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A General Bayesian Functional Spatial
Partitioning Method for Multiple Region

Discovery Applied to Prostate Cancer MRI∗

Maria Masotti§, Lin Zhang†, Gregory J. Metzger‡, and Joseph S. Koopmeiners†

Abstract. Current protocols to estimate the number, size, and location of can-
cerous lesions in the prostate using multiparametric magnetic resonance imaging
(mpMRI) are highly dependent on reader experience and expertise. Automatic
voxel-wise cancer classifiers do not directly provide estimates of number, location,
and size of cancerous lesions that are clinically important. Existing spatial parti-
tioning methods estimate linear or piecewise-linear boundaries separating regions
of local stationarity in spatially registered data and are inadequate for the appli-
cation of lesion detection. Frequentist segmentation and clustering methods often
require pre-specification of the number of clusters and do not quantify uncertainty.
Previously, we developed a novel Bayesian functional spatial partitioning method
to estimate the boundary surrounding a single cancerous lesion using data derived
from mpMRI. We propose a Bayesian functional spatial partitioning method for
multiple lesion detection with an unknown number of lesions. Our method utilizes
functional estimation to model the smooth boundary curves surrounding each
cancerous lesion. In a Reversible Jump Markov Chain Monte Carlo (RJ-MCMC)
framework, we develop novel jump steps to jointly estimate and quantify uncer-
tainty in the number of lesions, their boundaries, and the spatial parameters in
each lesion. Through simulation we show that our method is robust to the shape of
the lesions, number of lesions, and region-specific spatial processes. We illustrate
our method through the detection of prostate cancer lesions using MRI.

Keywords: biomedical imaging, functional estimation, reversible jump MCMC,
spatial partitioning, spatial statistics.

1 Introduction
Multiparametric magnetic resonance imaging (mpMRI), a combination of MRI images,
has improved diagnostic accuracy for detecting prostate cancer compared to previous
methods (Ahmed et al., 2017). Computer-aided diagnostic (CAD) systems to estimate
voxel-wise cancer probabilities based on mpMRI features continue to be developed and
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evaluated (Fei, 2017). Previously, our group developed fully automated voxel-wise clas-
sifiers that account for regional heterogeneity in the prostate and spatial dependence
in the data without the need for manual segmentation (Jin et al., 2018, 2022). While
these models can guide clinicians in locating approximate areas with high probability
of cancer, an additional step to translate probabilities into lesions is needed for use in
clinical practice. Besides estimating location and size, correctly identifying the number
of cancerous lesions is important, clinically (Leng et al., 2018).

Previously we developed Bayesian Functional Spatial Partitioning, re-named as
BFSP-1, a boundary detection method for spatially correlated data exhibiting a sin-
gle anomalous region (Masotti et al., 2021). This method proved to be successful when
applied to data derived from mpMRI containing a single cancerous lesion. However,
BFSP-1 is not applicable when the data have zero or more than one anomalous regions,
which is common in practice. As we show in our simulations, BFSP-1 may detect one
or more separate anomalous regions with a single partitioning boundary. This precludes
applying BFSP-1 repeatedly to one imaging slice containing multiple anomalous regions.
Further, we aim to estimate the uncertainty in both the number and location of lesion
boundaries, which BFSP-1 cannot do.

Estimating the true number of distinct groups, clusters, or lesions in a spatially ref-
erenced dataset is a challenging and largely unsolved problem in frequentist statistics.
Existing methods for estimating the true number of clusters tend to be ad-hoc or require
unrealistic assumptions and complicated calculations (Sugar and James, 2003; Salvador
and Chan, 2004; Jain, 2010). Determining the optimal number of terminal nodes or
partitions in a decision tree is similarly challenging. Classification and regression trees
(CART) (Breiman et al., 1984) recursively split the data until no additional split im-
proves the homogeneity within the nodes. CART tends to overestimate the number of
nodes and often requires ad-hoc pruning methods to prevent over-fitting (Denison et al.,
1998). Clustering methods using likelihood maximization do not provide estimates of
uncertainty in the number of clusters or cluster membership.

Bayesian modeling provides a straightforward framework for estimating the num-
ber of clusters and the uncertainty of the estimate. This is typically accomplished us-
ing Bayesian mixture models that estimate voxel-wise cluster membership (Fruhwirth-
Schnatter et al., 2019; Argiento and De Iorio, 2022; Neal, 2000). Product partition
models, first introduced by Hartigan (1990), create clusters using a prior that takes
the form of a product of cohesion functions. The cohesion function measures how likely
data points are to be clustered together. Page and Quintana (2016) develops a spatial
version of the product partition model by making the cohesion a function of spatial
location. The method by Teixeira et al. (2019) extends the PPM to the spatio-temporal
context. PPMs are constructed to find clusters. When data exhibit homogenity (data
belong to one cluster), PPMs are not appropriate. For this reason, PPMs are not ap-
propriate for our data as a healthy individual’s imaging data would in theory contain
no clusters. Kang et al. (2018) developed a soft-thresholded Gaussian process model to
partition the brain in order to detect regions that are highly predictive of alcoholism
using EEG data. This regression method detects spatial regions that are important on
average across several patients and time points. We aim to detect distinct regions from
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each patient’s imaging data. None of the above methods provide estimates of boundaries
or boundary uncertainty, which are of critical importance to our clinicians.

Bayesian random partitioning models can quantify uncertainty in the number and
locations of boundaries but existing methods are not well suited for our application.
Denison et al. (1998) developed a Bayesian CART algorithm which provides insight
into a range of good trees of varying depth rather than returning a point estimate.
Denison and Holmes (2001) developed a Bayesian partition model for count data based
on a Voronoi tessellation in which centroids are proposed and data points are assigned
to the nearest center. Chipman et al. (2002) extended the Bayesian CART method by
fitting hierarchical linear models in each terminal node. The spatial partitioning meth-
ods by Gramacy and Lee (2008) and Konomi et al. (2014) fit Gaussian processes (GPs)
in the terminal nodes. The method by Kim et al. (2005) also uses Voronoi tessellation in
which the tiles follow distinct GPs. However, all of the above methods assume linear or
piece-wise linear partitioning boundaries. Prostate cancer lesions can be of any shape,
rendering these methods inadequate for our application. The Bayesian regularization
method by Lee et al. (2021) estimates partitions of data whose prior structure is rep-
resented by a graph. The proposed linear model does not include spatial random error,
which our data clearly exhibits.

