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ABSTRACT. We introduce ¢-frequently hypercyclic operators and derive a suf-
ficient criterion for a continuous operator to be g¢-frequently hypercyclic on
a locally convex space. Applications are given to obtain g-frequently hyper-
cyclic operators with respect to the norm-, F-norm- and weak*- topologies.
Finally, the frequent hypercyclicity of the non-convolution operator T}, defined
by T,,(f)(2) = f'(uz), |#] > 1 on the space H(C) of entire functions equipped
with the compact-open topology is shown.

1. INTRODUCTION

The main theme in the dynamics of linear operators is the notion of hypercyclic-
ity which plays an important role in the study of the invariant subset problem in
Banach spaces. This notion was initiated by S. Rolewicz [22] in the setting of in-
finite dimensional Banach spaces in 1969, though the examples of translation and
differential operators on the space of entire functions equipped with the compact-
open topology were known to be hypercyclic in an earlier work of G. D. Birkhoff

[8] and G. R. MacLane [20]. Now a vast literature dealing with hypercyclicity of
operators as well as other related notions in linear dynamics is available in [5],
[14], and [15].

In 2006, F. Bayart and S. Grivaux [3] further strengthened this concept to
frequent hypercyclicity, which quantifies the frequency with which the iterates
of a given linear operator at a point visit each non-empty open set. After the
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appearance of this work, several results on frequently hypercyclic operators have
been established, for instance one may refer to [9], [10], [I 1], [13] and [24]. In this
paper we introduce g-frequent hypercyclicity which lies between hypercyclicity
and frequent hypercyclicity, where ¢ is a fixed natural number. The case ¢ =
1 coincides with frequent hypercyclicity. We prove a sufficient criterion for a
continuous linear operator to be g-frequently hypercyclic on a locally convex space
and give applications to obtain ¢-frequently hypercyclic operators with respect to
the norm on Banach spaces, the F-norm on F-spaces and the weak*-topology on
dual of Banach spaces. We also provide examples of hypercyclic operators that
are not g-frequently hypercyclic for any ¢ € N.

2. PRELIMINARIES

Let X be a separable topological vector space, and L£(X) denote the space of
all continuous linear operators on X. An operator T' € L£(X) is said to be hyper-
cyclic if there exists a vector z € X such that the orbit {7™(x) : n > 0} is dense
in X. Such a vector x is called a hypercyclic vector for T. As mentioned in the
previous section, Birkhoff’s translation operator T,(f)(z) = f(z+ a), for nonzero
a € C and MacLane’s differentiation operator D(f) = f’ on the space H(C) are
hypercyclic. Also, Rolewicz proved the hypercyclicity of the operator AB on ¢
or ¢ for 1 < p < oo and |A| > 1, where B is the unweighted backward shift
defined by B(e,) = e,—1,n > 1, with ¢y = 0 and e, = {0,0,..,1,0..}, 1 being
placed at the nth coordinate. Generalizing this result, H.N. Salas [23] proved
that the weighted shift B, associated to a weight sequence (w,) of positive re-
als, given by B,(e,) = wye,_1,n > 1 is hypercyclic on ¢ or ¢ if and only if
lim sup,, . (wyws - - - w,) = oo.

For testing the hypercyclicity of a linear operator, a sufficient criterion known
as the hypercyclicity criterion, initially obtained by Kitai [13], has appeared in
different forms and the one which is given below is due to H. Petterson [21]. This
is useful even for linear operators defined on non-metrizable topological vector
spaces. For the definition of F-norm, we refer to [11], p. 385.

Theorem 2.1 (Hypercyclicity criterion). Let (X, 7) be a separable topological
vector space. Suppose further that X carries an F-norm ||.|| with respect to
which it is complete and that ||.||-topology is stronger than 7. If T is an operator
continuous with respect to the F-norm, D C X a countable T-dense set and
Sp D — X maps such that, for all x € D,

L ||T™(z)|| = 0 and ||Sn(z)|| — 0 as n — oo; and
2. T"S,(x) =z, for each n € N,

then the operator T is T-hypercyclic.

