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Bayesian Analysis of Constrained Gaussian
Processes

Hassan Maatouk∗,‡, Didier Rullière†, and Xavier Bay†

Abstract. Due to their flexibility Gaussian processes are a well-known Bayesian
framework for nonparametric function estimation. Integrating inequality constraints,
such as monotonicity, convexity, and boundedness, into Gaussian process models
significantly improves prediction accuracy and yields more realistic credible inter-
vals in various real-world data applications. The finite-dimensional Gaussian pro-
cess approximation, originally proposed in Maatouk and Bay (2017) is considered.
This method involves approximating a parent GP by utilizing a finite-dimensional
GP obtained through appropriate basis expansions. It satisfies interpolation con-
ditions and handles a wide range of inequality constraints everywhere. Our con-
tribution in this paper is threefold. First, we extend this approach to handle noisy
observations and multiple, more general convex and non-convex constraints. Sec-
ond, we propose new basis functions in order to extend the smoothness of sample
paths to differentiability of class Cp, for any p ≥ 1. Third, we examine its behavior
in specific scenarios such as monotonicity with flat regions and boundedness near
lower and/or upper bounds. In that case, we show that, unlike the Maximum a
posteriori (MAP) estimate, the mean a posteriori (mAP) estimate fails to capture
flat regions. To address this issue, we propose incorporating multiple constraints,
such as monotonicity with bounded slope constraints. According to the theoretical
convergence and based on a variety of numerical experiments, the MAP estimate
behaves well and outperforms the mAP estimate in terms of prediction accuracy.
The performance of the proposed approach is confirmed through synthetic and
real-world data studies.
MSC2020 subject classifications: Primary 62G05, 62G08; secondary 62G09.

Keywords: Gaussian processes, multiple shape constraints, convex and
non-convex constraints, flat region, MAP estimate, HMC sampler.

1 Introduction
Gaussian processes (GPs) are a well-known nonparametric Bayesian framework for func-
tion estimation. They are widely used in many fields, such as computer science, physics,
biology, engineering, and finance (Rasmussen and Williams, 2006). GP models are based
on defining a prior distribution over function spaces. In general, a GP is characterized by
its mean and covariance functions. The flexibility of GPs is attributed to their covariance
function, which enables incorporating prior information, such as smoothness, stationar-
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2 Constrained Gaussian Processes

ity, sparsity, and derivative constraints (Cramer and Leadbetter, 1967; Rasmussen and
Williams, 2006).

However, it is crucial to acknowledge the nuanced limitations that GP encounter,
particularly when confronted with shape constraints such as monotonicity, boundedness,
and convexity, see for example, Golchi et al. (2015); Lenk and Choi (2017); Ray et al.
(2020); Wang and Berger (2016). The challenge lies in their relative inflexibility when
handling such constraints, leading to a potential drawback in scenarios that demand
precise adherence to inequality conditions. Several real-world cases where the data sug-
gest that the underlying function satisfies specific inequality constraints are presented
in physics (Zhou et al., 2019) and econometrics (Chataigner et al., 2021; Cousin et al.,
2022, 2016; Crépey and Dixon, 2020). Addressing such constraints remains an active
area of research to enhance the applicability of GP models in diverse settings.

Including inequality constraints into a GP model improves its prediction accuracy
and provides more realistic confidence intervals (Chipman et al., 2022; López-Lopera
et al., 2018; Lin and Dunson, 2014; Riihimäki and Vehtari, 2010; Ustyuzhaninov et al.,
2020; Zhou et al., 2022). The authors in Swiler et al. (2020) provide an overview and
survey of various strategies for incorporating shape constraints into a GP. In Tran et al.
(2023), constrained GPs have been employed to estimate probability density functions
(pdf). Recently, an efficient transformed GP (ETGP) method using normalizing flow
has been developed in Maroñas et al. (2021); Maroñas and Hernández-Lobato (2023).
The ETGP approach involves transforming a single sample from a GP using an in-
vertible transformation, which made input-dependent. The authors in Maroñas and
Hernández-Lobato (2023) demonstrate its efficiency in multi-class classification tasks
based on GPs, offering a reduced computational cost. In Maroñas et al. (2021), the
authors outline the computational performance and the ability of transformed GP to
incorporate prior knowledge such as boundedness constraints. In the present paper, the
finite-dimensional GP approximation proposed in Maatouk and Bay (2017) is consid-
ered, where various shape constraints such as monotonicity, convexity, and boundedness
are satisfied everywhere. To the best of our knowledge, it is the only model in the lit-
erature capable of dealing with a variety of shape constraints, whether applied alone,
together, or sequentially. The main idea is to approximate the samples of the parent
GP by representing them in a finite-dimensional space of functions using appropri-
ate basis expansions. These basis functions possess attractive properties not necessary
shared by other basis such as Bernstein polynomials (Curtis and Ghosh, 2011), regres-
sion splines (Cai and Dunson, 2007; Meyer et al., 2011), and restricted splines (Shively
et al., 2011). Various restrictions like monotonicity, convexity, and boundedness are
equivalently translated into linear inequality constraints on the basis coefficients. The
performance of this approach has been demonstrated through several real-world data
applications (Cousin et al., 2022, 2016; Williams et al., 2023; Zhou et al., 2019). The
asymptotic properties have been investigated in Bay et al. (2016); Grammont et al.
(2022). The generalization of the well-known Kimeldorf-Wahba correspondence (Kimel-
dorf and Wahba, 1970) between Bayesian estimation on stochastic processes and splines
for the constrained cases has been established.

The present paper extends the work of Maatouk and Bay (2017) in three directions:
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• We handle both noisy observations and multiple and more general convex and
non-convex constraints (such as boundedness within a non-convex set).

• We propose new basis functions to enhance the smoothness of the sample paths,
achieving Cp class differentiability1, for any p ≥ 1.

• We investigate the behavior of this approach in challenging situations, such as
monotonicity with flat regions or boundedness where the underlying function is
close to the lower or upper bounds. To address this issue, we propose adding
multiple constraints, such as monotonicity with bounded slope constraints. This
leads to correction of the posterior distribution’s behavior and the convergence of
the mAP estimate towards the MAP estimate.

This article is structured as follows. In Section 2, GP regression is briefly reviewed.
In Section 3, following the finite-dimensional GP approximation from Maatouk and
Bay (2017), we propose a general formulation for linear inequality constraints that is
capable of handling both convex and non-convex constraints. Section 4 presents the new
basis functions in order to generalize the smoothness of sample paths to differentiability
of class Cp, p ≥ 1. Additionally, the asymptotic properties of the MAP estimate are
investigated. Section 5 demonstrates the efficiency of the proposed framework through
applications using real-world data.

2 Gaussian process regression review
A GP, namely (Z(x))x∈Rd , is characterized by its mean function μ and covariance
function k, i.e., Z ∼ GP(μ, k) (Rasmussen and Williams, 2006). It can be written as

Z(x) = μ(x) + Y (x), ∀x ∈ R
d,

where (Y (x)) is a zero-mean GP with covariance function k, i.e., Y ∼ GP(0, k), with

k(x,x′) = Cov(Y (x), Y (x′)) = E[Y (x)Y (x′)], ∀x,x′ ∈ R
d.

Given a dataset of size n, namely, D = {(xi, yi), i = 1, . . . , n}, where xi denotes an
input vector of dimension d and yi denotes a scalar output. The input vectors {xi}
form the n× d design matrix X = [x1, . . . ,xn]� and the outputs {yi} form the output
vector y = [y1, . . . , yn]� called data. Thus, the dataset can be written as D = {(X,y)}.
The following regression problem is considered

yi = f(xi) + εi, εi
i.i.d.∼ N (0, σ2

noise), (2.1)

where i = 1, . . . , n, f is an unknown latent function that generates the data, and
εi is an additive independent identically distributed (i.i.d.) zero-mean Gaussian noise
with constant variance σ2

noise. A GP prior distribution on the underlying function f

1Cp represents the set of functions that have continuous derivatives up to the p-th order.
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is assumed. Conditionally on y = [y1, . . . , yn]�, the conditional process remains a GP
(Rasmussen and Williams, 2006)

{Y (·)|y} ∼ GP (μc(·), c(·, ·)) , (2.2)

where the conditional mean function μc and covariance function c are given as follows:

μc(x) = E [Y (x)|y] = k(x,X)�
(
k(X,X) + σ2

noiseIn
)−1

y; (2.3)
c(x,x′) = k(x,x′) − k(x,X)�(k(X,X) + σ2

noiseIn)−1k(x′,X);

with In the n × n identity matrix. Let us recall that k(X,X) is the covariance matrix
of Y (X) of dimension n × n, and k(x,X) = [k(x,x1), . . . , k(x,xn)]� is the vector of
covariance between Y (x) and Y (X) of dimension n.