Our goal is to develop a fully automated lesion detection pipeline that jointly esti-
mates the number of lesions and their boundaries from a patient’s mpMRI data using
a Bayesian approach. This allows quantification of uncertainty in both the number of
lesions and their boundaries. We propose BFSP-M, a general framework to identify and
describe an unknown number of arbitrarily shaped anomalous regions using boundary
detection for spatially registered data. BFSP-M uses separate moving polar systems for
each lesion, within which the boundary curves are estimated via functional approxima-
tion, and reversible jump Markov chain Monte Carlo (RJ-MCMC) to explore parameter
spaces of different dimensions which vary with the number of lesions. In the same vein
as Richardson and Green (1997), we develop four jump steps to add, subtract, split, and
merge the lesion-defining boundaries. Richardson and Green (1997) uses jump proposals
to add or subtract densities in a mixture model, while our method defines proposals to
add or subtract boundaries and updates the corresponding boundary parameters. These
moves efficiently avoid the local-trap problem in our Bayesian spatial partitioning and
ensure faster mixing and convergence in estimating the number of lesions. Compared to
machine learning methods for imaging segmentation, our method allows estimation of
uncertainty as to the number of lesions and each lesion boundary. While the proposed
model is intended for single patient and single slice analysis, our method provides a sta-
tistical modeling framework that allows extensions to multi-slice, multi-subject, and/or
longitudinal analysis of lesion status which we will discuss in more detail in Section 7.
We show through simulations that BFSP-M can detect multiple irregularly shaped re-
gions with higher sensitivity and specificity compared to competing image segmentation
methods. An application to the data from Metzger et al. (2016) and Jin et al. (2018)
illustrates the flexibility to identify an unknown number of cancerous lesions of arbitrary
shape in the prostate using mpMRI. While our application is specific, this method of
partitioning is general and can be applied to any type of spatially related data that
contains anomalous areas within a larger homogeneous space.
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The remainder of the paper is organized as follows. We introduce our novel Bayesian
model for functional spatial partitioning and discuss Bayesian modeling of the under-
lying spatial process in Section 2. We discuss the computational implementation of our
method via RJ-MCMC in Section 3. In Section 4 we develop a post-processing procedure
and estimate credibility bands for the boundaries. We evaluate the statistical properties
of our method via simulation and compare its performance to existing methods in Sec-
tion 5. This is followed by an application to the data from Jin et al. (2018) in Section 6.
Finally, we conclude with a discussion and suggest future extensions in Section 7.

2 Model Specification
Our objective is to estimate the set of boundaries {B1, . . . , Bm} that partitions the data
into multiple regions based on heterogeneity in the underlying spatial processes with
minimal restrictions on the shapes of the target regions. The model is specified by three
components. First, we model the set of boundaries as functions of angles with respect
to a set of centroids. Second, we specify the likelihood for the data though a piecewise
spatial Gaussian process conditional on the partition generated by the set of boundaries.
Finally, we assign priors for all the parameters to complete the full Bayesian model.
Estimation is accomplished iteratively via RJ-MCMC to jointly estimate the number
of target regions, the boundary parameters, and the spatial parameters based on their
posterior probabilities given the data.

Section 2.1 discusses how a partition with m boundaries is defined by a set of bound-
aries, B1, . . . , Bm. In Section 2.2, we specify the likelihood. The full hierarchical model
as well as details on the prior are provided in Section 2.3. Finally, details of Bayesian
computations are given in Section 3.

2.1 Defining a Partition
Let Z(s) indicate a scalar variable that is observed at location s = (x, y) ∈ D, where D is
a region in R

2. In our application, we assume D to be a unit square. Let s = (s1, . . . sn)
and Z = (Z(s1), . . . , Z(sn)) denote a set of locations within the region D and the
corresponding set of observations. Assume some partition of the space with m ≥ 0
mutually exclusive contiguous regions, D1, .., Dm, all within D, defined by boundaries
B1, . . . , Bm and D0 = D \D1 \ · · · \Dm. Let sj be the vector of spatial locations within
region Dj and Zj the vector of observed values at those locations. We assume each
vector Zj follows a distinct distribution.

A partition of D with m boundaries B1, . . . , Bm creates m+1 regions D0, D1, . . . , Dm.
In our motivating problem, D0 represents the healthy tissue and regions D1, . . . , Dm

represent m non-overlapping cancerous regions. Given a point cj located at the centroid
of Dj , the boundary curve Bj can be uniquely modeled as a function of an angle in a
polar coordinate system centered at cj . We define the boundary Bj = {s ∈ D : dcj→s =
fj(θs|cj ,βj), θs ∈ [0, 2π]}, where dc→s is the distance between a point s and the polar
center c, θs is the angle formed between the line connecting cj and s and the horizontal,
and βj are parameters defining the boundary function. Thus modeling the boundary
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curves is equivalent to estimating the locations of the cj and the functions fj(θ|cj ,βj)
for j = 1, . . . ,m. Each spatial location s can be assigned to a region by its distance
dcj (s) referenced to the centroids cj for j = 1, . . . ,m. See Figure 1 for an illustration of
our partitioning method.

The boundary functions are estimated by a linear combination of K basis functions.
The only constraint on the choice of basis function is that they must be periodic ensuring
f(0) = f(2π). In our previous work we show that Fourier and spline basis functions work
well for our application (Masotti et al., 2021). The boundary function implemented with
Fourier basis functions takes this form:

fj
(
θs|cj ,βj

)
= βj,0 +

K∑
k=1

βs
j,k sin (kθs) + βc

j,k cos (kθs) for 0 ≤ θs ≤ 2π (1)

where βs and βc indicate coefficients corresponding to the sine and cosine basis func-
tions, respectively, and βj = (βj,0, β

s
j,1, . . . , β

s
j,K , βc

j,1, . . . , β
c
j,K). While we use Fourier

and spline basis functions for lesion detection, wavelets can also be used to model bumpy
boundary functions as long as they satisfy the constraint. For the simulation and data
analysis, we implement our method with Fourier basis functions. Note that by model-
ing boundaries as functions of angles, our method is restricted to boundary estimation
in the star domain. A region S is in the star domain if there exists an x0 in S such
that for all x in S the line segment from x0 to x is in S. That is, our method cannot
estimate boundary curves with radial concavities. However, for our motivating applica-
tion, a lesion exhibiting radial concavity could be captured by two or more neighboring
boundaries that achieve the same goal clinically. The parameter K corresponds to the
level of detail in the boundary. A lower value will produce a smoother boundary. In our
previous work we found that K = 5 was adequate for lesion detection in our data. How-
ever for other applications, the value of K can be treated as an additional parameter
and chosen by cross-validation by the user.

