.025 5
VEC-DBEKK(2) 0.082 6 0.079 10 0.123 12
VEC-SBEKK(2) 0.203 12 0.076 9 0.098 9
VEC-MSH(2) 0.298 13 0.178 13 0.100 10
t-VEC(2) 0.097 8 0.081 11 0.110 11
VEC(2) 0.426 14 0.300 15 0.184 15
VEC-t-DBEKK(0) 0.035 2 0.102 12 0.123 13
VEC(0) 0.428 15 0.260 14 0.164 14
cond. indep. AR(1) 0.479 16 0.432 16 0.242 16
cond. indep. RW 0.559 17 0.549 17 0.640 17
corrRank (k = 1; k = j) 1.000 0.544 0.436

Table 10: Average log predictive Bayes factor of order k,
1

n+1

n∑
s=0

logBthe best m.,j(yoT+k+s|y
T+s,o
1 ), and ranks for selected forecast horizons.

The US data, n = 48. The number of cointegrating relations is given in parentheses.

the VEC-t-DBEKK(2) model ranks first, followed by VEC-t-DBEKK(0). In turn, the
VEC-LN-MSF(2) specification is only 11th in the rankings. Now the rank correlation
coefficients are very close to one (see the last row in Table 11).

Since the average log predictive Bayes factor of order one (k = 1) for two the best
models (i.e. VEC-t-DBEKK(2) and VEC-t-DBEKK(0)) is 0.572 (and 100.572 ≈ 3.7),
the first observation from T + s, i.e. yoT+1+s, and all observations from T to T + s, for
s = 0, . . . , 48, increase the posterior odds (based on the data up to time T ) of the two
competing models about 3.7 times, on average. In the forecasting period, the average
increase of the posterior odds (obtained on the basis of the data up to time T ) of the
VEC-t-DBEKK(2) model versus VEC-t-DBEKK(0) for k = 4 and k = 8 is equal to
about 0.601 and 0.577 orders of magnitude, respectively. In other words, the average
posterior odds ratio is about 4 and 3.8 times higher, respectively, than the initial odds
ratio. For the 4-step-ahead forecasts, the average of the posterior odds ratio in favour
of VEC-t-DBEKK(2) and against VEC-LN-MSF(2) for the data sets up to time T + s
and including also the (T + s+4)-th observation, (yo1 , . . . , yoT , . . . , yoT+s, y

o
T+4+s), where

s = 0, . . . , 48, is about 548.3 times higher than the posterior odds ratio for the data set
up to time T . Similarly, for the 8-step-ahead forecasts, the average posterior odds ratio
in favour of VEC-t-DBEKK(2) and against VEC-LN-MSF(2) for the data sets up to
time T + s and including also yoT+s+8, where s = 0, . . . , 48, is about 486.4 times higher
than the posterior odds ratio for the data set up to time T .
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Forecast horizon and rank
Model k = 1 rank k = 4 rank k = 8 rank
VEC-LN-MSF-DBEKK(2) 1.561 5 1.456 5 1.466 5
VEC-IG-MSF-DBEKK(2) 1.129 4 1.059 4 1.059 4
VEC-LN-MSF-SBEKK(2) 2.344 9 2.199 8 2.158 8
VEC-IG-MSF-SBEKK(2) 1.785 6 1.688 6 1.634 6
VEC-LN-MSF(2) 2.895 11 2.739 11 2.687 11
VEC-IG-MSF(2) 2.856 10 2.708 10 2.672 10
VEC-t-DBEKK(2) 0 1 0 1 0 1
VEC-t-SBEKK(2) 0.757 3 0.707 3 0.663 3
VEC-DBEKK(2) 1.848 7 1.807 7 1.805 7
VEC-SBEKK(2) 4.484 12 4.319 12 4.296 12
VEC-MSH(2) 7.254 13 7.096 13 6.972 13
t-VEC(2) 2.275 8 2.222 9 2.206 9
VEC(2) 9.717 14 9.553 14 9.392 14
VEC-t-DBEKK(0) 0.572 2 0.601 2 0.577 2
VEC(0) 9.770 15 9.564 15 9.422 15
cond. indep. AR(1) 11.830 16 11.746 16 11.510 16
cond. indep. RW 13.522 17 13.473 17 13.520 17
corrRank (k = 1; k = j) 1.000 0.998 0.995