An operator T € L(X) is called frequently hypercyclic if there exists an z,
called a frequently hypercyclic vector for T such that for every nonempty open
set U in X, the set N(z,U) = {n € N: T"(z) € U} has positive lower density;
where the lower density of a subset A of N, the set of natural numbers, is defined



116 M. GUPTA AND A. MUNDAYADAN

as

(2.1)

M(A>:hminfcard{neA.nSN}
N—oo N
the symbol card(B) being used to denote the cardinality of the set B.
Let us note that dens(B) € [0,1] for any subset B of N. Clearly, the lower
density of any finite set is zero and that of N is 1. If A is a strictly increasing
sequence (ny), the lower density of A is characterized as [11]

Y

k
d = liminf —. 2.2
ens(ny) imin - (2.2)
Alternatively, an operator T" € L(X) is frequently hypercyclic if there is some
x € X such that for every nonempty open subset U of X, there exist a strictly
increasing (ny) of natural numbers and a constant C' > 0 such that

T (z) € U and np < Ck,V k € N.

Analogous to the hypercyclicity criterion, we have the following criterion, proved
in [3] and [11].

Theorem 2.2 (Frequent hypercyclicity criterion). Let X be a separable F-space
and T € L(X). If there exist a dense subset D C X and a map S : D — D such
that

1. Y T™(x) and > S™(x) are unconditionally convergent for each v € D;
and
2. TS =1, the identity on D,

then the operator T s frequently hypercyclic.

The operators of Birkhoff and MacLane satisfy the above criterion, cf. [3] and
[5], and so they are frequently hypercyclic. In fact, any continuous operator,
except a scalar multiple of the identity, that commutes with all translations on
H(C), has been shown to be frequently hypercyclic [10]. We also recall the
hypercyclic comparison principle from [3] and [5], which says how to transfer the
hypercyclicity via a linear quasi-conjugacy.

Proposition 2.3 (Hypercyclic comparison principle). Let T and S be continuous
linear operators on two topological vector spaces X and Y respectively and A :
X — Y be a continuous linear map with dense range such that SA = AT. If T is
hypercyclic (or frequently hypercyclic) on X, then S is hypercyclic (or frequently
hypercyclic) on'Y .

3. ¢-FREQUENTLY HYPERCYCLIC OPERATORS

We first introduce the g-lower density of a subset of natural numbers, for ¢ € N
and determine a useful characterization.

Definition 3.1. Let A C N and ¢ € N. The g-lower density of A is defined as

. . .card{n € A:n < N9}
g-dens(A) = hNHL 1£f N :
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Let us note that the lower density of a set is always finite and lies in the interval
[0, 1], but the g-lower density can vary in [0, 00] for ¢ > 2. As in the case of the
lower density, we have the following.

Proposition 3.2. Let (ny) be a strictly increasing sequence of natural numbers.
Then

(1) g-dens(ny) = hgg}lf vl

(2) g-dens(ng) > 0 if and only if there exists a constant C > 0 such that
n, < CkY for all k € N.

Proof. Fix a number k € N. For any N € N with ny < N9 < nj,1, we have that
card{k € N : ny, < N7}
PN = N

— k/N.

Thus the inequality

— 7 <Pn <
nk+11/q

nkl/ q
implies the first part in the theorem.
Part (2) follows immediately from the fact that liminfa, > 0 if and only if

i < C for some C > 0, where (ay) is a sequence of positive numbers. O

We now define the notion of ¢-frequent hypercyclicity of linear operators on
topological vector spaces.

Definition 3.3. Let ¢ € N. A continuous linear operator T on a separable
topological vector space X is said to be ¢-frequently hypercyclic if there exists an
x € X such that for any nonempty open subset U of X, the set N(z,U) = {n €
N :T"(x) € U} has positive g-lower density. Such a vector is called a g-frequently
hypercyclic vector for T'.

Alternatively, a continuous linear operator 1" on a separable topological vector
space X is q-frequently hypercyclic if there exists an x € X such that for any
nonempty open subset U of X, we can find a strictly increasing sequence (ny) of
natural numbers and a constant C' > 0 such that

T™(z) € U and n, < Ck?, for all k € N.