2.2 Spatial Modeling

We now consider the likelihood via spatial modeling of the data conditional on the
spatial partition given above. Estimation of the spatial process within each region occurs
simultaneously with estimation of the boundary. At each iteration, by transitioning back
into Cartesian coordinates we can classify a spatial location s as within region Dj if
s is within the boundary, i.e., the distance dcj→s is less than the boundary function
(1) at θcj (s). Given a current estimate of m regions with centroids cj and boundary
functions fcj (·) for j = 1, . . . ,m, we can partition the space into Dj = {s ∈ D : dcj→s ≤
fj(θs|φj), θs ∈ [0, 2π)} and D0 = {s ∈ D : s /∈ Dj∀j = 1, . . . ,m}. Let sj be the
vector of spatial locations within region Dj and Zj the vector of observed values at
those locations. Let Φm = (φ0,φ1, . . . ,φm) be all of the parameters describing a given
partition where φ0 contains the parameters which define the Gaussian spatial process
of data contained in D0 and φj contains the parameters which define the Gaussian
spatial process of data contained in Dj and the parameters defining the boundary Bj .
For a given partition of the data with m boundaries, we assume the data from different
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Figure 1: An example of how spatial locations are assigned given multiple boundaries.
Boundaries B1 and B2 are shown in black. s = (x, y) is a spatial location, c1 is the
centroid of B1 at the current iteration, θ1 is the angle between the horizontal and the
line from s and c1, and f(θ1) is the magnitude of the boundary at θ1. In this example,
s is categorized as within region D2 but not D1: the distance from s to c1 is greater
than f(θ1).

regions are conditionally independent and follow a piecewise Gaussian spatial process.
That is, we can calculate the likelihood as the product of m+1 independent likelihoods:

L(Z|m,Φm) =
∏m

j=0 L(Zj |φj). (2)

In each region we assume a distinct stationary Gaussian spatial process. Marginal-
izing over the spatial effects, the distribution of the data Zj in region j or j = 0, . . . ,m
is given by:

Zj |φj ∼ N(μj ,Σj) (3)
Σj = σ2

jH(γ) + τ2Inj

where μj is the mean specific to region j, and ξj is the vector of spatial random effects
that follow a region-specific Gaussian distribution with covariance σ2

jH(γ). The variance
for non-spatial random errors, τ2, is assumed to be common to all regions.

We encourage spatial smoothness within each region by assuming an exponential
kernel.

H(si, s′i|γ) = exp(−γdi→i′)

where di→i′ is the Euclidean distance and γ is the spatial decay parameter which is
assumed to be common to all regions. Other kernels can be specified. We chose the
exponential kernel due to its simplicity and its ability to approximate other types of
spatial correlation structures well.
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Fitting the likelihood with the spatial model specified in (3) becomes infeasible when
n is large due to the time requirements of calculating the determinant and inverse of the
covariance matrices. Due to the size of the data in the imaging context, we opt to make
two assumptions of the spatial likelihood to facilitate Bayesian computation without
detriment to model estimation. Although we note that users in a small data context
may opt to use the full likelihood.

First, we divide D0 into four roughly equally sized and independent zones. The mean
x and y coordinates of s ∈ D0 at a given iteration define the boundaries that split the
area into Z0,1, . . . ,Z0,4. Thus, the likelihood in (3) is assumed by:

L(Z|Φm,m) ≈
∏4

l=1 L(Z0,l|φ0)
∏m

j=1 L(Zj |φj)

The underlying assumption is that the spatial correlations across these large sub-regions
are relatively ignorable and the joint likelihood can be well approximated by independent
spatial modeling of each sub-region.

Second, we assume a sparse covariance matrix by multiplying the assumed covari-
ance matrix by a tapering kernel Cν(si, si′). Tapered covariances are commonly used
to analyze large spatial datasets as they allow for sparse matrix algorithms. The ta-
pering kernel must be a positive definite matrix such that the covariance between two
spatial locations becomes zero after a given distance. The Wendland family of tapered
covariance functions (Wendland, 1995) are widely used. We assume the form of

Cν(si, si′) =
(

1 − h

ν

)4

+

(
1 + 4h

ν

)
,

where h = ||si − si′ ||, (y)+ = yI{y>0}, and we fix ν = .1. This yields our assumed
covariance matrix:

Σj ≈ σ2
jH(γ) 	 Tj + τ2Inj

where 	 denotes the element-wise product,H is based on the exponential kernel, Tj is
the nj × nj matrix with the (i, i′)-th entry Cν(si, si′).

2.3 Bayesian Hierarchical Model

We now assign priors for all the boundary and spatial parameters to complete our
Bayesian hierarchical model. First, we present details on the prior. We conclude by
presenting the full hierarchical model.

Note that the voxels of all the images we consider in our motivating data are scaled
to fall within the unit square. In this case, the prior hyperparameters we specify are
universal. Otherwise one can scale the hyperparameter in the priors proportionally
with respect to the size of the image. Let β = (β1, . . . ,βm), c = (c1, . . . , cm), μ =
(μ1, . . . ,μm), and σ2 = (σ2

1, . . . ,σ
2
m).

m ∼ DiscreteUnif(m;Mmin,Mmax) (4)



8 A General Bayesian Functional Spatial Partitioning Method

β, c ∼ 1{β,c}/∈S

m∏
j=1

1cj∈D

||D|| Unif(βj,0; 0, r(D))
K∏

k=1

∏
l∈{s,c}

N(βl
j,k; 0, 1) (5)

where S = {{β, c};∃s ∈ Dj ∩Dk, j �= k}

μ ∼ N(μ0; 0, 100)
m∏
j=1

HN(μj − μ0; 0, 10) (6)

σ2 ∼
m∏
j=1

IG(σ2
j ; .1, .1), τ2 ∼ IG(τ2; .1, .1), γ ∼ G(γ; 3, .5) (7)