Table 11: Average log predictive Bayes factor of order (k, s),
1

n+1

[
n∑

s=0
logBthe best m.,j(yoT+k+s|y

T+s,o
1 ) +

n∑
s=1

logBthe best m.,j(yT+s,o
T+1 |yT,o

1 )
]
, and

ranks for selected forecast horizons. The US data, n = 48. The number of cointegrating
relations is given in parentheses.

In Figure 4, for the two models discussed above we present the cumulative log predic-
tive likelihoods for the 8-step-ahead forecasts. As can be seen, for each s ∈ {4, . . . , 48}:

p(yoT+s+8, y
T+s,o
T+1 |yT,o

1 ,VEC-t-DBEKK(2)) > p(yoT+s+8, y
T+s,o
T+1 |yT,o

1 ,VEC-LN-MSF(2)).

Consequently, the predictive power of the VEC-t-DBEKK(2) model within the whole
period T+5, . . . , T+49 and at T+49+8 dominates the VEC-LN-MSF(2) model. In turn,
the log predictive likelihoods p(yoT+s+8|y

T+s,o
1 ,VEC-t-DBEKK(2)) for s = 0, . . . , 48 are

higher than those for the VEC-LN-MSF(2) model only in 16 out of 49 cases, and, in
consequence, the average of the log predictive likelihoods for the VEC-t-DBEKK(2)
model is lower than that for VEC-LN-MSF(2). Thus, as we can see from Table 11, the
VEC-t-DBEKK(2) model fits the predicted data better than the remaining models (in
terms of the average log predictive Bayes factor of order (k, s)). However, the conclusion
is different when we use the average predictive Bayes factor of order k. For example,
for k = 8 the predictive power of the VEC-LN-MSF(2) model dominates all remaining
models under consideration, see Table 10. The updating component in the log predictive
Bayes factors of order (k, s) has a major impact on the rankings. In fact, the predictive
Bayes factors of order (k, s) and the corresponding predictive Bayes factors for the
period of length s produce similar results, as can be inferred from Tables 11–12.
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Figure 4: Cumulative log predictive likelihood and log predictive likelihood for k = 8.
The US data, n = 48.

Model k = 1 . . . , 8 Rank
VEC-LN-MSF-DBEKK(2) 1.490 5
VEC-IG-MSF-DBEKK(2) 1.078 4
VEC-LN-MSF-SBEKK(2) 2.237 9
VEC-IG-MSF-SBEKK(2) 1.701 6
VEC-LN-MSF(2) 2.770 11
VEC-IG-MSF(2) 2.735 10
VEC-t-DBEKK(2) 0 1
VEC-t-SBEKK(2) 0.721 3
VEC-DBEKK(2) 1.766 7
VEC-SBEKK(2) 4.281 12
VEC-MSH(2) 6.956 13
t-VEC(2) 2.178 8
VEC(2) 9.292 14
VEC-t-DBEKK(0) 0.537 2
VEC(0) 9.342 15
cond. indep. AR(1) 11.351 16
cond. indep. RW 12.963 17