Such a vector is called a q-frequently hypercyclic vector for T.

Obviously, every frequently hypercyclic operator is g-frequently hypercyclic for
any natural number ¢, and the two notions are the same for the case ¢ = 1. Also
this new property of linear operators is stronger than hypercyclicity; however,
none of the converse implications is true, e.g. consider

Example 3.4. Here we show that there exists a hypercyclic operator on ¢! that
is not 2-frequently hypercyclic with respect to the weak topology of ¢!. Indeed,
the weighted backward shift B, with weights w,, = ,/”TH is hypercyclic by the

result of Salas, but was shown to be non-frequently hypercyclic on ¢2 in [3]. For
showing the non-2-frequent hypercyclicity of B,,, choose the weakly open set
U={(yn) € 0* : |y1] > 1}. Let = = (x,,) be a 2-frequently hypercyclic vector for
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B,,. Enumerate the set N(z,U) = {n € N: Bl'(z) € U} as (nj). Thus we have
a constant ¢ > 0 such that n; < ck?, and hence

1
> 1
o1 VI
On the other hand, B}!*(x) € U implies that

Vg + 1|z, 41| > 1, forall k > 1
As (z,) € ', we get
Zk21 \/ﬁ < o0,
which is a contradiction. Hence B,, is not 2-frequently hypercyclic on ¢! for the

norm topology.

Example 3.5. We show the existence of a hypercyclic operator that is not ¢-
frequently hypercyclic with respect to the weak topology, for any ¢ € N. Let

In(k + 2

us consider the unilateral shift B, on ¢! with weights w;, = M, k € N.
In(k+1)

By the result of H.N.Salas, B,, is hypercyclic since wiws - - - wy = % — 00

as k — oo. Let x = (x,) be a g-frequently hypercyclic vector for B, for some
g € N. Enumerate the set N(z,U) = {n € N: Bl'(x) € U} as (ny), where
U= {(yn) € £ : |y1| > 1}. Thus we have a constant ¢ > 0 such that n; < ck?.
This implies that In(n;) < C'lnk, for some constant C' > 0 and for all £ € N.
Hence

1

In Nk

= OQ.

On the other hand, B]l*(x) € U implies that
In(ny + 2)
T’%Hﬂ > 1.

Consequently,

1
— <
Zln(nk+2) >

k>1
which is a contradiction. Hence B, is not ¢-frequently hypercyclic in the norm
topology, for any ¢ € N.

We now prove a criterion, similar to the frequent hypercyclicity criterion, which
works even for operators defined on certain non-metrizable locally convex spaces.
Using this, we obtain a 2-frequently hypercyclic operator that is not frequently
hypercyclic. Before stating the result, let us recall that a series > x,, in a topolog-
ical vector space is unconditionally convergent if ) x4, is convergent for every
permutation o of N. In any topological vector space, this mode of convergence is
equivalent to the unordered convergence of »_ x,, cf. [16], p.154. Thus a series
> x, is unconditionally convergent if and only if for every non-empty open set
U of 0, there corresponds an N € N such that ) .z, € U for every finite set
F C [N,o00). Also, for the proof of our criterion we need the following lemma
from [5].
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Lemma 3.6. Let (Ny) be a strictly increasing sequence of natural numbers. Then
there ezists a pairwise disjoint sequence (Jy) of subsets of N such that

(1) dens(Jx) > 0 for each k > 1
(2) |In —m| > N+ N, for n#m and (n,m) € Jp X J,.
(3) n > Ng, for eachn € J, and k > 1.

We now state and prove the main result of the paper.

Theorem 3.7 (g-frequent hypercyclicity criterion). Let (X, T) be a separable
locally convex space and q € N. Suppose that X is equipped with an F-norm ||.||
such that the F-norm topology is stronger than T and (X, ||.||) is complete. If T is
an operator continuous with respect to the F-norm, D is a subset of X containing
a countable T-dense set and S : D — D is a map such that

(1) ST (z) and > S™(z) are unconditionally convergent with respect to the
F-norm, for each x € D; and
(2) TS = 1, the identity on D,

then the operator T is q-frequently hypercyclic with respect to 7.