3 Constrained Gaussian processes
3.1 C0 approximation with Model (Mh)

In this section, the finite-dimensional GP approximation proposed in Maatouk and
Bay (2017) is considered. Without loss of generality, let Y be a zero-mean GP with
covariance function k, i.e., Y ∼ GP(0, k). We first focus on the one-dimensional input
case. The methodology is later extended to handle multidimensional input spaces (refer
to Section 3.4 below). Let D be a compact set in R. For simplicity, we suppose that D
is the unit interval [0, 1]. Let tj = (j − 1) × ΔN , j ∈ {1, . . . , N} be a sequence of N
equally spaced knots on D, with a spacing of ΔN = 1/(N − 1). Let us mention that
the methodology developed in this paper is applicable for non-uniform discretization of
D (see the left panel of Figure 1). Let us define the three basis functions proposed in
Maatouk and Bay (2017), which will be used in three different models, Mh, Mφ, and
Mϕ, in the present paper. These functions are given by

hj(x) := h

(
x− tj
ΔN

)
, φj(x) :=

∫ x

0
hj(t)dt, ϕj(x) :=

∫ x

0

∫ t

0
hj(u)dudt, (3.1)

for j ∈ {1, . . . , N}, where h(x) := (1 − |x|)1[−1,1](x) is the hat function on [−1, 1]. The
hat functions {hj} admit two nice properties. First, the value of any hat function at any
knot is equal to Kronecker’s delta function (i.e., hj(tl) = δj,l), where δj,l is equal to one
when j = l and zero otherwise. Second, for any x ∈ D, we have

∑N
j=1 hj(x) = 1. The

second property is used in the proof of Lemma 1. As mentioned in Maatouk and Bay
(2017), any continuous function f : D → R, that is, f ∈ C0(D,R) can be approximated
by a piecewise linear interpolating between the function values at the knots {tj},

f̃N (x) =
N∑
j=1

f(tj)hj(x), ∀x ∈ D.

Let us recall the following well known result.
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Figure 1: An example of approximating a monotone (nondecreasing) and bounded func-
tion f (red solid curve) using a piecewise linear interpolating function f̃N (black dashed
curve). A uniform (resp. non-uniform) subdivision is used with N = 5 hat functions
and knots in the left (resp. right) panel. The gray triangles represent the hat functions,
while the black dashed thin lines denote the lower and upper bounds constraints.

Lemma 1 (Uniform convergence C0). Let f be a continuous function on D, then, the
piecewise linear interpolating function f̃N (·) =

∑N
j=1 f(tj)hj(·) converges uniformly to

f when N tends to infinity.

Figure 1 shows the deterministic function f(x) =
√
x (red solid curve) which ver-

ifies the monotonicity (nondecreasing) and boundedness constraints. This function is
approximated by the piecewise linear interpolating function f̃N (black dashed curve)
using either a uniform subdivision with N = 5 hat basis functions (left panel), or a
non-uniform subdivision (right panel). The black dashed thin lines represent the lower
and upper bound constraints, while the gray triangles represent the hat basis functions
{hj}. The black stars represent the values of the true and approximated functions at the
knots {tj}. Let us mention that the true function grows rapidly on [0, 0.3]. As a result, a
finer discretization with N = 3 was used only for this interval, while N = 2 was used for
the interval [0.3, 1]. This shows that a suitable subdivision can improve the accuracy of
the approximation and reduce the number of knots. This also reduces the complexity of
the sampling process when using an efficient HMC sampler to approximate the posterior
distribution, as described in detail in Section 3.2.

If no additional smoothness assumptions are required, the first model is

Y N (x) :=
N∑
j=1

Y (tj)hj(x) =
N∑
j=1

ξjhj(x), x ∈ D, (Mh)

where we denote ξj = Y (tj). Since Y is a zero-mean GP with covariance function
k, then, the vector ξ = [ξ1, . . . , ξN ]� is also zero-mean and Gaussian with covariance
matrix Γ, i.e., ξ ∼ N (0N ,Γ), where

Γj,l = Cov(Y (tj), Y (tl)) = k(tj , tl), j, l ∈ {1, . . . , N}, (3.2)

and 0N = [0, . . . , 0]� is the N -dimensional zero vector. Furthermore, the coefficients
{ξj} can be interpreted as the values of the original GP (Y (x)) evaluated at the knots
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{tj}. Let C be the convex set of functions that verify some inequality constraints, such
as monotonicity, convexity, and boundedness. The non-convex case will be investigated
later in this section. For instance,

C =

⎧⎪⎨
⎪⎩

Cb :=
{
f ∈ C0(D,R) s.t. � ≤ f(x) ≤ u, ∀x ∈ D

}
Cm :=

{
f ∈ C0(D,R) s.t. f(x) ≤ f(y), ∀x ≤ y ∈ D

}
Cc :=

{
f ∈ C0(D,R) s.t. f(y)−f(x)

y−x ≤ f(z)−f(y)
z−y , ∀x < y < z ∈ D

} (3.3)

which corresponds to boundedness, monotonicity, and convexity constraints respectively,
where the constants � and u represent the lower and upper bounds, respectively, and
where C0(D,R) is the set of continuous functions from D to R. Our aim is to compute
the posterior distribution of Y N such that Y N ∈ C. The authors in Maatouk and Bay
(2017) have shown the advantage of using the hat function as in Model (Mh) and
more generally the basis functions defined in (3.1). They demonstrated that satisfying
an infinite number of inequality constraints on the process Y N ∈ C is equivalent to
satisfying a finite number of linear inequality constraints on the coefficient vector ξ =
[ξ1, . . . , ξN ]�. To be more precise, for many various choices of C, we have

Y N ∈ C ⇔ ξ ∈ E , (3.4)

where E is a convex set of RN . For the inequality constraints given in (3.3), we obtain

E =

⎧⎪⎪⎨
⎪⎪⎩

Eb :=
{
z ∈ R

N : � ≤ zj ≤ u, ∀j = 1, . . . , N
}

Em :=
{
z ∈ R

N : zj−1 ≤ zj , ∀j = 2, . . . , N
}

Ec :=
{
z ∈ R

N : zj−1 − zj−2

tj−1 − tj−2
≤ zj − zj−1

tj − tj−1
, ∀j = 3, . . . , N

} (3.5)

which corresponds to boundedness, monotonicity, and convexity constraints respectively.
The ability of these bases {hj} to express different constraints equivalently as linear
restrictions on the vector of coefficients ξ is a desirable feature that may not be present in
other bases such as Bernstein polynomials (Curtis and Ghosh, 2011), regression splines
(Cai and Dunson, 2007; Meyer et al., 2011), and restricted splines (Shively et al., 2011).
In the following sections, we also demonstrate the attractiveness of the other basis
functions defined in (3.1). Furthermore, new and smoother basis functions are given
below (cf., Section 4). In the present section, we focus exclusively on Model (Mh) using
the hat functions {hj}. Note that the linear restrictions on the coefficients vector ξ in
Eq. (3.5) can be expressed in matrix form as follows:

ξ ∈ E ⇔ ξ ∈ R
N s.t. � ≤ Λξ ≤ u, (3.6)

where Λ ∈ R
m×N is the matrix of constraints, and � and u are lower and upper bounds

vectors, respectively. For instance, when ξ ∈ Em, we get

Λi,j =

⎧⎨
⎩

−1 if j = i for any i = 1, . . . , N − 1;
1 if j = i + 1 for any i = 1, . . . , N − 1;
0 otherwise;

and � = [0, . . . , 0]� ∈ R
m and u is the vector with components +∞. In that case, we

get m = N − 1 linear inequality constraints on the coefficients vector ξ.
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The authors of Maatouk and Bay (2017) demonstrated that under the representation
in Model (Mh):

• Y N is a finite-dimensional GP with covariance function

kN (x, x′) = h(x)�Γh(x′), ∀x, x′ ∈ D,

where h(x) = [h1(x), . . . , hN (x)]�.