The number of boundaries m is uniform between some minimum and maximum
value set by the user (4). In our simulation and data analysis we use values of 0 and
10, respectively. The centroids are assumed to be uniformly distributed across D. We
assign normal marginal priors N(0, 1) to all basis coefficients in βs

j and βc
j . This is a

vague prior when the area of the entire region is standardized to be a 1× 1 unit square.
We place a uniform marginal prior on βj,0 from zero to the approximate radius of D,
denoted r(D), to ensure that the area within the closed boundary does not greatly
exceed the entire space of interest. The first indicator function in (5) places zero mass
on combinations of boundary and centroid parameters that would result in a spatial
location s being included in more than one boundary. In the MCMC, we simply reject
any update or proposal of βj , cj which would lead to overlap of the boundaries. We
assign the mean of the outer region a vague normal marginal prior N(0, 100). The
difference in means between a target region and the outer region is assumed to follow a
vague half-normal marginal prior HN(0, 10) because we have prior information that the
mean of the anomalous region is elevated as compared to the rest of the space (6). This
can be modified for other applications. Following the advice of Banerjee et al. (2014), we
assign vague marginal priors for the variance parameters σ2 and τ2 and an informative
marginal prior for spatial range parameter γ. Thus IG(.1, .1) is the marginal prior used
for σ2 and τ2 parameters and the spatial range parameter γ follows G(3, .5) (7).

Again, let Φm = (φ0,φ1, . . . ,φm) be all of the parameters describing a given par-
tition where φ0 = (μ0, σ

2
0 , τ

2) and φj = (μj , σ
2
j ,βj , cj) for j = 1, . . . ,m. The full

hierarchical model is given by:

π(m,Φm|Z) ∝ L(Z|m,Φm)π(Φm|m)π(m) (8)

where π(Φm|m)π(m) is the joint prior of (4)-(7) above. From (2)-(3):

π(Z|m,Φm) =
m∏
j=0

π(Zj |φj), where Zj = Z(sj), sj = {s ∈ s : s ∈ Dj} (9)

Dj |φj = {s ∈ D : ds→cj < fj(θs|φj)}, D0 = D/{Dj}j=1,...,m

Z0|φ0 ∼
4∏

l=1

N(Z0,l|μ0, τ
2I + σ2

0H(γ) 	 T0,l)

Zj |φj ∼ N(Zj ;μj , τ
2I + σ2

jH(γ) 	 Tj)
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3 Bayesian Computation via RJ-MCMC
We propose a schema to jointly estimate the number of target regions, the boundary
parameters, and the spatial parameters based on their posterior probabilities given the
data. During the MCMC, the number of boundaries will not be fixed, therefore the
total number of parameters is also not fixed. This necessitates the use of RJ-MCMC
to allow the MCMC chain to jump between parameter spaces of different dimensions,
The RJ-MCMC algorithm by Green (1995) is an extension of the Metropolis Hastings
(MH) algorithm that allows movement between different dimensional spaces. In the
RJ-MCMC, we propose addition, deletion, splitting, and merging of boundaries and
corresponding lesions to allow the chain to move between different partitions. We refer
to the addition of a new boundary as a “birth”, the deletion of an existing boundary as
a “death”. We also introduce the merging of two existing boundaries as a “merge”, and
the splitting of one existing boundary into two as a “split”. The “split” and “merge”
types of jump efficiently prevent the MCMC chain from being trapped in local min-
ima and thus greatly speed up mixing and convergence of spatial partitions. With a
specified probability, a birth, death, split, or merge is proposed and the current bound-
ary and distribution parameters are updated. Moves are automatically rejected if they
lead to overlapping boundaries. Adaptive MH is used to update the boundary and GP
parameters given the current number of regions.

Let m be the current number of regions and m′ the proposed number of boundaries,
which are both between Mmin and Mmax. We allow movements that increase or decrease
the number of regions by one at each iteration. The RJ-MCMC algorithm is composed
of two steps: 1. propose a new partition with corresponding parameters, and 2. calculate
the acceptance ratio to determine whether to accept or reject the proposed move. RJ-
MCMC uses two types of proposal distributions.

• j(m′|m) is the model proposal. It defines the probability of switching from m to
m′ boundaries and must be reversible.

• q(v) is the auxiliary variable proposal distribution where v is used to match di-
mension between m and m′.

RJ-MCMC also requires a mapping function hm,m′(Φm,v) which maps (Φm,v) to
(Φm′ ,v′). The vector v always contains the parameters which are being added during
a birth, split, or merge step, while v′ contains the parameters which are being removed
during the death, split, or merge step. The function hm,m′ is a deterministic function
and must be bijective so that its inverse is well-defined. The acceptance ratio of a move
from m to m′ is given by

α{(m,Φm), (m′,Φm′)} = min{1, Am,m′(Φm,Φm′)}

where the ratio Am,m′(Φm,Φm′) is

Am,m′(Φm,Φm′) = π(m′,Φm′ |Z)j(m′|m)q(v′|Φm′ ,m′)
π(m,Φm|Z)j(m|m′)q(v|Φm,m)

∣∣∣∣∂hm,m′(Φm,v)
∂(Φm,v)

∣∣∣∣
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We set j(m+ 1|m) = j(m|m) = j(m− 1|m) = 1/3 which ensures that at each iteration
the chain is equally likely to propose a jump to a higher dimension, a lower dimension,
or stay at the same dimension. All other moves have probability zero. When m = Mmax,
j(m|m) = j(m− 1|m) = 1/2 and other moves have probability zero. When m = Mmin,
j(m + 1|m) = j(m|m) = 1/2 and other moves have probability zero.

If all proposed model parameters are generated via the proposal density q(), then
the Jacobian is 1. This will be the case for all proposed parameters except for the σ2

terms. For the birth, split, and merge steps we propose log(σ2) because σ2 is constrained
to [0,+∞). In these cases, the Jacobian equals the product of proposed variance pa-
rameters. See the Supplemental Materials (Masotti et al., 2023) for a more detailed
derivation of the Jacobian for each type of jump.

Next, we define the proposal density for each type of move: birth, death, merge, and
split.

3.1 Jump Steps

Birth: The proposal of a new boundary includes the generation of a new boundary
function by proposing cm+1,βm+1 and defining the GP of the resulting new region
by μm+1, σ

2
m+1. The parameters of the outer region remain the same. The parameters

for the new region are proposed via the proposal distribution qb(φm+1|Φm,m). The
acceptance rate for a proposed birth is given by:

Am,m+1(Φm,Φm+1) =
π(m + 1,Φm+1|Z)j(m + 1|m)σ2

m+1
π(m,Φm|Z)j(m|m + 1)qb(φm+1|Φm,m)

where qb() is the proposal density for a birth.

qb(φm+1|Φm,m)
= qb(cm+1, b0,m+1, μm+1, log(σ2

m+1)|Φm,m)

= 1
n0

× Unif(b0,m+1; 0, .5) ×N(μm+1; μ̄, 1) ×N(log(σ2
m+1); log(σ̄2), 1).

where n0 is the number of voxels in the outer region. The birth proposal distribution gen-
erates a circle at a random location within the outer region, of random size, with GP pa-
rameters based on existing regions where μ̄ = (1/m)

∑m
i=1 μi and σ̄2 = (1/m)

∑m
i=1 σ

2
i .

