Translator Disclaimer
2021 Bayesian Non-Parametric Factor Analysis for Longitudinal Spatial Surfaces
Samuel I. Berchuck, Mark Janko, Felipe A. Medeiros, William Pan, Sayan Mukherjee
Bayesian Anal. Advance Publication 1-30 (2021). DOI: 10.1214/20-BA1253

Abstract

We introduce a Bayesian non-parametric spatial factor analysis model with spatial dependency induced through a prior on factor loadings. For each column of the loadings matrix, spatial dependency is encoded using a probit stick-breaking process (PSBP) and a multiplicative gamma process shrinkage prior is used across columns to adaptively determine the number of latent factors. By encoding spatial information into the loadings matrix, meaningful factors are learned that respect the observed neighborhood dependencies, making them useful for assessing rates over space. Furthermore, the spatial PSBP prior can be used for clustering temporal trends, allowing users to identify regions within the spatial domain with similar temporal trajectories, an important task in many applied settings. In the manuscript, we illustrate the model’s performance in simulated data, but also in two real-world examples: longitudinal monitoring of glaucoma and malaria surveillance across the Peruvian Amazon. The R package spBFA, available on CRAN, implements the method.

Citation

Download Citation

Samuel I. Berchuck. Mark Janko. Felipe A. Medeiros. William Pan. Sayan Mukherjee. "Bayesian Non-Parametric Factor Analysis for Longitudinal Spatial Surfaces." Bayesian Anal. Advance Publication 1 - 30, 2021. https://doi.org/10.1214/20-BA1253

Information

Published: 2021
First available in Project Euclid: 12 January 2021

Digital Object Identifier: 10.1214/20-BA1253

Subjects:
Primary: 62F15, 62G08
Secondary: 62H25

JOURNAL ARTICLE
30 PAGES


SHARE
Advance Publication
Back to Top