Table 12: Updating effect measured by 1
n+1

n∑
s=1

logBthe best m.,j(yT+s,o
T+1 |yT,o

1 ). The US

data, n = 48. The number of cointegrating relations is given in parentheses.
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Forecast horizon and rank
Model k = 1 rank k = 4 rank k = 8 rank
VEC-LN-MSF-DBEKK(2) 0 1 0.025 2 0.056 4
VEC-IG-MSF-DBEKK(2) 0.106 5 0.063 6 0.069 6
VEC-LN-MSF-SBEKK(2) 0.028 2 0.052 4 0.086 8
VEC-IG-MSF-SBEKK(2) 0.169 10 0.205 11 0.229 11
VEC-LN-MSF(2) 0.108 6 0 1 0 1
VEC-IG-MSF(2) 0.142 9 0.059 5 0.04 3
VEC-t-DBEKK(2) 0.079 4 0.036 3 0.027 2
VEC-t-SBEKK(2) 0.131 7 0.192 10 0.221 10
VEC-DBEKK(2) 0.140 8 0.079 7 0.066 5
VEC-SBEKK(2) 0.209 11 0.216 12 0.241 14
VEC-MSH(2) 0.733 15 0.541 15 0.236 13
t-VEC(2) 0.211 12 0.121 8 0.081 7
VEC(2) 0.441 13 0.266 13 0.177 9
VEC-LN-MSF-DBEKK(0) 0.037 3 0.155 9 0.234 12
VEC(0) 0.460 14 0.346 14 0.326 15
cond. indep. AR(1) 0.790 16 1.047 17 0.692 17
cond. indep. RW 1.074 17 0.573 16 0.411 16
corrRank (k = 1; k = j) 1.000 0.860 0.672

Table 13: Average log predictive Bayes factor of order k,
1

n+1

n∑
s=0

logBthe best m.,j(yoT+k+s|y
T+s,o
1 ), and ranks for selected forecast horizons.

The Polish data, n = 22. The number of cointegrating relations is given in parentheses.

As regards the predictive ability of the models considered for Poland, the best pre-
dictive model, in terms of the average log predictive Bayes factor of order k, turns out
to be VEC-LN-MSF-DBEKK(2), although only for k = 1, 2, 3. On the other hand, the
very same specification proves the best also according to the average log predictive
Bayes factor of order (k, s), yet now for all of the considered forecast horizons (see Ta-
bles 13–15 and Figure 5). The ranking with respect to the average log predictive Bayes
factor of order k for k = 4, 5, 6, 7, 8 is topped by the VEC-LN-MSF(2) model. It follows
from Table 14 that in terms of the average log predictive Bayes factors of order (k, s),
the VEC-LN-MSF(2) specification ranks 4th for all k = 1, . . . , 8. Generally, the rankings
of the models vary depending on which of the components of the log predictive Bayes
factor considered here is used. Taking into account both the k-step-ahead predictive
ability and the updating effect leads to different results from those based only on one
of the components of the log predictive Bayes factor of order (k, s).

Surprisingly, the Markov-switching model turns out to be outperformed by most of
the specifications under consideration, regardless of the forecasting performance mea-
sure. Moreover, it almost always falls (way) behind even the homoscedastic VECs (ex-
cept for VEC(0) for k = 8 in terms of the average log predictive Bayes factor of order
k, see Table 13). Nevertheless, the rankings according to both of the measures are still
closed by the bundles of the AR(1) and RW models throughout.
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Forecast horizon and rank
Model k = 1 rank k = 4 rank k = 8 rank
VEC-LN-MSF-DBEKK(2) 0 1 0.000 1 0 1
VEC-IG-MSF-DBEKK(2) 1.458 7 1.390 7 1.365 7
VEC-LN-MSF-SBEKK(2) 0.504 3 0.503 3 0.506 3
VEC-IG-MSF-SBEKK(2) 2.132 10 2.144 10 2.136 10
VEC-LN-MSF(2) 0.983 4 0.850 4 0.819 4
VEC-IG-MSF(2) 1.398 6 1.291 6 1.24 6
VEC-t-DBEKK(2) 1.222 5 1.154 5 1.114 5
VEC-t-SBEKK(2) 2.046 9 2.082 9 2.080 9
VEC-DBEKK(2) 1.962 8 1.876 8 1.832 8
VEC-SBEKK(2) 2.973 12 2.955 12 2.949 12
VEC-MSH(2) 9.112 15 8.895 15 8.559 15
t-VEC(2) 2.442 11 2.327 11 2.256 11
VEC(2) 5.251 13 5.052 13 4.931 13
VEC-LN-MSF-DBEKK(0) 0.318 2 0.411 2 0.459 2
VEC(0) 5.488 14 5.349 14 5.297 14
cond. indep. AR(1) 9.514 16 9.746 16 9.360 16
cond. indep. RW 13.175 17 12.648 17 12.456 17
corrRank (k = 1; k = j) 1.000 1.000 1.000

