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A Finite-Infinite Shared Atoms Nested Model
for the Bayesian Analysis of Large Grouped

Data Sets

Laura D’Angelo∗ and Francesco Denti†

Abstract. The use of hierarchical mixture priors with shared atoms has recently
flourished in the Bayesian literature for partially exchangeable data. Leveraging
on nested levels of mixtures, these models allow the estimation of a two-layered
data partition: across groups and across observations. This paper discusses and
compares the properties of such modeling strategies when the mixing weights are
assigned either a finite-dimensional Dirichlet distribution or a Dirichlet process
prior. Based on these considerations, we introduce a novel hierarchical nonpara-
metric prior based on a finite set of shared atoms, a specification that enhances
the flexibility of the induced random measures and the availability of fast poste-
rior inference. To support these findings, we analytically derive the induced prior
correlation structure and partially exchangeable partition probability function.
Additionally, we develop a novel mean-field variational algorithm for posterior
inference to boost the applicability of our nested model to large multivariate
data. We then assess and compare the performance of the different shared-atom
specifications via simulation. We also show that our variational proposal is highly
scalable and that the accuracy of the posterior density estimate and the estimated
partition is comparable with state-of-the-art Gibbs sampler algorithms. Finally,
we apply our model to a real dataset of Spotify’s song features, simultaneously
segmenting artists and songs with similar characteristics.

Keywords: Dirichlet process, finite mixture, partially exchangeable data,
multivariate data, variational Bayes.

1 Introduction
Inference with grouped data is a well-established statistical challenge and a common
scenario in real-data analyses. Hierarchical models provide a standard framework for
working with this type of data and are particularly well-suited for a Bayesian treatment.
They allow having a large enough number of parameters to fit the data well without
incurring the risk of overfitting; they enable borrowing information between samples
while admitting the presence of heterogeneity. These strengths are fundamental in sev-
eral application areas and lines of research. In multicenter clinical trials, for example, it
is relevant to study the cross-group variability for assessing the performance of a specific
treatment (Gray, 1994); in the early stages of an epidemic, integrating data from differ-
ent outbreaks allows timely interventions (Lee et al., 2020); innovative cancer radiomics
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techniques use computational approaches to improve diagnosis of tumors by borrowing
information across subjects (Li et al., 2021); causal inference models can use data from
randomized trials to study related observational scenarios (Wang and Rosner, 2019).

Meanwhile, nonparametric Bayesian methods have become increasingly popular
thanks to their non-restrictive assumptions on the parametric form of the data and
general algorithms for posterior inference. In the nonparametric context, the need to
develop hierarchical modeling strategies has led to several formulations of layered prior
distributions based on multi-level Dirichlet processes (DP) specifications. The hierar-
chical Dirichlet process (HDP) of Teh et al. (2006) provides a remarkable contribution
in this direction. The HDP formulation relies on modeling groups of observations using
distinct DPs with a common base measure, which, in turn, is itself a realization from
another DP. Since the draws from this DP are almost surely discrete, all group-specific
distributions are based on a shared set of atoms. In the framework of model-based
clustering, this formulation leads to the nice property of allowing cross-group clusters
of observations (observational clusters, OC), favoring the interpretation of the latent
structure of the data. A different perspective on multicenter studies was considered
by Rodríguez et al. (2008) with the nested Dirichlet process (nDP). Instead of focus-
ing on partitioning observations, they considered the problem of investigating clusters
of groups, that is, samples with similar distributional characteristics (distributional
clusters, DC). This result is achieved by replacing the random atoms of a DP with ran-
dom probability measures, which are themselves sampled from a DP, thus specifying a
mixture over distributional atoms. The discreteness of this mixing measure at the distri-
butional level leads to a positive probability of modeling two distinct samples with the
same distribution. Additionally, the discreteness of the distributional atoms also results
in the clustering of observations within the same distributional cluster. Models based
on the nDP have been widely employed in various contexts: see, for example, Graziani
et al. (2015); Rodríguez and Dunson (2014); Zuanetti et al. (2018). However, despite the
attractiveness of this construction, Camerlenghi et al. (2019) revealed a critical draw-
back, which occurs whenever an observational atom is shared by two distinct groups.
In this case, the nDP imposes the full exchangeability of the two samples, forcing their
complete homogeneity (this behavior is also referred to as degeneracy). In response to
this drawback, several authors have proposed alternatives to the nDP that admit the
presence of cross-group observational clusters and avoid the degeneracy issue: notable
examples are the semi-hierarchical DP of Beraha et al. (2021) and the hidden HDP
(HHDP) of Lijoi et al. (2023a). In particular, the latter work investigates the theoreti-
cal properties of admixture models (see, e.g., Agrawal et al., 2013; Balocchi et al., 2022)
where a nDP structure is placed over the realizations of an HDP, obtaining a discrete
distribution over the space of random measures with shared atoms. Another formulation
that conveys both the cross-DC observational clustering of the HDP and the distribu-
tional clustering of the nDP has been recently proposed by Denti et al. (2023) with the
common atoms model (CAM). Their specification closely resembles that of the nDP,
but has a crucial difference: the observational atoms are assumed to be the same across
all distributional atoms. On the one hand, the shared atoms are essential for avoiding
degeneracy while maintaining a clustering between observations in different groups. On
the other hand, they pose a constraint on the random measures constituting the dis-
tributional atoms, which, by construction, are bound to have a correlation above 0.5.
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Therefore, this approach could lead to biased posterior inference in scenarios where, for
example, the distributional clusters are well-separated.

Somehow surprisingly, the literature on the parametric counterpart of nested mixture
models is very limited. A finite version of the CAM (fCAM) was proposed by D’Angelo
et al. (2023) for analyzing neuroimaging data. The proposed model made use of the
telescoping sampler of Frühwirth-Schnatter et al. (2021) to define nested levels of finite
mixtures with a random number of components. Such a specification exhibited promis-
ing results both on simulated data as well as in real settings, and indeed their work
suggested even improved performances compared to the nonparametric formulation.
However, despite the empirical results, they did not provide theoretical justifications on
the rationale of this behavior. The modeling framework we introduce and analyze also
provides a formal justification for their findings. For the interested reader, Section A.1
of the Supplementary Material (D’Angelo and Denti, 2024) contains a brief discussion
in which we outline and compare the nDP, the CAM, and the fCAM.

In view of these considerations, we investigate nested priors based on a finite set
of shared observational atoms. In particular, we explore a new class of models that we
call the Shared Atoms Nested (SAN) priors. Our formulation adopts the flexible two-
level structure of the CAM, but it departs from it for the use of a set of observational
atoms of finite dimension. This modification preserves the simple structure of the CAM
and, at the same time, has a considerably positive effect on the prior properties. The
proposed structure can be combined with different specifications of the distributional
weights to enhance its flexibility. Moreover, it allows the derivation of a coordinate
ascent variational inference (CAVI) algorithm to improve scalability. Thanks to the
availability of this fast and efficient algorithm for posterior inference, we can indeed
develop this modeling framework in the context of large multivariate data to widen the
applicability of nested Bayesian nonparametric models to datasets with thousands of
observations and hundreds of groups.

The paper is organized as follows. In Section 2, we introduce the general setting of
SAN models, present several prior properties, and compare them with other nested pri-
ors. Section 3 details the CAVI algorithm. In Section 4, we perform a simulation study
to compare the adequacy of the proposed prior for clustering and density estimation
with other state-of-the-art models. In particular, we analyze how the proposed frame-
work scales with multivariate data and compare the performances and accuracy of the
proposed variational algorithm against a standard Gibbs sampler approach. Finally, in
Section 5, we apply our model to a dataset provided by Spotify that contains numerical
features of thousands of songs authored by hundreds of artists. Our model is able to
identify a sensible two-level clustering of similar artists and songs, which can be used
to provide listening suggestions.