• Y N converges uniformly to Y when N tends to infinity (with probability one).

Let us give the following results concerning Model (Mh).

Proposition 1 (Multiple constraints (Mh)). Suppose that Y N is defined as in Model
(Mh).

• Boundedness in a convex region: Let Cbc be a set of continuous functions on D
bounded between two functions f� and fu such that the region between the lower
bound function f� and the upper bound function fu is convex.2 Then, Y N ∈ Ccb if
and only if f�(tj) ≤ ξj ≤ fu(tj), for any j ∈ {1, . . . , N}.

• Convexity: Y N is convex (i.e., Y N ∈ Cc) if and only if

ξj+1 − ξj
tj+1 − tj

≤ ξj+2 − ξj+1

tj+2 − tj+1
, j ∈ {1, . . . , N − 2}. (3.7)

In our case, tj+1 − tj = ΔN = 1/(N − 1), for any j ∈ {1, . . . , N − 1}. Thus,
inequalities (3.7) are equivalent to

ξj+2 − 2ξj+1 + ξj ≥ 0, j ∈ {1, . . . , N − 2},

which in turn is equivalent to Λξ ≥ 0N−2 according to the notation in (3.6), with
ξ = [ξ1, . . . , ξN ]�. The matrix of constraints Λ is given by

Λi,j =

⎧⎪⎪⎨
⎪⎪⎩

1 if j = i for any i = 1, . . . , N − 2;
−2 if j = i + 1 for any i = 1, . . . , N − 2;
1 if j = i + 2 for any i = 1, . . . , N − 2;
0 otherwise.

• Multiple constraints: For example, Y N is nondecreasing and bounded in a convex
region (i.e., Y N (x) ∈ Cm ∩ Cbc) if and only if{

ξj ≤ ξj+1 j ∈ {1, . . . , N − 1};
f�(tj) ≤ ξj ≤ fu(tj) j ∈ {1, . . . , N}; (3.8)

where f� and fu are the lower and upper bounds functions. Let us mention that
if f� and fu are constants, for example f�(x) = a < b = fu(x), for any x ∈ D,
where a, b ∈ R, then the linear constraints (3.8) become a ≤ ξ1 ≤ . . . ≤ ξN ≤ b.
This leads to only m = N + 1 linear constraints on ξ according to (3.6).

2A set C is convex if and only if for any x, y ∈ C, (1 − t)x + ty ∈ C, where t ∈]0, 1[.
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Remark 1.

• The linear inequality constraints on the coefficients f�(tj) ≤ ξj ≤ fu(tj), for any
j ∈ {1, . . . , N} in Proposition 1 can be written in matrix form as in (3.6), where
Λ = IN , � = [f�(t1), . . . , f�(tN )]�, and u = [fu(t1), . . . , fu(tN )]�.

• The three constraints introduced in Proposition 1 (boundedness, convexity, and
monotonicity) can be imposed together.

The result of Proposition 1 (boundedness constraints) remains valid if the region
between the lower and upper bounds functions is non-convex, as long as it can be
decomposed into convex sets at nonoverlapping subdomains (cf., Proposition 2 and
Figures 2 and 4 below).

Proposition 2 (Boundedness in a non-convex region). Suppose that Cbnc is a set of
continuous functions on D bounded between two functions f� and fu such that the region
between the lower bound function f� and the upper bound function fu is non-convex.
Suppose also that this non-convex region can be decomposed into convex regions on Q
nonoverlapping input subdomains Dr, r ∈ {1, . . . , Q}. If the intersection extremities
t1,N1 , . . . , tQ−1,NQ−1 of each subdomain are elements of the subdivision of D, then Y N

is in Cbnc if and only if f�(tr,jr ) ≤ ξr,jr ≤ fu(tr,jr ), for all jr ∈ {1, . . . , Nr} and
r = {1, . . . , Q}. These linear inequalities on ξr,jr can be expressed in matrix form as
follows:

� ≤ Λξ ≤ u,

where � = [��1 , . . . , �
�
Q]�, u = [u�

1 , . . . ,u
�
Q]�, and Λ = [Λ�

1 , . . . ,Λ�
Q]� (block diagonal

matrix), with for example, �1 = [f�(t1,1), . . . , f�(t1,N1)]�.

3.2 Constrained Gaussian process with noisy observations

In this section, we consider the finite-dimensional GP approximation defined in (Mh)
given both noisy observations and inequality constraints:

Y N (x) =
N∑
j=1

ξjhj(x) s.t.
{

Y N (xi) + εi = yi (noisy observations),
Y N ∈ C (inequality constraints), (3.9)

where xi ∈ D is the design point, yi ∈ R is the data and εi
iid∼ N (0, σ2

noise), with σ2
noise

the noise variance. Given a set of design points X = [x1, . . . , xn]� ∈ Dn, the noisy
observations can be written in matrix form as follows:

Hξ + ε = y,

where y = [y1, . . . , yn]� is the vector of data, ε = [ε1, . . . , εn]� is the noise Gaussian
vector, and H is the n × N design matrix defined by Hi,j := hj(xi). Following the
strategy in Maatouk (2022) and the equivalent in (3.4), the conditional distribution of
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Y N given both noisy observations {Y N (X)+ε = y} and inequality constraints {Y N ∈ C}
can be obtained from the conditional distribution of ξ given {Hξ+ ε = y} and {ξ ∈ E}

ξ ∼ N (0N ,Γ) s.t.
{

Hξ + ε = y (noisy observations)
ξ ∈ E (linear inequality constraints) (3.10)

Hereafter, the linear inequality constraints {ξ ∈ E} is reformulated as � ≤ Λξ ≤ u,
where � and u are the lower and upper bounds vectors of dimension m. Now, we will
explain the procedure for sampling from the posterior distribution as stated in (3.10).
Since ξ ∼ N (0N ,Γ), then Hξ + ε ∼ N (0N ,HΓH� + σ2

noiseIn). Under only noisy
observations, the conditional distribution of ξ is a multivariate normal (MVN), see
Maatouk et al. (2022); Rasmussen and Williams (2006):

{ξ|Hξ + ε = y} ∼ N (μ,Σ), where{
μ = (HΓ)�(HΓH� + σ2

noiseIn)−1y

Σ = Γ − (HΓ)�(HΓH� + σ2
noiseIn)−1HΓ

(3.11)

with In the n×n identity matrix. Note that this problem is called hyperplane-truncated
MVN distribution (Cong et al., 2017; Maatouk et al., 2022, 2023b,a). The consideration
of noisy observations in (3.9) has a relaxing effect on the interpolation conditions, as
the number of knots and basis functions N does not need to be larger than the size n
of the samples (condition required in Maatouk and Bay (2017) for the interpolation of
noise-free observations called degree of freedom). This leads to less restrictive sample
spaces and less expensive MCMC samplers when N � n as it is performed on R

N and
independent of the number of observations n. Additionally, it should be mentioned that,
unlike interpolation with noise-free observations, the given data does not need to satisfy
inequality constraints (see, for example, Figure 3). The posterior distribution (3.10) is
the following truncated MVN distribution:

{ξ|Hξ = y + ε, � ≤ Λξ ≤ u} ∼ NT (μ,Σ, �,u), (3.12)

where NT (m,C,a, b) is the truncated MVN distribution with mean vector m, covari-
ance matrix C, and lower and upper bounds constraints a and b respectively. Recently,
several efficient MCMC algorithms have been proposed to approximate the truncated
posterior distribution (3.12), such as Gibbs sampling (Taylor and Benjamini, 2016),
Metropolis-Hastings (Murphy, 2018), HMC (Pakman and Paninski, 2014) and the min-
imax tilting method accept-reject sampler (Botev, 2017). In the present paper, the fast
HMC sampler developed in Pakman and Paninski (2014) and implemented in the R
package tmg is used.