Proof. Our proof is inspired by that of the frequent hypercyclicity criterion given
in [5]. However, we outline the proof for the sake of completeness. Let Y =
{z1,29,---} C D be a countable 7-dense set. Consider a summable sequence
(ex) of positive real numbers, which are to be chosen later. By the hypothesis,
corresponding to €, we can find N € N such that

> T () > 8" (@)

neF neFr

+ <e1<i<k, (3.1)

for any finite set F' C [Ny, 00) of natural numbers. We may now assume that
(Ny) is strictly increasing so that by Lemma 3.6, we get a sequence (Ji) of subsets
of N with the properties mentioned therein. We now set

T = Z Z S (1),

k>1 neJdy

Since unconditional convergence implies subseries convergence [16] p.154, the
series Y, 5™ (x3) converges for each natural number k. It follows by (3.1)
that

§26k<00

k>1

> 8" ()

neJy

00
k=1

Thus x € X.
Let us now fix k € N and m € J,. Then

T () =Y TS (x).

1>1 neJ;
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and so

177 (@) = | < D

>1

Z T (1)

neJ;,m>n

2

>1

> 5 ()

neJ;,m<n

(3.2)

Let us now consider the first sum on the right hand side of (3.2). Indeed,
writing the first term as

Z Tt ($l)

neJ;,m>n

2

1

>

I>k+1

Z Tt (:l?l)

neJ;,m>n

k
’
=

we have

2.

>1

Z T ()

neJ;,m>n

< ke, + Z €.

j>k+1

The last inequality arrives because whenever m € Ji, we have m?—n? >max (N, N;)
for any n € J; with m > n. Similarly, we evaluate the second term to get

Z Z ST ()| < ke + Z €.

[>1 [Ined;,m<n j>k+1

Set ay, = kep + 355y €5 So we arrive at the inequality,

Hqu(x) — wkH < 2qy < 3ag,Vm € Ji, k> 1. (3.3)

Choose ¢ such that a — 0. We now show that z is a g-frequently hypercyclic
vector for the operator T" with respect to the topology 7. Let G be a nonempty
T-open set and y + U C G for some 7-neighborhood U of the origin. Then we
find a balanced neighborhood V' of the origin such that V' +V C U. Since Y is
7-dense in X, we find an increasing sequence of natural numbers (n;) such that
T, —y €V for all k > 1. Since the ||.||-topology is finer than 7, it follows from
(3.3) that, for some N € N, T™(z) — z, € V for every m € J; and k > N. Thus
from the facts that x,,, —y € V and T™(z) — x,, € V/, we obtain that for all

m € Jpy, T™ (x)—y € V4V C U. Our conclusion now follows since 7™ (z) € G
for all m € J,,,,, which has positive lower density. O

Remark 3.8. Tt is evident from the proof of Theorem 3.7 that the sequence (T™)
is frequently hypercyclic and thus T is g-frequently hypercyclic. It would be
interesting to know whether the converse is true or not, i.e., is (7™") frequently
hypercyclic whenever T' is ¢-frequently hypercyclic?

Remark 3.9. Let us also note that in the above theorem, the countability as-
sumption on a subset of D may be waived in case the topology 7 is generated
by an F-norm. Indeed, if (z,) is a 7-dense sequence in X, choose a countable
set {Ynm : m,m > 1} where y,,, € D N B(x,, %), B(zy, %) being the open ball
of radius % centered at x,. It is now easy to verify that {y,., : n,m > 1} is a
T-dense set in X.
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4. APPLICATIONS

In this section, we consider some applications of the ¢-frequent hypercyclicity
criterion for obtaining ¢-frequently hypercyclic operators on spaces equipped with
linear topologies which are not necessarily metrizable. Besides, we prove the
frequent hypercyclicity of a non-convolution operator on H(C), at the end of
the section. Let us begin with the results on sequence spaces with metrizable
topologies.