2 Shared atoms nested priors
Consider a nested design, where the data y = (y1, . . . ,yJ) are divided into J dif-
ferent groups. Within each group j = 1, . . . , J , Nj observations are measured: yj =
(y1,j , . . . ,yNj ,j), yi,j ∈ Y, with Y the common support of dimension d ≥ 1. We as-
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sume a partially exchangeable framework, in the sense that observations are assumed
exchangeable within each sample, and we adopt the following mixture model specifica-
tion:

y1,j , . . . ,yNj ,j | fj
ind.∼ fj , fj(·) =

∫
Θ
p(· | θ)Gj(dθ), (1)

for j = 1, . . . , J , where p(· | θ) denotes a parametric kernel on Y×Θ and Gj is a group-
specific mixing measure. Let Θ be the space of the mixing parameter θ, endowed with the
respective Borel σ-field X. We assume that the mixing measures Gj ’s are sampled from
an almost surely discrete distribution Q, defined over the space of probability distribu-
tions on X. In particular, to induce a two-layer clustering structure, we assume Q to
have the following form, as originally proposed by Rodríguez et al. (2008) with the nDP:

G1, . . . , GJ | Q iid∼ Q, Q =
K∑

k=1

πkδG∗
k
. (2)

Furthermore, we assume that each distributional atom G∗
k is given by

G∗
k =

L∑
l=1

ωl,kδθ∗
l
, (3)

with {θ∗l }Ll=1 randomly sampled from a non-atomic base measure H defined on (Θ,X).
In the following, we will refer to the sequence {θ∗l }Ll=1 as observational atoms, and to
{G∗

k}Kk=1 as distributional atoms. The parameters K and L play a crucial role in the
prior distributions we introduce. They indicate the number of mixture components, with
K ∈ N ∪ {∞} and L ∈ N ∪ {∞}. It is crucial to note that according to (3), the atoms
θ∗l are shared across all distributions G∗

k, following the idea introduced by Denti et al.
(2023). This shared set of atoms is essential for allowing cross-DC observational clusters.

The distributional properties of such priors are intrinsically defined by the law
of the observational weights ωk = {ωl,k}Ll=1 for k = 1, . . . ,K, and the distributional
weights π = {πk}Kk=1. The CAM resorted to a stick-breaking construction for the ran-
dom weights of Q and G∗

k’s. Specifically, they considered K = L = ∞, π ∼ GEM(α)
and ωk ∼ GEM(β) for k ≥ 1, i.e., πk = vk

∏k−1
j=1 (1 − vj) and ωl,k = ul,k

∏l−1
r=1(1 − ur,k)

with vk ∼ Beta(1, α) and ul,k ∼ Beta(1, β) for all k ≥ 1, l ≥ 1 (Sethuraman, 1994).
This construction, however, leads to a well-known stochastically decreasing ordering of
the weights: hence the atoms that appear earlier in the sequence will have larger associ-
ated mass, for all distributions. This feature stands at the basis of the rigid correlation
structure of the CAM mentioned in the Introduction. We propose to modify the distri-
bution of the mixing weights to “break” the correspondence between ordered weights
and atoms. In this sense, we distinguish our proposals based on shared atoms, where
no (implicit) order is assumed, from the model of Denti et al. (2023) based on com-
mon atoms, where the θ∗l ’s have stochastically decreasing weight in all distributional
atoms. Specifically, we place a symmetric Dirichlet distribution on the observational
weights instead of a Dirichlet process. Although it could appear as a simplification, this
choice has a notable positive impact on the model’s performance. Symmetric Dirichlet
distributions indeed imply that, a priori, all atoms are equally likely to be resampled
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across random measures. This characteristic grants a more flexible correlation structure,
improving both prior and posterior properties.

The finite-infinite Shared Atoms Nested (fiSAN) prior is defined by Equations (2)-(3)
and assumes K = ∞, a finite L ∈ N, and that the mixing weights are assigned the
following prior distributions

π = {πk}∞k=1 ∼ GEM(α),
ωk = (ω1,k, . . . , ωL,k) ∼ DirichletL(bk, . . . , bk).

(4)

For simplicity, from here on, we assume bk ≡ b for k ≥ 1. This prior is based on a
“hybrid” formulation, where a Dirichlet process drives the distributional partition, and
finite Dirichlet distributions control the observational one. The crucial aspect of this
prior, which will be extensively analyzed in the following sections, is that the finiteness
of the Dirichlet distribution allows spreading the mass homogeneously over all the atoms
θ∗l , without favoring a small subset of them. Indeed, we will show that this prior has
several interesting properties and that this mixed approach can have advantages over a
purely nonparametric specification.

Since many key properties of the model are driven by the prior on ωk, one could
specify different laws for the distributional weights. In particular, we will also study the
fully finite case, i.e., K ∈ N and L ∈ N finite, and

π = (π1, . . . , πK) ∼ DirichletK(a, . . . , a), (5)

and we will call this specification a finite SAN (fSAN) prior.

The use of finite mixtures has long caused concerns about the choice of the dimension
of the Dirichlet distribution. However, in the recent literature, several effective strate-
gies have been proposed to overcome this issue. These works leverage the distinction
between components and clusters, with the latter indicating the “filled” mixture compo-
nents used to generate the data (Richardson and Green, 1997; Nobile, 2004). Rousseau
and Mengersen (2011) demonstrated that in the context of sparse “overfitted” mix-
tures (i.e., mixtures where the number of components is deliberately set larger than the
number of clusters present in the data), the posterior distribution asymptotically con-
centrates on the true mixture if appropriate concentration parameters are specified. In
other words, the posterior will empty the extra components, allowing the model to auto-
matically estimate the dimension of the partition of the observed sample. The practical
effectiveness of this strategy has also been showcased by Malsiner-Walli et al. (2016).
Another strategy that has received renewed interest is the specification of a prior over
the dimension of the Dirichlet distribution: this leads to a mixture with a finite, random
number of components. This class comprises several notable instances. Using a symmet-
ric Dirichlet distribution with random dimension and a fixed parameter, as discussed
in Miller and Harrison (2018), results in a special case of Gibbs-type prior (Gnedin and
Pitman, 2006; De Blasi et al., 2013, 2015). An even more flexible approach was studied
by Frühwirth-Schnatter et al. (2021), where they allowed the Dirichlet parameter to
vary as a function of the dimension. In general, one could use the preferred approach
to fix or estimate L and K in (4) and (5) without leading to restrictive assumptions.
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The model of D’Angelo et al. (2023) is precisely an instance of this kind of approach,
where both K and L are finite and random, following the mixture of finite mixtures
framework of Frühwirth-Schnatter et al. (2021). However, the study of the properties
induced by different prior specifications of p(K) and p(L) is beyond the scope of this
paper. Indeed, in the following, we will study the properties of finite nested mixture
models for fixed L and K (or conditionally on their values).

2.1 Correlation structure
The discreteness of the nested priors on the two levels, together with the commonality of
the atoms, allows for the presence of observational and distributional ties. To compare
the different priors, we analyze the dependence between pairs of distributions and obser-
vations. The following properties hold for fixed concentration parameters, all proofs are
deferred to Section B of the Supplementary Material. The first important quantity to
investigate is the probability of observational and distributional co-clustering. Consider
two distributions Gj and Gj′ defined on (Θ,X), with Gj , Gj′ | Q ∼ Q and Q defined
as in (2). Moreover, consider two observations θi,j | Gj ∼ Gj and θi′,j′ | Gj′ ∼ Gj′ .

Under the finite-infinite SAN prior, the co-clustering probabilities are

P [Gj = Gj′ ] = 1
1 + α

and P [θi,j = θi′,j′ ] = L + α + L(b + αb)
L(α + 1)(Lb + 1) ;

while for the finite SAN prior, it is immediate to show that

P [Gj = Gj′ ] = 1 + a

1 + Ka
and P [θi,j = θi′,j′ ] = a(L + K − 1) + L(b + Kab + 1)

L(Ka + 1)(Lb + 1) .

These expressions show that the probability of observational co-clustering between
two observations belonging to different groups is non-null. Moreover, noticing that
P [θi,j = θi′,j′ | Gj �= Gj′ ] > 0, we have a confirmation of the ability of these priors
to convey a cross-DC observational clustering. Finally, the distributional co-clustering
probability of the fiSAN is equivalent to that of the CAM and the nDP.