Let us mention that the posterior mode μ∗ corresponds to the maximum of the
posterior pdf

μ∗ := arg max
z∈RN

�≤Λz≤u

{
−[z − μ]�Σ−1[z − μ]

}
.

This problem is equivalent to the following quadratic optimization problem subject
to convex constraints (Boyd and Vandenberghe, 2004; Goldfarb and Idnani, 1983)

μ∗ := arg min
z∈RN

�≤Λz≤u

{
z�Σ−1z − 2μ�Σ−1z

}
, (3.13)
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where μ and Σ are given in (3.11). In the numerical examples presented in this paper,
we use the solve.QP function from the R package quadprog to calculate the posterior
mode μ∗. It can then serve as a suitable starting point for the HMC sampler.

Before presenting numerical examples of the proposed approach for various types of
inequality constraints, we define the following two estimators.

Definition 1 (MAP estimate). The Maximum a posteriori (MAP) estimate of Y N

conditionally on inequality constraints and noisy observations is defined as

MN (x) :=
N∑
j=1

μ∗
jhj(x) = h(x)�μ∗, x ∈ D,

where μ∗ = [μ∗
1, . . . , μ

∗
N ]� ∈ R

N is the posterior mode computed by (3.13) and h(x) =
[h1(x), . . . , hN (x)]� ∈ R

N .

Let us provide some comments: the MAP estimate in Algorithm 1 is independent of
the sampling process. It is determined only by solving a quadratic optimization problem
with linear inequality constraints (3.13). Furthermore, it has been shown that the MAP
estimate MN converges to the optimization spline problem in both noise and noise-
free observation cases when using the hat basis functions, i.e., Model (Mh), see Bay
et al. (2016); Grammont et al. (2022). These two results can be seen as a generalization
of the correspondence established in Kimeldorf and Wahba (1970) between Bayesian
estimation on stochastic processes and smoothing by splines.

Definition 2 (mAP estimate). The mean a posteriori (mAP) estimate of Y N condi-
tionally on inequality constraints and noisy observations is defined as

mN (x) := E
[
Y N (x)

∣∣Y N (X) + ε = y, Y N ∈ C
]

= h(x)�μ,

where μ := E [ξ|Hξ + ε = y, � ≤ Λξ ≤ u] is the posterior mean which is computed from
simulations and h(x) = [h1(x), . . . , hN (x)]� ∈ R

N .

3.3 Illustrative examples of Model (Mh)

In the section, the performance of the MAP estimate using Model (Mh) is highlighted,
and the flexibility of Model (Mh) to incorporate multiple types of convex and non-convex
inequality constraints is shown. Other illustrative examples, such as those involving
combined monotonicity and boundedness constraints applied both concurrently and
sequentially, have been deferred to the supplementary material (Section 2) Maatouk
et al. (2024).

Example 1 (Boundedness in a convex set). We consider the function f1(x) = 0.8x
sin(5x) for any x ∈ D. This function is bounded on D between convex and concave
functions f� and fu respectively:

f�(x) = (x− 0.5)2 − 1.2 and fu(x) = −(x− 0.5)2 + 0.3.
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This function is slightly flat and close to the upper bound function fu on [0, 0.5].

To avoid the possibility of overfitting (Neelon and Dunson, 2004), we plot in Fig-
ure 2, the mean squared prediction error (MSPE) for both the MAP and mAP estimates
as a function of the number of basis functions N , considering only the case with bound-
edness constraints. A dataset of size n = 70 generated from (2.1) using f1 and a true
σnoise = 0.5 is randomly split into training set of size 50 and testing set of size 20. This
numerical analysis suggests that a relatively “small” number of basis functions yields a
“satisfactory” approximation. This effectiveness is attributed to the fact that the bounded
function f1 exhibits minimal variation across its entire domain D. It is worth noting
the MAP estimate outperforms the mAP estimate in terms of prediction accuracy, as it
yields the smallest MSPE for any value of N .

Figure 2: The average MSPE over 25 replicates as a function of the dimension N is
shown using the MAP and mAP estimates from Model (Mh) under boundedness.

Figure 3 illustrates the finite-dimensional GP approximation from Model (Mh) with
(right panel) and without (left panel) boundedness constraints. We use the Matérn co-
variance function with a smoothness parameter ν = 5/2 and a length-scale parameter
θ = 0.4. In the right panel, we use the HMC sampler (Pakman and Paninski, 2014) to
sample from the posterior distribution of {ξj} as in Algorithm 1. The black stars repre-
sent the 50 training data generated from (2.1) using the true function f1 and a true noise
standard deviation of σnoise = 0.25. First, we observe that both the prediction estimates
and the confidence intervals in the left panel do not satisfy boundedness constraints.
Second, we observe that including the boundedness constraints into the posterior distri-
bution (right panel) results in more accurate predictions and smaller confidence intervals
compared to those produced by the unconstrained GP model (left panel). Let us note that
in the left panel, the MAP and mAP estimates coincide in the unconstrained case ac-
cording to the result in Kimeldorf and Wahba (1970). However, for the constrained case
on the right panel, the MAP and mAP no longer coincide. In the present paper, the
performance of the MAP estimate is further discussed, with a particular focus on its
behavior compared to that of other estimates. Let us conclude this example by noting
that, based on this numerical experiment, the MAP estimate appears to perform bet-
ter visually than the mAP estimate. It is closer to the observed values than the mAP
estimate.
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Figure 3: In the left (resp. right) panel, the true function and its estimates (MAP and
mAP) are plotted using Model (Mh) without (resp. with) boundedness constraints.
The 50 training data are represented by black stars, and the 95% pointwise confidence
interval is based on 5,000 McMC iterations and is represented by the gray shaded region.
The lower and upper bounds are indicated by the two black dashed thin curves.

Algorithm 1: Sampling scheme of {ξ|y, � ≤ Λξ ≤ u}, where ξ ∼ N (0N ,Γ).
• Initialization: y, Γ ∈ R

N×N , H ∈ R
n×N , Λ ∈ R

m×N , �, u.
• Compute the conditional mean and covariance of {ξ|Hξ + ε = y}

μ = (HΓ)�(HΓH� + σ2
noiseIn)−1y;

Σ = Γ − (HΓ)�(HΓH� + σ2
noiseIn)−1HΓ.

• Compute the posterior mode by solving the quadratic optimization problem
subject to linear inequality constraints

μ∗ := arg min
z∈RN

{z�Γ−1z|Hz + ε = y, � ≤ Λz ≤ u}.

• Sample from the truncated MVN distribution (HMC tmg is used in this
paper)

{ξ|Hξ + ε = y, � ≤ Λξ ≤ u} ∼ NT (μ,Σ, �,u).

Example 2 (Sequential constraints). Model (Mh) is capable of incorporating different
shape constraints sequentially at nonoverlapping intervals as shown in Figure 4 below
and Figure 3 of the supplementary material.

In Figure 4, the lower and upper bounds functions f� and fu are

f�(x) = (x− 0.5)2 + 0.1 and fu(x) =
{

−x + 0.8 if x ∈ [0, 0.4];
0.5x + 0.2 if x ∈ (0.4, 1].

We use the Matérn covariance function with ν = 5/2 and θ = 0.4. The black stars
represent the training observations, where {xi} are generated uniformly on [0, 1] and
the data {yi} are generated uniformly on [0, 0.6]. The input domain is split into two
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Figure 4: GP approximation from Model (Mh) under boundedness constraints on [0, 0.4]
and under both boundedness and monotonicity constraints on [0.4, 1]. The vertical
dashed line divides the interval [0, 1] into two nonoverlapping subintervals at x = 0.4.

nonoverlapping subdomains by a red vertical dashed line at x = 0.4. We suppose that
the underlying function admits two different behaviors within these two subdomains. In
the first subdomain [0, 0.4], the function is bounded. In the second subdomain [0.4, 1], it is
both nondecreasing and bounded. Again, we applied Proposition 2 with Q = 2, ensuring
that x = 0.4 is included as an element in the subdivision {tj}. The gray curves represent
the GP sample paths from Model (Mh) under sequential constraints. The sample paths
respect boundedness constraints on the entire domain and nondecreasing constraints on
[0.4, 1]. It is worth noting that the sequential constraints can be employed to generate
GP sample paths that are bounded within a non-convex set (see Example 2 in the sup-
plementary material).