Proposition 4.1. Let X be a sequence space equipped with an F-norm and let
{en} be an unconditional basis in A. If for some q € N,

1
neN 142 ni+j

converges unconditionally for each j € N, then the backward shift B,, associated
to the weight sequence (wy,), is q-frequently hypercyclic.

Proof. Since A is an F-space, in view of Remark 3.9 choose D to be the dense
set spanned by {e, : n > 1}. Define S,, on D by S,(e,) = ——e,.1. To apply

Wn+1
our criterion, we are only required to prove the unconditional convergence of

S Sn(x) for each x € D. Indeed, for a given k € N, we have
1

S™(ep) = —————epm.
w<€k> Wg+1 ** - Wk+n Chin

Thus, by the hypothesis, the series

Z qu(ek) = wWiwy - Wy Z ;emnq.

w .. w
n>1 neN 1 k+n4

converges unconditionally in A\. Hence B,, is ¢g-frequently hypercyclic.
O

As a consequence of the above result, we obtain a g¢-frequently hypercyclic
operator that is not frequently hypercyclic. This is the Bergman shift, considered
in [3].

Corollary 4.2. Let B, be the unilateral shift on (* given by the weights w, =
\/”TH, n > 1. Then B, is 2-frequently hypercyclic and is not frequently hyper-
cyclic; a fortiori, B, is q-frequently hypercyclic for any q > 2.

Proof. Since wiws - - - wp24; = y/n? + j + 1, the result follows. |

Remark 4.3. One may apply Proposition 4.1 to obtain the g-frequent hypercyclic-
ity of shift operators defined on Fréchet spaces, for example the space H(C) of
entire functions equipped with the compact-open topology, the space of all se-
quences with the topology of co-ordinate convergence and the classical /7 spaces.

Before we move on to another application, let us see an example.

Example 4.4. Let p € N. Then there exists an operator which is not p-frequently
hypercyclic, but it is g-frequently hypercyclic for all ¢ > p + 1. We consider the
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k+2
k+1
similar to that of Example 3.5 shows that B, is not p-frequently hypercyclic on
%, We can also conclude that B, is (p + 1)-frequently hypercyclic by applying
Proposition 4.1 to the dense set of finite sequences.

1/2p
unilateral shift B, on ¢? with weights w;, = ( ) , k € N. Then the proof

Our next application of Theorem 3.7 is for the bilateral backward shift oper-
ators. Let X be an F-sequence space over the set Z of integers such that the
unit sequences (e, )necz form an unconditional basis in X. For w = (w,) € (*(Z),
the operator Ty, (e,) = wpe,_1 is the bilateral backward shift. The content of the
following proposition is the ¢-frequent hypercyclicity of T,,.

Proposition 4.5. Let (e,)nez form a unconditional basis in an F-sequence space
X and let g € N. If

1
E 0w w Ena+j and E WjWj—1 *** Wpa4j4+1€—na+j
neN 172 nat] neN

converge unconditionally for each j € N, then T, is q-frequently hypercyclic on

X.

Proof. Let D be the set spanned by the sequence (e,)nez. Consider the map
Swler) = ﬁekﬂ on the dense set D of X, so that T,,S,, is the identity operator

on D. Then,

nd _
Tw (ej) = WjWj—1..Wj—ni41€5j—na

and

nd(,\ _ 1 )
Sy (e5) = W) 1w 2 Wy g I

for each j € Z. From the hypothesis, we obtain that the series Y 7" (e;) and
> 5™ (e;) converge unconditionally in X. The desired result now follows since
T,, and S,, are linear and D is the span of (e,),ez. O

A particular case of Proposition 4.5 is when T, is the bilateral backward shift
defined on the sequence space ¢P(Z) or co(Z) for 1 < p < co. Recall that hyper-
cyclicity of T;, was characterized by H. N. Salas in [23]. Also a series ) ., anen
converges unconditionally in ¢?(Z) if and only if the sequence (a,,) € ¢?(Z). Thus
we derive the following result from Proposition 4.5.