The following proposition provides the expression for the correlation between random
measures induced by the SAN priors.
Proposition 2.1. Consider two distributions Gj , Gj′ | Q ∼ Q defined on (Θ,X), and
A ∈ X a Borel set. Under the finite-infinite SAN prior, the correlation between two
random measures evaluated on the same set A is:

ρ
(fiSAN)
j,j′ := Corr(Gj(A), Gj′(A)) = 1 − α(L− 1)

L(α + 1)(b + 1) . (6)

Under the finite SAN prior, the correlation is:

ρ
(fSAN)
j,j′ := Corr(Gj(A), Gj′(A)) = 1 − a(K − 1)(L− 1)

L(Ka + 1)(b + 1) . (7)

It is interesting to compare the prior correlation structure of SAN priors with the
other nested nonparametric models; in particular, we consider the HHDP, the nDP, and
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Figure 1: Correlation of different nested models for varying observational and distri-
butional concentration parameters. For the fiSAN we fixed L = 30, and for the fSAN
L = K = 30. For the HHDP, we set β0 = 1.

the CAM (the correlation of these priors are derived in Lijoi et al., 2023a; Rodríguez
et al., 2008; and Denti et al., 2023, respectively). For all these fully nonparametric
models, we consider ωk ∼ GEM(β) for all k at the observational level, and π ∼ GEM(α)
at the distributional level, with both α and β fixed. Finally, under the HHDP, the
G∗

k’s are realizations from an HDP, i.e., G∗
k ∼ DP (β,G0) and G0 ∼ DP (β0, H). The

expressions for the correlations of these models are

ρ
(nDP )
j,j′ = 1

1 + α
, ρ

(CAM)
j,j′ = 1 − α

1 + α
· β

1 + 2β ,

ρ
(HHDP )
j,j′ = 1 − αβ0

(α + 1) (β + β0 + 1) .
(8)

Figure 1 shows the correlation between two random probability measures obtained for
varying values of the concentration parameters in the different nested models we are
considering. Under the nDP formulation, the correlation does not depend on β since the
model assumes independence between observational atoms of measures Gj and Gj′ as-
signed to different distributional clusters. On the contrary, for both the HHDP and the
CAM, α and β have a joint impact on the induced correlation. There are several analo-
gies between the two models: they are both based on nested levels of Dirichlet processes
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combined with a shared set of atoms. This similarity of the fundamental structure is
reflected in the implied correlation: indeed, ρ(CAM)

j,j′ and ρ
(HHDP )
j,j′ are considerably high

for standard default values of the concentration parameters (e.g., α = β = β0 = 1).
The cause of this characteristic is rooted in the interaction between the weights and
the (implicitly ordered) set of observational atoms. For the CAM, the stick-breaking
weights explicitly assume the stochastic order of the atoms to be the same across the
random measures. Indeed, it is not even possible to act on the parameters to relax this
constrained dependence, and ρ

(CAM)
j,j′ > 0.5 by construction. This implicit assumption

is more subtle in the HHDP: their formulation involves a “resampling” of the weights
through an additional layer, which, in principle, allows eluding the issue. However, the
atoms are initially sampled from a DP, which already suggests a common importance
across distributional atoms. To leverage this intermediate layer and relax the induced
correlation, one should set β0 to very large values; however, this aspect is often over-
looked in practice. At the other extreme, it is remarkable that the limiting case of
β0 → ∞ would make the HHDP revert to the nDP. Finally, we highlight how the limit-
ing cases β → 0 for the CAM and β0 → 0 for the HHDP are particularly troublesome,
as they would force all the distributional atoms to place all the probability mass on the
same observational atom (in Section A.2 of the Supplementary Material we report addi-
tional graphs that investigate this issue). We did not include the HDP in this discussion
since it is not based on nested levels of DPs and therefore is not directly comparable.

SAN priors show instead a very flexible dependence structure. Moreover, unlike other
models, there are no parameter combinations that lead to pathological behaviors. As
we can see from Equations (6) and (7), both ρ

(fiSAN)
j,j′ and ρ

(fSAN)
j,j′ lie in (0, 1), hence

different combinations of the concentration parameters allow reaching a broad range of
correlations. Although fSAN already attains increased flexibility, Figure 1 (first panel
of the second row) shows that the correlation is adequately influenced by a only when b
is very small. Indeed, its impact is almost negligible for most of its values, and all prior
correlation is driven only by b. The fiSAN combines the best features of both the finite
and infinite scenarios: both parameters sensibly affect the induced correlation without
the need to push them close to the limit of their parameter space.

2.2 Partially exchangeable partition probability functions
Within the exchangeable framework, the probabilistic properties of the random partition
can be characterized through the exchangeable partition probability function (EPPF,
Pitman, 1995, 2006). This quantity is a fundamental tool for understanding the cluster-
ing structure induced by a process. When the data are organized into separate groups,
an analogous notion to analyze the resulting partition is the partially exchangeable
partition probability function (pEPPF, Lijoi et al., 2014a,b). Examples of pEPPFs in
the Bayesian nonparametric literature for dependent models were provided by Lijoi
et al. (2014a) for additive processes and by Camerlenghi et al. (2017) for hierarchi-
cal processes. In the nested framework, Camerlenghi et al. (2019) demonstrated the
importance of the pEPPF for analyzing the clustering properties and assessing that
no pathological behaviors arise, discovering, for example, the degeneracy issue of the
nDP. Here, we provide explicit expressions for the pEFFPs of the fiSAN and fSAN
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models, discussing their connections with the nDP. For notational convenience, we in-
troduce the cluster allocation variables that express the cluster membership for each
group and observation. In particular, we consider two sets of auxiliary categorical vari-
ables: S = {Sj , j = 1, . . . , J} with Sj ∈ {1, . . . ,K} indicating the DC allocation, and
M = {Mi,j , i = 1, . . . , Nj , j = 1, . . . , J} with Mi,j ∈ {1, . . . , L}, indicating the OC allo-
cation. Notice that the cluster allocation variables can take any value between 1 and the
number of mixture components. However, some components could be empty (not used
to generate the data), hence K and L do not coincide with the number of clusters, in
general. Clearly, p(Sj | π) =

∑K
k=1 πkδk(·), and p(Mi,j | Sj ,ωSj ) =

∑L
l=1 ωl,Sjδl(·). The

observations in each group can assume at most L distinct values. Thus, ties among the
observations can appear, inducing a clustering configuration. We denote the frequency
of cluster l ∈ {1, . . . , L} in the j-th group as nl,j =

∑Nj

i=1 1{Mi,j=l}.

For simplicity, in the rest of this section, we consider the setting where we only
have two samples θ1 = {θ1,1, . . . , θN1,1} and θ2 = {θ1,2, . . . , θN2,2} of sizes N1 and N2,
respectively. When only two groups are considered, the observed atoms can be either
shared by the two samples or specific to only one group. We denote with s0 the number
of atoms that appear in both groups (i.e., those for which nl,1nl,2 > 0); with s1 the
number of atoms specific to group 1 (i.e., nl,1 > 0 and nl,2 = 0); and, similarly, with s2
the number of atoms specific to group 2. Hence, the number of empty clusters is L− s
with s = s0 + s1 + s2. Our goal is to study the distribution of the partition of (θ1,θ2).

Both the fiSAN and the fSAN model allow for a straightforward derivation and an
analytical expression of the pEPPF, which is given in Theorem 2.1.

Theorem 2.1. Let θ1 and θ2 be two samples of sizes N1 and N2 from a SAN model.
Let s = s0 + s1 + s2 be the number of distinct values in (θ1,θ2), and let (n1,n2) =(
(n1,1, . . . , nL,1), (n1,2, . . . , nL,2)

)
be the frequencies of each OC, with L the number of

observational mixture components.

The pEPPF of the finite-infinite SAN prior is expressed as

Π(fiSAN)
N1,N2,s

(n1,n2) = 1
α + 1Φ(DL)

N1+N2,s
(n1 + n2) + α

α + 1 CL
s0,s1,s2

2∏
j=1

Φ(DL)
Nj ,s0+sj

(nj), (9)

where Φ(DL)
N,s (n) and CL

s0,s1,s2 denote the EPPF of a DirichletL distribution (Green and
Richardson, 2001) and a correction constant, respectively, with expressions

Φ(DL)
N,s (n) = L! Γ(Lb) Γ(b)−L

(L− s)! Γ(Lb + N)

L∏
l=1

Γ(b+nl), CL
s0,s1,s2 = (L− s0 − s1)!(L− s0 − s2)!

L!(L− s0 − s1 − s2)!
.

With the above definition of Φ(DL)
N,s (n), the pEPPF of the finite SAN is expressed as

Π(fSAN)
N1,N2,s

(n1,n2) = (1 + a)
(1 + Ka) Φ(DL)

N1+N2,s
(n1+n2)+

(K − 1)a
(1 + Ka) CL

s0,s1,s2

2∏
j=1

Φ(DL)
Nj ,s0+sj

(nj),

(10)
where K is the number of distributional mixture components.
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The pEPPFs in (9) and (10) are convex combinations of two different scenarios,
where the distributional cluster allocation probabilities, i.e., P [S1 = S2] and P [S1 �= S2],
play the role of mixing weights. The two scenarios correspond to the EPPFs of two ex-
treme cases: the fully exchangeable case, represented by the EPPF of the pooled sample,
and the unconditional independence case. Notice that the latter needs to be corrected
by a constant CL

s0,s1,s2 to account for the presence of a finite set of shared atoms. A
pure convex combination between the fully exchangeable case and the unconditional
independence case – a finite-dimensional version of the results in Camerlenghi et al.
(2019) – arises if, in our model, we replace θ∗l ∼ H with θ∗l,k ∼ H, obtaining the finite-
dimensional version of the nDP. However, this formulation would prevent the presence
of any cross-DC observational cluster.