The choices for the proposal densities are dependent on our specific motivating data.

Death: When a death is proposed a boundary is randomly selected with equal probabil-
ity from m existing boundaries to be removed. The voxels that were within the selected
boundary m are absorbed by the outer region D0. The parameters of the outer region
remain the same. The proposal density for v′ is 1/m since each boundary is equally
likely to be chosen for deletion. The acceptance rate for a proposed death is given by:

Am,m−1(Φm,Φm−1) = π(m− 1,Φm−1|Z)j(m− 1|m)1/m
π(m,Φm|Z)j(m|m− 1)
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Split: A split step involves splitting one target region into two with distinct GPs by
bisecting one boundary. A split is proposed by selecting one boundary at random with
equal probability from the existing boundaries. Without loss of generality, let boundary
m be the chosen proposed boundary to split. Then, two points on the boundary p1, p2
are sampled by a uniform distribution on [0, 2π]. The two points define the line, l, that
will split the region. The two new centers cm∗ , cm+1 are proposed as the centroids of
the two new areas. The resulting sets of boundary parameters are computed by solving
the following equations for βm∗ and βm+1:

dcm∗→{Bm<l∪Bl} = Xcm∗βm∗

dcm+1→{Bm≥l∪Bl} = Xcm+1βm+1

where dcm∗→{Bm<l∪Bl} is the vector of distances between the new centroid cm∗ and the
new set of boundary points for the m∗ boundary that consists of 100 equally spaced
points along l and the boundary points Bm that lie below l. The proposal distribution
qs generates the parameters of the GPs for the resulting boundaries and generates a
boundary based on the solution above. We use a proposal density given by:

qs(φm∗,φm+1|Φm,m)
= qs(μm∗ , μm+1, log(σ2

m∗), log(σ2
m+1), p1, p2,βm∗ ,βm+1|Φm,m)

= N(μm∗ ;μm, 1) ×N(log(σ2
m∗); log(σ2

m), 1) ×N(μm+1;μm, 1)
×N(log(σ2

m+1); log(σ2
m), 1) × Unif(p1, p2; 0, 2π) × qs,β(βm∗ , βm+1;βm, l)

where qs,β() is a point mass distribution concentrated at the solution of the above
equations. The proposal density for v′ is 1/m since each boundary is equally likely to
be chosen for splitting. The acceptance rate for a proposed split is given by:

Am,m+1(Φm,Φm+1) =
π(m + 1,Φm+1|Z)j(m + 1|m)(1/m)σ2

m∗σ
2
m+1

π(m,Φm|Z)j(m|m + 1)qs(φm∗,φm+1|Φm,m)

where φm∗ and φm+1 are the sets of parameters generated when an existing boundary
is split into two boundaries and qs is the proposal distribution for a split given above.

Merge: When a merge is proposed, two boundaries are selected at random to become
one region. WLOG, let boundaries m and m − 1 be proposed to merge. The centroid
of the combined voxels is cm∗ . The boundary parameters of the new merged boundary
m∗ are computed by solving the following equation for βm∗

dcm∗→Bm∗ = Xcm∗βm∗

where Bm∗ is the set of n boundary points in {Bm ∪Bm−1}. The proposal distribution
qm generates the parameters of the GPs of the resulting new boundary and generates a
boundary based on the solution above. We use a proposal density given by:

qm(φm∗ |Φm,m) = qm(μm∗ , log(σ2
m∗),βm∗ |Φm,m)

= N(μm∗ ; (μm + μm−1)/2, 1) ×N(log(σ2
m∗); (σ2

m + σ2
m−1)/2, 1)



12 A General Bayesian Functional Spatial Partitioning Method

× qm,β(βm∗ ;βm,βm−1)

where qm,β() is a point mass distribution concentrated at the solution of the above
equations. The proposal density for v′ is 2/m(m−1) which is the probability of selecting
two boundaries at random from m. The acceptance rate for a proposed merge is given
by:

Am,m−1(Φm,Φm−1) = π(m− 1,Φm−1|Z)j(m− 1|m)(2/m(m− 1))σ2
m∗

π(m,Φm|Z)j(m|m− 1)qm(φm∗ |Φm,m)

where Φm∗ is the set of parameters generated when two existing boundaries are merged
into one and qm is the proposal distribution for a merge given above.

3.2 MCMC Algorithm

Below we summarize our MCMC algorithm. To aid in convergence, we sample from
the posterior via adaptive MCMC (Roberts and Rosenthal, 2009). Adaptive sampling
allows adjustment of the proposal density of the boundary and GP parameters based on
the acceptance ratio. At iteration i with m regions the algorithm proceeds as follows:

1. Propose a jump by sampling m′ from the probability distribution j(m′|m)

• If m′ = m proceed to step 4
• If m′ = m + 1 with equal probability propose a birth or split step. If m = 0

propose a birth step.
• If m′ = m−1 with equal probability propose a death or merge step. If m = 1

propose a death step.

2. Accept or reject the jump proposed in Step 2 according to acceptance probabilities
in Section 3.1.

3. Update φ0 given the current partition:

(a) Draw φ∗
0 at iteration i from the proposal density Qj,i(φ∗

0|φ0)

(b) Accept φ∗
0 with probability α = min

(
1, π(Φ∗,m|Z)

π(Φ,m|Z)

)

4. Update φj , for j = 1, ..,m given the current partition:

(a) Draw φ∗
j at iteration i from the proposal density Qj,i(φ∗

j |φj)
(b) If φ∗

j creates a partition where ∃sk ∈ Dm ∩Dn for n �= m, k ∈ 1, . . . , n (i.e.
overlapping boundaries), reject φ∗

j else

(c) Accept φ∗
j with probability α = min

(
1, π(Φ∗,m|Z)

π(Φ,m|Z)

)

(d) Update c∗j to be the centroid of the shape defined by Φj and cj .
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(e) Update βj based on new centroid c∗j by solving dBj→c∗j = Xc∗j bj for bj where
dBj→c∗j is n×1 vector of distances between the boundary points Bj and new
centroid c∗j and Xc∗j is the n× (2K + 1) matrix of basis functions referenced
to c∗.