Example 3 (Impact of outliers). The aim of this numerical example is to investigate
the impact of outliers on the robustness of our model. Robustness, in general terms,
is the property of a statistical method to yield sensible results even if its assumptions
are violated. In a more specific sense, this refers to the model’s insensitivity to outliers
(Hampel, 1971, 1974; Huber, 1964). Recently, methods for robustly fitting Gaussian
graphical models have been developed in Vogel et al. (2023).

For our analysis, outlier location crucially affects robustness. In Figure 5, we revisit
boundedness in a convex set from Example 1, both with and without outliers. An outlier
is added at x = 0.45 (middle panel) and x = 1 (right panel). The model’s prediction

Figure 5: Model (Mh) performance under boundedness constraints is illustrated with
data: without outliers (left), with an outlier at x = 0.45 (middle), and at x = 1 (right).
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is notably affected at x = 1, but not at x = 0.45, where the function already meets the
upper bound constraints, unlike at x = 1. It is worth noting that the impact of outliers
is less significant in locations where the underlying function meets the lower and upper
bound constraints. In some situations, the constraints mitigate the effect of outliers.

3.4 Multidimensional input spaces

The finite-dimensional GP approximation defined in (Mh) can be extended to d-dimen-
sional input spaces by tensorization (Maatouk and Bay, 2017). For simplicity of nota-
tions, we focus on the case d = 2, with D2 = [0, 1]2 and N1 × N2 knots located on a
regular (or non regular) grid. Then, for any x = (x1, x2) ∈ D2, the finite-dimensional
Gaussian approximation is given by

Y N1,N2(x1, x2) :=
N1∑

j1=1

N2∑
j2=1

ξj1,j2h
1
j1(x1)h2

j2(x2), (3.14)

where {h1
j1
} and {h2

j2
} are the hat functions defined in (3.1), and ξj1,j2 = Y (tj1 , tj2),

with {(tj1 , tj2)} the knots. Similarly to the one-dimensional case, ξ = (ξj1,j2) ∈ R
N1×N2

is a zero-mean Gaussian vector with covariance matrix Γ as in (3.2). Thus

• For monotonicity in two dimensions, the constraints to be satisfied are given by
ξj+1,l ≥ ξj,l and ξj,l+1 ≥ ξj,l for any j ∈ {1, . . . , N1 − 1} and l ∈ {1, . . . , N2 − 1}.
The constraints for the monotonicity with respect to one of the two input variables
can be computed in a similar way (Maatouk and Bay, 2017).

• For convexity in two dimensions, the constraints to be satisfied are given by

ξj+1,l − ξj,l
tj+1 − tj

≤ ξj+2,l − ξj+1,l

tj+2 − tj+1
and ξj,l+1 − ξj,l

tl+1 − tl
≤ ξj,l+2 − ξj,l+1

tl+2 − tl+1
,

for any j ∈ {1, . . . , N1 − 2} and l ∈ {1, . . . , N2 − 2}. The constraints for convexity
with respect to one of the two input variables can be computed in a similar way.

• For the upper and lower bound functions, fu and f� respectively, that define a
convex set, the constraints are expressed as f�(tj , tl) ≤ ξj,l ≤ fu(tj , tl), for all
j ∈ {1, . . . , N1} and l ∈ {1, . . . , N2}.

Remark 2. The boundedness constraints in the last item above can be extended to the
case where the region between the lower and upper bounds is non-convex. As in the
one-dimensional case, the only requirement is that the points where the input domain
D2 is divided into convex subsets must be part of the discretization grid (please refer to
Example 4 in the supplementary material).

Example 4 (Numerical illustrations in 2D). The purpose of this numerical example is to
demonstrate the effectiveness of the proposed approach in the two-dimensional scenario.
The flexibility of Model (3.14) in incorporating multiple constraints is highlighted.
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Figure 6: The true nondecreasing and bounded function (left). The MAP estimate from
Model (3.14) under boundedness constraints (middle) and under both boundedness
and monotonicity constraints (right). The gray surface represents the upper bound
constraint, and the black stars represent the training data.

Figure 6 shows an example where boundedness and monotonicity constraints in two
dimensions are imposed together. The two-dimensional squared exponential (SE) covari-
ance function is used

k(x,x′) = exp
(
− (x1 − x′

1)2

2θ1
− (x2 − x′

2)2

2θ2

)
, x = (x1, x2) ∈ D2, (3.15)

where θ1 and θ2 are the length-scale hyperparameters. The one hundred training obser-
vations (black stars) were generated using the Hypercube Latin from the R package lhs,
Eq. (2.1), the function f(x1, x2) = 5.6√x1 + x2 + 10, and a true σnoise = 1. This func-
tion is monotone nondecreasing with respect to the two input variables and bounded from
above by fu(x1, x2) = 4x1 + x2 + 12. In this figure, we illustrate the true function with
the upper bound constraints on the left, the MAP estimate with boundedness constraints
in the middle, and the MAP with both boundedness and monotonicity constraints on the
right. The addition of multiple constraints enhances the accuracy of predictions.

4 Constrained GPs: Cp approximation, p ≥ 1
In this section, we generalize Model (Mh) in order to provide smoother sample paths
by proposing new basis functions. The capability of this new model to incorporate mul-
tiple constraints such as monotonicity with bounded slope constraints is investigated.
Furthermore, a comparison of the prediction accuracy between these models is included
(Section 5 in the supplementary material).

4.1 C1 approximation with Model (Mφ)

In this section, shape constraints for continuous and differentiable functions f ∈ C1(D,R)
is considered. For example, the convex set Cm of nondecreasing functions is given by

Cm =
{
f ∈ C1(D,R) s.t. f ′(x) ≥ 0, x ∈ D

}
.
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As stated in Maatouk and Bay (2017), any at least differentiable function f can be
written as f(x) = f(0) +

∫ x

0 f ′(t)dt, where f ′(t) represents the derivative of f at t.
Following the strategy of Section 3.1, any differentiable function f can be approximated
by f̃N (x) = f(0) +

∑N
j=1 f

′(tj)φj(x), for any x ∈ D, where we recall that φj(x) =∫ x

0 hj(t)dt, for any x ∈ D, with {hj} the hat basis functions defined in (3.1).

Lemma 2 (Uniform convergence C1). For any f ∈ C1(D,R), the function f̃N :=
f(0) +

∑N
j=1 f

′(tj)φj(x) converges uniformly to f when N tends to infinity.

In Figure 7 (right panel), the red solid curve is the deterministic function f(x) =
x3, which verifies monotonicity (nondecreasing) constraints. The black dashed curve,
represented by f̃N (x) = f(0) +

∑N
j=1 f

′(tj)φj(x), is an approximation of f(x) using a
uniform subdivision with N = 5 basis functions. The gray curves represent the basis
functions {φj} defined in (3.1). The black stars represent the value of the true function
at knots {tj}. In contrast, the left panel shows the approximation of f ′(x) = 3x2 (red
solid curve) using the derivative of our proposed approach f̃ ′

N (black dashed curve) and
the hat basis functions {hj} (gray triangles).

Figure 7: Left: the approximation of f ′(x) = 3x2 (red solid curve) by the derivative of
the proposed approach f̃ ′

N (black dashed curve) together with the hat functions {hj}
(gray triangles). Right: the approximation of the nondecreasing function f(x) = x3 (red
solid curve) by the proposed approach f̃N together with the basis functions {φj} (gray
curves). A uniform subdivision is used with N = 5 basis functions.