The pEPPFs derived in the previous paragraph are useful to understand the connec-
tion of SAN priors with other nonparametric models, in particular, the limiting behavior
of the fSAN model when one sets α = a/K and studies K → ∞, and that of the fiSAN
model when one sets b = β/L and L → ∞.

Consider the pEPPF of SAN priors introduced before. Then, the following relation-
ship holds across the different nested priors:

lim
L,K→∞

Π(fSAN)
N1,N2,s

(n1,n2) = lim
L→∞

Π(fiSAN)
N1,N2,s

(n1,n2) = Π(nDP)
N1,N2,s

(n1,n2), (11)

where

Π(nDP)
N,s (n1,n2) = 1

α + 1Φ(DP )
N1+N2,s

(n1 + n2) + α

α + 1Φ(DP )
N1,s

(n1)Φ(DP )
N2,s

(n2)1{s0=0},

and Φ(DP )
N,s (n) denotes the EPPF of a DP. More details are provided in Section B of the

Supplementary Material.

The relations in (11) can be used to formalize some intuitions given in Section 2.1:
sharing an infinite number of atoms that are, a priori, all equally likely to be sampled
in each random measure G∗

k is not sufficient to prevent the model from collapsing to
the fully exchangeable case, as indeed the probability of cross-DC ties approaches zero.
Differently, both the CAM and the HHDP models impose, in terms of prior expectation,
larger mass to the same sets of atoms across different groups: this characteristic is at
the same time the solution of the degeneracy issue and the leading cause of the high
correlation.

3 Posterior inference
In line with other nested mixture models, posterior inference for SAN models is not
available in closed form, and we need to resort to computational approximations. The
standard approach is to rely on Markov chain Monte Carlo (MCMC) techniques: in
Section C.1 of the Supplementary Material, we outline a Gibbs sampler algorithm.
However, it is well-known that MCMC methods have limited scalability when dealing
with large datasets. As large amounts of data become ubiquitous, the computational
burden of MCMC algorithms may constitute a problem and hinder the application of
complex models.
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3.1 Mean-field variational inference
Variational inference (VI) methods provide a viable solution to this problem, approach-
ing posterior inference through optimization rather than simulation (Blei et al., 2017).
These methods rely on finding, among the elements of a set of simple distributions, the
one that better resembles the actual posterior in terms of their Kullback-Leibler (KL)
divergence. The price of this greater scalability is a less precise posterior approximation,
especially regarding the estimated variability. In the following, we extend mean-field VI
strategies for mixtures models (Bishop, 2006) to the nested setting. In particular, we de-
scribe a coordinate ascent optimization algorithm to perform posterior inference under
the fiSAN model (in line with the application in Section 5), while we defer to Section C.2
of the Supplementary Material for the corresponding derivation for the fSAN. To the
best of our knowledge, no variational methods are yet available in the literature for
nested Bayesian common atoms mixture models.

We consider d-variate observations yi,j , and we assume a mixture of multivariate
Gaussian kernels p(· | θ) = φd(· | μ,Λ−1), with μ a d-dimensional mean vector and Λ a
d×d precision matrix. Also, we assume a conjugate normal-Wishart prior distribution on
the model parameters, (μ,Λ) ∼ NW(μ0, κ0, τ0,Γ0). To derive the proposed algorithm,
we exploit the model formulation based on the data augmentation scheme introduced
in Section 2.2, which makes use of the cluster allocation variables Sj ∈ {1, 2, . . . },
j = 1, . . . , J , and Mi,j ∈ {1, . . . , L}, i = 1, . . . , Nj , j = 1, . . . , J . Thus, we can write the
model as

p(y | M , {μl,Λl}Ll=1) =
J∏

j=1

Nj∏
i=1

L∏
l=1

φd(yi,j | μl,Λ−1
l )1{Mi,j=l} ,

p(M | S,ω) =
J∏

j=1

Nj∏
i=1

∞∏
k=1

L∏
l=1

ωl,k
1{Mi,j=l ∩ Sj=k} , p(S | π) =

J∏
j=1

∞∏
k=1

πk
1{Sj=k} .

Finally, a gamma hyperprior on the concentration parameter of the distributional DP
is assumed: α ∼ Gamma(aα, bα) (Escobar and West, 1995). In contrast, the Dirichlet
parameter b is assumed to be known and set to a small value to ensure sparsity (i.e.,
b < ζ/2, with ζ the dimension of the component-specific parameter, following Rousseau
and Mengersen, 2011).

To set up a variational strategy for the fiSAN, we first need to define a suitable set of
variational distributions. In the mean-field variational framework, this class is given by
the set of densities where the latent variables are mutually independent. Following Blei
and Jordan (2006), we use a truncated variational family to deal with the nonparametric
mixture at the distributional level, where the truncation level is denoted with T . The
fully factorized family of distributions that we assume can be written as

q(M ,S,{ωk}Tk=1,v, {μl,Λl}Ll=1;λ) =
J∏

j=1
q(Sj ; {ρj,k}Tk=1)

J∏
j=1

Nj∏
i=1

q(Mi,j ; {ξi,j,l}Ll=1)×

×
T∏

k=1
q(vk; āk, b̄k) q(α; s1, s2)

T∏
k=1

q(ωk; {pl,k}Ll=1)
L∏

l=1
q(μl,Λl;ml, tl, cl,Dl),
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where q(Sj ; {ρj,k}Tk=1) and q(Mi,j ; {ξi,j,l}Ll=1) are multinomial distributions; q(vk; āk, b̄k)
are beta distributions, and they are such that q(vT = 1) = 1 and q(vg = 0) = 1 for
g > T ; q(α; s1, s2) is a gamma distribution; q(ωk; {pl,k}Ll=1) are Dirichlet distributions;
and q(μl,Λl;ml, tl, cl,Dl) are normal-Wishart distributions. Under this representation,
the set of latent variables is Θ =

(
S,M ,v, {ωk}Tk=1, {μl,Λl}Ll=1, α

)
and the set of vari-

ational parameters is λ =
(
ρ, ξ, ā, b̄, s1, s2,p,m, t, c,D

)
. Optimization is then carried

out by looking for the combination of variational parameters λ� that maximizes the
evidence lower bound (ELBO). To this end, the most commonly used algorithm is the
coordinate-ascent variational inference algorithm (CAVI – see, for example, Bishop,
2006). We report the CAVI updating rules for fiSAN in Algorithm 1, while we defer to
Section C.3 in the Supplementary Material for additional details on the ELBO and its
evaluation. We outline the algorithm for the specific case of multivariate Gaussian like-
lihood, however, this approach can be adapted in a straightforward manner whenever
the data distribution is a member of the exponential family, as discussed in Blei and
Jordan (2006).

4 Simulation studies
We illustrate two simulation studies to assess the performances of the proposed priors
and computational approach on synthetic data. The first study aims to compare the
fSAN and fiSAN models introduced in Section 2 with two methods based on the same
common atoms structure, to ease the comparison (specifically, the CAM and fCAM).
For this simulation study, we consider univariate Gaussian kernels. This setting also
provides a first assessment of the efficacy of the variational inference approach out-
lined in Section 3 in a simple univariate setting. The second study focuses instead on
the evaluation of how the proposed model and CAVI algorithm behave in a multivari-
ate framework. Here, we especially focus on the clustering accuracy and scalability of
MCMC and VI as the dimensionality and sample size increase.

4.1 Univariate case
This simulation study aims to provide empirical evidence for the prior properties pre-
sented in the first part of the paper and, specifically, on the accuracy of different prior
specifications. We compare both the ability to recover the true two-level partition of
the data and to estimate the posterior densities of the different DCs. Additionally, we
test the accuracy and efficiency of variational inference compared to the well-established
MCMC procedure. This way, we are able to simultaneously evaluate:

i. if the proposed fSAN and fiSAN models are competitive with state-of-the-art
models (based on “standard” MCMC methods);

ii. if the proposed CAVI algorithm for estimating SAN priors has accuracy compa-
rable with a Gibbs sampler approach in a simple, univariate setting.