Table 14: Average log predictive Bayes factor of order (k, s),
1

n+1

[
n∑

s=0
logBthe best m.,j(yoT+k+s|y

T+s,o
1 ) +

n∑
s=1

logBthe best m.,j(yT+s,o
T+1 |yT,o

1 )
]
, and ranks

for selected forecast horizons. The Polish data, n = 22. The number of cointegrating
relations is given in parentheses.

7 Conclusions
In the paper, a new measure is proposed for comparing the forecasting performance of
Bayesian models for n consecutive k-step-ahead forecasts. Also, we introduced a new
decomposition of the predictive Bayes factor into the product of partial Bayes factors
accounting for both a finite number of consecutive k-step-ahead forecasts and recursive
updates of the posterior odds ratios based on updated data sets. The simulation results
suggest that the predictive Bayes factor of order (k, s) introduced in the paper allows
to identify the model based on the true data generating process. The empirical results
show that the rankings of the models vary depending on which of the measures (i.e. the
components of the log predictive Bayes factor discussed in the paper) is used. Taking
into account both the predictive ability for the k-step-ahead forecasts and the effect
of updating the data set leads to different results from those based only on one of the
components of the log predictive Bayes factor of order (k, s). Very similar results and
highest rank correlations are found for the average log predictive Bayes factors of order
(k, s), which accounts for both the predictive ability for the k-step-ahead forecasts and
the updating effect in a forecasting period of length s, and the log predictive Bayes
factor for the period from T + 1 to T + s, which accounts only for the updating effect.
Thus, the latter has a major impact on such Bayesian model comparison that takes
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Model k = 1, . . . , 8 Rank
VEC-LN-MSF-DBEKK(2) 0.000 1
VEC-IG-MSF-DBEKK(2) 1.116 5
VEC-LN-MSF-SBEKK(2) 0.476 3
VEC-IG-MSF-SBEKK(2) 1.964 9
VEC-LN-MSF(2) 1.316 7
VEC-IG-MSF(2) 2.048 10
VEC-t-DBEKK(2) 0.840 4
VEC-t-SBEKK(2) 1.223 6
VEC-DBEKK(2) 1.822 8
VEC-SBEKK(2) 2.137 11
VEC-MSH(2) 8.379 15
t-VEC(2) 2.859 12
VEC(2) 4.811 13
VEC-LN-MSF-DBEKK(0) 0.281 2
VEC(0) 5.028 14
cond. indep. AR(1) 8.724 16
cond. indep. RW 12.101 17

Table 15: Updating effect measured by 1
n+1

n∑
s=1

logBthe best m.,j(yT+s,o
T+1 |yT,o

1 ). The Polish

data, n = 22. The number of cointegrating relations is given in parentheses.

Figure 5: Cumulative log predictive likelihood and log predictive likelihood for k = 8.
The Polish data, n = 22.
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into account both the k-step-ahead forecasting ability of models and the necessity of
updating the observations (model re-estimation) in empirical assessment of predictive
performance.

Both the simulation as well as empirical results presented in this paper may prompt
further, but now theoretical, research on Bayesian model choice consistency (in the
sense defined, e.g, by Berger and Pericchi (2001)) through the predictive Bayes factor of
order (k, s), proposed here. Conceivably, providing rigorous proofs in that matter, even
for some simple and popular econometric models, may be far from straightforward, yet
most desirable.
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