Now we consider the second model proposed in Maatouk and Bay (2017)

Y N (x) := Y (0) +
N∑
j=1

Y ′(tj)φj(x) = ξ0 +
N∑
j=1

ξjφj(x), x ∈ D, (Mφ)

where, we denote by ξj = Y ′(tj), for any j ∈ {1, . . . , N}, ξ0 = Y (0), and {φj} are
the basis functions defined in (3.1). A comparison between Models (Mh) and (Mφ)
is presented in Section 5 of the supplementary material. The proposed approach, i.e.,
Model (Mφ) is also applicable for non-uniform subdivision as in Section 3.1. This model
has been considered in Zhou et al. (2019) for revisiting the proton-radius problem, and
more recently in Zhou et al. (2022) to describe the mass-shifting phenomenon of the
truncated MVN distribution for a flat region problem. Since (Y (x))x∈D is a zero-mean
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GP, then the vector [Y (t1), . . . , Y (tN )]� is also zero-mean, and Gaussian (Rasmussen
and Williams, 2006). By Cramer and Leadbetter (1967); Parzen (1962), we know that
[Y ′(t1), . . . , Y ′(tN )]� is still a Gaussian vector with covariance matrix

Gj,l = Cov(ξj , ξl) = ∂2

∂x∂x′ k(tj , tl), ∀j, l ∈ {1, . . . , N},

where we recall that k is the covariance function of the original GP Y . Therefore, the
covariance matrix of the Gaussian vector ξ = [ξ0, ξ1, . . . , ξN ]� is given by

Γ =
(

k(0, 0) ∂
∂x′ k(0, tl)

∂
∂xk(tj , 0) Gj,l

)
1≤j,l≤N

∈ R
(N+1)2 .

Thus, ξ ∼ N (0N+1,Γ) as in Section 3.1, where, 0N+1 = [0, . . . , 0]�.

Proposition 3 (Monotonicity and bounded slope). If the GP approximation Y N is
defined as in (Mφ), then, Y N is nondecreasing (resp. nonincreasing) and (Y N )′(x) ∈
[�, u], for any x ∈ D if and only if ξj ∈ [�, u] for any j ∈ {1, . . . , N}, where the lower
bound � is nonnegative (resp. the upper bound u is nonpositive). This property can be
extended to bounded slope constraints at a subset of D (see the right panel in Figure 9).

The linear inequality constraints on the coefficients {ξj} in Proposition 3 can be
written in matrix form as follows

� ≤ Λξ ≤ u,

where � and u are the m-dimensional vectors representing the lower and upper bounds,
and Λ is the m × (N + 1) matrix of constraints, with m number of linear constraints.
Since the lower bound vector � is nonnegative, incorporating monotonicity and bounded
slope constraints requires only m = N linear constraints on the basis coefficients {ξj}.
Corollary 1. If Y N is defined as in Model (Mφ), and f� and fu are lower and up-
per bounds functions such that the region between these two functions is convex, then,
(Y N )′(x) ∈ [f�(x), fu(x)] for any x ∈ D if and only if ξj ∈ [f�(tj), fu(tj)], for any
j ∈ {1, . . . , N}.

Proof. The proof is similar to the one provided in the first item of Proposition 1 in the
supplementary material (Section 1).

Remark 3. The result in Corollary 1 can be extended to include bounded slope con-
straints on subsets of D, as well as non-convex regions between lower and upper bounds
functions f� and fu, by decomposing the input domain D into nonoverlapping subdo-
mains with convex regions. As in Proposition 2, the only requirement is to include the
intersection extremities of the subdomains in the subdivision {tj}.
Proposition 4 (Multiple constraints (Mφ)). If the GP approximation Y N is defined
as in (Mφ), then

• Monotonicity and boundedness: Y N is nondecreasing and nonnegative if and only
if {ξj} are nonnegative for any j ∈ {0, . . . , N}.
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• Convexity: Y N is convex if and only if ξj ≤ ξj+1, for any j ∈ {1, . . . , N − 1}.

• Monotonicity and convexity: Y N is monotone (nondecreasing) and convex in the
entire domain if and only if 0 ≤ ξ1 ≤ . . . ≤ ξN .
This leads to only m = N linear constraints on the basis coefficients {ξj} according
to the notation in (3.6).

• Monotonicity, convexity and boundedness: Y N is nondecreasing, convex, and non-
negative if and only if 0 ≤ ξ1 ≤ . . . ≤ ξN and ξ0 ≥ 0.

Corollary 2. The bounded slope constraints from Proposition 3 can be combined with
those presented in Proposition 4.

4.2 Cp approximation, p ≥ 2 with Model (Mψ)

The sample paths generated from Model (Mφ) are differentiable. This means that the
derivatives of order zero and one are continuous. This is because the basis functions
{φj} are the primitive of the hat functions {hj} which are only continuous. The differ-
entiability of the sample paths generated from (Mφ) can be generalized to any class Cp,
p ≥ 1. For example, to obtain sample paths that are twice differentiable, it is sufficient
to define a hat basis function that is differentiable, as follows:

κj(x) = κ

(
x− tj
ΔN

)
and ψj(x) =

∫ x

0
κj(t)dt, where (4.1)

κ(x) =

⎧⎨
⎩

−2x3 − 3x2 + 1 if x ∈ [−1, 0];
2x3 − 3x2 + 1 if x ∈ (0, 1];
0 otherwise;

(4.2)

tj = (j − 1) × ΔN , with ΔN = 1/(N − 1). The function κ can be seen as the cubic
Hermite spline defined on [−1, 1]. It is clear that κ is a differentiable function on R

and that {κj} is also differentiable. This implies that {ψj} are twice differentiable.
Additionally, κj(tl) = δj,l, where δj,l is the Kronecker’s delta function equal to one if
j = l and zero otherwise. Furthermore, the ‘new’ hat functions {κj} admit the following
nice property

∑N
j=1 κj(x) = 1, for any x ∈ D. This property plays an important role in

the bounded slope constraints that are added to the proposed approach, as well as in
the convexity constraints (see Proposition 6 below). Following the strategy of Section 4,
any differentiable function f can be approximated by

f̃N (x) = f(0) +
N∑
j=1

f ′(tj)ψj(x), (4.3)

for any x ∈ D.

In Figure 8, a uniform subdivision of the domain D = [0, 1] is used with N = 5
basis functions and knots. The non-uniform subdivision case is straightforward. In the
left panel, we show the ‘new’ hat functions {κj} as well as the derivative function
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Figure 8: A uniform subdivision is used with N = 5 basis functions and knots. Left:
f ′(x) = 3x2 (red solid curve) and f̃ ′

N (black dashed curve) together with the ‘new’ hat
functions {κj} (gray curves). Right: the monotone nondecreasing function f(x) = x3

(red solid curve) and the proposed approach f̃N in (4.3) represented by the black dashed
curve, together with the ‘new’ basis functions {ψj} (gray curves).

f ′(x) = 3x2 approximated by f̃ ′
N (x) =

∑N
j=1 f

′(tj)κj(x). The right panel shows the
deterministic function f(x) = x3 (red solid curve), which verifies monotonicity (non-
decreasing) constraints and the proposed approach f̃N (x) = f(0) +

∑N
j=1 f

′(tj)ψj(x)
(black dashed curve). The gray curves are the basis functions {ψj} defined in (4.1). The
use of the basis functions {ψj} as in (Mψ) leads to differentiable GP sample paths of
class C2. The slope of the sample paths can also be controlled, as show in Proposition 6.

Proposition 5 (Bounded slope C2). Let f be a continuous and differentiable function
on D, i.e., f ∈ C1(D,R), and f̃N (x) := f(0) +

∑N
j=1 f

′(tj)ψj(x), for any x ∈ D. Then

f̃ ′
N (x) ∈ [�, u], ∀x ∈ D ⇔ f ′(tj) ∈ [�, u], ∀j ∈ {1, . . . , N},

where � and u are the lower and upper bounds respectively.