We compare the performances of the fSAN and fiSAN models based on overfitted finite
mixtures with the CAM of Denti et al. (2023) and the fCAM of D’Angelo et al. (2023).
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Algorithm 1: CAVI updates for the fiSAN model.
Input: t ← 0. Randomly initialize λ(0). Define the threshold ε and randomly set Δ > ε.
while Δ(t− 1, t) > ε do

Set t = t + 1; Let λ(t−1) = λ(t);
Update the variational parameters according to the following CAVI steps:

1. For j = 1, . . . , J , q�(Sj) is a T -dimensional multinomial, with q�(Sj = k) = ρj,k
for k = 1, . . . , T , and

log ρj,k = g(āk, b̄k) +
k−1∑
r=1

g(b̄r, ār) +
L∑

l=1

⎛
⎝

Nj∑
i=1

ξi,j,l

⎞
⎠hl(pk),

where g(x, y) = ψ(x) − ψ(x + y) and hk(x) = ψ(xk) − ψ(
∑K

k=1 xk), with ψ denoting
the digamma function.

2. For j = 1, . . . , J and i = 1, . . . , Nj , q�(Mi,j) is a L-dimensional multinomial, with
q�(Mi,j = l) = ξi,j,l for l = 1, . . . , L, and

log ξi,j,l =
1
2
�
(1)
l +

1
2
�
(2)
i,j,l +

T∑
k=1

ρj,khl(pk).

where �
(1)
l =

∑d
x=1 ψ ((cl − x + 1)/2) + d log 2 + log |Dl| and

�
(2)
i,j,l = −d/tl − cl(yi,j −ml)�Dl(yi,j −ml).

3. For k = 1, . . . , T , q�(ωk) is DirichletL(pk) with pl,k = b +
∑J

j=1
∑Nj

i=1 ξi,j,lρj,k.

4. For k = 1, . . . , T , q�(vk) is a Beta(āk, b̄k) distribution with

āk = 1 +
J∑

j=1
ρj,k, b̄k = s1/s2 +

J∑
j=1

T−1∑
q=k+1

ρj,q.

5. For l = 1, . . . , L q�(θl) is a NW(ml, tl, cl,Dl) distribution with parameters

ml = t−1
l (κ0 μ0 + N·lȳl), tl = κ0 + N·l, cl = τ0 + N·l,

D−1
l = Γ−1

0 +
κ0N·l

κ0 + N·l
(ȳl − μ0) (ȳl − μ0)� + S·l,

where

N·l =
J∑

j=1

Nj∑
i=1

ξi,j,l, ȳl = N−1
·l (

J∑
j=1

Nj∑
i=1

ξi,j,lyi,j),

S·l =
J∑

j=1

Nj∑
i=1

ξi,j,l (yi,j − ȳl) (yi,j − ȳl)� .

6. q�(α) is a Gamma(s1, s2) distribution with parameters

s1 = aα + T − 1, s2 = bα −
T−1∑
k=1

g(b̄k, āk).

Store the updated parameters in λ and let λ(t) = λ;
Compute Δ(t− 1, t) = ELBO(λ(t)) − ELBO(λ(t−1)).

return λ�, containing the optimized variational parameters.
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In particular, under the latter model, both L and K are random and estimated using
the telescoping sampler of Frühwirth-Schnatter et al. (2021). While we have examined
the similarities and differences of the correlation structure with other nested priors from
a theoretical perspective in Section 2, the computational complexity of those models
hinders a practical comparison in settings with many groups and large sample sizes.

For this experiment, we considered a nested dataset where each group-specific distri-
bution is a mixture of univariate Gaussian kernels, denoted as φ(y | μ, σ2). Specifically,
the data-generating process is a nested mixture made of three distributional clusters
with homogeneous probabilities (π1, π2, π3) = (1/3, 1/3, 1/3), where the density fk(y)
characterizing the k-th cluster, k = 1, 2, 3, is given by

f1(y) = 0.5 φ(y | −5, 0.62) + 0.5 φ(y | −2, 0.62),
f2(y) = 0.5 φ(y | 2, 0.62) + 0.5 φ(y | 5, 0.62),

f3(y) = φ(y | 0, 0.62).

We independently extracted J = 6 groups with equal sample sizes from this distribution,
obtaining two samples for each distributional cluster. We considered four configurations
corresponding to varying sample sizes of each group: Nj ∈ {10, 50, 500, 2500}, for j =
1, . . . , 6. Therefore, the total sample size N ranges from 60 to 15,000. Considering small
samples allows us to investigate if there are problematic situations when the information
conveyed by the data is limited, and the posterior estimates are heavily influenced by the
prior. On the contrary, the large-sample scenarios allow us to evaluate the computational
burden of the algorithms. For each configuration, we replicated the experiment over 50
independently simulated datasets.

All priors comprise some relevant parameters that affect their distributional prop-
erties, as discussed in Section 2.1. Following Denti et al. (2023), for the CAM the con-
centration parameters α and β are now assigned Gamma(1, 1) hyperpriors. Since the
parameters are random, we do not have an analytical expression of the prior correla-
tion between pairs of random measures. Instead, we computed a Monte Carlo estimate,
which resulted in a mean correlation of 0.8914. Similarly, for the fCAM, the Dirichlet
parameters a and b are assigned Gamma(10, 10) distributions, while the parameters L
and K are assigned beta-negative-binomial distributions BNB(1, 4, 3), following the in-
dications of Frühwirth-Schnatter et al. (2021). Interestingly, this specification leads to
a Monte Carlo estimate of the correlation equal to the one of the CAM.

For models based on finite overfitted mixtures, choosing appropriate Dirichlet pa-
rameters (dimension and concentration parameter) is key for obtaining good posterior
estimates. The Dirichlet concentration parameter should satisfy the condition derived
in Rousseau and Mengersen (2011) to induce sparsity and empty superfluous compo-
nents. The Dirichlet dimension should be set large enough to guarantee that it exceeds
the number of clusters expected in the data. However, it is interesting that, as long as
these conditions are satisfied, the posterior estimates are quite robust to the specific
values of such parameters (a sensitivity analysis is reported in Section D.3 of the Sup-
plementary Material). Specifically, for the fiSAN, the parameter α of the DP at the top
level is assigned a Gamma(1, 1) hyperprior; at the observational level, the parameters
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are instead set to L = 25 and b = 0.05. This combination leads to a correlation of
0.6309. For the fSAN, all parameters are fixed, and, specifically, a = b = 0.05, K = 20,
and L = 25. The resulting prior correlation is equal to 0.5657. Notice that increasing
the Dirichlet dimensions K and L requires allocating larger matrices, and this is par-
ticularly true for MCMC approaches. Therefore, especially with large data sets, the
choice of these parameters should be made in a reasoned way, taking into account the
computational cost. Finally, given the univariate nature of the problem, we adopted
a conjugate normal-inverse gamma base measure (μl, σ

2
l ) ∼ NIG(μ0, κ0, τ0,Γ0), whose

hyperparameters were fixed to (μ0, κ0, τ0,Γ0) = (0, 0.01, 3, 2).

Turning now to the parameters of the variational density, in the sensitivity analysis
we evaluated the impact of the truncation parameter T used in the variational version
of the fiSAN (which uses a DP at the distributional level). For this parameter, a similar
reasoning to that of L and K applies: as long as T is fixed large enough, the algorithm
can freely explore the space of reasonable partitions, and the estimates are unaffected
by the specific truncation value. Specifically, we used T = 20. Finally, the variational
distribution of the univariate kernel parameters is a normal-inverse gamma, denoted as
q(μl, σ

2
l ;ml, tl, cl, dl).

In the following, we discuss the relevant aspects of the posterior inference. The algo-
rithms used for this simulation study are written in efficient Rcpp language, and they are
available in the R packages SANple (D’Angelo and Denti, 2023) and SANvi (Denti and
D’Angelo, 2023), both downloadable from the Comprehensive R Archive Network; the
scripts to replicate the analyses are available at the GitHub repository Fradenti/SAN4ba.
All analyses were performed on a Linux server running an AMD EPYC-Rome Processor
with 405 GB of RAM.