The proposal density Qj,i(φ∗
j |φj) is adaptive to the current posterior samples at itera-

tion i and based on an example from Roberts and Rosenthal (2009).

Qj,i(φ∗
j |φj) ∼ Ndj (φj , (.1)2Idj/dj) for i < 50

Qj,i(φ∗
j |φj) ∼ (1 − ω)Nd(φj , exp(lj,i)Σi) + ωNd(φj , (.1)2Idj/dj) for i ≥ 50

where dj is the dimension of Φj , ω is a small positive constant (we set ω = .01), and
Σi is the empirical estimate of the covariance structure of the target distribution at
iteration i based on the run so far. lj,i controls the step-size of the proposal distribution
and is adjusted to achieve the desired acceptance rate of about 40% every 20 iterations
by either adding or subtracting 0.1 to the previous value for lj,i.

4 Post Processing & Uncertainty Estimation
The MCMC samples require post processing due to the centroids not being fixed. First,
we generate an even 10 by 10 grid of the total area. All sampled boundaries are assigned
a boundary group based on the location of their centroid within the grid. In this way,
boundaries sampled at various iterations in the MCMC are assumed to be the same
lesion if their centroids fall within the same window on the grid. The final estimate for
the number of lesions, m̂, is the number of boundary groups that are represented in
≥ 50% of the total sampled boundaries. The grid size can be changed by the user for
different applications of this method.

We can then compute the estimate for the lesion boundary for each boundary group.
For each boundary group, the average centroid, cT , is computed using the post burn-in
samples. Then, for each β

(t)
j , t = 1, . . . , T where T is the total number of post burn-in

samples, we compute the boundary parameters corrected to centroid cT , β
(t,cT )
j , by

solving,

dB(t)→cT = XcTβ
(t,cT )
j

for β(t,cT )
j where dB(t)→cT is an n× 1 vector of distances between boundary points B(t)

and cT , and XcT is the n× (2K + 1) matrix of basis functions where θ is measured to
cT . Then we can compute the vector f

(t,cT )
j by:

f
(t,cT )
j = Xβ

(t,cT )
j

where X is a 200×(2K+1) vector of basis functions based on 200 equally spaced angles
between 0 and 2π. The final estimate of a boundary is given by the mean of f (t,cT )

j over
all t. This is repeated for j = 1, . . . , m̂.
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Figure 2: Estimated partitioning boundary (black) and 95% credible bands (grey) for
one simulated dataset. Color represents voxel intensity. The procedure for simulating
this data is outlined in Section 5.

The 95% credible bands can be estimated with the corrected boundary functions
f

(t,cT )
j referenced to cT as in Li and Ghosal (2017). For all, t = 1, . . . , T MCMC samples

post burn-in, we compute.

u(t) = sup
θ
{|f (t,cT )

j (θ) − f̂
(cT )
j (θ)|/ŝ(θ)},

where f̂ (cT )
j (θ) and ŝ(θ) are the posterior mean and standard deviations of {f (t,cT )

j (θ)}Tt=1.
The 95% credible interval for fj(θ) is given by:

[f̂ (cT )
j (θ) − Lŝ(θ), f̂ (cT )

j (θ) + Lŝ(θ)],

where L is the 95th percentile of the ut’s. See Figure 2 for an illustration of the estimated
partitioning boundaries and 95% credible bands for a simulated dataset.

5 Simulation Study
We evaluate the classification accuracy and statistical properties of BFSP-M in com-
parison to competing spatial partitioning and image segmentation methods through
simulation. We consider a unit square image space D of 40 by 40 resolution and gener-
ate data for each region from independent Gaussian processes with Matérn covariance
structures. For j = 0, 1, . . . ,M

Zj |νj , ρj ∼ N(μj ,Σj), Σ = σ2
jH(νj , ρj) + τ2Inj

(H(νj , ρj))i,i′ = H(νj , ρj ; di,i′) = 21−νj

Γ(νj)

(√
2νj

di,i′

ρj

)ν

Kνj

(√
2νj

di,i′

ρj

)
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where di,i′ is the Euclidean distance between spatial locations si and si′ , Γ is the gamma
function, Kν is the modified Bessel function, ν is a smoothness parameter, and ρ is a
spatial range parameter.

To test the robustness of our method, we consider two different scenarios with either
zero or two targeted regions in the space. Here we present the results for the simulations
with two targeted regions. Refer to the Supplement for simulation settings and results
for data containing zero target regions. In the simulated data with m = 2 regions, we
include a large heart and a small square shaped anomalous region with means μ1 = 2
and μ2 = 4, and vary the smoothness of the target region, νj , j > 0, and the spatial
nugget parameter, τ2. We fix the following settings during simulation: ν0 = 1, ρ0 =
· · · = ρM = .05, μ0 = 0, σ2

0 = σ2
1 = · · · = σ2

M = 1. We randomly generate 100 spatial
data sets for each of the following settings.

1. ν1 = ν2 = 1.5, τ2 = .1

2. ν1 = ν2 = .5, τ2 = .1

3. ν1 = ν2 = 1.5, τ2 = .5

4. ν1 = ν2 = .5, τ2 = .5

We set the maximum number of boundaries that can be proposed Mmax = 10 and
the minimum number of boundaries to be Mmin = 0. We collect 50000 MCMC samples
and remove the first 20000 as burn-in samples.

The performance of BFSP-M is evaluated in terms of the frequency of correctly
estimating the number of regions, and the sensitivity, specificity, and the Dice coefficient
of voxel-level classification. For the settings with two anomalous regions, we compare
the classification results of BFSP-M to four competing methods, two of which are basic
clustering methods, K-means (KM) with 2 clusters using the function kmeans() from
the R Stats package (R Core Team, 2020) and a two-stage CART method. The two-
stage method involves first estimating the partitions via CART using (Ripley, 2019).
This results in a tiling of the space. The second stage is to group the partitions into two
clusters via KM. The cluster of tiles with the higher mean represents the target regions.
We also compare to an image segmentation method BayesImageS (BIS) (Moores et al.,
2020) using R-package “bayesImageS” function mcmcPotts() for which we specified
neighbors via KNN with k=8 and 4 blocks and set the number of clusters at 2. We
also ran these three competing methods with the number of clusters equal to 3 and
all resulted in worse average Dice and Sensitivity scores. We further include BFSP-1
from our previous paper (Masotti et al., 2021) which assumes the presence of one and
only one partitioning boundary. We initialized the MCMC chain with a large circular
boundary centered at the center of the space and run for 30,000 iterations discarding
the first 10,000 as burn-in samples.