Corollary 4.6. Let g € N and 1 < p < co. Assume that for each j € Z,

ZnEN m < o0 and Z(ijj_l W ey j1)P < 00,
neN
Then T, is q-frequently hypercyclic on (P(Z). If lim,, o (wiws - - - Whay;) = 00
and llmnﬁoo(w]w]_l .. 'w—nq+j+1) =0 fOT each j c Z} then Tw is q-frequgnt[y
hypercyclic on co(7Z).

We have yet another application of Theorem 3.7. Let X be a Banach space
having a Schauder basis {z,, f,}. Then the dual X* is weak*-separable and
the weak*-topology is not metrizable, when X is infinite dimensional. We as-
sume that {z,, f,} is a symmetric Schauder basis for X, which means that
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Y ns1 Jum) (@) Ty converges for each € X and every pair (u, o) of permu-
tations of N. A symmetric base in a Banach space is regular (inf||z,|| > 0)
and bounded (sup ||z,|| < 00), see for example [17], p. 133. Corresponding to a
weight sequence (w,) and a symmetric Schauder basis {z,, f,} (where the index
starts from 1), we define the backward shift B,, by By (fn) = wafo_1, n > 1
with fo = 0. This operator is continuous with respect to the norm as well as the
weak*-topology of X*, cf. [21, p. 1434]. We now prove:

Theorem 4.7. Let X be a Banach space with a symmetric Schauder basis {x,, f.}.
Then for q € N, the backward shift operator on X* is q-frequently hypercyclic with

respect to the weak*-topology of X* z'fz ——— conwverges for each j € N.
nEN ©* Wytne
1
In particular, if Z ———— conwverges, then B, is weak™*-frequently hyper-

5 WiW2 * + * Wy
cyclic on X*.
Proof. In order to apply Theorem 3.7, consider D to be the span of {f,, : n > 1}.

Then D contains a countable weak*-dense subset. The forward shift S, (f,) =
—L_f 1,n>1maps D to itself. Thus

W41
Su(fi) = ——————frs
Y Wr+1 * " Wi4n "
and

1
Z Se (fi) = wiws - - wy Z P — SRR
neN neN Wi Whetna

Since a symmetric Schauder basis is regular, we have that || f,|| < K for some
constant K > 0 and for all n € N, cf. [I7], p. 261 and [25], p. 25. Hence by
our hypothesis, the series ) Si *(fx) is absolutely convergent and so uncondi-
tionally convergent. Consequently, the shift B, is ¢-frequently hypercyclic with
respect to the weak*-topology on X* by Theorem 3.7. O

As a consequence of the above result, we derive:

Corollary 4 8. The backward shift B, is weak*-q-frequently hypercyclic on £*

if Z converges for each j € N.
Wy -+ Wjqna
neN
Proof. Immediate since {e, : n > 1} is a symmetric Schauder basis for ¢!, O]
1
Thus if Z ——— converges, B, is weak*-frequently hypercyclic on £,
wWLWa * + * Wy

neN
In fact, the followmg stronger result holds.

Proposition 4.9. (1)If lim (wjws---w,) = oo, then the unilateral backward

shift B, is weak*-frequently hypercyclic on €.
(2)If lim (wyws---wy,) = oo and lim (w_jw_o---w_,) = 0, then the bilateral

n—oo

backward shift T, is weak*-frequently hypercyclic on (>(7Z).
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Proof. Since lim (wjws - - - w,) = oo, the weighted shift B,, is frequently hyper-

cyclic on ¢y, cf. [3] or [5]. Also, it is easy to see that the identity operator
from ¢ to £*° is norm to weak™ continuous and has weak*-dense range. Hence
B, is weak*-frequently hypercyclic on ¢*°, by Proposition 2.3. Similarly, the
identity map takes co(Z) into £>°(Z) continuously and densely. Thus T,, is weak*-
frequently hypercyclic on ¢>(Z).

O

Remark 4.10. We would like to mention here that hypercyclicity on ¢*° which
is weak*-separable, was studied in [7] and [21]. It was proved that a backward
shift B, is weak*-hypercyclic on ¢*° if and only if limsup,, ., (wjws - - w,) = co.
However, the condition lim,, . (wiws..w,) = oo is not necessary for B, to be
weak*-frequently hypercyclic on £*°. Indeed, there exists a frequently hypercyclic
By, on ¢y (and thus weak*-frequently hypercyclic on £*°) such that wjws..w, - .
cf. [1], p. 205.