Comparison between shared atoms nested priors

We start by analyzing the accuracy of the different nested priors in estimating the
two-level partition. Depending on the computational strategy, the posterior point esti-
mates of the clusters were obtained using different procedures. When dealing with the
MCMC output, the chains of the cluster allocation variables Sj and Mi,j were used to
compute the corresponding posterior similarity matrices. Then, the optimal partitions
were estimated by minimizing the variation of information loss (Wade and Ghahra-
mani, 2018), employing the algorithm developed by Dahl et al. (2022). When dealing
with the VI approach, the algorithm returns instead the optimized variational param-
eters corresponding to the cluster assignment probabilities, i.e., ρ̂j,k = q∗(Sj = k) and
ξ̂i,j,l = q∗(Mi,j = l). The former indicates the posterior point estimate of the proba-
bility of assigning the j-th group to the k-th distributional cluster; similarly, the latter
represents the posterior estimate of the probability of assigning the i-th observation of
the j-th group to the l-th observational cluster. Hence, in this case, the partitions were
estimated as

Ŝj = arg max
k=1,...,T

ρ̂j,k and M̂i,j = arg max
l=1,...,L

ξ̂i,j,l

for j = 1, . . . , J and i = 1, . . . , Nj . Then, to measure the accuracy of the estimated par-
titions, we compared the adjusted Rand index (ARI, Rand, 1971; Hubert and Arabie,

https://github.com/fradenti/san4ba/
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Figure 2: Accuracy of the estimated distributional (top panel) and observational (bot-
tom panel) clustering for the CAM, fCAM, fiSAN, and fSAN. Each panel shows the
distribution of the ARI obtained across the 50 replications, for each configuration. For
the fiSAN and fSAN, colors correspond to the algorithm.

1985) between the posterior point estimate and the true partition. An ARI equal to zero
corresponds to random labeling, while an ARI equal to one indicates that the cluster-
ings are identical. Figure 2 shows the distribution of the ARIs (over the 50 replications)
obtained by the different models for each configuration. All models adequately estimate
the distributional partition under each scenario. At the observational level, all models
have remarkable performances, with an ARI over 0.8 for almost all replications; more-
over, the posterior point estimates of the clustering consistently improve with increasing
sample size. For the fSAN and fiSAN, the variational approach produces slightly worse
posterior estimates than the MCMC. Still, in general, the difference is small and is due
to a very limited number of misclassified observations.

We now inspect the ability of the different models to estimate the density of the
data. We first needed to obtain a posterior point estimate of the density of each group.
When using an MCMC approach, we computed the pointwise mixture density on a
grid of points at each iteration by substituting the current values of the chains into the
theoretical data density; then, we obtained the posterior estimate by averaging them.
This strategy was necessary for dealing with the varying partition across iterations and
the additional complications caused by the label-switching. We used instead a slightly
different procedure when using a CAVI algorithm since this approach does not pro-
duce a sample of replications but only a single estimated model. Having a unique point
estimate of the model hyperparameters allows for overcoming the problem of label-
switching; moreover, representing only one of the several modes (given by permutations
of the indices) is sufficient to adequately perform posterior inference (Blei et al., 2017).
Here, we substituted the estimated variational posterior expected values μ̂l, σ̂2

l and ω̂l,k
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Figure 3: Accuracy of the density estimates for groups 1, 2, and 3, for the considered
models. Each panel shows the distribution of the KL divergence (over the 50 repli-
cations), for each configuration. For the fiSAN and fSAN, colors correspond to the
algorithm.

into the parametric mixture density. In this context, μ̂l = m�
l , σ̂2

l = d�l /(c�l − 1), while
the weights ω̂l,k’s are the posterior means of the corresponding Dirichlet distributions.
With this estimate, we computed the density on the same grid of points. Figure 3 shows
the Kullback-Leibler divergence distribution between the true and the estimated mean
density. In line with the previous analysis, we show the CAM, fCAM, fSAN, and fiSAN
results, where the latter were estimated via Gibbs sampler and CAVI. The plot clearly
shows that the CAM has difficulties estimating the density when the sample size is
small, as highlighted by the large KL divergence in the first configuration. Increasing
the sample size alleviates this problem, as the data convey enough information to over-
come the prior distribution. On the contrary, all models based on finite observational
mixtures have good posterior estimates. This result is particularly interesting if one
considers that the correlations of the CAM and fCAM were equal, a priori. Hence,
the improved posterior density estimates of the fCAM are purely a consequence of the
Dirichlet distributions of the weights.
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To gain more insight into the reason that led to this behavior, Figure 4 shows the
posterior point estimate of the density of the first three groups computed via Gibbs
sampler under the first configuration, corresponding to N = 60. Figure S.6 in the Sup-
plementary Material shows the posterior density estimate obtained via CAVI for the
fSAN and fiSAN. We considered three groups whose distributions are representative of
the three DCs. The first column shows the density estimates for CAM and highlights
the pitfalls of using this model when the distributional atoms do not share observational
atoms. The CAM indeed expects the different distributional clusters to have some atoms
in common, and even if the data do not support this assumption, the model forces a
similarity in the estimated density. In particular, the forced positive correlation be-
tween distributions causes the presence of “ghost” modes inherited from the other DCs.
Conversely, models based on symmetric Dirichlet distributions can avoid this spurious
borrowing of information, even for small sample sizes.

Figure 4: Posterior density estimate for groups 1, 2, and 3, for the CAM, fCAM, fiSAN,
and fSAN. Each panel shows the true density (black line) and the posterior density
estimates (grey lines) obtained over the 50 replications, for configuration 1 (N = 60).

Comparison between computational approaches

With the previous setting, we have already provided evidence that the proposed varia-
tional inference algorithm is a valid tool for estimating the data partition and density.
That said, it is well-known that CAVI can severely underestimate the variability of the
posterior distributions of the parameters. In this section, we further investigate and
compare the performances of the Gibbs sampler and CAVI algorithms. Here, again, the
goal is twofold: assessing the accuracy of the posterior distributions, and investigating
the computational burden of the two approaches. Indeed, the actual need for a VI pro-
cedure for this type of model has not yet been discussed or corroborated by empirical
evidence.
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Figure 5: fiSAN prior - Configuration 2: posterior density estimate of (μl, σ
2
l ), for l =

1, 2, 3, 4, 5, obtained using a Gibbs sampler (orange line) and a CAVI algorithm (green
line). Each panel shows the contour plot of the joint density, together with the two
marginal densities.

Figure 5 shows the estimated posterior density of the cluster-specific parameters
(μl, σ

2
l ), for l = 1, 2, 3, 4, 5 (i.e., the atoms actually used to generate the data), under

the fiSAN prior estimated via MCMC and VI. Each panel shows the contour plot of the
joint density, together with the marginal densities. The results refer to the second con-
figuration, corresponding to N = 300. In Section D.2 of the Supplementary Material, we
provide additional graphs corresponding to different sample sizes and to the estimates
under the fSAN prior. Inference on the parameters of the observational atoms is not
immediate when employing an MCMC approach, as chains may be affected by label-
switching, a common problem when dealing with mixture models (Stephens, 2000).
Moreover, a comparison between the two algorithms requires matching the cluster-
specific parameters arising from two fundamentally different approaches. To solve the
issue, we post-processed the chains using the relabelling Equivalence Classes Repre-
sentatives algorithm (Rodríguez and Walker, 2014), as implemented in the R package
label.switching (Papastamoulis, 2016). Sections D.1 and D.2 of the Supplementary
Material detail the post-processing to treat the label-switching and the procedure to
derive these plots.

Figure 5, as well as Figures S7, S8, and S9, do not highlight any systematic troubling
behavior of the VI approach compared to the MCMC. We acknowledge that, in some
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Figure 6: Top row: distributions of the computational time (in seconds) over the 50
replications for the two algorithms, for each configuration. Bottom row: distributions
of the memory usage (in MB) over the 50 replications for the two algorithms for each
configuration. Values are displayed on log10 scale.

cases, the modes of the distributions do not strictly coincide, and the VI estimates have
a larger bias compared to the MCMC. Moreover, the marginal variances of the posterior
distributions are sometimes underestimated using the VI approach. However, such dis-
crepancies are not severe, and the CAVI estimates are overall satisfactory. Moreover, the
computational advantages of VI largely compensate for the approximation, as displayed
in the subsequent simulations, and, especially, in the multivariate setting discussed in
Section 4.2.

Turning now to the rationale for the need for a variational approach, we compare the
computational cost of the two algorithms: here, we consider both the memory usage and
the computational time. Indeed, for the MCMC methods, the need to store the entire
Markov chains (at most, excluding the burn-in) can raise issues with memory allocation
when dealing with big data. On the contrary, VI methods only require storing the
optimized parameters. The panels in the top row of Figure 6 clearly show the advantage
of a VI approach over the MCMC regarding memory usage for all sample sizes, even in
this univariate case.