In the 400 simulated data sets, using the number of boundary groups present in at
least half of post burn-in simulations, our algorithm correctly identified the number of
regions in 84% of the cases, identified a single boundary in 9% of cases, and estimated 3
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Figure 3: Distributions of sensitivity, specificity, and Dice coefficient of BFSP-M, KM,
Two-Stage CART, BayesImageS, and BFSP-1 over 400 simulated data sets.

boundaries in 7% of cases. Estimation of the number of distinct clusters is not possible
with other competing methods in which the number of clusters must be pre-specified.
Figure 3 presents the distributions of the sensitivity, specificity, and Dice coefficient in
detecting the target zone across the 400 simulated datasets (100 for each of the first
4 settings). Varying the parameters of the spatial processes did not have a large effect
on the accuracy of BFSP-M. Figure 3 shows in contrast, the two-stage method suffers
from low sensitivity and KM tends to have low specificity. BFSP-M maintains both
high sensitivity and specificity in all simulation settings. Due to the large difference in
means of the two target regions, BayesImages often fails to identify both regions. On
average, BFSP-M achieves a sensitivity of 0.841, specificity of 0.975, and Dice coefficient
of 0.842.

The average sensitivity, specificity, and Dice coefficient are provided for each of the
first 4 settings Supplementary Table 1 along with results for competing methods. Our
method is robust to varying spatial smoothness. Average sensitivity is greater than
75%, in all scenarios, and average specificity is at least 97% for all simulation settings.
BFSP-M maintains average Dice coefficient of at least 0.77 over all settings.

To visualize the average classification performance we summarize the results of 100
simulations for the first setting by averaging the estimated cluster memberships based on
the estimated partitions. Figure 4 presents the probability that each voxel was included
in a target region for BFSP-M, KM, the two-stage CART method, BIS and BFSP-1.
The BFSP-M method leads to the best contrast in color between the two target regions
and the background, indicating both a high sensitivity in the target zone detection
and high specificity of the outer region. The heart shaped region was more difficult to
detect for all methods because its mean is relatively close to that of the outer region.
The two-stage method often misses the heart shaped region altogether, explaining the
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Figure 4: From left to right: average partitioning results of the BFSP-M, KM, Two-Stage
CART, BayesImageS, BFSP-1 methods in the simulation study. Each image represents
100 simulations of the first simulation setting. The color represents the proportion of
time the method classified each spatial location as within a target region with red close
to 1 and blue close to 0. The black outline shows the true boundaries.

low sensitivity seen in Figure 3. KM consistently identifies the target region, but does
not guarantee spatial contiguity of the regions and thus random locations in the outer
region are incorrectly assigned to the target region resulting in low specificity as seen
in Figure 3. On average, BayesImageS identifies both regions but is more likely to
missclassify voxels in the outer region than BFSP-M. BFSP-1 performs poorly due the
assumption that only one target region is present in the data. BFSP-M is the only
method that simultaneously estimates the number of separate regions and the voxel-
wise cluster membership.

Additional simulation results evaluating the performance of BFSP-M in the presence
of zero lesions are presented in the Supplement. Our results indicate that BFSP-M was
highly likely to correctly identify no anomalous regions when the covariance structure
is correctly specified, but performance is somewhat degraded when the covariance is
misspecified.

6 Data Analysis
We aim to validate our method as the second and final stage of a fully automated lesion
detection pipeline. First we describe the dataset consisting of MRI images co-registered
with the ground truth voxel-wise cancer status. Then we describe the first stage of our
pipeline which is a voxel-wise prediction model developed by Jin et al. (2018). Finally,
we describe how BFSP-M is applied to those outputs.

Metzger et al. (2016) present a set of data of men who received an MRI study
before prostatectomy as treatment for prostate cancer. The prostates were sectioned in
planes to match in vivo imaging. The sectioned prostates were digitized, allowing the
pathologist to annotate and label the regions of cancer. These labeled regions were then
co-registered to the imaging data to create the ground truth for disease through which
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the models were trained and validated. This process is detailed in Kalavagunta et al.
(2015). The mpMRI data are composed of 34 prostate slices, obtained from 34 patients,
with 2098 to 5756 voxels per slice.

Previously our group developed a voxel-wise prediction model for prostate cancer
using the mpMRI data detailed above. The goal of this analysis is to further develop a
pipeline from imaging to lesion detection using non-invasive methods. Using the results
from the predictive model of Jin et al. (2018), we aim to identify the cancerous lesions
within the prostate using BFSP-M. We specifically apply our partitioning method to
the results of the “mregion” classifier, which models the mpMRI parameters and cancer
risk by voxel coordinates and outputs a probability heatmap with values between 0
and 1.

Our aim is to translate a heatmap of cancer probabilities into one or more contiguous
regions of cancer. We selected the 2 slices for which there was more than one cancerous
lesion. Then we selected another 9 slices containing one lesion for which the voxel-wise
classifier of Jin et al. (2018) was most successful at predicting the true voxel-wise cancer
status. This allows us to focus on the performance of our segmentation relative to the
ground truth, whereas an application for which the underlying voxel-wise classifier is
misaligned with the ground truth will result in misaligned segmentation regardless of
the performance of our method. The BFSP-M model is applied to each slice separately.
We center and scale the [0, 1] data for each patient before applying our method. We
calculate true and false positive and negative rates using the true cancer status of each
voxel to measure accuracy.

We compare BFSP-M to competing spatial clustering and image segmentation meth-
ods CART, KM, BayesImageS, and our previous method BFSP-1. First we scale each
slice such that all voxels fall within the unit square. We initialize BFSP-M with μ0 =
0, μ1 = 1, all variance parameters set to 1, and one boundary set to be a small cir-
cle centered at the voxel with the highest probability. We collect 50,000 iterations and
discard the first 10,000 based on convergence of the boundary points B. Samples of
posterior boundary coefficients corresponding to centroid groups that were not present
in at least half of the MCMC samples are discarded as in Section 5. The minimum
number of possible boundaries is set to be 1 because we have prior knowledge that all
slices contain cancer. The maximum number of boundaries is set to be 10. We fixed the
maximum number of boundaries at 10 as a conservative upper bound. The true number
of lesions is less than 5 in all tested slices. Also, the MCMC sampler never visited the
maximum of 10 in any of the slices. The user may consider alternate values for Mmax for
other applications. For competing methods we use the same initial settings as discussed
in Section 5. For BFSP-1 we use the same initial settings as BFSP-M.