Remark 4.11. In view of Theorem 3.7, a weakly g-frequently hypercyclic operator
on a separable Banach space, which satisfies the ¢g-frequent hypercyclicity criterion
with respect to a weakly dense set is necessarily norm-g¢-frequently hypercyclic;
for the closed convex sets are the same in the weak and norm topologies .

Finally, we consider the frequent hypercyclicity of a non-convolution operator.
It is known that any convolution operator on H(C) (a continuous linear operator
that commutes with all translations) that is not a multiple of the identity operator
is frequently hypercyclic [10]. The operator T,,(f)(z) = f'(p12) on the space H(C)
is a non-convolution for u # 1 and was shown to be hypercyclic for |u| > 1, cf.
[12] and [2]. In fact, this operator is a weighted backward shift with weights
w, = nu" 1. So, our result can be derived using the Proposition 4.1. We rather
prove this in the following way.

Proposition 4.12. Let H(C) be equipped with the compact-open topology. Then
the operator T, is frequently hypercyclic on H(C) for |u| > 1.

Proof. Let D be the set of all polynomials. Define the map S, by,

S.(f)(2) = / " Flu) du.

It is easy to see that ) T7'(f) is absolutely convergent in H(C) and that
T,S,, = I, the identity on the set D. We fix a k > 0 and consider the function
2%, Then

k!zk-i-n
(k + n)lynk+n(n=1)/2"

Since |u| > 1, the series ) S](f) is absolutely convergent for any polynomial f
and we conclude that 7}, is frequently hypercyclic by Theorem 2.2. 0

SZ(zk) =

We ask the following question. Can one say that the operators T),,(f)(z) =
f'(pz +b) on H(C) for |u| > 1 and b € C, b # 0, are frequently hypercyclic?
These have been shown to be hypercyclic in [2] and [12].
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5. ROTATION AND POWERS

We now remark that rotations and powers of a ¢-frequently hypercyclic operator
on an arbitrary separable topological vector space remain ¢-frequently hypercyclic
for any ¢ € N. They also share the same set of g-frequently hypercyclic vectors.
These results have been proved for the case ¢ = 1 in [5]. The hypercyclicity
of powers and rotations have been considered by S. I. Ansari [!] and F. Leon-
Saavedra and V. Miiller [19] respectively. For establishing the following theorem
on powers and rotations of ¢-frequently hypercyclic operators, we need a lemma
stated as

k
Lemma 5.1. Let A C N have positive q-lower density and UIj = N. If

=1
ni, -+ ,ny are finitely many natural numbers, then ’
k
U +AnT)
j=1
has positive q-lower density.
Proof. Omitted as it follows on the same lines as given in [5], p. 148. 0

Let us denote by ¢F'HC(T), the set of all g-frequently hypercyclic vectors for
T and S!, the unit circle in the complex plane. Then we have

Theorem 5.2. Let T be a q-frequently hypercyclic operator on a complex topolog-
ical vector space X. Then XT and TP are q-frequently hypercyclic for each A € S*
and p € N. Also gFHC(T) = qFHC(\T) = qFHC(T?).

Proof. To get this result, we proceed on similar lines as in the case of frequent
hypercyclicity, [5], p. 148. O

Finally, we would like to mention that the notion of ¢-frequent hypercyclicity
is a particular case of (my)-hypercyclicity studied in [6]. Indeed, for a strictly
increasing sequence (my) of natural numbers, an element = € X is called (my)-
hypercyclic for an operator 7" on X if for every non-empty open set U C X, there
exists a strictly increasing (ny) = O(my) such that 7" (z) € U for all k. Thus
the case my = k4, for all k coincides with the notion of g-frequent hypercyclicity;
however, the results in our paper have no overlap with the results of [(] except
that the ¢-frequent hypercyclicity (¢ > 2) of the Bergman shift has been proved
in [0] using the notion of a hypercyclicity set; see Example 5.3, [0].
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