Obtaining a fair efficiency comparison is more complex since the two algorithms are
fundamentally different. However, to guarantee convergence and adopt a procedure that
would be reasonable in a real-data application, we proceeded as follows. The compu-
tational time of the Gibbs sampler algorithm was computed as the total run time to
generate 10,000 iterations. As for the VI approach, we considered Δ(t−1, t) < 10−4 as a
stopping rule to define the convergence of the ELBO. Although the discrepancy between
the variational distribution and the target posterior is reduced at each iteration, there is
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no guarantee that the CAVI algorithm will lead to a global optimum. On the contrary,
depending on the initial configuration, it will likely obtain a local solution. Hence, we
executed 50 distinct runs of the algorithm with different starting points, keeping the
one with the highest ELBO to draw the inference. The ultimate advantage of VI is that
these optimizations are easily parallelizable; thus, we report the maximum individual
run time obtained over the 50 runs for each dataset, which can be seen as an indicator
of the computational cost of the CAVI. The panels in the top row of Figure 6, displaying
the elapsed seconds on the log scale, confirm that the VI approach is at least one order
of magnitude faster than the MCMC, and this gap increases with increasing sample
size.

4.2 Multivariate case
The second simulation study is devised to investigate the performance of the fiSAN
model when dealing with large multivariate data. We focus solely on this model since the
two competitors, CAM and fCAM, were only developed for univariate data. Moreover,
from the findings in the previous paragraph, we see that all the formulations relying on
a finite set of observational atoms appear to have overall the best performances. Since
there is no clear evidence of superiority of a particular specification over the others, we
decided to focus on the finite-infinite one. Let yi,j represent a vector of dimension d ≥ 1,
yi,j = (yi,j,1, . . . , yi,j,d)� for i = 1, . . . , Nj , j = 1, . . . , J . Here, we study and compare
the MCMC and VI approaches in terms of classification accuracy and scalability in this
multivariate framework.

The data-generating process is now a nested mixture of multivariate Gaussian ker-
nels. Specifically, it is an extension of the data-generating process of Section 4.1 to
dimensions d ∈ {2, 5, 10}. Again, we have J = 6 groups extracted from a nested mix-
ture of three distributional atoms fk(y), k = 1, 2, 3, with homogeneous probabilities
1/3, where each atom is a mixture of multivariate Gaussian kernels with different mean
vectors and covariance matrices. The densities fk(y) are defined as

f1(y) = 0.5 φd(y | −5 · 1d, 0.2 · Id) + 0.5 φd(y | −2 · 1d, 0.2 · Id · R1)
f2(y) = 0.5 φd(y | 2 · 1d, 0.2 · Id) + 0.5 φd(y | 5 · 1d, 0.2 · Id · R2)

f3(y) = φd(y | 0 · 1d, 0.2 · Id · R3).

where 1d denotes a d-dimensional vector of ones and Id a d × d identity matrix. The
matrices Rk, k = 1, 2, 3 are correlation matrices that induce different types of de-
pendence across variables. The correlation matrix R1 is a band matrix, with entries
equal to 0.25 for |h1 − h2| < 2 and 0 otherwise (h1, h2 = 1, . . . , d); the matrix R2
assumes a correlation equal to 0.5 between each pair of variables; finally, R3 assumes
a correlation equal to 0.85 between each pair of variables. Similarly to the previous
section, we considered homogeneous group sample sizes Nj and studied the perfor-
mances for varying Nj ∈ {50, 500, 1000}. Hence, the total sample size ranges from 300
to 6000. We replicated the experiment over 50 independently simulated datasets. The
Dirichlet parameters are equal to the ones in Section 4.1. The hyperparameters on the
multivariate normal-Wishart base measures, (μl,Λl) ∼ NW(μ0, κ0, τ0,Γ0), are set to
(μ0, κ0, τ0,Γ0) = (0d, 0.01, d + 5, Id).
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Figure 7: Distributions of the distributional (top row) and observational (bottom row)
ARIs over the 50 replications for the fiSAN model estimated via VI and MCMC for
each data dimension and sample size.

Accuracy of posterior inference

We start by analyzing the accuracy of the fiSAN model in recovering the observational
and distributional data partition. Figure 7 shows the observational and distributional
ARI obtained in each scenario using both an MCMC and a VI approach. Overall, the
model performs well in all cases, with larger sample sizes leading to better posterior point
estimates. Moreover, the two algorithms have comparable performances at clustering
groups and observations, for all sample sizes and dimensions.

Computational aspects

The computational advantages of variational inference algorithms compared to standard
MCMC approaches are presumably the main reason for turning to these approximate
methods. We already highlighted these advantages in the univariate case, but they be-
come particularly evident in this multivariate framework. The bottom panels of Figure 8
show the distribution of the memory usage in MB for the two types of algorithm in each
scenario. The top panels show, instead, the total computational time. The computational
time was obtained using the same definition as the previous simulation study. Both sets
of plots showcase the need for a variational approach when the data are multivariate,
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Figure 8: Distributions of the computational time (top row) and memory usage (bottom
row) over the 50 replications for the fiSAN model estimated via VI and MCMC for each
data dimension and sample size. Values are displayed on log10 scale.

and the sample size is moderately large. The memory usage and computational time
of MCMC methods appear to grow with an exponential trend as d and N increase:
both aspects can indeed hinder the application of complex Bayesian models to large
multivariate data. Ultimately, variational inference appears to be a good compromise,
balancing good posterior inference with a remarkably efficient implementation.

5 Spotify data analysis for the discovery of music
profiles

Our study considers an open-source Spotify dataset available from the Kaggle platform.1
Spotify is one of the largest music streaming service providers. Part of its success is due
to a personalized recommendation system, which analyzes the user’s listening history
and suggests new, potentially relevant tracks. Because of the success of these algorithms,
increasing interest has gone into understanding what makes two songs “similar” from
the user’s enjoyment point of view.

To this end, Spotify developed several scores to summarize various features of a song.

1https://www.kaggle.com/ektanegi/spotifydata-19212020

https://www.kaggle.com/ektanegi/spotifydata-19212020
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These features provide a description of a song’s mood (e.g., danceability, energy), audio
characteristics (e.g., loudness, speechiness, instrumentalness), and context (e.g., live-
ness, acousticness). One can find more details about these features in the documen-
tation available on the Spotify for developer webpage.2 The original dataset contains
ten scores for over 160,000 songs released between 1921 and 2020, authored by over
1500 artists. We performed a preprocessing phase meant to discard outliers (e.g., tracks
containing entire concerts, thus having exceptional duration; silent tracks, with ex-
tremely low energy, or, conversely, pure applause in live tracks, with extremely high
energy levels). We then proceeded to select a large subset of artists for our analysis.
We kept artists that authored more than 100 songs to ease the detection of DCs, and
less than 200 songs, obtaining a dataset with 19,315 songs partitioned into 154 artists.
Additional details on the preprocessing phase are available as Supplementary Material
(Section E.1).

The goal of our analysis is to identify clusters of similar artists and songs based on
their characteristics. This way, the system could rely on songs and artists within the
same observational or distributional cluster, respectively, for the creation of playlists
and listening suggestions. Specifically, we focus on three meaningful indicators: the
duration (D), the energy (E), and the speechiness (S) of each song. In this sense, our
problem can be formalized as a two-level multivariate clustering, where the songs (i.e.,
the observations) are exchangeable data points “within” each artist (i.e., the groups).
For example, during a workout, users could find it more enjoyable to listen to a brief,
energetic rock song rather than a piano sonata, even if, in principle, they might like both.
Hence, a segmentation driven by multiple features could convey sensible suggestions that
go beyond simple genre similarities and personal taste.

All the variables were properly transformed to fit a mixture of multivariate normal
distributions: first, the three variables were marginally normalized in the (0, 1) inter-
val; then, they were mapped onto the real line using a probit transformation. Figure 9
displays the three-dimensional data with the help of three pairwise scatterplots. Each
point represents a song, and we highlighted the songs authored by four different artists,
i.e., 2Pac, AC/DC, D. Carnegie, and S. Rachmaninoff. The four artists belong to funda-
mentally different genres: the scores of their tracks indeed show different distributional
characteristics, although there is an overlap in some of the features. However, an ade-
quate model should be able to recognize their differences and assign them to distinct
distributional clusters.

We fit the proposed fiSAN model using the CAVI algorithm outlined in Section 3. In-
deed, in Section 4, we have seen how MCMC methods already pose major computational
issues when the sample size is N = 6000. Because of the fast increase of memory allo-
cation and computational time of MCMC methods as N increases, here, with almost
20,000 observations, a Gibbs sampler approach would require considerable computa-
tional resources. Similarly to the procedure adopted in the simulation study, we ran our
CAVI algorithm 1000 times using independent random initialization, and we kept the
iteration with the highest ELBO to draw inference. In line with the reasoning outlined
in Section 4, we fixed the Dirichlet parameters L = 35 and b = 0.05; the truncation

2https://developer.spotify.com/discover/

https://developer.spotify.com/discover/
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Figure 9: Distribution of the songs (points) across the three features. Colored points
correspond to songs by four artists: 2Pac (black), AC/DC (blue), D. Carnegie (green),
and S. Rachmaninoff (red).