In that case, the proposed approach is defined as follows:

Y N (x) := Y (0) +
N∑
j=1

Y ′(tj)ψj(x) = ξ0 +
N∑
j=1

ξjψj(x), ∀x ∈ D, (Mψ)

where, the basis {ψj} are defined in (4.1), ξ0 = Y (0) and ξj = Y ′(tj), j ∈ {1, . . . , N}.

Proposition 6 (Multiple constraints (Mψ)). If Y N is defined as in (Mψ), then

• the sample paths generated from Y N are twice differentiable.

• Monotonicity: Y N ∈ Cm if and only if {ξj} are nonnegative, for any j ∈ {1, . . . , N}.

• Monotonicity and bounded slope: Y N ∈ Cm and (Y N )′(x) ∈ [�, u], for any x ∈ D
if and only if {ξj} are in [�, u], for any j ∈ {1, . . . , N}, where �, u ∈ R+ are the
lower and upper bounds respectively.
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• Monotonicity and boundedness: Y N is nondecreasing and nonnegative if and only
if {ξj} are nonnegative, for any j ∈ {0, . . . , N}.

• Convexity: Y N ∈ Cc if and only if ξj ≤ ξj+1, for any j ∈ {1, . . . , N − 1}.

• Monotonicity and convexity: Y N ∈ Cm ∩ Cc if and only if 0 ≤ ξ1 ≤ . . . ≤ ξN .

• Monotonicity, convexity and boundedness: Y N is nondecreasing, convex, and non-
negative if and only if 0 ≤ ξ1 ≤ . . . ≤ ξN and ξ0 ≥ 0.

Remark 4. In this section, the smoothness of the sample paths of Model (Mφ) has been
investigated, with a focus on its differentiability in class Cp, for p ≥ 1. The function
κ, as given in (4.2), has a differentiability of class C1. This implies that the sample
paths from (Mψ) are twice differentiable. For example, to obtain sample paths that are
differentiable up to order three (i.e., class C3), it is sufficient to define κ as follows

κ(x) =

⎧⎨
⎩

−3x4 − 8x3 − 6x2 + 1 if x ∈ [−1, 0];
−3x4 + 8x3 − 6x2 + 1 if x ∈ (0, 1];
0 otherwise.

(4.4)

It is straightforward to verify that κ is a differentiable function of class C2. Adopting
the same approach, we define κj and ψj as follows:

κj(x) = κ(x− tj/ΔN ) and ψj(x) =
∫ x

0
κj(t)dt.

It is worth noting that the basis {κj} verify the following two fundamental properties:

κj(tl) = δj,l and
N∑
j=1

κj(x) = 1,

for all j, l = 1, . . . , N and for any x ∈ D, where we recall that δj,l is the Kronecker’s
delta function equal to one if j = l and zero otherwise.

4.3 Cp approximation, p ≥ 2 with Model (Mϕ)

In this section, we first consider the convexity constraint for continuous and twice dif-
ferentiable functions f ∈ C2. Thus, the convex set Cc is given by

Cc =
{
f ∈ C2(D,R) s.t. f ′′(x) ≥ 0, x ∈ D

}
,

where f ′′ represents the second-order derivative of f . As stated in Maatouk and Bay
(2017), any at least twice differentiable function f can be written as f(x) = f(0) +
xf ′(0)+

∫ x

0
∫ t

0 f ′′(u)dudt. Following the strategy of Section 3.1, any twice differentiable
function f can be approximated by

f̃N (x) = f(0) + xf ′(0) +
N∑
j=1

f ′′(tj)ϕj(x) (4.5)

for any x ∈ D, where {ϕj} are given in (3.1).
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Lemma 3 (Uniform convergence C2). For any f ∈ C2(D,R), the function f̃N defined
in (4.5) converges uniformly to f when N tends to infinity.

In that case, we consider the following model

Y N (x) := Y (0) + Y ′(0)x +
N∑
j=1

Y ′′(tj)ϕj(x) = ξ∗0 + ξ0x +
N∑
j=1

ξjϕj(x), x ∈ D, (Mϕ)

where we denote by ξ∗0 = Y (0), ξ0 = Y ′(0), and ξj = Y ′′(tj), for any j ∈ {1, . . . , N}. In
this case, Y N is convex on D if and only if {ξj} are nonnegative for any j ∈ {1, . . . , N}.
Proposition 7 (Multiple constraints (Mϕ)). If Y N is defined as in (Mϕ), then

• Monotonicity and convexity: Y N ∈ Cm ∩ Cc if and only if ξj ≥ 0 for any j ∈
{0, . . . , N}.

• Monotonicity, convexity and boundedness: Y N ∈ Cm ∩ Cc and Y N is nonnegative
if and only if ξ∗0 ≥ 0 and ξj ≥ 0, for any j ∈ {0, . . . , N}.

Remark 5. The sample paths generated from Model (Mϕ) are twice differentiable. As
in Section 4.2, the smoothness of the sample paths can be generalized to class Cp, for
any p ≥ 2 by defining smoother hat functions like ones given in (4.1) and (4.4).

4.4 Performance of the MAP estimate

The aim of this section is to show the performance of the MAP estimate in terms of
prediction accuracy in different situations. A variety of functions is considered:

fm1(x) = (5x− 3)31[0.6,1](x), fm2(x) = 3
1 + exp{−10x + 2.1} ,

fm3(x) =
√

2
100∑
j=1

j−1.7 sin(j) × cos(π(j − 0.5)(1 − x)), fm4(x) = 5x2,(4.6)

for x ∈ [0, 1]. The function fm1 is monotone (nondecreasing) and flat on [0, 0.6]. However,
fm2 and fm3 are approximately flat on [0.7, 1]. The last function fm4 is an increasing
function on the whole domain [0, 1]. Let us mention that only the function fm3 is
decreasing in certain regions which allows us to evaluate the performance of the proposed
approach under slight model misspecification.

The simulation studies are based on a dataset of size n = 500 generated from (2.1)
using the true functions (4.6) and a true σnoise = 0.5. The dataset is randomly split
into training set of size 300 and testing set of size 200. Table 1 summarizes the average
of the MSPE ×102 (standard deviation ×102) over one thousand replicates for the four
true functions (4.6) using different approaches MAP estimate, dependent global local
prior (DGL), independent global-local shrinkage prior (IGL), and the global shrinkage
prior (TMVN). To evaluate the performance between the flat and increasing regions
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functions methods MSPE (total) MSPE (flat) MSPE (increasing)
MAP 13.55 (4.97) 4.39 (1.87) 19.27 (7.59)

fm1 DGL 11.36 (2.62) 8.13 (1.95) 14.71 (4.79)
IGL 13.44 (2.62) 9.86 (1.70) 17.32 (5.23)

TMVN 65.63 (7.21) 14.53(2.59) 102.6 (11.16)
MAP 7.46 (1.65) 3.94 (2.31) 8.63 (1.99)

fm2 DGL 8.29 (1.78) 7.13 (2.64) 8.56 (2.32)
IGL 9.55 (1.92) 8.40 (2.61) 9.84 (2.54)

TMVN 8.32 (2.11) 8.61 (2.91) 7.94 (2.75)
MAP 7.84 (1.47) 5.23 (2.23) 8.78 (1.79)

fm3 DGL 7.76 (1.74) 9.16 (2.9) 6.87 (1.87)
IGL 7.72 (1.74) 8.57 (2.45) 7.18 (1.74)

TMVN 11.36 (1.33) 15.27 (2.85) 8.97 (1.76)
MAP 9.44 (1.89) – 9.44 (1.89)

fm4 DGL 8.67 (2.15) – 8.67 (2.15)
IGL 9.34 (2.16) – 9.34 (2.16)

TMVN 5.68 (1.61) – 5.68 (1.61)
Table 1: The average MSPE ×102 (standard deviation ×102) over one thousand repli-
cates for different functions and methods. The MAP estimate is obtained through
Model (Mh), under only monotonicity constraints.

separately, we additionally report the average partial MSPEs for each region: MSPE
(flat) for the flat portion and MSPE (increasing) for the increasing portion, in addition
to the overall average MSPE. To avoid overfitting, we set N = ntr/8� as in Zhou et al.
(2022), where ntr is the number of training samples fixed at 300. In that case, the MAP
estimate provides the same MSPE results when using different models: (Mh), (Mφ), and
(Mϕ) (see Section 5 in the supplementary material). The Matérn family of covariance
functions is used with smoothness parameter ν ∼ U(0.5, 1) and length-scale parameter
θ ∼ U(0.1, 1) generated at each replicate as in Zhou et al. (2022). For flat regions,
the MAP estimate outperformed the shrinkage approaches of Zhou et al. (2022) (DGL,
IGL, and TMVN). This confirms the robustness of the MAP estimate for capturing
flat regions. According to the MSPE criterion, the MAP estimate is twice (resp. three
times) more efficient than IGL and DGL (resp. TMVN) when using fm2 over the flat
region. This was also seen when calculating the total MSPE for fm2 , where the proposed
approach had a slightly lower standard deviation than the shrinkage approaches (IGL,
DGL, and TMVN). This again confirms the stability of the MAP estimate provided
by the proposed approach. Finally, it is worth noting that the simulation studies are
conducted without any additional constraints.