Figure 5 shows the results of lesion detection for three images by BFSP-M, KM,
Two-Stage CART, BayesImageS, and BFSP-1. The drawbacks of linear boundaries are
clear. The estimates from CART are not reasonable for these data, which contain non-
rectangular shaped regions of heightened risk. KM identifies spurious extra regions
because it is not constrained to identify contiguous areas. Both methods often fail to
capture the entire lesion due to their inability to account for spatial smoothness in the
data. BFSP-1 will only identify one region, therefore, when multiple are present in the
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Figure 5: From left to right: Map of voxelwise predicted cancer probabilities from five
slices where color indicates probability of cancer with red close to 1 and blue close to
0 (Jin et al., 2018), true cancer status, partitioning results from BFSP-M, Two-Stage
CART, KM, BayesImageS, and BFSP-1.

data as in row 1 of Figure 5, the estimated boundary covers several lesions and severly
overestimates the extent of the cancer. BayesImageS and BFSP-M find spurious regions
of interest but tend to identify the entire cancerous region quite well. Supplemental
Table 2 presents sensitivities, specificities, and Dice scores are presented for BFSP-M
and all competing methods for each of the 11 slices.

Credible bands can be computed for each discovered lesion as in Section 4. See Sup-
plementary Figure 3 for 95% credible bands for one prostate imaging slice. In addition
to the boundary uncertainty, we can also compute the uncertainty of each detected
lesion. Lesion uncertainty is determined by calculating the proportion of times that
each centroid group appears in an MCMC posterior sample. Figure 6 displays the le-
sion uncertainty for two slices of data that contain multiple distinct lesions. The color
of each lesion corresponds to the proportion of MCMC samples in which that lesion
is present. Lesions colored red appear in all or almost all of the post burn-in MCMC
samples whereas, lesions colored pale green appear less often in MCMC sampling. This
result is consistent with the data which displays a high degree of noise and weak signal
for several of the true cancerous lesions.
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Figure 6: From left to right: Map of voxelwise predicted cancer probabilities derived from
mpMRI data from 2 slices containing multiple lesions, where color indicates probability
of cancer with red close to 1 and blue close to 0 (Jin et al., 2018), true cancer status,
lesion uncertainty of BFSP-M where color indicates the proportion of time that a lesion
was included in the MCMC posterior draws post burn-in.

7 Discussion
We propose BFSP-M, a novel approach to accurately define spatial partitions in spatially
registered imaging data containing multiple anomalous zones. BFSP-M uses functional
estimation tools within multiple separate moving polar systems for boundary estimation.
By allowing a minimum of zero boundaries, we can also identify data that is generated
by a stationary process. We model spatial processes within each region to capture the
spatial correlations present in the mpMRI data. Using novel boundary-defined jump
steps in RJ-MCMC and likelihood approximations we have developed a computationally
efficient method for detecting an unknown number of anomalous regions or “hot spots”
in imaging data. Unlike competing methods, BFSP-M automatically detects the number
of lesions, is flexible enough to detect lesions of arbitrary shape, and is able to evaluate
uncertainty in boundary estimation. Further, our novel statistical framework allows for
multi-subject and longitudinal analysis.
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Extending the methods to accommodate the detection of an unknown number of re-
gions adds a layer of computational complexity to our previous method, BFSP-1. First,
the algorithm requires a longer burn-in period as the birth/death steps slow conver-
gence. Furthermore, adding partitions slows computation of the posterior due to the
higher dimension of the parameter space. We have implemented two key strategies to
ensure BFSP-M is computationally efficient. First, we employ likelihood approximation
to speed computation of the posterior. Second, we use adaptive MH sampling to en-
courage acceptance of proposals in MCMC. Lastly, we sample parameters in blocks to
encourage mixing and decrease the number of times the likelihood must be computed.
BFSP-M completed 50,000 iterations in an average time of 6.9 hours for the simulated
data containing 1600 voxels.

With a birth and death process, we found that our method tended to overestimate
the number of boundaries needed to partition the space into regions of local homogeneity.
Without the ability to merge two boundaries, the MCMC could converge on a local
maximum of the posterior where one target region is being estimated to be two separate
GPs with very similar estimates of the spatial distributions. The merge step allows the
MCMC to jump to a solution in which one boundary encloses both regions with one
GP. With the implementation of the split and merge steps, BFSP-M estimates the true
number of boundaries in 84% of datasets.

One of the advantages of the functional tools used to estimate the boundaries is
that they lend themselves well to theoretical extensions. There are several avenues to
further extend our methods. Our current approach limits analysis to one image slice at
a time. However, a patient’s entire dataset consists of multiple imaging slices, around
10 slices per patient. A model which leverages a patient’s entire dataset may improve
localization of cancer and allow estimates of cancer volume. In our framework, we could
extend the spatial modeling to include correlations in the x,y, and z directions. The
boundary function can be extended to be a function of two angles in the spherical co-
ordinate system allowing estimation of boundary surfaces in three-dimensional images.
This method would produce boundary surface estimates as well as 95% credible surfaces
in 3D. This extension could produce highly useful visualizations to our clinical partners
as they work to diagnose and assess severity for each individual patient. A multi-patient
hierarchical model may also improve cancer lesion prediction by allowing characteristics
about the cancer lesions to be shared among all patients. In this paper, we opted for
a single patient model under the assumption that possible improvements in accuracy
did not justify the computational cost. Further, our primary aim was to produce lesion
estimates for each patient as their individual data became available, which is best ac-
complished with a single patient model. Despite this, we think a multi-patient model
may be useful to explore in the future. The framework of BFSP could also be extended
to model lesion boundaries over time to track disease progression. We leave this too for
future study.

Supplementary Material
Supporting Information for A General Bayesian Functional Spatial Partitioning Method
for Multiple Region Discovery Applied to Prostate Cancer MRI (DOI: 10.1214/23-

https://doi.org/10.1214/23-BA1366SUPP
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BA1366SUPP). Additional tables, figures, and derivations to accompany the manucript.
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