DC Artists

Audio lectures D. Carnegie – E. H. Gombrich

Classical A. Copland – A. Scriabin – B. Evans – B. Evans Trio – C. Mingus – C. Baker
E. Satie – F. Mendelssohn – F. J. Haydn – F. Liszt – F. Schubert – G. F. Handel
G. Mahler – M. Ravel – P. I. Tchaikovsky – R. Strauss – S. Rachmaninoff – S. Getz

Hard rock AC/DC – Aerosmith – blink-182 – Bob Seger – BTS – Def Leppard – Green Day
Iron Maiden – Journey – Judas Priest – KISS – Linkin Park – Nirvana – Ramones
Rush – The Smiths – Van Halen

Rap 2Pac – Beastie Boys – Beyoncé – JAY-Z – Kanye West – Lil Uzi Vert – Lil Wayne
Mac Miller – Sublime – The Notorious B.I.G.

Table 1: Artists in the four analyzed distributional clusters.

parameter T of the Dirichlet process at the distributional level was set equal to 30. As
for the remaining hyperparameters, they were set as in the simulation studies. On this
dataset, the fiSAN estimates 21 OCs and 20 DCs. In what follows, we discuss how we
can exploit the estimated two-layer partition to obtain interesting insights.

Analysis of the clusters of artists (DC). Our algorithm groups the 154 artists
into 20 clusters. In Table S.2 of the Supplementary Material, we report the complete
segmentation of the artists. Here, we analyze four notable DCs, whose members are
reported in Table 1. Looking at the members of these clusters, we are able to charac-
terize them according to distinctive “genres”, broadly interpreted as “audio lectures”,
“classical”, “hard rock”, and “rap”. Figure 10 shows the distribution of the three fea-
tures in these clusters. In terms of duration, all DCs are quite similar. However, tracks
in the classical music cluster have a more variable duration than the other groups, and
audio lectures last longer, on average. The energy and speechiness features are the ones
with the greater heterogeneity across clusters. Hard rock songs have the highest energy,
followed by rap songs. However, rap songs have a higher speechiness score. Classical
music has low energy and low speechiness, while the audio lectures are, as expected, the
most verbose.
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Figure 10: Distribution of the three features in the four analyzed distributional clusters.

Our model-based clustering approach, however, allows for much deeper insights into
what drives the segmentation. According to our model, the observational atoms are
shared across all DCs; however, in each DC, some of these atoms may be assigned
a negligible posterior probability. It is then interesting to examine the active compo-
nents that ultimately characterize each DC. In Figure 11, we show again the pairwise
scatterplots of the three song features. Here, we highlighted the points belonging to
the four analyzed DCs. Moreover, for every DC, we also represented all the “active”
observational atoms, associated with non-empty observational clusters. Specifically, all
observational atoms are represented by their estimated mean μ̂l = (μ̂D, μ̂E, μ̂S)�l with
crosses (2-dimensional subvectors) and covariances Σ̂l[r, s] (r, s ∈ {D, E, S}) with el-
lipses. To favor the interpretation of each DC, we highlighted which atoms are the most
relevant by drawing the intensity of the line color as proportional to the posterior weight
ω̂l,Ŝj

. Regarding the “audio lecture” cluster, we can appreciate that it is defined by a
simple distribution made of two mixture components with very heterogeneous posterior
weights. The leading OC is characterized by average duration and energy but very high
speechiness, while the second one accounts for a few low-duration tracks. The “rap”
DC comprises a larger number of active OCs; however, its distribution is fundamentally
characterized by two predominant components. Looking at the posterior means of these
two observational atoms, we see that they strongly overlap in the energy and duration
variables (all rap songs have high energy and average duration). However, the speechi-
ness feature distinguishes them and allows differentiating between more and less verbose
tracks. Finally, the “classical” and “hard rock” DCs are more complex and nuanced. In
particular, the latter distribution can be described as a mixture of two predominant
normal kernels that capture different traits in all three considered dimensions.

Analysis of the clusters of songs (OC). Until now, we have only discussed the
distributional clusters. Nonetheless, observational clusters allow for a refined analysis
of the similarities between songs. Here, we show how we can take advantage of the
shared-atom structure of our model to find songs that have similar characteristics, de-
spite belonging to artists in different DCs. We report an example in the scatterplots in
Figure 12. We highlighted songs assigned to the same OC: this cluster contains 2057
songs authored by 63 artists (belonging to 6 different DCs). The red points identify four
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Figure 11: Pairwise scatterplots of songs (points). Each row corresponds to a different
DC (“genre”), colored points indicate songs belonging to that DC. In each plot, crosses
and ellipses correspond to the active observational atoms, and the intensity of the color
is proportional to their posterior weight.
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Figure 12: Pairwise scatterplots of song features. Colored (blue) points correspond to
songs in one observational cluster, and red points highlight four famous tracks. The
black crosses and ellipses indicate the estimated mean and variance/covariance.

famous songs: “Like a Prayer” by Madonna, “Thriller” by Micheal Jackson, “Thunder-
struck” by AC/DC, and “Born in the U.S.A.” by Bruce Springsteen. Despite belonging
to different musical genres (a trait captured by the DC), the scores of these songs are
similar, indicating that all these pieces have common characteristics. Specifically, they
all have high energy, average duration, and low speechiness.

6 Discussion
In this paper, we developed a novel Bayesian nonparametric model for density estima-
tion and clustering with grouped data, which conveys a two-level partition of groups
and observations. The advantages of the proposed modeling framework are threefold.
First, it allows shared observational clusters across different random measures; second,
it provides a more flexible correlation structure, which induces improved distributional
clusters’ characterization. Finally, its simple formulation allows the derivation of effi-
cient estimation algorithms to scale up its applicability to large multivariate datasets
with thousands of observations and hundreds of groups.

The proposed work stimulates several questions that are worth investigating. The
new insights into the interaction between common atoms and stick-breaking weights
pave the way for additional research on other nested models with dependent DP (Quin-
tana et al., 2022). In particular, it brings attention back to the possibility of directly
exploiting the stochastic ordering of the atoms for modeling purposes, as done, for ex-
ample, by Griffin and Steel (2006) with the order-based dependent DP. This reasoning is
not limited to nested mixtures: nonparametric priors based on common atoms have been
used, for example, by Chandra et al. (2023b) in the context of regression in clinical trials.

The advantages of using finite mixtures within the proposed nested setting could be
further enhanced by employing more flexible distributions than the Dirichlet. Argiento
and de Iorio (2022), for example, introduced a class of priors based on the normalization
of a point process which includes the Dirichlet mixture model as a particular case, and
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that was recently extended to the hierarchical setting (Colombi et al., 2023). Other
finite-dimensional nonparametric priors were proposed by Lijoi et al. (2020) and Lijoi
et al. (2023b), which introduced flexible and robust alternatives to the Dirichlet that
reduce the influence of the mass parameter and allow for more control over the expected
number of clusters and resulting partition.

Another crucial aspect of the proposed framework is its applicability to data with
large sample sizes and high dimensionality. We addressed this issue from a computational
perspective, implementing an efficient posterior inference algorithm. Additionally, we
focused on prior properties that are not affected by the particular choice of the likelihood
and base measure, and thus apply also to the multivariate case. However, it could be
interesting to study how the particular structure and covariance of the data affect the
clustering results in such multivariate settings. Moreover, instead of relying on fast
computation, another possible approach could be to leverage models developed for high-
dimensional frameworks and extend them to our nested setting. For example, one could
induce a sparser partition of the data via repulsive mixtures (see, e.g., Beraha et al.,
2022; Ghilotti et al., 2023), or explicitly assume the existence of a set of low-dimensional
latent variables that drive the clustering (Chandra et al., 2023a).

Finally, the proposed nested variational algorithm – developed for partially ex-
changeable data – can be easily extended to other similar frameworks. Stochastic vari-
ational inference (Hoffman et al., 2013) solutions might be investigated to grant the
immediate applicability of these models to the original Spotify dataset, including hun-
dreds of thousands of observations. Additionally, one could devise a similar finite-infinite
model to account for separable exchangeability. For example, our hybrid mixture weight
specification, along with a VI approach, could be applied to the common atoms model
proposed by Rebaudo et al. (2021), granting an efficient and powerful nonparametric
method for matrix biclustering.
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