Figure 9 shows the finite-dimensional GP approximation from Model (Mφ) with
monotonicity constraints only (left panel) and both monotonicity and bounded slope
constraints (right panel). The function fm2(x) = 3

1+exp{−10x+2.1} is considered. This
function is interesting because it is monotonically increasing and almost flat over the
interval [0.7, 1]. We used the Matérn covariance function with ν = 5/2 and the efficient
HMC technique (Pakman and Paninski, 2014) to sample from the posterior distribution
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Figure 9: GP approximation from Model (Mφ) satisfying monotonicity (left panel),
monotonicity and bounded slope constraints (right panel). The panel description is the
same as in Figure 3, with zoomed-in inset plots where x ∈ [0.7, 1]. The green dashed
line in the right panel represents the starting location of bounded slope constraints.

of the basis coefficients {ξj}. The black solid curve represents the function fm2 , while
the red dashed (resp. blue dashed-dotted) curve represents the MAP estimate (resp.
mAP estimate). The gray shaded area represents the 95% pointwise confidence interval.
The black stars are the 300 noisy observations generated from (2.1) using fm2 and a true
noise standard deviation of σnoise = 0.5. The green vertical dashed line in the right panel
corresponds to the starting point where the bounded slope constraints are imposed. In
the right panel, we impose an upper bound slope constraints on the proposed approach
in the flat region [0.7, 1]. In the left panel, we observe that the pointwise 95% confidence
intervals fail to capture the true nondecreasing function fm2 for a substantial part of
the input domain. This is due to the mass-shifting phenomenon highlighted in Zhou
et al. (2022). Including bounded slope constraints (right panel) provides smaller and
more realistic credible intervals as compared to those without such constraints (left
panel). Let us mention that the MAP estimate is robust in both scenarios, with or
without bounded slope constraints. This is because the MAP estimate converges to
the constrained optimal smoothing function (as proved in Grammont et al. (2022)).
Additionally, the mAP estimate tends towards the MAP estimate when bounded slope
constraints are added, as seen in the right panel. Finally, the average 95% posterior
coverage over 25 replicates is equal to 78% when using the proposed approach with only
monotonicity (nondecreasing) constraints. However, it increases to 89% when adding
the bounded slope constraints. Thus, adding multiple constraints improves prediction
accuracy, bringing the posterior coverage closer to 95%.

5 Real-world data applications
5.1 Light detection and ranging (LiDAR)
In this section, the proposed approach developed in this paper was applied on the light
detection and ranging (LiDAR) real-world data that consist of 221 observations from a
LiDAR experiment and it contain information on range and logratio. The predictor range
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represents the distance travelled before the light is reflected back to its source, however,
the response variable logratio represents the logarithm of the ratio of received light from
two laser sources. This real-world data is available from the R package HRW. The data
suggest that the underlying function is nonpositive and monotone nonincreasing with a
flat region when the range is less than 550.

Figure 10: Estimation accuracy of the proposed approach applied on LiDAR data.

In Figure 10, Model (Mφ) has been applied to the n = 221 LiDAR data (shown as
black stars). We fix N = n/8� to avoid overfitting (Section 6.1 of the supplementary
material justifies this choice), and we use the Matérn covariance functions with ν = 5/2.
Top left: Model (Mφ) satisfying monotonicity constraints only. We observe that, unlike
the MAP estimate, the credible interval and mAP estimate fail to follow the behavior
of the data in the flat region (range less than 550). To rigorously compare the MAP
and mAP estimates in terms of prediction accuracy, we propose to place a uniform
prior distribution on the length-scale parameter θ ∼ U(50, 300) as well as on the noise
standard deviation σnoise ∼ U(0.1, 0.5). By randomly splitting the total dataset of size
221 into 80% training and 20% testing datasets, we obtain an average MSPE over one
thousand replicates of 8.23 × 10−2 when using the MAP estimate and 9.76 × 10−2

when using the mAP estimate. Top right: we added nonnegativity constraints (as per
Proposition 4) and found that, once again, credible intervals as well as the mAP estimate
fail to capture the flat region, specially when logratio starts to decreases. Bottom: we
added bounded slope constraints in the flat region between the green vertical dashed
lines (see Proposition 3) to monotonicity and negativity constraints. In that case, we
observe that both the mAP estimate and the 95% pointwise credible interval follow
the observations and capture the flat region. The proposed model with triple inequality
constraints seems to align with the data better, specifically over the flat region and when
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logratio starts to decreases. We also observe that the mAP estimate tends towards the
MAP estimate, which behaves well in all three situations. As expected, adding multiple
constraints improves the prediction accuracy of the proposed approach (MAP and mAP
estimates) as well as the behavior of the posterior distribution, which provides more
realistic pointwise credible intervals. To provide more precise information, we present
the WAIC (Watanabe-Akaike Information Criterion) values for overall model fitting in
the main of each panel. As expected, the proposed approach under triple constraints,
achieves the lowest WAIC value, indicating a better fit to the data compared to the
other two scenarios.

type constraints length-scale parameter noise sd WAIC
Top left only monotone θ = 100 σnoise = 0.1 −468.79

Top right monotone/negative θ = 100 σnoise = 0.1 −473.26

Bottom monotone/negative
θ = 100 σnoise = 0.1 −481.4bounded slope

Table 2: Performance of the proposed approach Model (Mφ) under multiple constraints.

Table 2 summarizes the values of hyperparameters θ and σnoise, and the WAIC values
using Model (Mφ) across various scenarios for LiDAR data. Model (Mφ), when applied
under constraints of monotonicity, negativity, and bounded slope, provides the smallest
WAIC value. This indicates a better fit to the data compared to the other scenarios.

5.2 Nuclear safety application

For brevity, this real application has been deferred to the supplementary material (Sec-
tion 6.2).

Conclusion
The finite-dimensional Gaussian process approximation originally proposed in Maatouk
and Bay (2017) is considered, which verifies interpolation conditions and inequality
constraints in the entire domain. The flexibility of this approach to incorporate both
noisy observations and multiple convex and non-convex constraints is investigated. This
leads to significant improvement in prediction accuracy and more realistic credible in-
tervals. We propose an adjustment to the cross-validation technique that uses Maximum
a Posteriori (MAP) to estimate both covariance and noise variance hyperparameters.
Additionally, we propose new basis functions to enhance the smoothness of the sam-
ple paths and ensure differentiability of class Cp, for any p ≥ 1. The behavior of this
approach in challenging situations, such as monotonicity with a flat region or bound-
edness where the underlying function is flat and close to lower and/or upper bounds,
is investigated. In that case, we show that, unlike the MAP estimate, the truncated
multivariate normal distribution is not suitable for capturing the flat region. To address
this issue, we propose adding multiple constraints, such as monotonicity with bounded
slope constraints. The superiority of the MAP estimate over the mean a posterior (mAP)
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estimate is demonstrated in a wide range of settings based on its theoretical conver-
gence. Real-world data studies show that the MAP estimate effectively captures flat
regions and that incorporating multiple constraints accurately reflects the behavior of
the posterior distribution.
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